Roskilde
University

A history of the minimax theorem

von Neumann's conception of the minimax theorem. a journey through different mathematical
contexts

Kjeldsen, Tinne Hoff

Publication date:
2000

Document Version
Ogsa kaldet Forlagets PDF

Citation for published version (APA):
Kjeldsen, T. H. (2000). A history of the minimax theorem: von Neumann's conception of the minimax theorem. a
journey through different mathematical contexts. Roskilde Universitet. Tekster fra IMFUFA Nr. 387

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain.
* You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 03. Jul. 2025



TEKST NR 387 2000

A History of the Minimax Theorem:

von Neumann’'s Conception
of the Minimax Theorem -- a Journey
Through Different Mathematical Contexts

Tinne Hoff Kjeldsen

TEKSTER fra

U M F U F ROSKILDE UNIVERSITETSCENTER
INSTITUT FOR STUDIET AF MATEMATIK OG FYSIK SAMT DERES

FUNKTIONER | UNDERVISNING, FORSKNING OG ANVENDELSER




IMFUFA, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark.

A History of the Minimax Theorem: von Neumann’s Conception
of the Minimax Theorem — a Journey Through Different Mathe-
matical Contexts

by
Tinne Hoff Kjeldsen

IMFUFA text no. 387/2000 39 pages ISSN 0106-6242

Abstract:

The purposes of this paper is first to tell the history of John von Neumann’s development
of the minimax theorem for two-person zero-sum games from his first proof of the theorem
in 1928 until 1944 where he gave a completely different proof in the first coherent book on
game theory. I will argue that von Neumann’s conception of this theorem as a theorem
belonging to the theory of linear inequalities as well as his awareness of its connection
to fixpoint theorems were not present in 1928. In contradiction to the impression given
in the literature these connections were only gradually recognized by von Neumann over
time. By reading this knowledge into von Neumann’s first proof of the minimax theorem
from 1928 a major part of the cognitive development of this theorem is neglected within
the history of mathematics. The significance of interactions between different branches of
mathematics for the conception and development of the minimax theorem are neglected
as well. My argumentation are based on an analysis of von Neumann’s 1928-paper, of
a paper he published in 1937 on a mathematical model for an expanding economy, and
of the proof of the minimax theorem that appeared in von Neumann and Morgenstern’s
famous book on game theory published in 1944,

The second purpose of this paper is to discuss a more philosophical issue concerning
the significance of the context in which a theorem is developed. The point of departure for
this discussion is a dispute in 1953 between von Neumann and the French mathematician
Maurice Fréchet about who should be named the initiator of game theory — an honour
the mathematical literature at that time associated with von Neumann. Fréchet argued
that eventhough Emile Borel was not able to prove the minimax theorem he was the true
initiator of game theory due to his papers on the subject published in the beginning of
the twenties before von Neumann’s 1928 paper. The interesting issue here is not to settle
the priority between Borel and von Neumann but rather to analyze the significance of the
minimax theorem.
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1 Introduction

The purposes of this paper is first to tell the history of John von Neumann’s
development of the minimax theorem for two-person zero-sum games from
his first proof of the theorem in 1928 until 1944 where he gave a completely -
different proof in the first coherent book on game theory. I will argue that
von Neumann’s conception of this theorem as a theorem belonging to the
theory of linear inequalities as well as his awareness of its connection to
fixpoint theorems were not present in 1928. In contradiction to the i impression
given in the literature these connections were only gradually recognized by
von Neumann over time. By reading this knowledge into von Neumann’s
first proof of the minimax theorem from 1928 a major part of the cognitive
development of this theorem is neglected within the history of mathematics.
The significance of interactions between different branches of mathematics
for the conception and development of the minimax theorem are neglected
as well. This paper will remedy this and shed new light on these issues.
Since the beginning of the nineties there has been an increasing interest
in the history of game theory, several historical papers have appeared and
most of them of course mention von Neumann’s 1928 proof of the minimax
theorem. A common feature though is that none of these give an analysis of



the mathematics in von Neumann’s proof. There is only one paper that goes
deeper into the mathematics. It is an older essay written by two Princeton
mathematicians; the late Albert W. Tucker and Harold W. Kuhn in memory
of John von Neumann. They treat the mathematics in a modern (-1958)
framework and emphasize in particular the connections to fixpoint theorems
and the theory of linear inequalities [Kuhn and Tucker, 1958, p. 111-112]. The
other historical papers state about von Neumann’s 1928 proof of the minimax
theorem that it is very difficult." The von Neumann biographer Steve J.
Heims very telling called it “a tour de force” [Heims, 1980, p. 91]. Some of
the papers also state that the proof is about systems of linear inequalities
and equations? and one that it is based on fixpoint theorems®. Reading
von Neumann’s 1928 paper I found that these statements were not at all
obvious, as a matter of fact von Neumann did not talk about fixpoints in his
1928 proof and he did not formulate or present a system of linear inequalities
and equations to be solved. Today we know that all these connections are
there but I think that von Neumann was not fully aware of that in 1928, it
was an insight that emerged gradually during his work from 1928 until 1944
in which the minimax theorem - some times surprisingly — presented itself
in different mathematical contexts.

I will argue for this claim through an analysis of von Neumann’s 1928-
paper, of a paper he published in 1937 on a mathematical model for an
expanding economy, and of the proof of the minimax theorem that appeared
in von Neumann and Morgenstern’s famous book on game theory published
in 1944.

The second purpose of this paper is to discuss a more philosophical issue
concerning the significance of the context in which a theorem is developed.
The importance of a mathematical theorem is dependent on the branch or
discipline of mathematics within which it is considered. A mathematical
result is not likely to be deemed equally important within different branches
or contexts of mathematics. The interesting questions, the questions that
guide the research in different mathematical contexts are not the same. Thus,
the potential of a mathematical theorem for stimulating further research is
dependent of the mathematical context of discovery.*

1See [Dimand and Dimans, 1992, p. 24], [Leonard, 1992, p. 44)], [Ingrac and Israel,
1990, p. 211].

2See [Ingrao and Israel, 1990, p. 211], [Heims, 1980, p. 91].

3See [Ingrao and Israel, 1990, p. 211].

4For example the calculus of variations with constraints and mathematical program-




The background for these questions in relation to the history of the min-
imax theorem is a dispute in 1953 between von Neumann and the French
mathematician Maurice Fréchet about who should be named the initiator of
game theory — an honour the mathematical literature at that time associated
with von Neumann. Fréchet argued that eventhough Emile Borel was not
able to prove the minimax theorem he was the true initiator of game theory
due to his papers on the subject published in the beginning of the twenties
before von Neumann’s 1928 paper. The interesting issue is not to settle the
priority between Borel and von Neumann but rather to analyze the signifi-
cance of the minimax theorem. According to Fréchet the minimax theorem
was not such an important result because it turned out that it can be de-
rived very easily from other theorems on linear inequalities, theorems proved
before 1928. The underlying assumption behind Fréchet’s argumentation is
that theorems that turn out to be equivalent have the same significance or the
same potential for stimulating further mathematical developments regardless
of the mathematical context in which they were derived. This touches a very
interesting philosophical issue I think, namely. the significance of the math-
ematical context for which kind of new questions of investigation a theorem
can give rise to. A contextualized analysis of similar mathematical theorems
derived in different mathematical contexts can give the historian a tool for
understanding mechanicmes behind the divison of mathematical results that
gave rise to new developments in mathematics and results that did not.5

ming both treat optimization under constraints. But in the calculus of variation the infinite
cases are treated where as mathematical programming is concerned with finite dimensional
cases, so a theorem about constrained optimization can be deemed very important and
can lead to new knowledge in mathematical programming where as the same theorem
evaluated from the point of view of the calculus of variation is seen as just a minor thing.
To be specific this was the case for the so-called Kuhn-Tucker theorem in mathematical
programming, see [Kjeldsen, 2000]. ' }

5The Kuhn-Tucker theorem in nonlinear programming is an example of this. Kuhn and
Tucker derived the theorem in 1950 and it imediately launched the theory of nonlinear
programming and is viewed as a very important result. Later it turned out that a similar
result had been proven only 11 years earlier by William Karush in his master thesis.
Karush’s work was done in the mathematical context of the calculus of variations within
which is was not regarded as a very important result, it was not even published. Also Fritz
John proved a similar result which he had problems getting published. It finaly appeard
on print in 1948 - only two years before Kuhn and Tucker’s version of the theorem was
published. John’s work was done within the context of the theory of convexity in which
the theorem was not deemed to be some thing special. The reasons for the very different
receptions of these results within the mathematical community can be explained by refering

-



This issue is discussed in the second part of the paper on the basis of an
analysis of some of Borel’s papers on game theory, of von Neumann’s work,
and of the dispute between Fréchet and von Neumann.

