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ABSTRACT
Energy efficiency is a growing concern for software developers.
This empirical study investigates the impact of compiler optimiza-
tions on energy efficiency in Haskell programs compiled using
the Glasgow Haskell Compiler (GHC). We focus on GHC’s -O2
optimization series and explore the effects of selectively disabling
individual optimizations using -fno-* flags, alongside variations in
initial execution temperatures.

We examined 25 GHC optimizations across 18 benchmarks from
the NoFib Haskell Benchmark Suite resulting in 468 combinations
of benchmark and optimization-deactivations. Data was collected
at three starting temperatures (45ºC, 55ºC, and 65ºC), resulting
in 40 samples per benchmark-optimization combination. Our key
metrics included energy consumption and execution time.

Considering all combinations, for 24% of the individual opti-
mizations provided, when disabled, a significant increase in energy
consumption, i.e., enabling these optimizations resulted in more
energy-efficient executables, whereas for 26% the optimization pro-
vided a significant increase in time, when disabled. However, only
for 12% of all the combinations, the disabling increased both time
and energy consumption significantly, and in 5% of all the combi-
nations, we observed opposite impacts on time and energy.

We found that 10 optimizations produced equally ormore energy-
efficient executables for all the benchmarks, whereas only one
compiler optimization produced a better or equally performing
executable for all the benchmarks.

As a secondary finding, we explored the influence of initial tem-
peratures on energy consumption. While programs that started at

∗On a leave from the Faculty of Engineering of the University of Porto, Porto, Portugal
†This work is partly supported by the Independent Research Fund Denmark Project
no. 2102-00281B.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC ’24, April 8–12, 2024, Avila, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0243-3/24/04. . . $15.00
https://doi.org/10.1145/3605098.3635915

45ºC showed the least variance in terms of both energy consump-
tion and wall time, those started at 55ºC tended to exhibit lower
energy consumption for the typical program compared to those
started at 45ºC or 65ºC.
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• Software and its engineering → Compilers; Software per-
formance; Software design tradeoffs; General programming
languages.
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1 INTRODUCTION
The world’s energy consumption has been steadily rising for over
seven decades, and the great majority of the energy we consume
comes from non-renewable sources [28]. The Information and Com-
munications Technology (ICT) sector was estimated to be responsi-
ble for over 7% of the energy consumed in 2020 [3], a figure that only
under optimistic scenarios is not expected to grow in the upcoming
years.

One approach to reducing software’s energy consumption is for
the software developers to design and developmore energy-efficient
code. However, a study has shown that only 18% of software devel-
opers consider energy consumption when developing software, and
even fewer (14%) consider it a requirement [23]. This lack of consid-
eration can be attributed to programmers’ inconsistent knowledge
about the energy consumption of software and their difficulty in
finding adequate answers to their questions about this topic [27].

An alternative approach is to create compilers that optimize
for energy. This approach has a higher potential for scaling and
reaching practical benefits, as it can centralize the knowledge of
producing energy-efficient code at the compiler level, benefiting
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all its users. The first step towards this approach is to determine
whether an existing compiler can already generate energy-efficient
executables. In this paper, we focus on the Haskell programming
language and the Glasgow Haskell Compiler (GHC) to investigate
this possibility.

Haskell was chosen for its purity and laziness in functional lan-
guages, which have been proven to increase modularity and facil-
itate compile-time optimizations [4, 9, 12]. In addition, Haskell is
currently the most popular purely functional lazy language1 and is
used in production by more than 200 companies [5, 11, 16]. In this
study we chose GHC, the most used Haskell compiler; it is open-
source, is being actively developed, and has an extensive catalog
of individually accessible optimizations [8, 17]. If GHC is capable
of generating energy-efficient code, developers can write software
as usual and rely on the compiler to produce energy-optimized
versions.

Ultimately, we address the following two main research ques-
tions:

RQ1 How do GHC optimizations influence the energy efficiency
of programs?

RQ2 Do GHC optimizations influence the execution time of pro-
grams in the same way they influence energy consumption?

