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Scale-dependent complexity in administrative units and 
implications for data-driven decision-making models 
Planning Theory 

Abstract 
Through analysis and discussion of basic systemic properties of a rural municipality, this paper explores how aggregating 
data in planning and land use modeling can potentially obscure intricate real-world behavior. Complexity theory is 
applied as a theoretical framework for explaining this hypothesis. Thus, the aim of this study is to address the author’s 
desire to understand systemic complexity when designing a data-driven decision-making model for rural planning. The 
novelty of this approach is two-fold: one, most studies on scalability issues in planning addresses spatial complexity, 
more so than systemic complexity within the complex system that the very act of planning strives to dictate. Two, 
although delimited to the scope of the study, the accessibility to and use of complete and valid socio-demographic data 
enables a rarely demonstrated accurate representation of an entire population. It is ultimately observed that on the 
disaggregated municipal level, systemic dispersion increases parallelly with population size, a correlation that is 
significantly influenced by gender ratio in any given parish – a characteristic that was not visible at the aggregated 
municipal level. In addition to advancing the understanding and placement of complexity science within spatial data 
science, these insights will make it easier to assess the generalizability of any given administrative unit by quantifying 
basic complexity attributes; in this case based on the correlation dispersion caused by the fragmentation of a 
municipality into its comprising parishes. 

Keywords: Planning; Spatial data science; DDDM; Scale; MAUP; Complexity theory; Regression analysis

1. Introduction 
Planning has traditionally been associated with a reductionist perspective of cause and effect (Byrne, 2003; 
Chettiparamb, 2014) – a perspective that essentially delimits itself to an understanding of mechanical complicatedness, 
more so than social complexity. However, aggregating and simplifying data across spatial scales causes issues with 
oversimplification and loss of statistical generalizability (Jelinski and Wu, 1996; Kar and Hodgson, 2012; Dapena et al., 
2016; Garreton and Sánchez, 2016; Stillwell et al., 2018; Xiao, 2021). This discrepancy is the entry point to the research 
question of this paper, which concerns a basic premise of planning: i.e., how abstract can a political decision-making 
model be without compromising its generalizability? The aim of this paper is to address complex systemic properties of 
planning, and their potential implications for a data-driven decision-making (DDDM) model for planning. This is achieved 
through deliberately simple and abductive, pragmatic analysis of the complexity embedded within the administrative 
units on which planning is stratified, and by how aggregating basic statistical data can potentially disguise complex 
behavioral patterns. Thus, this paper is an analysis of model scalability in the context of rural planning that utilizes a 
predominantly quantitative approach, albeit qualitatively informed by the theoretical framework of complex systems. 

Complexity theory has been widely applied to a plethora of different research areas (Chettiparamb, 2006; Walton, 
2014), including the social sciences (Ratter, 2006; Timmermans, 2015; Ekman, 2018; Chettiparamb, 2019; Kwon & Silva, 
2020; Fredslund et al., 2022) and the development of modern planning theory (Portugali, 2012; Eräranta, 2020; 
Portugali, 2021a; Portugali 2021b; Dhamo, 2021). A recent example of application of complexity theory in planning is 
Totry-Fakhouri and Alfasi (2017), who identifies towns and cities in Israel as adaptive, self-organizing urban 
developments that are guided by spontaneous emergence and social order, defined as the 'urban code' of the 
settlements. Moreover, fractal development structures are observed across singular plots, neighborhoods, and entire 
villages, which is an inherent characteristic of complex systems (Mandelbrot, 1982; Gleick, 1987). According to 
Chettiparamb (2005), planning takes places in a fractal system, as decisions are largely consistent going across vertically 
different administrative levels – i.e., national planning strategies are reflected in local planning strategies. However, as 
the abstraction level decreases along the vertical levels, the system acquires unpredictable properties at each separate 
horizontal level, thus reflecting scale-dependency; a fundamental property of complex systems (Mitleton-Kelly, 2004). 
A well-known example of fractal properties in spatial complexity, defined as the complexity of surfaces and spatial 
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objects (Papadimitriou, 2020), is the coastline paradox (Mandelbrot, 1982), which demonstrates the fractal properties 
of coastlines. In this paradox, smaller units of measure cause larger measurements, making the seemingly simple task 
of measuring the coastal length quite complex. In the context of planning and related sciences, this property can cause 
issues when comparing or compiling different datasets, especially if the datasets represent different scales or levels of 
abstraction (Jacobs-Crisioni, 2014). More recently, Salvati (2022) observes nonlinear properties in urban growth 
patterns on the municipal scale in Greece by analyzing official data on building activity. Conclusively, the author calls for 
future research that enriches the proposed methodological approach, while emphasizing identification of target 
indicators. The present paper provides a response to this call by analyzing complexity target indicators across multiple 
levels in a Danish rural municipality. By adopting a theoretical framework based on complex social systems, the analysis 
presented in this paper contributes to positioning complexity science within the still maturing field of spatial data 
science, as well as provides insights for assessing the generalizability of administrative units. 