2 The First Proof of the Minimax Theorem:
von Neumann’s 1928 Paper

John (Johann) von Neumann (1903-1957) published his first paper on what
he called “Theorie der Gesellschaftsspiele” in 1928. From there on it took
16 years before von Neumann published on game theory again, so for a long
time the 1928-paper stood as a kind of singularity in his mathematical pro-
duction. This has of course given rise to some speculations about why and
where this idea and inspiration to develop a mathematical theory of games
came from. Two explanations are suggested in the literature, one of them is
that von Neumann got the idea from reading Borel’s work on the subject.®
Von Neumann himself claimed that he developed the theory independently
of Borel [von Neumann, 1928a|. In the 1928-paper von Neumann has a foot-
note telling that someone drew his attention to the notes of Borel during the
proofreading [von Neumann, 1928, p. 306]. I think von Neumann’s claim is
supported by the course of events: Already in December 1926 he presented
his work at the weekly seminar of the mathematical institute in Géttingen
[von Neumann, 1928, p. 295]. Eventhough he sent the manuscript to Math-
ematische Annalen in July 1927 it was not until May 1928, that is allmost
a year later, that he had Borel present the work including the minimax the-
orem to the Académie des Sciences in Paris, just a short time before the
paper itself was published [von Neumann, 1928a]. When he heard about
Borel’s work he might have been afraid that Borel or someone else would
be about to publish a similar result and then acted quickly at that time by
sendig a note to the Académie to ensure priority. The other explanation for
why von Neumann suddently developed a theory of games is more plausi-
ble I think. Here the apperance of von Neumann’s game theoretic work is
linked with the social context of von Neumann’s life during the years leading
up to the publication of the paper. Von Neumann was at that time very

to the significance of the different mathematical contexts in which the results were derived.
For an analysis of this see [Kjeldsen, 2000].
8See for example [Ulam, 1958, p. 7).



much influenced by Hilbert and the Gé6ttingen mathematical community. He
was especially deeply involved in Hilbert’s axiomatization programme.” In
the papers [Mirowski, 1991, 1992] Mirowski argues convincingly that von
Neumann’s game theory was a result of his connection to Hilbert and the
formalist programme.®

2.1 What is a “Gesellschaftsspiele”?

The two essential parts of von Neumann’s 1928 paper are the mathemati-
zation of “Gesellschaftsspiele” or “games of strategy” and the proof of the
theorem “Max Min=Min Max” for a game involving two players who play
against each other and for which the players total gain add up to zero. That
is the theorem now known as the minimax theorem for two-person zero-sum
games. In the following I will explain how von Neumann mathematlzed
games of strategy and how he proved the minimax theorem.®

Von Neumann began the paper by posing the question under con51dera-
tion :

n Spieler, Si, S, ..., Sy, spieleh ein gegebenes Gesellschaftsspiel
B. Wie mu$ einer dieser Spieler, S,,, spielen, um dabei ein még-
lichst giinstiges Resultat zu erzielen?'® [von Neumann, 1928,
p. 295]

As von Neumann pointed out the problem is well known from daily life but
ambiguous because what will happen when there are more than player in-.
volved? In that case the fate of each player depends on the rest of the players
" and they are all guided by the same selfish interests. Thus the first problem
von Neumann faced was to clarify what precisely was to be understood by
the term “Gesellschaftsspiel”. As the following quote shows von Neumann
had a very broad understanding of the concept

"In 1925 - 1928 he published three papers on the axiomatization of set theory, one
on Hilbert’s proof theory, and seven papers on the foundation and axiomatization of
quantum mechanics; see the bibliography of John von Neumann in his collected works
[von Neumann, 1963, pp. 645 - 652).

8See also {Leonard, 1992, 1995).

®The paper was published in German. In 1959 an English translation of it was published
from which the translations in the footnotes of the quotes have been taken.

104y players Sy, Ss,...,S, are playing a game of strategy, B. How must one of the
participants, Sp,, play in order to achieve a most advantageous result?” [von Neumann,
1928, (1959 p. 13)).



Es fallen unter diesen Begriff sehr viele, recht verschiedenartige
Dinge: von der Roulette bis zum Schach, vom Bakkarat bis zum
Bridge liegen ganz verschiedene Varianten des Sammelbegriffes
‘Gesellschaftsspiel’ vor. Und letzten Endes kann auch irgendein
Ereignis, mit gegebenen &dusseren Bedingungen und gegebenen
Handelnden (den absolut freien Willen der letzteren vorausge-
setzt), als Gesellschaftsspiel angesehen werden, wenn man seine
Riickwirkungen auf die in ihm handelnden Personen betrachtet.!!
[von Neumann, 1928, p. 295]

One must say that von Neumann’s very broad interpretation of “Ge-
sellschaftsspiele” points towards an extremely ambitious project. At a first
glance it must have seemed very unlikely that one could succeed in building
a mathematical model for this kind of situation. Anyway even though von
Neumann was ‘only’ able to contruct a solution concept and prove the exis-
tence of such a solution for a very limited subset of the overall game concept,
he started out with the mathematization of the general case.

By collecting the common features in game situations von Neumann de-
rived a qualitative desription of the game concept. He argued as follows: A
game is composed of a series of events of which each can have at most a
finite number of outcomes. In some game situations it can happen that the
outcome of some of the events depends only on chance. This means that
the probabilities with which each of the outcomes will appear are known but
none of the players have any influence on them. The outcome of all other
events are subject to the individual player’s free choices. For each of these
events it is known which player determines the outcome, and what kind of
information this player has regarding the outcome of earlier events. Finaly
there is a rule by which the winnings and loosings of each player can be
calculated after the game, that is after the outcome of all events in the play
are known. [von Neumann, 1928, p. 296].

In order to be able to work with this very broad concept of a game von
Neumann reformulated the above qualitative description in a more precise
form which then served as his definition of a game of strategy. His definition

114A great many different things come under this heading, anything from roulette to
chess, from baccarat to bridge. And after all, any event — given the external conditions
and the participants in the situation (provided the latter are acting of their own free will) —
may be regarded as a game of strategy if one looks at the effect it has on the participants.”
[von Neumann, 1928 (1959 p. 13)].




was build up around five points.

The first one specifies the number (z) of events depending on chance and
the number (s) of events depending on the free will of the players. Von
Neumann let '

El) E27"',Ez

denote the events depending on chance, and

F, F, ... F;

"denote the events depending on the free will of the players.
The second is the specification of the number M, (u =1, 2,...,2) of
possible outcomes of each single event of chance E,, and the number N,

(v =1, 2,...,s) of possible outcomes of each single event of free will F,.
~ Von Neumann referred to a result of an event by its number, i.e. 1, 2,..., M,
~orl, 2,...,N,. ‘ . ’

The third thing one needs to know in von Neumann’s game model is the
probabilities a, (), ,,?, ..., a,™) with which the outcomes 1, 2,..., M,
of an event of chance E, will occur, thus - : '

ap(l) >0, Cl,,(2) >0.. .;au(M“) >0,
and .
a“(l) + a#(2) + ...+ au(M“) =1.

For every event of free will F,, one also needs to specify which player S,
determines the outcome of this event and in addition one also needs to know
what have occurred up to this moment, that is the corresponding numbers
for all earlier events both those of chance and those of free will that the player
in charge have information about when he or she make up his or her mind.

Finally one needs to specify n real valued functions f;, fa,...,fn of 2+s
variables, where the first z ariables can take the values

1, 2,...,My; 1, 2,...,My; ...; 1,2,...,M,;
and the last s variables can take the values
1, 2,...,N1; 1, 2,...,N2; ey 1, 2,...,N3.

These functions determine the gain of the players and must add up to zero



f1+f2+...+fn50.

Suppose the results of the z events of chance and the s events of free will in
a game turned out to be

Iy, T2y...,T;, Yi, Y251 Ys

respectively, where
r,€{1, 2,...,.M,}, w€{l,2,...,N},

u=1,2,...,2, v=1, 2,...,s,
the players S;, S,,...,S, then ‘gain’ the amounts

fl(xh"',zzayb'-'ays)) f2(z17"~1x27y17"'1y3)7 sy

fﬂ(xl"",xz’yl,'”ays)

from each other [von Neumann, 1928, p. 296 - 297].

