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Abstract SARS-CoV-2 induces delayed type-I/III interferon production, allowing it to escape 
the early innate immune response. The delay has been attributed to a deficiency in the ability of 
cells to sense viral replication upon infection, which in turn hampers activation of the antiviral state 
in bystander cells. Here, we introduce a cellular automaton model to investigate the spatiotem-
poral spreading of viral infection as a function of virus and host-dependent parameters. The model 
suggests that the considerable person-to-person heterogeneity in SARS-CoV-2 infections is a conse-
quence of high sensitivity to slight variations in biological parameters near a critical threshold. It 
further suggests that within-host viral proliferation can be curtailed by the presence of remarkably 
few cells that are primed for IFN production. Thus, the observed heterogeneity in defense readiness 
of cells reflects a remarkably cost-efficient strategy for protection.

eLife assessment
This study presents a cellular automaton model to study the dynamics of virus-induced signalling 
and innate host defense against viruses such as SARS-CoV-2 in epithelial tissue. The simulations 
and data analysis are convincing and represent a valuable contribution that would be of interest to 
researchers studying the dynamics of viral propagation.

Introduction
Adaptive immune responses are relatively slow since they require pathogen-specific priming of 
immune cells (Sette and Crotty, 2021). For example, the time required for the body to activate 
adaptive immunity against the SARS-CoV-2 virus upon initial infection is around 10 days, comparable 
to the delay of immunization against SARS-CoV-2 after vaccination (Polack et al., 2020). Instead, the 
earliest infection dynamics are largely governed locally, by infected cells and their neighborhood. The 
innate responses including both interferon (IFN) mediated intercellular communication and expression 
of antiviral genes (ISGs) are determinants for confining the viral spread in the respiratory tract. Here, 
we address the spread of viruses within epithelial tissue, using SARS-CoV-2 as a model pathogen. 
The overall considerations are similar for other viruses, but the parameters governing infection may 
vary considerably due to the specific countermeasures of the virus in question, affecting its ability to 
bypass human antiviral defenses.

In terms of countermeasures, insufficient type I and III interferon secretion upon infection is a 
main immune signature feature of SARS-CoV-2 infection (Blanco-Melo et al., 2020; Hatton et al., 
2021; Stanifer et al., 2020; Minkoff and tenOever, 2023). The failure to activate immediate antiviral 
responses with IFNs is also a pathogenic aspect of other viruses including Ebola (Mohamadzadeh 
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et al., 2007), Marburg (He et al., 2019), and Herpes simplex (Barreca and O’Hare, 2004). Secretion 
of IFN relies on the cell’s ability to sense viral products during its replication. Despite the presence 
of sensors for DNA and RNA viruses in cells, many species of viruses partially evade detection. The 
SARS-CoV-2 virus is such a case: Only two of 16 putative RNA virus sensors, IFIH1 (MDA5) and DHX58 
(LGP2) from the RIG-I-like receptor (RLR) family, play roles in inducing IFN upon SARS-CoV-2 infection 
(Yin et al., 2021) and IFIH1 is antagonized by SARS-CoV-2 (Liu et al., 2021).

Intriguingly, evidence shows that pre-activated innate immune states help combat the SARS-CoV-2 
infection. The higher basal expression of viral sensors, IFIH1 and DDX58 (also from the RLR family), in 
the upper airway of children (relative to adults), reduces the severity of COVID (Loske et al., 2022). 
Furthermore, well-differentiated primary nasal epithelial cells derived from a donor with pre-activated 
IFNγ show resistance to SARS-CoV-2 infection (Broadbent et al., 2022). Thus, the extent to which 
innate immunity contributes to the observed heterogeneity in responses to SARS-CoV-2 between 
hosts (Schaller et al., 2021; Desai et al., 2020) is a compelling subject for investigation.

To address this question, we reanalyze single-cell RNAseq data (Fiege et  al., 2021; Ravindra 
et al., 2021) providing gene expression profiles of virus sensors and antiviral genes in host cells during 
early SARS-CoV-2 infection. We propose a cellular automaton model based on a few transition rules 
suggested by observed cell states, to explain the heterogeneity in early disease progression as a 
consequence of criticality in the virus-host interaction system.

Results
Cell states during early infection
Directly observing cell responses and cell state transitions in a patient’s body upon viral infection is 
virtually impossible. Human bronchial epithelial cells (HBECs) mimic the airway epithelium and have 
been used as a representative model for investigating the consequences of the viral invasion (de Jong 
et al., 1994; de Jong et al., 1993; Davis et al., 2015). Single-cell RNAseq provides snapshots of the 
states of individual cells indicated by high-dimensional gene expression profiles at the mRNA level 
and can uncover the heterogeneity of cell responses obscured by aggregate measurement. Thus, by 
combining HBECs as a model and single-cell RNAseq data, one can in principle infer cell state transi-
tions following viral infection. More importantly, single-cell RNAseq also captures copies of viral genes 
during sequencing, which allows us to estimate viral replication inside cells simultaneously.