Contributions. This work contributes new evidence for how
GHC’s compilation optimizations influence the energy and time
consumption of Haskell programs, both from a global perspective
and individually for each optimization. The study contributes to the
incorporation of software energy efficiency into compilers. We also
provide a framework that can be used to automate similar studies,
along with public data for further analysis.

The remainder of this paper is organized as follows. In Section 2,
we describe the methodology we adopted. Section 3 presents and
discusses the obtained results. Section 4 addresses threats to the
validity of our findings. Section 5 discusses related works, and Sec-
tion 6 concludes the paper and suggests future research directions.

2 METHOD
To properly answer the proposed research questions, we developed
the following methodology, taking into consideration the reviewed
literature that we describe in Section 5. Firstly, we selected the
25 optimizations, i.e., optimization flags, that compose GHC’s -O2
series as our study object and sampled a set of 18 benchmarks from
the NoFib Haskell Benchmark Suite. We considered three different
starting temperatures for the programs’ execution (45ºC, 55ºC, and
65ºC), and for each, we collected 40 samples of each benchmark-
flag combination, in batches of 20 samples. Lastly, we performed a
rigorous statistical analysis of the collected metrics, namely energy
consumption and execution time.

The framework developed to perform the experiment, the statis-
tical tests, and all data collected are publicly available in a public
repository2.

1https://survey.stackoverflow.co/2022#section-most-loved-dreaded-and-wanted-
programming-scripting-and-markup-languages, accessed 22/09/2023
2https://github.com/bernas670/ghc-energy

2.1 Selecting Compiler Optimizations
Much like other compilers, GHC [31] offers three predefined series
of optimizations that are intended to be used with a general goal in
mind:

-O0: turns off all optimizations
-O1: generates good quality code without taking too long to
compile
-O2: applies all optimizations that cannot make run time or
space worse, even if it means significantly longer compile
times

In our research, we deviate from the approach of enabling op-
timizations individually. Instead, we apply the -O2 series of op-
timizations, while selectively deactivating specific optimizations
using the -fno-* flags. We adopt this methodology, which we
have discussed and validated with an expert on the GHC compiler,
due to the significant impact of the order in which optimization
flags are applied on the compilation results. Notably, the activa-
tion or deactivation of a particular optimization can potentially
create optimization prospects for subsequent flags in the sequence.
The -funfolding-use-threshold=<n> flag is the only exception,
which sets a cut-off size for function unfolding (also known as inlin-
ing) during compilation, where functions smaller than the specified
threshold will be unfolded at the call site, while larger functions
will not be unfolded. For this option, we are considering the de-
fault threshold (80), double the value (160), and half of it (40). A
comprehensive list of the considered flags is presented in Table 1.

Flag
-fno-case-merge
-fno-case-folding
-fno-call-arity
-fno-exitification
-fno-cmm-elim-common-blocks
-fno-cmm-sink
-fno-block-layout-cfg
-fno-cpr-anal
-fno-cse
-fno-stg-cse
-fno-dmd-tx-dict-sel
-fno-do-eta-reduction
-fno-do-lambda-eta-expansion

Flag
-fno-float-in
-fno-full-laziness
-fno-ignore-asserts
-fno-loopification
-fno-specialise
-fno-solve-constant-dicts
-fno-stg-lift-lams
-fno-strictness
-fno-unbox-small-strict-fields
-fno-spec-constr
-fno-liberate-case
-funfolding-use-threshold=<n>

Table 1: GHC flags that were individually deactivated (start-
ing with -fno) and activated (the remaining one)

2.2 Sampling Benchmark Programs
The programs selected for this study are a part of the NoFib Haskell
Benchmark Suite3. This suite is composed of more than one hun-
dred benchmarks which are divided into seven categories; they
cover benchmarks from actual command-line applications to algo-
rithms like Fast Fourier Transform, as well as benchmarks from
The Computer Language Benchmark Game (CLBG)4.
3https://gitlab.haskell.org/ghc/nofib, accessed 22/09/2023
4https://benchmarksgame-team.pages.debian.net/benchmarksgame/, accessed
22/09/2023

https://survey.stackoverflow.co/2022#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
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We used random sampling to select two benchmarks from each
category, as well as all benchmarks from the shootout category that
belong to CLBG, with the exception of fasta and k-nucleotide
due to issues with their execution. Considering multiple categories
of benchmarks allows for a comprehensive and balanced evaluation
of the compiler’s effectiveness in optimizing different code struc-
tures. Furthermore, the benchmarks from CLBG allow for a direct
comparison of the compiler’s performance against other languages
and implementations. The 18 benchmarks under consideration are
listed in Table 2.