The above definition was von Neumann’s definition of a game of strategy.
But as he himself pointed out the notion of a player S,,, trying to achieve
a result as advantageous as possible is kind of obscure. It is clear that the
most advangeous result for Sy, has to be defined as the largest possible value
of fm, but f, depends of z + s variables of which only a part is controlled
by Sm, and this is exactly the heart of the problem:

Es soll versucht werden, die Riickwirkungen der Spieler aufeinan-
der zu untersuchen, die Konsequenzen des (fiir alles soziale Geschehen
so charakteristischen!) Umstandes, dafl jeder Spieler auf die Re-
sultate aller anderen einen Einflui hat und dabei nur am eigenen
interessiert ist.’> [von Neumann, 1928, p. 298]

The next step in von Neumann’s building of the theory was to simplify
the game concept as much as possible without loosing anything in generality.
The key trick was the introducing of the concept of strategy by which he
could reduce the number of events of free will to the number of players, such

124We shall try to investigate the effects which the players have on each other, the
consequences of the fact (so typical of all social happenings!) that each player influences

the results of all other players, even though he is only interested in his own [von Neumann,
1928, (1959 p. 17)].



that event number v is determined by the free will of player S,. All the
information about the other players decisions and the outcome of the events
of chance that a player has access to is inherent in the concept of strategy.
The consequence of this is, that each player choose his or her strategy whitout
knowing neither the strategies choosen by the others nor the results of the
events of chance.

Another advantage of the concept of strategy is, that von Neumann could
eliminate the events of chance all together. First he reduced the number of
events of chance to one. Because, since a player has to choose the strategy
without knowing beforehand the outcome of the events of chance, these events
need no longer be treated as separate events. It is then possible to combine
all z events of chance into one single event of chance H, the outcome of which
will be a collection of numbers

Ty, T, ,%, (Zp=1,2,...,M,, u=1; 2,...,2),
with theire respective probabilities h

al(‘“)QQ(”) - az(:‘),

There are M = MiM, - ... - M, possible collections of these numbers. Von
Neumann associated each collection with a number

T

1, 2,.... M (M=MM,-...-M,),

‘and he let o |
,Bl, ,32a sey IBM
denote the corresponding probabilities [von Neumann, 1928, p. 300].

By doing so von Neumann had it all boiled down to the following: If the
players Sy, S,,...,Sy have chosen the strategies :

S, 8P, ..., 8., ™,

where ,
um =1, 2,...,%5, m=1, 2,...,n,

and if the outcome of the event of chance H, is the number v (= 1, 2,..., M),
then the results for the players S;, S,,...,S, are

[y, ug,us, . uy), fg(u,ul,ug,...,un),...,fn(u,ul,uz,...,un)

9



resf)ectively.lg Now if only the choices uj, Uz,...,Un, and not the result v,
of the event of chance is known, then the expected value of f, fo,...,fn
would be

gm(ula- . -aun) = Z,Bufm(l’,ul,-- '7un)1 (m = 1’ 2’ R ,n)>

" (fi+...+ fo = 0 implies g; + ... + g» = 0). Von Neumann then argued
that according to the theory of probability it is fully acceptable to ignore the
event of chance and instead work with the expected values g;,...,g,. That
is, by substituting the ezact results (f,,) for the individual players by the
expected values he elimated H all together.

These simplifications left von Neumann with the following formulation
of a game of strategy: Each of the players S;, Ss,...,S, choose a num-
ber whitout any information about the choice of the others. S, chooses
among the numbers 1, 2,...,X,,. After the choices z;, z3,...,Zn (Tm =
1, 2,...,5,, m=1, 2,...,n) have been made the players will recieve the
amount

g1(z1,-- 1 Zn), G2AZ1y .1 Tn)y--s GnlT1y. .., Zn),

respectively, where g; +. ..+ g, = 0 holds [von Neumann, 1928, p. 301 - 302].

2.2 The case n=2

Von Neumann was in 1928 not able to prove anything according to the exis-
tence of optimal strategies for the general case. In order to do so he analyzed
the simplest case, namely a game of strategy with only two players S; and S,.
The situation is then, that the player S; choose a number z € {1,2,...,%,},
S, choose a number y € {1,2,...,X,} without knowing what the other player
has chosen, and they then receive the amount g(z,y), —g(z, y) respectively.
Von Neumann then possed the question under consideration:

Es ist leicht, sich ein Bild von den Tendenzen zu machen, die in
einem solchen 2-Personen-Spiele miteinander kimpfen: Es wird
von zwei Seiten am Werte von g(z, y) hin und her gezerrt, ndmlich
durch S;, der ihn méglichst gross, und durch S,, der ihn méglichst
klein machen will. S;, gebietet iiber die Variable z, und S, iiber

13Earlier von Neumann had argued that each player S,, only have a finite number of
strategies (S[*, S7*,..., ST ) to choose from.

10



die Variable y. Was wird geschehen?'* [von Neumann, 1928,
p. 302

The core question is ‘What will happen?’ Von Neumann’s analysis of the
situation ran as follows: If S; chose the number z4 (o =1, 2,...,%;), that
is the strategy o, his result g(zy,y) would then also depend on the choice of
S, but no matter which choice (y) S; comes up with the following inequality
will be true

g(l'o, y) Z miny g(x01 y)

Now if we suppose (against the rules of the game) that S; knew z4, S; would
according to the assumptions in the model choose y = yp such that

9(Zo, yo) = miny g(Zo, y)-
Facing this situation the best thing for S; would be to choose x4 such that
min, g(Zo,y) = max, rﬂiny g(x,y)
The conclusion of von Neumann is then that S; ca.n"inake
9(zo,y) > max, min, g(z, y),

independently of the choise of S;. The same argument holds for S;, which
can make

g(z, %) < min, max; g(z,y),

no matter what strategy z, S; chooses.

From this von Neumann concluded that if a pair of strategies zo, yo can
be found for which

9(Zo, yo) = max, miny g(z,y) = min, max; g(z,y) = M,

then that would necessary be the choises for S; and S, respectively, and
M would be the result of the game [von Neumann, 1928, pp. 302 - 303].
Thus, such a pair of strategies z, yo if they exist would constitute a solution

1441t is easy to picture the forces struggling with each other in such a two-person game.
The value of g(z,y) is being tugged at from two sides, by S; who wants to maximize it,
and by S; who wants to minimize it. S; controls the variable z, S; the variable y. What
will happen?” [von Neumann, 1928, (1959 p. 21)].

11



concept for two-person games. Unfortunately the existence of such a pair of
strategies is not automatically guarantied.

The trick used by von Neumann to overcome this difficulty was to intro-
duce what is now known as mixed strategies. Instead of choosing an z or a y,
the players specify the probabilities with which they will choose the different
strategies. That is, the player S; chooses ¥, probabilities

€, &, bn (6120, 620,...,6,20, ) &=1),

and from an urn containing the numbers 1, 2,...,Z; with the above specified
probabilities, he or she draws a number and chooses that number. Analog
S, specifies ¥, probabilities

T, 7’2)"',7722 (77120’ 77220,~~,772220, Z’rb:l)

Von Neumann put

(Ela 627 s 1621) = Ea and (771, n2, - . '7"22) =n.

If S; chooses £, and S, chooses 7, the expected value of the amount S,

receives is
T o

REm =D a(p, 9)&m,,
p=1 ¢g=1
while the expected value for S; is —h(€,7n) [von Neumann, 1928, p. 304].

As before von Neumann argued that S is in a position to obtain the
minimal expected value max, min, h(£,n) no matter what S, chooses to do.
Sy can keep the expected value of S; from exceeding the maximal value
min, max; h(£,n). By considering the mixed strategies instead of pure strate-
gies the expected values of the players is expressed by the bilinear form ,
and for those von Neumann was able to show that there allways exist mixed
strategies &g, 7 such that

maxg minf) h(&s 77) = minn maxg h(§1 77) = h(fo, 770)'

'This result is the famous minimax theorem of von Neumann and it establishes
that for two-person games of this kind there allways exist optimal (mixed-)
strategies. This is called the minimax solution concept of two-person zero-
sum games. It has been critized for beeing too defensive a solution concept,
indeed it is a solution telling you what is the best you can do in the worst
possible case.