To reconstruct the trajectory of cell state transitions during early SARS-CoV-2 infection, we reana-
lyze single-cell RNAseq data from experiments where HBECs are sampled from different conditions: 
Mock (corresponding to state before infection, 0 hr), 24 and 48 hours post-viral infection (hpi) (Fiege 
et al., 2021). We focus on genes associated with antiviral responses, interferon genes from the host 
cells, and detected viral genes. We project high-dimensional gene expression data onto a 2D plane 
using Uniform Manifold Approximation and Projection (UMAP) and obtain a low-dimensional visual-
ization of single-cell expression patterns (Figure 1a). As a dimension reduction algorithm, UMAP is 
a manifold learning technique that favors the preservation of local distances over global distances 
(McInnes et al., 2018; Becht et al., 2019). It constructs a weighted graph from the data points and 
optimizes the graph layout in the low-dimensional space. On the UMAP plane (Figure  1a), each 
dot represents a cell sample and the distance between dots correlates with the level of similarity of 
cellular states. The cells are not divided absolutely into discrete clusters and rather show continuous 
trajectories. We cluster the cells with the principal components analysis (PCA) results from their gene 
expression. With the first 16 principal components, we calculate k-nearest neighbors and construct 
the shared nearest neighbor graph of the cells then optimize the modularity function to determine 
clusters. We present the cluster information on the UMAP plane and use the same UMAP coordinates 
for all the plots in this paper hereafter.

Different clusters on the UMAP indicate distinct cellular states during the progression of infection. 
For instance, there are three sub-clusters of susceptible cells (‍O1, O2, O3‍). Neither viral genes nor IFNs 
are detected in these cells and only a few antiviral genes are expressed. The viral sensors (DHX58, 
DDX58, and IFIH1) are at their lowest level (Figure 1b, Figure 1—figure supplement 1). We refer 
to all of these cells as ‍O‍ cells due to their relatively similar gene expression profiles in terms of viral 
replication genes. The proportion of ‍O‍ cells decreases over time as the infection spreads (Figure 1c).

https://doi.org/10.7554/eLife.94056
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Figure 1. Cell states during SARS-CoV-2 infection in human tracheal/bronchial epithelial cells. (a) 6162 cells (Fiege et al., 2021) covering samples 
of mock-infected (0 h), 24 hpi (hours post-infection), and 48 hpi visualized with UMAP. (b) Average expression of representative viral genes, IFNs, and 
antiviral genes in cells within each cluster (state). (c) Cell proportions of clusters at different time points (hpi = 0, 24, and 48). The same colors are used 
for the lines as for the cluster (state) in (a). (d) Average expression of antiviral genes (IFIT1, IFIT2, IFIT3, IFIT5, IFIH1, OAS1, OAS2, OAS3, OASL, DDX58) 
in each cell. (e) Average expression of viral genes (cov.orf1ab, cov.S, cov.orf3a, cov.orf6, cov.M, cov.N) in each cell. (f) Average expression of interferon 
genes (IFNB1, IFNL1, IFNL2, IFNL3) in each cell. 103 cells (1.7%) are IFN-positive. (g) Progression of viral infection as indicated by changes in cell 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.94056
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We also observe three infected cell clusters where viral genes are primarily detected, ‍Vi‍, ‍Vr‍, and ‍V ‍. 
With the increasing counts of viral genes, we infer that the ‍Vi‍ cluster is the earliest state after an ‍O‍ cell 
has been infected and the virus begins replicating. Some but not all antiviral genes are activated in 
the ‍Vi‍ cells (IFIT1/2/3 and OAS1/2/3; Figure 1b and Figure 1—figure supplement 1), indicating that 
these cells are still vulnerable to viral invasion. This cluster is followed by two subsequent clusters, the 
‍Vr‍ cluster with pronounced viral replication and ‍A‍ cluster with barely any viral replication.

In the ‍V ‍ cluster, the viral genes reach their highest level, and antiviral genes are strongly inhibited, 
indicating that the virus has fully hijacked the cell. The antiviral genes are expressed most strongly 
in the ‍A‍ cluster and partially in the ‍N ‍ cluster, indicating that the antiviral capability of the ‍N ‍ cluster 
is weaker than the full antiviral state. Although the ‍N ‍ cluster also shows a high level of viral genes, 
it severely lacks one of the viral genes (cov.E, Figure 1—figure supplement 2) compared with the 
most highly expressed viral genes of the ‍V ‍ cluster. This observation implies that viral replication and 
activation of the antiviral state coexist in the IFN-secreting cells (‍N ‍ cluster). We note the existence of 
a small subgroup of the ‍Vr‍ cluster, close to the ‍A‍ cluster, that exhibits relatively high levels of both 
antiviral genes and viral genes but no appreciable IFN (Figure 1d–f). As in the ‍N ‍ cluster, the viral gene 
E is barely detected in these cells, indicating incomplete viral replication. However, in contrast to the 
‍N ‍ cluster, the antiviral genes are expressed to their full extent (Figure 1—figure supplements 1 and 
2). Thus, these cells are more likely to sustain the antiviral state.