Category Benchmarks
gc circsim, hash
imaginary bernoulli, integrate
parallel coins, queens
real anna, fluid
shootout binary-trees, fannkuch-redux, n-body,

pidigits, reverse-complement, spectral-
norm

smp callback001, chan
spectral power, treejoin

Table 2: Selected NoFib benchmarks

2.3 Equipment and Setup
The machine used to perform the experiment was set up with a
minimal installation of Ubuntu Server 22.04 with kernel version
5.15.0-33-generic, in order to minimize the number of services run-
ning alongside the experiments. The system’s specifications are as
follows: Intel(R) Core(TM) i7-4720HQ CPU @ 2.60GHz, with 16 GB
RAM @ 1600 MHz.

The version of GHC used was the one available in the Ubuntu
repositories at the time of the experiment, 8.8.4 [31].

The checkout of NoFib used was bca0196. As some of NoFib’s
benchmarks require external packages, the packages used and re-
spective versions are listed in Table 3.

Package
old-locale-1.0.0.7
old-time-1.1.0.3
parallel-3.2.2.0
primitive-0.7.4.0
random-1.2.1.1

Package
regex-base-0.94.0.2
regex-compat-0.95.2.1
regex-posix-0.96.0.1
splitmix-0.1.0.4
unboxed-ref-0.4.0.0

Table 3: Packages used and respective versions

To reduce the energy consumption of the system and to reduce
the noise in the readings, we first stop all non-essential services on
the machine, as well as disable the WiFi.

Concerning the data collection, each benchmark is compiled
without/with an optimization, and when the CPU baseline temper-
ature is reached, either by cooling down or heating up the CPU,
we execute the benchmark and measure its energy consumption
and execution time. The compiled benchmarks are executed 20

consecutive times, and the order of execution was kept the same
throughout the experiment.

We use the systemfile /sys/class/thermal/thermal_zone0/temp
to read temperature data and the energy consumption of the pro-
grams was measured using Intel’s Running Average Power Limit
(RAPL), as it has been reported as having negligible overhead and
providing accurate results [10, 29]. Furthermore RAPL has been
intensively used in other research works with similar goals [6, 14,
21, 24].

2.4 Package vs. DRAM Energy
RAPL allows for the collection of both package and DRAM energy
consumption. While package energy consumption represents the
energy consumed by the entire processor socket, including CPU
cores, memory controller, and other components, DRAM energy
consumption refers only to the energy consumed by the dynamic
random access memory modules.

In this paper, we consider the total energy consumption to be
the sum of both package’s and DRAM’s energy consumption, but
these two do not contribute to this metric in equal parts. Taking
into consideration all of the collected samples we calculated that
on average 4.23% of the total energy consumption is consumed
by DRAM and the remaining 95.77% is consumed by the package.
Therefore, optimizing the package energy consumption could yield
significant energy savings compared to strategies that optimize
DRAM consumption.

2.5 Reducing the temperature induced Noise
Level

The CPU temperature has been proven to influence its energy con-
sumption [32]. In this study we do not tamper with the temperature
during execution, instead we force the execution to begin at specific
starting temperatures: 45ºC, 55ºC and 65ºC.

For each temperature, we collected two batches of 20 samples
of all programs with each optimization flag. To assess the noise
level for each temperature, we calculated the batches’ differences
in execution time and energy consumption.

For every program-optimization combination, we calculated the
minimum and maximum statistically significant increases in both
energy consumption and execution time, Table 4. From these re-
sults, we are able to conclude that a starting temperature of 45ºC
presented the smallest range in total energy and execution time.