12



2.3 Von Neumann’s proof of the minimax theorem

Actually von Neumann proved a generalized version of the minimax theorem.
He considered a broader class of functions than the bilinear forms h, and
formulated the theorem in the follwing way:

For continuous functions f of two variables £ € RM, n € R",
£E>0,120,6+...+&u <1, m+...+nn <1 satisfying the
condition: '

(K.) Wenn f(€',n) > A, f(£",n) > A ist, so ist auch fiir jedes
0Sv <L E=v+(1-v)" (dh & =vE + (1 -v)§,
p=1,2,...,M) f(§n) > A Wenmn f(£,7) < A, f(§,7") < A
ist, so ist auch fiir jedes 0 < v < 1,7 = vy’ + (1 — V)" (d.h.
Mg =viy+(1=v)ng,q=1, 2,...,N) f(§n) < A '

... Fiir-diese Funktionen f(¢,7) werden wir beweisen:

max; min,, f (E', n) = min, max; f(§, 7)),

wobei max; iiber & > 0,...,6y >0, &+ A&y <1,und vmin,,
iiber ;; > 0,...,mv 2 0, m +... + v < 1 zu erstrecken ist.!®
[von Neumann, 1928, p. 307] '

Today a function with the property (K) is called quasiconcave in £ and
quasiconvex in 7). ’ : ,

Since the function h(£,7), that determines the expected values for the
two players is bilinear, it is also continuous and has the property (K), so a
proof of this theorem will also prove the existence of optimal strategies for a
two-person zero-sum game.

BUK) I f(Em) > A, f(€",m) 2 A, then f(§,n) > Aforevery 0 S v <1, €=
vl +(1-v)¢" (e, G =vE+(1-v)§, p=1, 2,...,M). i f(£,7') < A, f(£,7") < A,
then f(§,n) < Aforevery 0 S v <1, n=wy +(1-v)n" (ie, g = vny + (1 - v)nj,
g=1,2,...,N).

... For these functions f(£,n) we are going to prove that

maxeg minﬂ f(Ev 71) = min'] maXg f(f’ 77),

where maxg is taken over the range § > 0,...,6p >0, & + ...+ €m < 1 and min,, is
taken over the rangem 2 0,...,9v 20, m + ...+ v < 1.” [von Neumann, 1928, (1959
p. 26-27)]. :
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Von Neumann began by rewriting

max, min, f(£,n) = min, max; f (&,n)

in the form
maxg, MaXe, ... MaXg, min, min,, ... min,, f(&,7)
£120  £22>0 EmM20  m2>0 m>0 N 20
£151 £1+62<1 &1+ +Ep <1 mS1 o +ng<i n+...+ny <l
=min,, min,, ... min,, maxgmaxeg, ... maxe, f(&n).
m>0 m2>0 nnv20 620 £2>0 Em>0
n <1 ny+me<l n+.. NSl 61<1 £ 46,5) L1+ +{p <1
By putting
Mfrf(é’l’_ . 'a€Ta7717- . wﬂs) = ma‘xfr f(gl,""ér’nla cee ’ns)a
§1+..46,<1
Mn‘f(&lv .. ’ér,nh LR ans) = mlnn, f(€17 L ,fr,771, e ’ns)’
m+...+ns<1

he eliminated f’s dependicy of & and 7, respectively. Thus von Neumann
wrote the identity under consideration as

MOME  MOMMM™ . M™f=M"M™ . MMM, M.

With p = M and ¢ = N this is equivalent with von Neumann’s formulation
above of the minimax theorem, where he considered £ € RM and € RV.

With these reformulations as a tool von Neumann reduced the proof to
the proof of the following two lemmaes:

a) If f = f(&,..-,&,m,...,n,) is continuous and has the property (K)
then M f and M™ f are continuous and fullfil (K).

B) If f=f(,...,& m,...,n,) is continuous and fullfil (K) then
Mé M f=Mm" ME f.
It is easy to see that the minimax theorem can be derived directly from «)
and f).
Von Neumann’s proof of o) is straight forward. The continuouity of

M?¢ f and M™ f is a direct consequence of the continuouity of f. To prove
that M% f and M™ f has the property (K) von Neumann used first that
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a continuous function on a closed and boundet set has a maximum and a
minimum and second that f itself has the property (K).!¢

The central part of the proof is §) which is much more complicated to
.prove. In what follows I will go through the proof step by step following von
Neumann closely. Then I will comment on the proof and discuss it in relation
to the description given by Kuhn and Tucker.

The proof for 5)

Von Neumann is going to prove that M M" f = M" M¢ f forall £, ..., &1,
M, . ..,Ns—1. He began by considering f for some fixed &;,...,& -1, 71, ..., Ns—1-
Then f is a function of &, og 1, alone and f is obviously still continuous and
posses the property (K). Writting £ and 7 instead of &, and 7, respectively
what von Neumann is going to show is that

max, miny f(§,7n) = min, max¢f(£,n),
0<€<a 0<n<b 0<n<h 0<€<a

wherea=1-§ —...—§_1andb=1-1m —.. = M1 As pointed out by-
.von Neumann this can also be formulated in an other way:

Es gibt einen “Sattelpunkt” &, 7y (0< & < a, 0 < mp < b), d.h.

f(éo,m) nimmt in 0 < n < b sein Minimum fiir » = 7, an, und

f(&,m0) nimmt in 0 < £ < a sein Maximum fiir £ = & an.!” [von
" Neumann, 1928, p. 309] . :

Because it is allways true that
max; min, f(£,7) < min, max, f(¢,7),
on the other hand if there exists a saddle point (&, 70), then
max¢ min, f(&,n) > min, f(&,n) = f(£, M),

min, maxe f(§,n) < maxg f(€,m0) = f(§o,0)
which gives the other inequality, hence

maXxg minn f(Ea 77) = minn maxg f(E, 77) = f(EO, T)o)-
With this what needs to be proven is the existence of such a saddlepoint.

16For a detailed proof see [von Neumann, 1928, p. 308-309).

17«There exists a “saddle point” &, 7o (0 < & < a, 0 < 7o < b), i.e., f(£o,7) assumes
its minimum for 7 = 79 in 0 < 7 < b and f(&,n) assumes its maximum for £ = & in
0 < £ <a.” [von Neumann, 1928, (1959 p. 30)).
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' The existence of a saddle point

For every fixed £ von Neumann considered the set of , 0 < 5 < b, for
which f(€,n) assumes its minimum value. Since f is continuous the set
will be closed and it will also be convex because f fullfil the condition (K),
this means the set is a subinterval of [0,]. Von Neumann let [K'(£), K" (£))
denote this subinterval. Thus for fixed &: '

{n' € [0,b]| min, £(&, 1) = £(&,n)} = [K'(§), K" ()] € [0,3].

Simillary for fixed 7, the set of £, 0 < £ < a, for which f(£,7) assumes
its maximum, is a closed subinterval of [0,a]. Von Neumann denoted this
subinterval by [L'(n), L" (7))

That is, for every £ € [0,a] there is an interval [K'(£), K"(£)] C [0, 8],
such that every single n belonging to this interval is a point of minimum
for the function f(£,*). Simillary for every n € [0, 5] there is an interval
[L'(n), L"(n)] € [0, a], such that every £ in this interval is a point of maximum
for the function f(x,7n).

Von Neumann then showed that — due to the continuouity of f — K’,L’
and K", L" are lower and upper semi-continuous functions respectively. [von
Neumann, 1928, p. 310, note 10].

For a fixed £* von Neumann studied the following set which I have named

D(¢*):
D(€") = {£”(3n" : min, £(£°,n) = £(€",n") and maxe f(§,n°) = f(€™,7")},

that is,
D(&") = U[L'(n*), L"(n")] over " € [K'(€"), K"(£")].

The lower semi-continuous function L' will assume its minimum value
within the interval K'(£*) < n* < K”(£*) and the upper semi-continuous
function L" will assume its maximum value. Hence the set D(£*) will contain
a minimal as well as a maximal element. Further more von Neumann argued
by means of the following indirect proof that D(£*) also contain all £’ between
the minimal and the maximal element: In contradiction to what he wanted to
demonstrate von Neumann assumed the existence of an element £ situated in
between the minimal and the maximal element but not contained in D(£*),
then every interval [L'(n*), L"(n*)] would lie either entirely to the left or
entirely to the right of ¢’. Since £’ is between the minimum and the maximum
element of D(£*), both kind of intervals will exist. #* runs over an interval,
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which implies that both kinds of n*’s, that is, those n*’s corresponding to the
intervals [L'(n*), L"(n*)] entirely to the left of £, and those n*’s corresponding
to the intervals [L'(n*), L"(n*)] entirely to the right of &', has a common
limit-point #'. This means that both L'(n*) < & and L"(n*) > £ will occur
arbitrary close to 7', which because of the lower and upper semi-continuouity
of L' and L” respectively, implies that L'(n') < £ and L"(n') > €, that is
¢’ does indeed belong to one of the intervals, namely [L'(7'), L"(n')] [von
Neumann, 1928, p. 310]. _

The above result implies that D(£*) is a closed subinterval of {0, a], which
von Neumann denoted [H'(£*), H"(£*)]. To terminate the demonstration von
Neumann showed the existence of an element £* € [0, a], which is also a £*,
that is, an element £*, for which H'(£*) < €* < H"(£€*). The proof for this is
similar to the proof above for the claim that D(£*) is a closed subinterval, due
to the fact that H' and H" are lower and upper semi-continuous functions
respectively. As before if one assumes that there can exist no such £* that
would imply that all the intervals [H'(£*), H"(£*)] will lie entirely to the left
or entirely to the right of £*. Again both kinds of £*’s will have a common
limit point & which will belong to the interval [H'(¢'), H"(£')].