At 24 hpi, some cells have switched from the pre-infection state (‍O‍) to other states. At 48 hpi, 
almost all cells have transitioned to other states and only a few cells remain in the ‍O‍ state (Figure 1c 
and g). The aggregated gene expression of representative antiviral genes and detected viral genes 
indicates the cells move from the ‍O‍ state towards the three remaining terminal states on the consid-
ered timescale of 2 days: Antiviral state (‍A‍, Figure 1d), Virus-conquered state (‍V ‍, Figure 1e), and IFN 
producing state (‍N ‍, Figure 1f). Central for the overall defense is the relatively few cells that reach the 
IFN-producing state (‍N ‍). These cells also express ‍A‍ and ‍V ‍ genes.

When IFN is not expressed, the antiviral genes and viral genes exclude each other (Figure 1d and 
e), except for a few cells around ‍

(
UMAP1, UMAP2

)
∼

(
−2.5, 7.5

)
‍ (green cells at hpi = 48, Figure 1g). 

They represent cells where the virus succeeded in stopping IFN secretion, but could not fully hijack 
the cell. We still regard these cells as antiviral cells in our model.

The ‍N ‍ state is associated with both high levels of virus sensors and viral genes, in agreement with 
the observation that IFN production is initiated after exposure to the virus (Lei et  al., 2020) and 
that IFN can induce an antiviral state inside the same cell (Sancéau et al., 1987). Expression of the 
key SARS-CoV-2 sensitive sensors (IFIH1, DDX58, DHX58) is sparse in the ‍O‍ state (Figure 1—figure 
supplement 1), indicating that a small fraction of cells have virus-sensing capacity prior to infection 
and are ready to mount a defense. This cell population increases with IFN tissue diffusion.

Cellular automaton model capturing the cell state dynamics
We introduce a cellular automaton model to capture the cell state dynamics during the early stages of 
SARS-CoV-2 infection in a sheet of epithelial tissue. At each simulation, we seed an infection site on a 
2D square lattice and study how the infection spreads as the sites on the lattice switch between cell 
states following a set of simple rules derived from the observations of the single-cell RNAseq data.

In addition to the states corresponding to the dominant clusters observed in the single-cell data 
(Figure 1a; ‍O‍,‍A‍,‍V ‍, and ‍N ‍ states corresponding to ‍O‍, ‍A‍, ‍V ‍, and ‍N ‍ clusters), we introduce a transient 
pre-antiviral state (‍a‍) that can switch to the ‍N ‍ state rapidly upon viral exposure, considering the 
heterogeneity of viral sensing ability in susceptible cells.

It follows from this description, that those RNA viruses that can be sensed by a larger repertoire of 
sensors should be modeled with a larger fraction of cells in the ‍a‍ state.

proportions of different states. Cells are shown separately at each time point in the leftmost column. The right columns show the average expression of 
antiviral genes, viral genes, and IFNs in each of these cells. Colorkeys indicate the gene expression level from low (white) to high (red, purple, or yellow).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Expression of antiviral genes at different stages of early SARS-CoV-2 infection.

Figure supplement 2. Detected viral genes and expression of IFNs at different stages of early SARS-CoV-2 infection.

Figure 1 continued

https://doi.org/10.7554/eLife.94056
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The model is initialized with cells predominantly in the ‍O‍ state and a small fraction, ‍pa‍, in the pre-
antiviral state ‍a‍.

Alternatively, one could formulate an equivalent model in which the initial state consisted entirely 
of ‍O‍ cells (and an infection seed), and the parameter ‍pa‍ would instead be understood as the proba-
bility for an ‍O‍ cell to switch to the ‍N ‍ or ‍A‍ state when exposed to the virus or IFNs, respectively. This 
would be functionally equivalent to our model, and as such, the value of ‍pa‍ must depend on both host 
and virus. In particular, a virus that can effectively interfere with the defense and signaling of host cells 
will be modeled by a low ‍pa‍ value.

It is worth noting that the proportion of cells in the ‍a‍ state before the onset of SARS-CoV-2 infec-
tion is expected to be higher in hosts with pre-activated antiviral innate immunity (Loske et al., 2022; 
Broadbent et al., 2022), meaning that the value of ‍pa‍ will, in general, depend on the exposure history 
of the host.