Temperature (ºC) Energy Inc. (%) Time Inc (%)
45 [-2.89, 1.74] [-4.06, 3.01]
55 [-4.60, 25.86] [-18.96, 5.89]
65 [-4.94, 14.22] [-16.23, 9.81]

Table 4: Minimum andmaximum statistically significant per-
centage increases in total energy consumption and execution
time, by starting temperature

In Figure 1, we can observe that varying the starting temper-
ature affects the distribution of the percentage increases in total
energy consumption. The batches with a starting temperature of
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between batches
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Figure 2: Percentage increase in execution time between
batches

45ºC had the smallest variance in total energy, while the ones exe-
cuted at 55ºC had the largest. The very same behavior is present
when considering execution time, and can be observed in Figure 2.
The minimum and maximum statistically significant percentage
increases in both energy and execution time can be observed in
Table 4.

As the measurements collected with a starting CPU temperature
of 45ºC show the least variance when considering both total en-
ergy consumption and execution time, these samples are the ones
taken into consideration when looking at the effects of the compiler
optimizations.

2.6 Statistical analysis
To evaluate the impact of compiler optimizations on energy effi-
ciency, we need to quantify the disparities between sample sets
for each benchmark when compiled with and without each opti-
mization. To assess potential differences in the means, we employ
Welch’s t-test [34], for which specific assumptions must be satisfied:

(1) all samples are drawn independently from each other

(2) no significant outliers are present
(3) data follows a normal distribution

The first assumption is met due to the manner in which data col-
lection is conducted. To address the second assumption, quartile
outliers were removed prior to any statistical analysis. And, for
validation of data normality, we conducted Shapiro-Wilks [30],
D’Agostino’s 𝐾2 [7] and Anderson-Darling [2] tests. Only combina-
tions passing all three normality tests were considered as normally
distributed. For combinations that respected all three assumptions,
Welch’s t-test was employed. For combinations not satisfying all
assumptions, a random sampling5 [33] approach with 100,000 it-
erations was utilized to determine whether differences in means
between two groups were statistically significant or occurred by
chance.

To analyze the correlation between the energy consumption
and execution time, Spearman’s correlation coefficient [35] was
calculated.

At last, to compare the influence that the CPU’s starting tem-
perature has on the energy consumption of programs, we used the
one-sided Mann Whitney U test [15]. For this version of the test,
the alternative hypothesis is that the first distribution is stochasti-
cally larger than the second distribution. The test was performed
twice for each pair of starting temperatures, with a confidence level
of 0.05.

3 RESULTS ANALYSIS AND DISCUSSION
In this section, we present results we obtained following the adopted
methodology and discuss the findings we derived from them.

3.1 Impact of Optimizations on Energy
Consumption

Throughout this section, we will thoroughly discuss (percentage)
increases in energy consumption. It is important to note that, since
most oftenwe are deactivating compiler optimizations (using -fno-*),
an increase in energy consumption in these casesmeans that the cor-
responding optimizations would have saved energy if they had been
activated. However, for the -funfolding-use-threshold=<n> com-
piler option, a positive percentage increase translates to an actual
increase in energy consumption.

After removing the quartile outliers from the measurements,
the percentage increase on average energy consumption of every
benchmark compiled without/with each compiler option compared
to the average energy consumption of that same benchmark when
compiled with -O2, Figure 3.

In Figure 3, we depict the percentage increase, for all flags, for
which the highest increase was observed; all other benchmarks are
grouped in an Others category. Analysing the highlighted bench-
marks in Figure 3, we verify that when some of the optimizations
are disabled there is an increase in energy of over 100%, i.e. they opti-
mize the energy consumption of a benchmark to less than half. The
most extreme example of this is spectral-norm when compiled
with the -fno-strictness option, with an increase of 371.37%.

Moreover, we can observe that when compiled with different op-
tions, a benchmark’s energy consumption varies. Taking integrate

5Also referred to as A/B testing.
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Figure 3: Percentage increase in total energy consumption
per flag

as an example, when compiledwith -fno-do-lambda-eta-expansion
or -fno-strictness, its energy consumption increases around
130%, but other options seem to barely influence its consump-
tion or may even decrease it, such as -fno-specialize which
reduces consumption by 7.56%. This indicates that the same com-
piler option may influence different benchmarks in different ways,
for example fno-do-lambda-eta-expansion increases the energy
consumption of fannkuch-redux, integrate and spectral-norm,
but chan’s energy consumption recorded a decrease. After the
overview,wewill investigate the energy consumption of 468 benchmark-
compiler optimization pairs.