With this von Neumann has demonstrated the existence of an element
€* € [0,a], which also satisfy £* € D(£*). Since this means that there exists
an element 7%, such that min, f(£*,n). = f(&*,n*), and at the same.time
max; f(€,n*) = f(€*,n"), the point £*, n* is a saddle point for the function
f, which finished von Neumann’s proof of the minimax theorem.

2.4 Von Neumann’s 1928 proof in relation to fixed
point theorems and systems of inequalities

The 1928-proof of von Neumann is indeed a “tour de force” [Heims, 1980,
p. 91]. Regarding the other remarks in the literature that I cited in the in-
troduction it has been said about von Neumann’s 1928-proof that he “demon-
strates the close connection with fixed-point theorems and especially Brouwer’s
theorem” [Ingrao and Israel, 1990, p. 211}, and that the proof concernes the
existence of a solution to a system of equalities and inequalities.!® These is-
sues do not seem very obvious to me. Von Neumann talked at no point about
fixed points and he did not formulate a system of equations and inequalities
to be solved.

18See [Ingrao and Israel, 1990, p. 211], [Heims, 1980, p. 91].
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Yet, in Kuhn and Tucker’s paper about von Neumann’s work on game
theory they wrote:

‘The analytic proofs of the Minimax Theorem given by von Neu-
mann were of two essentially different types. Proofs of the first
type (see [A] and [B]) are based explicitly on extensions of the
Brouwers fixed point theorem; [Kuhn and Tucker, 1958, p. 112]

[A] refers to von Neumann’s 1928-paper while [B] refers to a paper by von
Neumann published in 1937 which will be treated in the next section. In
von Neumann’s 1928-proof one can “extract” a proof for an extension of
Brouwer’s fixed point theorem. In doing so the question about existence of a
saddle point for the function f(£,n) becomes a question about the existence
of a fixed point for a ‘point to set’ map. The connection can be derived in
the following way:

In the end von Neumann showed the existence of an element £* satisfying
€ € [H'(£*), H"(€*)]. If one puts F(¢*) = [H'(€*), H"(€*)], F can be inter-
preted as a map for which there to each element £ in [0, a] corresponds a set
F(€), which is a subinterval of [0,a]. An element £* which is being mapped
onto an interval F(§*), which the elements itself belongs to is a kind of a
fixed point for a ‘point to set’ map. With this interpretation the existence
of a saddle point and the existence of a fixed point for the mapping F is one
and the same thing.

Von Neumann did not make this interpretation in the 1928-paper and
for reasons to be supported in the next section I am not convinced that von
Neumann in 1928 was aware of this connection to fixed points.

As far as the connection to systems of linear inequalities and equations
is concerned von Neumann in his proof did not draw any connections at all.
But as Kuhn and Tucker show in their essay on von Neumann’s work it is
possible to derive such a connection. It can be done in the following way:
In an analysis of the consequences of the minimax theorem for the choice of
strategies von Neumann considered the set A of all £ for which min, h(¢,7)
assumes its maximum value M, and the set B of all 5 for which max, h(£,7)
assumes its minimum value M. That is,

A = {¢ € R™ : min, h(£, ) assumes its maximum value M}
B = {n € R™ : max; h(€, n) assumes its minimum value M}

As pointed out by von Neumann it is quite obvious that
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1. if £ belongs to A then h(£,n) > M is allways true (because h(£,7n) >
min, h(§,n) = M, since £ belongs to A),

2. If g Belongs to B then h(£,n) S M is allways true

3. if £ does not belong to A there exists an element 1 for which h(§,7) <
M, ' ' '

4. if n'doeé not belong to B there exists an element £ for which A(&,7n) >
M, '

5. if £ belongs to A and n‘be_longs to B then h(f, n) =M.

Hence, von Neumann argued, it is obvious that S; should choose a strategy
& that belongs to A and S; should choose a strategy # which belongs to B.
For every such choice the game will have the value M for S; and the value
—M for S, [von Neumann, 1928, p. 305].

In the 1928-paper von Neumann did not discuss this further but one can
make an 1nterpretatlon of this such that it is concerned with the ﬁndlng of
elements £*, 7%, such that the 1nequaht1es :

E‘ _>_ 0, 77 Z Oa ma‘xf (fﬂ) ) _<_ M) minr) h(é.‘, 77) 2 M (1)
and equalities

51‘+...+§21‘=1, 771*+.'..+77}:2"=1 (2)

are all satisfied. .

Kuhn and Tucker in their essay derived the following connection between .
solutions (£*,7*, M) to the ‘minimax problem’ and a system of linear in-
equalities and equations. They let g(p, ¢) denote the elements of a matrix A,
then h(¢,n) = £An. Hence a solution (£*,7*) to the linear inequalities and
equations

£>0, 71720, A<M, £A>M
61‘+...+§El‘=1, 1’]1‘++’I]E2‘=1

will then also be a solution to the system (1) and (2) [Kuhn and Tucker,
1958, p. 111]. But this algebraical interpretation of optimal strategies as
constituting a solution to a system of linear equalities and inequalities was
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not explicitly formulatet by von Neumann in 1928. As we shall see in the
next sections this insight was not to come until later. As a matter of fact von
Neumann’s 1928 - proof is more general covering also nonlinear functions.
To be fair it needs to be said that Kuhn and Tucker did not claim that
von Neumann actually made this algebraic characterisation in 1928 but the
other statements in the literaure cited above leaves the impression that von
Neumann in 1928 was working within a framework of linear inequality theory.
As we shall see in the next sections and as von Neumann also himself later
remarked to an announcement made by the French mathematician Fréchet,

this connection to the theory of convexity and linear inequality theory was
~ only recognized later on. '

-3 The Connection to Fixed Point Theorems
and Economy: von Neumann’s 1937-Paper

After the 1928-paper 16 years passed by before von Neumann published on
game theory again even though the minimax theorem popped up again in
1932 in another disguise though. It happened in a mathematical-economic
model that von Neumann developed in the early thirties. The first mention of
the work is a talk von Neumann gave on the model at the mathematics semi-
nar at Princeton. The paper was published five years later on a request from
Karl Menger under the title “Uber ein 6konomisches Gleichungssystem und
eine Verallgemeinerung des Brouwerschen Fixpunktsatzes” [von Neumann,
1937).

The model of von Neumann is a linear production model in which he did
not distinguise between goods consumed and goods produced in the process
of production. He analyzed a situation where there are n goods Gy, ...,Gy
which can be produced by m processes P,,...,Pn. %1,...,Yn denotes the
prizes of the goods while z,,...,z,, are the intensities with which the pro-
cesses are being used. Finaly a;; and b;; denoted the number of units of the
good G; consumed and produced respectively by the process P;.

Von Neumann was interested in situations where the whole economy ex-
pands without change of structure, i.e. where the ratios of the intensities
Ty :...:Zy remain unchanged, although z,,..., z,, themselves may change
[von Neumann, 1937, p. 30]. In such a case the intensities are multiplied by
a common factor o per unit of time, the so-called coefficient of expansion.
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The unknowns are the intensities z,,...,Zm,, the coefficient of expansion ¢,

the prizes yi, ..., yn of the goods, and the interest factor 8 =1+ o5+ Where

z is the rate of interest in % per unit of time [von Neumann, 1937, p. 30].
The analysis of von Neumann resulted in the following system of inequal-

ities which where to be solved:

Z; Z Oa | (3)
Y @ >0, ()
=1 . )
Y >0 | (6)
. 3=1 ’ .

m m
! Z a;;T; < Z bi;z;, ‘ (7)
=1 i=1 . ) , ’

where y',- = 0 if strict inequality ‘<’ holds.