The cell state transitions triggered by IFN signaling or viral replication are known in viral infec-
tion, but how exactly the transitions are orchestrated for specific infections is poorly understood. The 
UMAP cell state distribution hints at possible preferred transitions between states. The closer two 
cell states are on the UMAP, the more likely transitions between them are, all else being equal. For 
instance, the antiviral state (‍A‍) is easily established from a susceptible cell (‍O‍), but not from the fully 

pa=35%pa=27%

O
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A

a

Na) b)

c)
OOOOOO
VV
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NNN
A

a

V
O

N V

O
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A

Figure 2. NOVAa model. (a) The cell state transitions are included in the NOVAa model. The straight black arrows 
indicate transitions between cell states. The curved yellow arrows indicate the effects of IFNs on activating antiviral 
states. The curved purple arrows indicate viral spread to cells with ‍O‍ and ‍a‍ states. (b) Final states of a small lattice 
(50 × 50) simulations at two different values of ‍pa‍ (both at IFN spreading radius ‍R = 1‍). (c) The fraction of cells in 
each state in the final frozen configuration as a function of ‍pa‍. A critical transition is observed at ‍pa = pc ∼ 27.8%‍. 
At lower values of ‍pa‍, most cells terminate in the ‍V ‍ state, representing an aggressive tissue infection. Simulations 
were performed on a lattice with linear dimension ‍L = 1000‍.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Stochastic conversion.

https://doi.org/10.7554/eLife.94056
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virus-hijacked cell (‍V ‍). The IFN-secreting cell state (‍N ‍) requires the co-presence of the viral and anti-
viral genes and thus the cell cluster is located between the antiviral state (‍A‍) and virus-infected state 
(‍V ‍) but distant from the susceptible cells (‍O‍).

Inspired by the UMAP data visualization (Figure 1a), we propose the following transitions between 
five main discrete cell states (Figure 2a):

•	 ‍N ‍, IFN-secreting cells. These arise from pre-antiviral cells (‍a‍ state) that become infected (but 
not infectious). Here, we assume that the secretion of IFNs by the ‍N ‍ cells is a faster process than 
possible apoptosis (Wen et al., 1997; Tesfaigzi, 2006) of these cells and that the diffusion of 
IFNs to the neighborhood is not significantly affected by apoptosis.

•	 ‍O‍, unaffected (susceptible) cells.
•	 ‍V ‍, infected and virus-producing cells. This state arises when a susceptible (‍O‍) cell is exposed to 

a virus from another ‍V ‍ cell.
•	 ‍a‍, pre-antiviral state. It develops into either the ‍A‍ or ‍N ‍ state upon exposure to signals from ‍N ‍ 

cells or virus from ‍V ‍ cells.
•	 ‍A‍, antiviral state immune to infection. It is achieved when a pre-antiviral (‍a‍) cell is exposed 

to IFN. We do not consider the decay of the antiviral state as it may last more than 72  hr 
(Gaajetaan et al., 2013).

The dynamics are defined in terms of discrete time steps, representing the characteristic timescales 
of cellular viral infection. We explore the model for an extended time, keeping in mind that in reality 
other immune cells such as natural killer (NK) cells and macrophages may migrate to the infected site 
and reduce viral spread (McNab et al., 2015).

The four rules of the model are (Figure 2a):

	﻿‍ N
(
a
)

= A, N
(
O
)

= a, V
(
a
)

= N, V
(
O
)

= V ‍�

where the notation ‍X
(
Y
)

= Z ‍ denotes a cell in state ‍X ‍ acting on a cell in state ‍Y ‍ and changing it to 
state ‍Z ‍ in one time-step. Thus, cells in states ‍O‍, ‍a‍, and ‍A‍ are unable to influence their neighbors. The 
‍V ‍ state is the only directly self-replicating state.

Each site of the ‍L × L‍ lattice is assigned to either the ‍O‍ (probability: ‍1 − pa‍) or the ‍a‍ state (prob-
ability: ‍pa‍). Infection is initiated by a single ‍V ‍ cell, and we explore the percolation of the infection 
to larger scales. A time step consists of ‍L2‍ updates, in which a random site ‍i‍ is selected. If a ‍V ‍ cell 
is selected, it interacts with its 4 nearest neighbors according to the rules ‍V

(
O
)

= V ‍ and ‍V
(
a
)

= N ‍. 
If an ‍N ‍ cell is selected, it interacts with all cells within a radius ‍R‍, according to the rules ‍N

(
O
)

= a‍ 
and ‍N

(
a
)

= A‍. The radius ‍R‍ thus quantifies the diffusion range of IFNs relative to the virus. Periodic 
boundary conditions are imposed in the model throughout.