In Figure 4, the box plot provides an overview of the optimization
flags’ impact on the benchmarks’ energy consumption. Each box
plot illustrates the energy distribution of the average percentage
increase across all programs. The data mirrors that in Figure 3,
but the y-axis is cropped to [−6.0, 50.0] for better readability, ex-
cluding 12 outliers. In the figure, green boxes have a positive me-
dian and red boxes a negative median, and the crosses indicate
the flags average for all programs, where green means a positive
average and red a negative average. According to this data 22 out
of 24 -fno-* options increase the energy consumption of both
the typical and the average programs, meaning that the optimiza-
tion that is being disabled contributes to improving the energy
efficiency of these programs. The remaining 2 -fno-* options,
-fno-call-arity and -fno-ignore-asserts, reduce the energy
consumption of the average program and increase the consumption
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Figure 4: Energy improvement distribution per flag

of the typical program. In addition, the thresholds considered for
the -funfolding-use-threshold=<n> option both increase con-
sumption of the typical program but reduce the consumption of
the average program.

The results of the statistical tests described in Section 2.6 are
presented in Figure 5, and can be interpreted as follows: in green,
the flag significantly increased the energy consumption of the pro-
gram compared with -O2; in orange, the flag significantly reduced
the energy consumption; and in blue, the flag’s change in energy
consumption was not statistically significant.

Out of all the 468 benchmark-compiler option combinations
presented in Figure 5, 111 (24%) significantly increased the en-
ergy consumption, i.e., enabling the optimization produced a more
energy-efficient executable, and 37 (8%) significantly decreased the
energy consumption, i.e., enabling the optimization produced a less
energy-efficient executable, while the remaining 321 (69%) did not
record a statistically significant difference in energy consumption,
meaning any difference in consumption was most likely due to
chance.

Analysing this data, we are able to once again verify how the
same optimization influences energy consumption of different pro-
grams in different ways, nowwith the support of statistical tests. For
example, -fno-call-arity increases the total energy consump-
tion of circsim and fannkuch-redux, but reduces integrate’s
consumption. Furthermore, it becomes evident that a benchmark’s
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Figure 5: Energy-efficiency results for each flag and benchmark combination. The “×” label denotes significance tested with
Welch’s t-test, and “⊚” with A/B testing. Orange indicates a significant energy reduction, blue denotes no significant difference,
and green denotes a significant increase.

energy consumption may vary based on applied optimizations.
Consider coins, which experienced both increases and decreases
in consumption with different options, and mostly no significant
difference with others.

Considering how the -fno-* options impacted the benchmarks:
1 option, the -fno-case-merge, showed no significant impact on
the energy efficiency of the benchmarks, 10 options either increased
the energy consumption or had no significant impact on the bench-
marks, and 14 options sometimes increased, sometimes decreased,
and sometimes had no impact on the energy consumption.

The optimization that significantly impacted the most bench-
marks was -fno-do-lambda-eta-expansion, increasing the con-
sumption of 10 benchmarks and decreasing the consumption of 3.
And the option which impacted the least was -fno-case-merge,
which did not significantly impact the consumption of any bench-
mark. For 18 out of the 24 -fno-* options considered in this study,
the number of benchmarks which recorded an increase in consump-
tion was higher than the ones which recorded a decrease, with
-fno-strictness option being the most successful, increasing the
consumption of 12 benchmarks without decreasing any.

When it comes to the -funfolding-use-threshold=<n> op-
tions, both of the tested thresholds had a mostly negative effect on
the benchmarks, as the number of benchmarks which suffered an
increase is larger than those which recorded a decrease.

RQ1: How do GHC optimizations influence the energy
efficiency of programs?