BY auy; =Y by, - (8)
= P -

where z; = 0 if strict inequality ‘>’ holds.

The inequality (7) means that it is impossible to consume more of the
good G; than the amount produced in the total process. If more is produced
than is concumed G; becomes a free good with zero prize y; = 0. The
inequality (8) appears because there is no profit in the model a possible gain
would be reinvested. (8) means that in equilibrium there can not be a profit
- on any process P;. If there is a loss, i.e. if ‘>’ holds the process P; will not
be used and z; = 0 [Von Neumann, 1937, p. 75-76).

3.1 The Solution of the System of Inequalities

In order to find necessary and sufficient conditions for the existence of a
solution to such a system of linear inequalities von Neumann first transformed
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the problem of solutions into a saddle point problem. For this purpose he
introduced the function

S 2oien biTay;
PR Z;=1 Qi I;Yj

where X = (z;,...,2,) and Y = (y1,...,ys) are variables satisfying (3), (5)
and (4), (6) respectively. That is, he was looking at the ratio between the
total income and the total costs.

Von Neumann then argued that the question of a solution to the system of
inequalities (3) — (8) becomes the question of a saddle point for the function
¢. Hence, he could formulate the question of the existence of a solution to
the system (3) — (8) as follows:

¢(X,Y) =

(*) Consider (X,Y) in the domain bounded by (3) — (6). To find a saddle
point X = X, Y =Y, for 4. (See [von Neumann, 1937, p. 78].)

Thus just like in the 1928-paper on games the key problem is to prove
the existence of a saddle point for a certain function. Instead of proving the
existence of a saddle point right away as he did in the 1928-paper he instead
proved a ‘fixed point’-lemma, which is the lemma that appear in the last part
of the title: “... eine Verallgemeinerung des Brouwerschen Fixpunktsatzes”.
Von Neumann then derived the existence of a saddle point for ¢ as a direct
consequence of this lemma. (See [von Neumann, 1937, p. 80].)

3.2 The Connection to the Minimax Theorem

At this time von Neumann was fully aware of the connection between the
game theoretical problem and the problem of existence of a solution to a
system of linear inequalities:

Die Losbarkeit unseres Problems [The existence of a solution to
the system (3) — (8)] hangt sonderbareweise mit jener eines in
der Theorie der Gesellschaftsspiele auftretenden Problems zusam-
men, das der Verf. anderwirtig behandelt hat ... Jenes Problem
ist ein Specialfall von (*) und wird durch unsere Lésung von (¥*)
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auf eine neue Weise miterledigt.! [Von Neumann, 1937, p.79,
note 2]

This is the first time von Neumann explicitly states that he has recog-
nized a connection between the solution of systems of linear inequalities and
the minimax solution of a two-person zero-sum game. The connection was
not trivial. As I pointed out in the previous section, reading von Neumann’s
1928-paper on its own terms whitout making recourse to later developments
in game theory there is in my opinion no evidence that von Neumann had
realized this connection to systems of linear inequalities in 1928. On the con-
trary his statement in 1937 that the question about solutions to the system
of inequalities is “oddly” connected with the minimax solution shows that
this was kind of unexpected. Had he allready in 1928 been aware of this he
would probably not have called it “odd” ten years later.

Regarding the fixed point technique used by von Neumann to show the
existence of a saddle point in the 1937-paper it can be seen both from the
title of the paper where the result is announced and from the following quote
from the paper that von Neumann found it a quite important result which
was interesting in itself ' :

Dieser verallgemeinerte Fixpunktssatz ... ist auch an sich von
Interesse.? [Von Neumann, 1937, p. 73]

In the previous section I argued that von Neumann in 1928 probably was
not aware of the fact that the existence of a saddle point could be proved on
the basis of fixed points technique. The above quotation and the fact that he
found the generalised fix-point result so important that he announced it in
the title indicate that he had not fully recognized this in 1928. If so he would
probably had announced it at that time considering the credit he ascribed it
in 1937 and there is no mention of fixed points techniques what so ever in the
1928-paper. Another argument in favour of this is that he explicitly wrote in
the 1937-paper that the game theoretic problem is solved in the 1937-paper
in “a new way”. -

194“The question whether our problem has a solution is oddly connected with that of a
problem occuring in the Theory of Games dealt with elsewhere. ... The problem there is
a special case of (*) and is solved here in a new way through our solution of (*).” [von
Neumann, 1937, (1945 p. 5, note 1)]. :

204This generalised fix-point theorem . is also interesting in itself.” [von Neumann,
1937 (1945 p. 1)).
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4 The Minimax Theorem in the Theory of
Convexity: The 1944—Proof

In 1937 von Neumann was as we have just seen aware of the connection
between the minimax theorem and solutions of systems of linear inequalities.
The proof though was not build on the algebra of inequalities but was founded
on toplogical methods. The first algebraic proof of the minimax theorem was
due to the French mathematician Jean Ville who published it in Emile Borel’s
book “Traité du calcul des probabilités et de ses applications” from 1938.

Borel himself had published a series of notes on games from 1921 to 1927.
He was the first one who tried to build a mathematical theory for games but
after the publication of von Neumann’s minimax theorem in 1928 he seemed
to have lost interest in the subject?!. He published a note on game theory
in 1927 and then he did not publish anything on games until this book of
probability came out 10 years later. In the book Borel has a chapter written
by himself devoted to game theory and quite strickingly there is no reference
at all to von Neumann and the minimax theorem in that chapter.?? Instead
the minimax theorem is treated in a separate note by Jean Ville with the
title “Théoréme de M. von Neumann” [Ville, 1938].

Ville’s algebraic proof is important because it exercised a direct influence
on von Neumann during von Neumann’s work with the first collected and
coherent book on game theory and thereby gave rise to a development which
led to the establishment of the minimax theorem in the theory of convexity.

I will only present the key tools in Ville’s proof and not go into detail
with the proof itself.?® Ville derived his key tool as a corollar to the following
lemma concerning linear forms, which he proved by induction:

Let p linear forms in n variables be given:

fi(z) =Zaji$i G=1,...,p;i=1,...,n).

#1Before the work of Borel one only finds attempts to mathematize specific games like
the card game “le Her” by James Waldegrave, baccarat by Joseph Bertrand in 1899 and
chess by Ernst Zermelo in 1913. For accounts on these earlier attempts and on the work
of Borel see [Dimand and Dimand, 1992]. For accounts on the work of Borel see also
[Leonard, 1992).

#2In [Leonard, 1992] Leonard discuss’ this issue and concludes that “This can only be
regarded as an act of deliberate omission by Borel.” [Leonard, 1992, p. 46].

23See also [Leonard, 1992]. For further details on the proof see [Kjeldsen, 1999).

24




Suppose they have the following property:2*
For allz > Othere exists ajin{l,...,p}, such that f;(z) > 0.

Then the following hold true: There exists at least one set of
nonnegative coefficients

Xl,...,Xp. with X1+...+Xp=1,

such that .

ZXjfj(:z) >0 forallz >0.

j=1

[Ville, 1938, p. 105]
The key tool Ville was able to derive from this lemma was the follbwing result

Let f1,..., fp be p lineare forms in n variables z,, ..., z,, and let

¢ be a linear form in the same variables. If for every point z > 0
at least one of the forms f; assumes a value greater than or equal
to the value of ¢ then a linear combination

1/J=X1f1+...+prp, Xj >0, X1+...+Xp=1,
exists for which ¢ > ¢ for all z > 0. [Ville, 1938, p. 107) |

From this result Ville gave a fairly easy proof of von Neumann's minimax
theorem. ' '

4.1 Von Neumann’s 1944-proof

The final placement of game theory in general and the minimax theorem in
particular within a context of linear inequalities and the theory of convexity
was due to the joint work “Theory of Games and Economic Behavior” by von
Neumann and the Austrian economist Oskar Morgenstern [von Neumann and
Morgenstern, 1944]. According to Kuhn and Tucker the proof of the minimax
theorem which von Neumann and Morgenstern presented in their book was
inspired directly by the proof given by Ville:

2z >0meansz; >0 foreveryi=1,...,n.
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Oskar Morgenstern has told us [Kuhn and Tucker] that he drew
Ville’s article to von Neumann’s attention after seeing it quite
by chance while browsing in the library of the Institute for Ad-
vanced Study. They decided at once to adopt a similar elementary
procedure, trying to make it as pictorial and simple to grasp as
possible. [Kuhn and Tucker, 1958, p. 116)

How thrilled Morgenstern was when he discovered Ville’s proof is evident
from a note in his diary dated christmas eve 1941:

Both [the 1938-book of Borel and the proof by Ville] are un-
known to Johnny. Now he has discovered additional proofs that
are becomming increasingly simple and are purely algebraic!! It
necessitates some modification in the text, but we can print it.
(Quoted in [Rellstab, 1992, p. 87])

The new proofs by von Neumann that Morgenstern speaks about were indeed
very different from the earlier proofs by von Neumann. The proof they
gave in “Theory of Games and Economic Behavior” is, as we shall see, of a
purely algebraic nature and falls within what von Neumann and Morgenstern
themselves characterised as

the mathematico-geometrical theory of linearity and convexity.
[von Neumann and Morgenstern, 1944, p. 128]

The Theorem of the Alternative for Matrices

The essential tool in the proof of the minimax theorem that Morgenstern
and von Neumann gave in 1944 is what they called “The Theorem of the
Alternative for Matrices”. They derived this theorem as a direct consequence
of the theorem of supporting hyperplanes which states that

Given z;,...,z, in R®. Then a y in R" either belongs to the
convex set C spanned by z,,...,z,, or there exists a hyperplane
which contain y such that C falls entirely within one half-space

produced by that hyperplane. [von Neumann and Morgenstern,
1944, p. 134]

Von Neumann and Morgenstern considered a (nzm) matrix, let us call
it A, with elements a(7,5), ¢ = 1,...,n; j = 1,...,m. In order to use the

26



theorem of supporting hyperplanes von Neumann and Morgenstern formed
the convex set C spanned by the m column vectors in A together with the
n coordinate vectors in R". Putting y = 0 either O belongs to C or to a
‘hyperplane H, such that all of C is contained in one half-space produced by
that hyperplane [von Neumann and Morgenstern, 1944, p. 139]. In the first
case they could prove the existence of z in R™ for which z; > 0,...,z, > 0,
> =1 %; = 1, such that the inequalities

m

Z a’(iaj ).’Ej < 0

Jj=1

are satisfied for ¢ = 1,...,n. In the second case, that is where 0 does not
belong to C, they showed the existence of a vector w in R" with w; >
0,...,w, >0, Z:;l w; = 1, such that the following inequalities are satisfied:

n

Za(i,j)w; >0 for j=1,...,m.

i=1

These two possibilities or alternatives as von Neumann and Morgenstern
called them exclude each other. Formulated in matrix notation they had
proved the following result:

If Aisa (nzm) matrix then exactly one of the following two
systems of inequalities has a solution: '

m
Az <0, z>0, szzl,
_ =

‘71
wA>0, w>0, Zwi=1.
: =1

[von Neumann and Morgenstern, 1944, p. 138-141)

From this result they proved the minimax theorem for two-person zero-
sum games in the following way: Keeping the notation from von Neumann’s

1928-paper they let
X X

hEm =D g(p 9)ém,

p=1 ¢g=1
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be the expected value for the pléyer S;. By defining A to be the matrix
(9(p, @) (z:xx,), they obtained either the existence of a vector £ € R™ for
which £ > 0, Y&, = 1, such that

I

Y 9(p,9)& 20 for g=1,...,5,, 9)

p=1
or the existence of a vector 7 € R®? for which n > 0, "7, = 1, such that

b33
> 9pg)ng <0 for p=1,...,%:. (10)
g=1

If (9) holds true then

v; = maxg min, h(€,n) > 0.
If on the other hand (10) holds true then

vy = min, maxg h(§,n) < 0.
From this von Neumann and Morgenstern concluded that

either v, >0 or v, <0
that is never

v; < 0 < v,. (11)

The final step in the proof was to show that (11) never can be the case not
only for 0 but for an arbitrary number w, that is never

v < w < Vg

Since v; < v, is allways true von Neumann and Morgenstern had proven the
equality: ‘

v; = maxg min, h(£,n) = min, max; h(§,n) = va.
In this way von Neumann and Morgenstern in 1944 reduced the proof for the
minimax theorem to a fairly simple consequence of the theorem of “Alterna-

tives for Matrices” which is a purely algebraic theorem with in the theory of
systems of linear inequalities.
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5 Conclusion on von Neumann’s Perception
of the Minimax Theorem

The above analysis of the development of von Neumann’s understanding of
the different mathematical contexts the minimax theorem presented itself
in during the period 1928 to 1944 clearly shows that his recognition of the
connections between the minimax theorem on the one hand and fix-point
results and the theory of linear inequalties on the other hand only emerged

gradually. The full understanding of the connection to fixed points theorems
~ was not present until 1937 while the final establishment and realization of
the minimax theorem as a result belonging to the theory of linear inequalities
and the theory of convexity was not fully recognized until 1944.

It can also serve as an illutration of how mathematics evolves. In this
case a problem (the solution of a two-person zero-sum game) emerged in con-
nection with a new kind of mathematical questions (the mathematization of
games). The problem is solved in itself and in the beginning possible con-
nections to other branches of mathematics can be very difficult sometimes
impossible to realize. Later the problem or a similar problem croppes up
again in another context (the economic model of von Neumann) one recog-
nize the connection and simultaneously the complexity of the problem de-
composes, the underlying structure of the proof becomes visible (fixed points
techniques) and new generel results (the extension of Brouwer’s fixed point
theorem) which are interesting in themselves not limited to the context they
originally were derived in emerges. Finaly the problem is recognized to be a
simple consequence of fundamental theorems in a different branch of math-
ematics (theories of linear inequality and convexity).

6 The Discussion of Priority: the Significance
of the Minimax Theorem

The 1928-paper by von Neumann was generally known to mark the beginning
of game theory. The earlier notes on the subject from the beginning of the
twenties by Borel was not generally known until after 1953 when the French
mathematician Maurice Fréchet had three of them translated into English.
In the introduction to the translation Fréchet argued for the importance of
Borel’s work:
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It was only relatively recently that I began to occupy myself with
the theory of probability and its applications, which explains why
the notes that Emile Borel ... published between 1921 and 1927
on the theory of psychological games escaped my attention. It
was chance to begin with ... because, in the extensive literature
devoted to this theory [game theory] and its applications in recent
years, references to earlier work do not lead back, in general, fur-
ther than to the important paper published in 1928 by Professor
von Neumann. But, in reading these notes of Borel’s I discovered
that in this domain, as in so many others, Borel had been an
initiator. [Fréchet, 1953a, p. 95]

In order to understand the priority debate and how it connects to the signif-
icance of the context to be discussed below, we need to know a little about
Borel’s work.

6.1 Borel’s work on game theory

The first of Borel’s notes on the subject was published in 1921 [Borel, 1921].
He considered a symmetric game with two players A and B. He introduced
the concept “méthode de jeu” (method of play) and the fundamental question
asked by Borel was then, whether is was possible to determine a “méthode de
jeu meilleure” (Best method of play). It was not quite clear what was to be
understood by a “méthode meilleure” but his concept of “méthode de jeu”
was the same as von Neumann’s, that is what now is called a pure strategy
[Borel, 1921, p. 1304]. Like von Neumann Borel assumed the players had a
finite number of strategies Cj, ..., C, to choose from.

Borel’s inspiration to investigate games came from his work on probability
and in his first paper he was looking for the probabilities for winning the
game. His starting point was, that if A chooses the strategy C;, and B
chooses the strategy Cj, then the probability that A wins the game can be
calculated. He called that probability for a. The probability for player B
is then b = 1 — a. To indicate that these probabilities are dependent of the

choices of strategies he put
1

a= 5 + ik

and
b—l+a-
- 2 ki
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where a;; and ay; lie between —% and +% and satisfy the relation
o + o = 0.

Like von Neumann he also considered the concept of what later became
known as mixed strategies [Borel, 1921, p. 1305]. But in contrary to von
Neumann who considered the actions of both players simultaneously Borel
began by examine singular cases calculating if it would be possible for one of
the players to choose a mixed strategy such that the probability that he or
she would win would be % no matter what strategy the other player would
choose. In the 1921-note he calculated for the case where there are only
three pure strategies to choose from and he reached a possitive conclusion.
In general though he was convinced that for games with more than three
pure strategies the answer would be negative [Borel, 1921, p. 1306]. Two
years later he had done the calculations for games with five pure strategies
which shows that the answer also in this case turned out to be positive and
he thought that it would probably also be true for seven pure strategies, but
he still thought that for a larger number of strategies the answer should be
no [Borel, 1923, p. 1117].