Criticality in viral spreading
At ‍R = 1‍, the final number of infected cells depends strongly on the value of ‍pa‍. At a low ‍pa‍ of 0.27, 
infections typically spread to the entire system, while at a higher ‍pa‍ of 0.35, the propagation of the ‍V ‍ 
state is inhibited (Figure 2b).

We observe a threshold-like behavior of the final attack rate of the virus when the initial ‍pa‍ changes 
continuously (Figure 2c). The virus spreads macroscopically for ‍pa < pc ≈ 27.8%‍. At higher ‍pa‍, cells 
are sufficiently prone to convert to the antiviral state to prevent the infection from percolating. We 
explore a version of the dynamics where interactions only happen with a reduced probability ‍pconv < 1‍ 
rather than being deterministically applied to all neighbors (Figure 2—figure supplement 1). We find 
that this does not affect the critical behavior of the model.

The size distribution ‍P
(
s
)
‍ of infection clusters (defined as the number of ‍N ‍ and ‍V ‍ cells in a cluster) 

around the critical value of ‍pa = 27.8%‍ obeys power-law decay (Figure 3a). In Figure 3b, the distri-
bution ‍P

(
s
)
∝ 1/sτ ‍ is further explored by re-scaling and the cluster size exponent is confirmed as 

‍τ = 1.83 ± 0.03‍ when ‍pa = 28%‍. Notably, this exponent is below the equilibrium 2D percolation yielding 
‍τ = 2.05‍ (Stauffer and Aharony, 2018). Further, our exponent ‍τ ∼ 1.8‍ is above the percolation-
inspired cluster growth model for virus spread (Gönci et al., 2010) which has an exponent between 
‍τ = 1.58‍ and ‍τ = 1.64‍ depending on the distribution of individual cells’ pre-defined ability to become 
infected. Meanwhile, the propagation for the different states could be accelerated by the smaller 
value of ‍pa‍ with the same ‍R‍ (Figure 3—figure supplement 1).

https://doi.org/10.7554/eLife.94056
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The actual critical value of ‍pa‍ depends strongly on the choice of neighborhood. In particular, at 
‍R = 1‍, the ‍V ‍ and ‍N ‍ states have the same range in the tissue (a proxy for diffusivity), while a more 
realistic scenario is to allow IFNs to diffuse faster in the tissue (‍R > 1‍), facilitating the initiation of the 
antiviral state. The critical percolation threshold ‍pc‍ decreases almost exponentially with the value 
of ‍R‍ (Figure 4b), and viral propagation can be stopped for ‍pa‍ as low as 0.4% when ‍R ≥ 5‍. Such a 
small fraction of initial cells in the ‍a‍ state is consistent with the remarkably few ‍N ‍ cells observed in 

a)

b)

Figure 3. Cluster size distribution. (a) The distribution ‍P
(
s
)
‍ of cluster sizes of infected cells (‍s =

(
N + V

)
/L2

‍) for different values of ‍pa‍, simulated by 
starting with one infected cell in a 2D square lattice of linear extent ‍L = 2000‍. (b) The exponents from (a) are extracted by re-scaling ‍P

(
s
)
‍ as shown 

on the ‍y‍-axis, yielding ‍τ = 1.83‍. The cut-off exponent is estimated as ‍σ ∼ 1‍. Simulations plot the final outbreak sizes from 10,000 initial infections of 
one cell. The histogram is log-binned with 5 bins per decade. The critical point at ‍pa = pc = 0.28‍ is determined as the value with the longest scaling 
regime.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Cell fractions within the different states over times, at a range of ‍pa‍ values (below the critical value ‍pc‍), for two interferon 
spreading radii, ‍R = 1‍ and ‍R = 5‍.

https://doi.org/10.7554/eLife.94056
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experiments (Figure 1c). Thus, a higher diffusivity of IFN provides a more than proportional decrease 
in the required number of antiviral cells. As revealed by the reanalysis of RNAseq data in Figure 1, 
the fraction of IFN-positive cells is relatively low – around 1.7%. Comparing with simulations near the 
critical point, we find that, at ‍R = 5‍, the ratio of ‍N ‍ cells to all affected cells (‍N + A + V ‍) in the final state, 

‍limt→∞N/
(
N + A + V

)
≈ 2%‍, i.e. it is of comparable magnitude to the experimental value. This holds in 

a wide range around the critical point, ‍pa ∼ pc‍.
The exponents for the cluster size distribution are the same at ‍R = 1‍ and ‍R = 5‍, while the structures 

of the clusters are different (Figure 4a and c). Greater ‍R‍ leads to a different microscopic structure with 
fewer ‍A‍ and ‍N ‍ cells in the final state (Figure 4c).