From our analysis, we are able to confirm that compiler optimiza-
tions do have an effect on a program’s energy efficiency.While there
is no compiler transformation that in general improves all programs,
10 improved or caused no negative effects for all the investigated
benchmarks. In addition, considering that for 28% of the cases en-
abling optimizations produced a more energy-efficient executable
there is great potential in using compiler transformations as a mean
to reach energy savings. For example, the -fno-strictness op-
tion increases the consumption of spectral-norm by 371.37%, i.e,
the transformation that is disabled reduces the consumption of the
program by 78%.
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Figure 7: Energy consumption and execution time by bench-
mark

3.2 Execution Time & Energy
To evaluate if GHC optimizations affect program execution time sim-
ilarly to energy consumption, we analyze the correlation between
execution time and energy consumption for all executables gener-
ated by various -fno- option and benchmark combinations. Addi-
tionally, we explore how -fno- options impact time and whether
their influence on time aligns with their influence on energy.

Correlation between execution time and energy consumption. To
evaluate the correlation between execution time and energy con-
sumption in our collected samples, we plotted them in Figure 7.
The chart indicates a trend suggesting that higher execution time
corresponds to higher energy consumption, and vice versa.

To quantitatively assess the correlation between these metrics,
we employed Spearman’s correlation coefficient. The calculated
coefficient yielded a value of 0.9856, indicating a strong positive
monotonic relation, i.e, as one variable increases so does the other.
To corroborate this result, the associated p-value was determined

Figure 6: Time-efficiency results for each flag and benchmark combination. The “×” label denotes significance tested with
Welch’s t-test, and “⊚” with A/B testing. Orange indicates a significant time reduction, blue denotes no significant difference,
and green signifies a significant time increase. A black circle indicates increased time but decreased energy, while black squares
indicate decreased time but increased energy.
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to be approximated to 0.0, signifying an exceedingly low likelihood
of this correlation occurring by random chance.

Optimizations impact on time and energy. Equivalent to the energy-
efficiency impact shown in Figure 5, we depict the effect of -fno-*
options on performance in Figure 6. The results of the statistical
tests detailed in Section 2.6 are illustrated in Figure 6 as follows:
green signifies a significant increase in wall time compared with
-O2; orange indicates a significant reduction, and blue denotes no
statistically significant change in performance.

Among the 468 benchmark-compiler option combinations in
Figure 6, 121 (26%) exhibited a significant increase in wall time,
indicating optimization led to a more time-efficient executable.
Conversely, 95 (20%) showed a significant decrease in wall time,
suggesting optimization resulted in a more time-consuming ex-
ecutable. The remaining 252 (54%) did not exhibit a statistically
significant difference in performance.

Regarding the impact of -fno-* options on benchmarks, only
one option, -fno-strictness, either increased wall time or had no
significant impact, implying a positive or neutral effect of enabling
the strictness optimization. The remaining 24 options displayed
diverse effects on energy consumption.

Looking at the individual benchmark-compiler options, we see
that the options often, i.e., 83 (18%) combinations, affect perfor-
mance and energy-efficiency –significantly– in the same way, and
for 213 (46%) combinations, there was no significant effect on nei-
ther energy nor time. More interestingly, sometimes the impact is
inverse; in 26 (6%) combinations we recorded a significant impact
on both the energy and time, but in opposite ways, i.e., one was
improved and one was worsened.

In Table 5, we report the combinations impacting both energy
and time. Since energy is defined as time multiplied by power dissi-
pation, we anticipated similar impacts on both. This expectation
aligns with the results. Specifically, 56 (12%) combinations showed
a significant increase in both time and energy with the -fno-* op-
tion, while 27 (6%) combinations exhibited a significant decrease in
both. In 25 (5%) combinations, the option led to a notable increase
in energy and a decrease in time, implying optimization improved
energy consumption but worsened wall-time. These combinations
are marked in Figure 6 with black squares, mainly observed in
circsim and frankuch-redux. A single combination, -fno-cse
on the integrate benchmark, recorded a significant decrease in
energy consumption and a simultaneous increase in time, signify-
ing improved performance but worsened energy consumption; this
is indicated with a black circle in Figure 6.

RQ2: Do GHC optimizations influence execution time of
programs in the same way they influence energy

consumption?

The analysis of the collected data robustly confirms a strong
correlation (95% confidence level) between software execution time
and energy consumption.