In 1924 Borel included a chapter on games in his book on probability
[Borel, 1924]. Instead of looking at the probabilities for winning as he did
in 1921, he now let a;; denote an amount of money, which player B has
to give to player A, if player A chooses strategy C; and player B chooses
strategy Cx. The question he was trying to answer then was, is it possible
for player A to choose a mixed strategy such that the expected value he or
she can get is 0, no matter which mixed strategy player B chooses? That is,
can player A choose a strategy that in all cases can protect A from loosing
money? This is in principle the same question that lead von Neumann to the
minimax theorem namely, what is the best you can do in the worst possible
case, which is the case where your opponent some how has gained knowledge
about your choice of strategy. ‘

Changing the interpretation of the o4;’s did not make Borel to change his
mind about the answer to the question under consideration. He still believed
that if the number of pure strategies were larger than seven, the answer would
be no. Two years later he had not yet found an argument for his believe and
in a note from 1926 he formulated both situations e.i., for a symmetric two-
person game is it allways possible for player A to chose a mixed strategy
- for which the expected value of the game will be 0 no matter what strategy
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player B choses or is it not the case? [Borel, 1926]. The second situation
contradicts the minimax theorem. The fact that he formulated the positive
situation first has been interpreted as he seriously doubted his original views
and was beginning to believe that maybe what is now called the minimax
theorem would turn out to be true.?®

The reason why Borel at the outset did not belive in a positive answer has
been discussed by Luca Dell’Aglio in the paper “Divergences in the History
of Mathematics: Borel, von Neumann and the Genesis of Game Theory”
[Dell’Aglio, 1995]. Dell’Aglio argues that Borel had a psychological interpre-
tation of the concept of mixed strategies which

... constitute the conceptual basis of Borel’s negation of the mini-
max theorem in his earlier research into game theory. [Dell’Aglio,
1995, p. 21]

The psychological interpretation enters the picture because Borel on sev-
eral occasions talks about the advantage of being a better psychologist. The
player who is a better observant and analyst than the opponent will have an
advantage in the game, which is not true for optimal solutions covered by
the minimax theorem. Dell’Aglio concludes that

... the divergence over the validity of the minimax theorem was
ultimately due to a difference in the conceptual and technical
structure underlying the two theories. In other words, Borel
and von Neumann produced different theoretical forecasts be-
cause they were working on different basic problems. [Dell’Aglio,
1995, p. 40}

The two different problems that Dell’Aglio is refering to, emerges because
von Neumann’s point of departure was “the possibility of the existience of
equilibria in games played by equal players” [Dell’Aglio, 1995, p. 40] while
“Borel took into consideration a similar problem but supposing one player
has acquainted himself with the psychological characteristics of his opponent”
[Dell’Aglio, 1995, p. 40].

I do not quite understand in what sense Dell’Aglio mean that von Neu-
mann and Borel are studing two different problems. Both of them had as
point of departure that you choose your strategy without knowing what your
opponent are going to choose. In Borel’s calculations for the cases with three

25See e.g. [Fréchet, 1953b, p. 122].
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and five pure strategies he are, like von Neumann, looking for a strategy
that can protect you from beeing in a loosing position, no matter what the
other player does. That is, a strategy where the result of the game will not
change to your disadvantage even though your opponent somehow found out
-which one you picked, and in a situation like that it does not matter which
one is a better psychologist. As far as I can see the main difference between
their work is the approach in their investigations. Borel did not consider the
mixed strategies of the two players at the same time. He did not work on
the interplay of the two players simultaneously and independent choice of
strategy. Von Neumann did so and that brought the various ‘minmax’ and-
‘maxmin’ considerations into the picture and it is precisly the interaction
between those that made him realize the solution as a saddle point.

6.2 Discussion of Priority

In the quotation previuosly cited from the introduction by Fréchet to the
translation of the notes of Borel, Fréchet announced Borel to be an “initiator” ~
in the domain of game theory. In a commentary Fréchet argued for this "
opinion:

Borel was the first to indicate the potential importance for this
theory of knowing whether this theorem [the minimax theorem],
applied to n manners of playing, is true for arbitrary n. He did,
moreover, demonstrate it for n = 3 and n = 5, but only for these .
values. [Fréchet, 1953b, p. 122]

" This introduction and commentary of Fréchet caused a brief priority dis-
cussion between von Neumann and Fréchet. According to L. J. Savage, the
translator of Borel’s work, von Neumann got very angry when he learned
- what Fréchet had written [Heims, 1980, p. 440, note 14]. Von Neumann ac-
knowledged that Borel had been the first one to 1ntroduce the concepts of
pure and mixed strategies but, he continued,

The relevance of this concept [of mixed strategies] in his [Borel’s]
hands was essentially reduced by his failure to prove the decisive
‘minimax theorem’, or even to surmise its correctness. As far as I
can see, there could be no theory of games on these bases without
that theorem. ... I felt that there was nothing worth publishing
until the ‘minimax theorem’ was proved. [von Neumann 1953,
p. 124-125] :
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What I find interesting is not so much the priority debate in itself but
more the following remark by Fréchet which shows a view very different from
that of von Neumann on the importance of the minimax theorem:

Again, it may be mentioned, that even if Borel had, before von
Neumann, established the minimax theorem in its full general-
ity; the profound originality of Borel’s notes would not have been
augmented nor even touched from the economic point of view. He
would not thereby have even enriched the set of properly math-
ematical discoveries for which Borel has acquired a world-wide
reputation. He would have, like von Neumann, simply entered an
open door. ... the samme theorem and even more general the-
orems had been independently demonstrated by several authors
well before the notes of Borel and the first paper of von Neumann.
[Fréchet, 1953b, p. 122]

The proofs Fréchet is refering to are proofs of theorems similar to von Neu-
mann and Morgenstern’s “Alternatives for Matrices”, e.i., theorems about
solutions to systems of linear inequalities by Minkowski, Farkas, Stiemke,
and Weyl.?¢

In 1953 the minimax theorem was realized to be a simple consequence
of those classical theorems about solutions to systems of linear inequalities,
but von Neumann derived the minimax theorem in a theory of “Gesellss-
chaftsspiele” which was a completely different mathematical context. The
techniques used by von Neumann in 1928 had at first noting to do with lin-
ear inequalities, it was not until Ville’s proof in 1938 that this connection
was recognized, a connection von Neumann and Morgenstern then developed
further in their 1944-book. But as von Neumann’s 1928 - proof and his 1937 -
proof clearly demonstrate and as he himself wrote in 1953 in his answer to
Fréchet:

This connection may now seem very obvious to someone who first
saw the theory after it had obtained its present form. (O. Morgen-
stern and myself, in our presentation in 1943, made, for didactical
reasons, every effort to emphasize this connection.) However, this
was not at all the aspect of the matter in 1921 — 1938. The the-
orem, and its relation to the theory of convex sets were far from

26See [Farkas, 1901, p. 5-7], [Stiemke, 1915, p. 340}, [Gordan, 1873, p. 23-28], [Minkowski,
1896, p. 39-45], [Weyl, 1935).
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(

being obvious . ... It is common and tempting fallacy to view the
later steps in a mathematical evolution as much more obvious and
cogent after the fact than they were beforehand. [von Neumann,
1953, p. 125) '

7 Conclusion on the Significance of the Con-
text

In this discussion Fréchet advocates for the point of view, that the signifi-
cance of a mathematical theorem is independent of the mathematical context
in which it was derived. The history of von Neumann’s development and con-
ception of the minimax theorem shows, that it was far from being trivial and
took a larger effort to realize the connection between solutions of systems
of linear inequaities and the existence of optimal strategies for two-person
zero-sum games. The fact, that the minimax theorem later turned out to
be a simple consequence of theorems of inequalities proved earlier, does not -
render the minimax theorem superfluous or worthless in relation to the de-
velopment of mathematics, as Fréchet seems to imply. In his assessment
whether the minimax theorem has “enriched the set of properly mathemat-
ical discoveries” or not, an assessment of the significance of the theorem for
the developing of new mathematics is lacking. The mathematical context
in which a result is derived determines its formulation and interpretation,
and thereby also to which kind of new research it can lead. The questions .
that guide the research in game theory are not necessarily the same as those
guiding the research in the abstract theory of linear inequalities. Hence, the
minimax theorem can from a game theoretic point of view be very different
from the theorems of linear inequalities. | :
The minimax theorem of von Neumann had a tremendeous influence on
the further development of game theory which became a very active field
of research after World War I1.27 It also had a decisive influence on the
development of some new disciplines in applied mathematics especially linear

and nonlinear programming which originated in connection with the Second
World War.2®

2See for example [Mirowski, 1991).
28Gee [Kjeldsen, 1999, 2000].
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