To put the above findings in perspective we further explore a simplified version of our model 
with only three states (Figure 4—figure supplement 1), the OVA model, which may be seen as a 
rephrasing of models for induced antiviral states suggested by Howat et al., 2006; Segredo-Otero 
and Sanjuán, 2020; Michael Lavigne et al., 2021. In the OVA model, ‍pa‍ is the probability that an 
infected cell produces interferons to warn neighbor cells within radius ‍R‍. In the OVA model, one 
update consists of selecting a random cell. If the cell is in the ‍V ‍ state then its neighbor cells may 
change by exposure to the virus, provided that they are susceptible (‍O‍). Each of the four neighbors is 
now chosen in random order, and if a neighbor cell ‍i‍ is in the ‍O‍ state, a random number ‍rani ∈

[
0, 1

]
‍ 

is drawn. If ‍rani ≥ pa‍ the neighbor is flipped to the ‍V ‍ state. If, on the other hand, ‍rani < pa‍, all ‍O‍ cells 
within a radius ‍R‍ around the neighbor ‍i‍ are converted to the ‍A‍ state. Thus, for large ‍R‍ and moderate 

‍pa‍, the spread of infection will be mitigated. We find that the OVA model has an ‘outbreak size’ 
exponent ‍τ ∼ 1.8‍, similar to the NOVAa model. However, the change in microstructure as a function 
of the IFN range ‍R‍ observed in the NOVAa model (compare Figure 4a and c) is not observed in the 
OVA model (Figure 4—figure supplement 1), where the features instead scale proportionally with ‍R‍. 
We also simulated standard percolation by randomly adding disks of radius ‍R‍ of blocking (‘antiviral’) 
cells and checking for percolation of the infected state. While the critical behavior of the standard 
percolation model approximately resembles that of the OVA model (Figure 4b), the antiviral state of 
the OVA model is somewhat less effective at blocking the spread (reflected in a higher threshold ‍pc‍).

Finally, we examined a version of the model where the discrete idealization of ‍N ‍ cells acting at all 
cells within a specific radius ‍R‍ is replaced by a probabilistic conversion with a diffusion-like profile. 
The algorithm for this is described in the Methods, with results in Figure 4—figure supplement 2 to 
be compared to Figure 4. We find that the probabilistic spreading of IFN is more effective, in terms 
of demanding lower ‍R‍ for obtaining similar limits on the spreading of the infection. This is likely due 

Figure 4. Range of IFN. (a) Typical cluster for an ‍R = 1‍ simulation at ‍pa ∼ pc = 0.278‍. (b) The dependence of ‍pc‍ with ‍R‍, approximately reproduced 
by a fit ‍pc ∼ 3−R

‍. For comparison, the OVA model as well as percolation has ‍pc ∼ 3−R/2
‍. In all cases, when ‍pa‍ is above ‍pc‍ then the virus is prevented 

from spreading. (c) Cluster distribution for ‍R = 5‍ at ‍pa ∼ pc = 0.004‍, at a five times larger linear scale than (a).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. We introduced the simplified OVA model, which does not include an N state, but rather gives each susceptible cell a probability 
of spontaneously converting to an antiviral state in each time step.

Figure supplement 2. Comparison of the Gaussian Model and the main NOVAa model at identical parameters.

https://doi.org/10.7554/eLife.94056
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to the existence of long-range interactions (however rare) when neighbors are selected according to 
a Gaussian profile.

Discussion
There are some preexisting models of the interplay between virus, host cells and triggered immune 
responses, with an antiviral state triggered by IFN signaling from neighbor cells (Graw and Perelson, 
2016). Cellular automaton models of infection dynamics in epithelial tissue were explored by Howat 
et  al., 2006; Segredo-Otero and Sanjuán, 2020; Michael Lavigne et  al., 2021, with the overall 
result that spreading depends on competition between the virus and an induced antiviral cell state. 
This competition is recapitulated in our model in terms of the two effective parameters ‍pa‍ and ‍R‍. Our 
model emphasizes the threshold dynamics, with a critical transition between effective confinement 
and unhindered spread that depends sensitively on the details of the relevant cell states. In particular, 
the presence of the specialized IFN-producing ‍N ‍ cells allows for disease confinement at a much lower 
concentration of pre-antiviral cells (lower value of ‍pa‍) in the NOVAa model, than in the OVA model 
which lacks the ‍N ‍ state (Figure 4b). As a consequence of low ‍pa‍, the number of final ‍N ‍-state cells is 
also much lower.

The low concentration of ready-to-fight cells may seem perplexing, leading one to surmise that the 
organism could easily fight off an infection by only slightly increasing its investment in these primed 
cells. However, one should keep in mind that for example the human organism does indeed have 
ready-to-fight cells that can eliminate most foreign RNA, and only leave a few truly infectious viruses. 
As highlighted in the introduction, these select viruses often employ strategies to lower the ‍pa‍, for 
example by only being sensed by a small fraction of the RNA virus-sensitive receptors of our cells.