The -fno-* options increases time in 26% of the combinations
and increases energy in 24% of the combinations, while only 12%
increases both time and energy at the same time, thus, implying that
enabling optimizations has a positive effect on execution time and

energy consumption in 12% of the investigated cases. Because en-
ergy is defined as timemultiplied by power dissipation, we expected
that most cases had similar impact on time and energy. This is well
supported by the results, since 6% of the combinations have oppo-
site and significant impact on energy and time. For a single case
enabling the optimization would produce a more energy-efficient
executable with lower performance and for 25 cases (5%) enabling
the optimization would produce a less energy-efficient executable
with better performance. When counting no significant impact on
energy and time as similar behaviour, we find that for 63% of the
tested combinations, the -fno-* options has similar impact on en-
ergy and time; however, in 46% of the cases we have recorded no
significant impact on neither energy nor time.

3.3 Secondary Findings
Previous research shows that CPU temperature affects the energy
consumption of software [32], in this study we assess whether or
not there is a significant difference in energy consumption derived
from the temperature at the beginning of a program’s execution.

The average energy consumption increases along with the in-
crease of the starting temperature, as can be observed in Table 6.
However, according to the medians, a program started at 55ºC tends
to have a smaller consumption than one started at 45ºC or 65ºC.
The one-sided Mann-Whitney U test results, presented in Table 7,
corroborate this observation. According to the results of this test
programs started at 45ºC tend to consume more energy than those
started with 55ºC, and less than those started with 65ºC.

4 THREATS TO VALIDITY
In this section, we discuss potential threats that may affect the
validity of our findings, or their generalization.

We concentrate on the programming language Haskell and GHC,
thus our study’s results may not apply to other languages, even
with similar optimizations. Different optimizations or compilers
could also yield different conclusions.

The fact that we used a single hardware configuration to perform
our experiments helps with the consistency of the results, as the
hardware itself influences energy consumption. While the chosen
system is representative of commonly used hardware, replicating
the experiment with other hardware may yield different results.

An aspect that has been proven to influence energy consump-
tion is the data. Altering data, such as input size, can change the
execution path and subsequently affect energy consumption. More
interestingly, even with the same execution path, different data may
lead to varying energy consumption [13, 22]. In our experiment, we
maintained consistent results by not modifying the handled data.
However, replicating the experiment with different input data may
yield varied results.

5 RELATEDWORK
Over the years, more and more researchers have taken interest in
software energy efficiency, and have explored many different as-
pects in order to determine their influence on energy consumption.

Some works have already studied the impact that compiler opti-
mizations have on programs. In [1], the authors studied the impact
of GCC’s "packages" of optimizations, namely -O1, -O2 and -O3, on C
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Energy increase Energy decrease No sign. Energy change Total
Time increase 56 (12%) 1 (0%) 64 (14%) 121 (26%)
Time decrease 25 (5%) 27 (6%) 43 (9%) 95 (20%)

No sign. Time change 30 (6%) 9 (2%) 213 (46%) 252 (54%)
Total 111 (24%) 37 (8%) 321 (69%) 468 (100%)

Table 5: The count and percentages of -fno-* options and benchmark combinations with significantly increasing, decreasing,
or nonsignificant impact.

Temperature (ºC) Mean (J) Median (J)
45 2485690.28 1005308.00
55 2502110.99 984983.00
65 2588643.32 1045437.50

Table 6: Mean and median energy consumption based on
starting temperature.

Hypothesis 𝜌 − 𝑣𝑎𝑙𝑢𝑒
45 > 55 0.0221
45 < 65 8.3406e-14
55 < 65 4.3186e-20

Table 7: Confidence levels for Mann-Whitney U tests on en-
ergy consumption differences based on starting temperature.

programs’ energy efficiency. They found that the -O2 and -O3 flags
were the ones that produce the most energy-efficient programs.
Similarly, in [18], a comparison of GHC’s -O0, -O1 and -O2 is per-
formed. For some implementations, the non-optimized executables,
compiled with -O0, performed better, both in terms of execution time
and energy consumption, than the executables compiled with -O1

and -O2. In the GHC User’s Guide [31], the GHC authors themselves
warn users about the lack of consistency of the -O* flags. Accord-
ing to [18], these optimizations can either improve or worsen the
software’s performance. In [20], the authors evaluate the impact of
compiler phase ordering on energy consumption of C programs in
comparison with the standard compiler phase orders, i.e. -O* flags.
According to their experiments with Clang and LLVM, standard
optimization levels (-O1, -O2 and -O3) always result in better perform-
ing executables that consume less energy, when compared with
executables generated without optimization. It is also reported that
-O2 and -O3, tend to improve energy consumption and performance
over -O1. When compiling with phased orders specialized for im-
proving energy efficiency, the authors report, in some cases, higher
energy savings than if optimizing only for performance.