The parameter ‍pa‍ can be interpreted as the probability that a cell is sufficiently antiviral to convert 
to a ‍N ‍ state upon infection with a given virus. The relevant value of ‍pa‍ will depend on the virus consid-
ered (and will be small for viruses that inhibit cell responses to infection) as well as on the host (e.g. on 
age [Kissler et al., 2020] and recent infection history). Dysregulated IFN responses are characteristic 
of the effective immunomodulatory strategies used by betacoronaviruses (Channappanavar et al., 
2019; Acharya et al., 2020).

The parameter ‍R‍ reflects the signaling efficiency of an interferon-producing cell. Since ‍R‍ is measured 
in units of the typical distance that the virus spreads, it depends on viral properties, including its burst 
size, diffusion, and adsorption to host cells, with higher adsorption being associated with larger ‍R‍ 
values. For SARS-CoV-2 this suggests that lower ACE2 receptor counts would result in less adsorption 
to nearby cells, in turn allowing the virus to spread to more distant tissues (Bastolla, 2021) suggesting 
a lower value of ‍R‍.

For viruses that do not delay the production of IFNs, ‍pa‍ would be higher than for SARS-CoV-2, 
allowing neighbor cells around an infected site to form a kind of “ring vaccination” as the antiviral 
state dominates. In this sense, our model is consistent with the previous modeling of the roles of auto-
crine and paracrine interferon signaling suppression of viral infection (see e.g. Michael Lavigne et al., 
2021 for parallels between IFN response and ‘ring vaccination’).

We do not consider viral particles which enter the bloodstream and seed new infections non-locally. 
This may allow the virus to spread in the tissue at what would otherwise constitute sub-critical condi-
tions in our model. Further, there may be tissue-specific variations in both ‍pa‍ and ‍R‍, adding larger-
scale heterogeneity to the overall spreading. As the disease progresses one would expect additional 
heterogeneity to emerge, associated with variability in later host responses including macrophage 
activation and adaptive immunity (Wang et al., 2021).

The remarkable heterogeneity of disease progression in COVID-19, in the form of widely vari-
able symptoms (Tabata et al., 2020) and transmission risk (Nielsen et al., 2021; Kirkegaard and 
Sneppen, 2021), has been widely observed. For instance, among university students, just 2% of 
SARS-CoV-2 positive hosts provided 90% of total respiratory viral load (Yang et al., 2021). In our 
formalism, we would understand such variability in terms of a ‍pa‍ that is comparable to the critical 
value, but varying between hosts. A slight change of ‍pa‍ then results in dramatic fluctuations in the 
outcome of an infection.

To be more quantitative, for SARS-CoV-2 the detected virus count on average grows by a factor 
of 3.5 (Kissler et al., 2020) in one infection generation of 8 hr (not to be confused with the between-
host ‘generation time’ of the infection). This within-host reproductive number is far below the number 

https://doi.org/10.7554/eLife.94056
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of viruses produced from a cell, indicating severe restrictions from the innate immune system. On 
the other hand, 3.5 is still above the threshold for spreading, indicating that within-host amplification 
is super-critical. However, the measured amplification includes viruses that ‘jump’ to other spots in 
an infected person, thereby suggesting a local spreading that is closer to the critical value than an 
amplification of 3.5 would suggest.

Our study finally compared the NOVAa model with the simpler OVA scenario that recapitulates 
earlier modeling of induced antiviral states (Howat et al., 2006; Segredo-Otero and Sanjuán, 2020; 
Michael Lavigne et al., 2021). These papers all build on a more homogeneous role of infected cells, 
each inducing some immunization of surrounding cells. They emphasize the larger range of IFN 
signals compared to viral diffusion (Howat et al., 2006), focus on the competition between viruses 
with different abilities to suppress IFN signaling (Segredo-Otero and Sanjuán, 2020), or introduce a 
cellular automaton approach where the antiviral state leads to a type of ring vaccination that prevents 
the virus from spreading when more IFN is produced (Michael Lavigne et al., 2021). Our OVA model 
may be seen as a simplified and more stochastic version of the last model. The NOVAa model then 
adds the additional benefits associated with the experimentally observed but low-abundance ‍N ‍ state 
cells, which by their rarity adds to predicted randomness between the fate of individual infection 
centers during an early viral infection.

Methods
Stochastic conversion
While even the base model has a level of stochasticity – since ‍L2‍ are randomly chosen, with replace-
ment, to be updated in each time step – we here simulate a version of the dynamics which includes 
stochastic conversion, that is each action of a cell on a neighboring cell occurs only with a probability 

‍pconv‍ (and the original model is recovered as the ‍pconv = 1‍ scenario). This necessarily slows down the 
dynamics (or effectively rescales time by a factor ‍pconv‍), but crucially we find that it does not appre-
ciably affect the location of the threshold ‍pc‍. In Figure 2—figure supplement 1, we show a parameter 
scan across ‍pa‍ values for ‍R = 1‍ and ‍pconv = 0.5‍, which shows that the threshold continues to exist at 
around ‍pa = 27%‍.

Time-evolution of state occupancy
In Figure  3—figure supplement 1, we show the time-evolution of occupation fractions for the 
different states of the model, for various values of ‍pa‍ below the critical value ‍pc‍, for two interferon 
spreading radii, ‍R = 1‍ and ‍R = 5‍. Each panel is based on a single typical realization.

As shown qualitatively in the figure, the speed of propagation as well as the final occupancy ratios 
depend on the distance to the threshold, ‍|pa − pc|‍.

Simulations with a Gaussian kernel
In the NOVAa model of the main text, the spread of interferons (i.e. the action of cells in the N state) 
always follows a circular motif. When an N cell is selected, it will act on all cells within a radius R 
(provided they are in the O or a state). To more closely approximate the diffusion of interferons – and 
to allow for some stochasticity in this process – we will here consider an extension of the model, in 
which the spread of interferon is modeled by a Gaussian kernel.

In the following, we will refer to the model presented in the main text as the model with a circular 
spreading motif and the alternative model as the Gaussian model.

The Gaussian model is implemented as follows:
Let

	﻿‍
P
(
d;σ

)
= N exp

[
−d2/

(
2σ2

)]
‍� (1)

https://doi.org/10.7554/eLife.94056
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with ‍N ‍ a normalization constant and 
‍
σ = 2

√
2

3
√
π

R
‍
. This value of ‍σ‍ ensures that the mean distance to 

converted cells (i.e. those acted upon by ‍N ‍ cells) is the same as in the model with a circular spreading 

motif.
The normalizaton constant ‍N ‍ is chosen such that the average number of converted cells is the same 

as in the model with a circular spreading motif. This results in a value of 
‍
N = NR/

(
2πσ2

)
‍
 where ‍NR‍ is 

the number of lattice points within a radius of ‍R‍ from a central lattice point.
The simulation routine then proceeds as follows:

•	 At each time step, ‍L2‍ random sites are selected for updating (with replacement).
•	 For non-‍N ‍ cells, updates are carried out as in the main text.
•	 When an ‍N ‍ cell is selected, the update proceeds as follows:

○○ All cells within a radius of ‍4σ‍ are designated as neighbors.
○○ For each of these neighbor cells, convert the cell (i.e. let the ‍N ‍ cell act on it) with probability 

‍P
(
d;σ

)
‍, where ‍d‍ is the Euclidean distance between the neighbor cell and the ‍N ‍ cell.

○○ Once all neighbours have been considered, move the ‍N ‍ cell to a new state ‍N1‍
•	 When an ‍N1‍ cell is selected, it behaves identically to an ‍N ‍ cell. Once an ‍N1‍ cell has been 

updated, it moves to state ‍N2‍, which is inactive.

The extended radius of ‍4σ‍ was chosen to ensure that the vast majority of potential interactions are 
included, while retaining numerical efficiency.

The introduction of the two new (albeit very simple) states ‍N1‍ and ‍N2‍ was to ensure that a single ‍N ‍ 
cell does not act on a very large number of other cells simply by being selected multiple times during 
a simulation. In the circular motif case, this was automatic since an ‍N ‍ cell could only act on the same 

‍NR‍ cells in each time step, and once they were in the ‍N ‍, ‍V ‍ or ‍A‍ state, the ‍N ‍ cell could no longer affect 
them. In practice, an ‍N ‍ cell could act twice on a susceptible cell, once to turn it from ‍O‍ to ‍a‍ and once 
to convert it from ‍a‍ to ‍A‍.

In the Gaussian case, an ‍N ‍ cell could in principle act on an unlimited number of cells, although the 
rate would decrease with distance according to the Gaussian kernel. Thus, it was necessary to intro-
duce some memory in the form of the ‍N1‍ and ‍N2‍ states to more closely mimic the circular motif case 
of the main text.

As shown in Figure 4—figure supplement 2, the Gaussian model can behave quite differently to 
the circular motif model even given the same parameter values. The primary reason for this difference 
owes to the nonzero probability of long-range conversions in the Gaussian model since this allows for 
bridging areas otherwise devoid of ‍a‍ cells.

The C++source  code for the simulations and a Python notebook for plotting can be found at: 
https://github.com/BjarkeFN/ViralPercolation (copy archived at Bjarke, 2024).
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