Another aspect that researchers have considered when inves-
tigating software energy efficiency is the programming language
used when developing software. In [6], the authors set out to estab-
lish a ranking of 10 programming languages based on their energy
efficiency. They conclude that compiled languages are both faster
and more energy efficient than their interpreted counterparts, a
conclusion also reached in [1]. One of the limitations identified by
the authors was the fact that only CPU energy consumption was
monitored, leaving out other components. This is addressed in [24],
where they focus on relating energy consumption, execution time,

and memory usage. The 27 languages studied were ranked accord-
ing to four different objectives: Time & Memory, Energy & Time,
Energy & Memory, and Energy & Time & Memory. The results of
this study were later validated in [25].

Apart from programming languages and compile-time optimiza-
tions, there have also been studies on the influence that other im-
plementation aspects have on energy consumption. Some studies
have focused on the use of different data structures [14, 18, 26]. No-
tably, [14, 18] are also in the context of Haskell, where the effects of
strictness and concurrency on energy consumption has also been
studied [14, 19]. Finally, other studies have focused on the impact
of the input data [13, 22].

6 CONCLUSIONS AND FUTUREWORK
This work intended to understand how individual optimizations
applied by GHC impacts Haskell programs’ energy efficiency.

We examined 18 Haskell programs and 25 GHC optimizations,
compiling each program 26 times —once with all optimizations
enabled and once with each optimization individually disabled. We
gathered data on energy consumption and execution time. Through
a statistical analysis of the data, we were able to conclude that a pro-
gram’s energy consumption and execution time can be significantly
affected by the choice of compiler optimization flags.

In general, it is difficult to make definite conclusions about opti-
mizations. Equivalent to time, the same optimization can increase
energy for one benchmark and decrease it for another. However,
the results show that for 22 out of 24 -fno-* options, enabling the
optimization reduces the energy consumption of programs; this
holds true both when considering the median and the average
energy consumption of the programs. In addition, enabling individ-
ual compiler optimizations resulted in 10 producing equivalent or
more energy-efficient executables for all benchmarks, while only 1
produced better-performing or equivalent executables for all bench-
marks. Therefore, 10 optimizations are energy-safe, while only 1 is
time-safe for this benchmark suite.

Considering all optimization and benchmark combinations, for
24% enabling the optimizations provided more energy efficient
executables, and for 26% enabling the optimizations provided better
performing executables. However, when considering both aspects
at once, only for 12% provided both significantly better performing
and significantly more energy-efficient programs. In 5% of all the
combinations (26 out of 468), we observed opposite impacts on time
and and energy. An investigation of these may provide new insights
on the trade-offs between optimizing for time and for energy.

A secondary finding revealed that starting a program when the
CPU is 55ºC tends to result in lower energy consumption compared
to starting at 45ºC or 65ºC. However, executing at 45ºC shows
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smaller variance in time and energy measurements than at 55ºC or
65ºC. The starting temperature influences waiting times; a higher
tolerable starting temperature leads to shorter waiting times. Thus,
identifying 55ºC as a more energy-efficient starting temperature
allows us to reduce both waiting times and energy consumption.

In the future, it would be essential to extend this study to more
benchmarks and combinations of flags to perhaps confirm the cur-
rent trends. It would be interesting to investigate the optimizations
with opposite impact on energy and time to identify the reasons for
this and, thus, revealing possible time and energy trade-offs within
the GHC. In addition, it would be exciting to identify the commonal-
ities of the safe optimizations to inspire new similar transformations
or perhaps compose a new sequence of energy-optimizing flags.
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