The use case for this paper is Guldborgsund Municipality (GM), a rural municipality located in the southern part of 
Region Zealand. The municipality have experienced a population decline of 4% since 2012 (Statistics Denmark, 2022a) 
and is along with Lolland Municipality one of the most socioeconomically disadvantaged areas of Denmark (Jepsen et 
al., 2018; 2020). Roughly half the population of GM lives in its rural districts, which are characterized by the effects of 
emigration and centralization (Guldborgsund Municipality, 2018). With demographic changes in the rural districts and 
increasing diversity in living arrangements like multi-family housing, communal farming, ecological villages and minor 
settlements, rural planning is quickly starting to become a complex task in the municipality. For this reason, the 
municipality has decided to employ a DDDM model for political planning purposes, to provide an informed basis for the 
development of future planning strategies. 

2. Theory 
Complexity science is concerned with the fundamental logical properties of the behavior of nonlinear and network 
feedback systems, no matter where they are found (Stacey, 1995). Although there is no official and unambiguous 
definition of theoretical complexity, it can be defined as the degree of interrelatedness between systemic attributes 
and interfaces, and their consequential impact on predictability and functionality (Kermanshachi et al., 2016). Thus, to 
reduce the complexity of any given system, its potential points of failure must be reduced. Deriving from complexity 
theories of the natural and social sciences, ten principles of complexity are identified by Mitleton-Key (2004) under the 
unifying term 'complex evolving systems'. Among these theories are complex adaptive systems (Kaufmann and 
Macready, 1995), autopoiesis (Maturana and Valera, 1992) and chaos theory (Gleick, 1987), all of which possesses the 
overall characteristic of creating new order through self-organization, emergence, connectivity, interdependence, 
feedback, historicity and time, and path-dependence. Summarily, the creation of new order through iterations and 
feedback loops is identified as a distinguishing characteristic for complex systems. 

Specifically for urban design, Boeing (2018) identifies five complexity dimensions: temporal, visual, spatial, scaling, and 
connectivity. For the purposes of this paper, I will be focusing on the scaling dimension, which inscribes self-similarity 
across multiple structures, and fractal patterns: “Consider the example of an urban street network. At the largest scale, 
the city has a few major arterial roads and boulevards that serve as the key routes for system-wide traffic circulation. 
But if we zoom into this picture, a larger number of mid-sized collector streets appear, branching off from these few 
large arteries. As we zoom in further to a fine scale, a denser mesh of local streets appears, branching off from these 
collector streets. Certain distributions within a complex system may produce greater efficiency when they follow a power 
law rather than, say, an even distribution. For example, it is not ideal for a neighborhood to have the same number of 
arterial roads, collector streets, and local streets. Rather, there might be a small number of large arterial roads, a 
medium number of midsized collector streets, and a large number of capillary local streets. Such a system resembles a 
fractal” Boeing (2018: p. 10). At this point, addressing a potential distinction between ‘urban planning’ and ‘rural 
planning’ is arguably due, but beside the point for this paper, as it merely addresses general characteristics of complexity 
in planning in a rural context. As a sightline, however, the definition of ‘rural’ is understood as “of or relating to the 
country, country people or life, or agriculture” (Merriam-Webster, 2022), while the definition of a rural municipality is 
based on accessibility to jobs and the number of inhabitants in the largest city in the municipality (Statistics Denmark, 
2018). Finally, Boeing (2018: p. 3) provides an interpretation of complexity as a function of disorder, where complexity 



3 
 

increases with disorder, in which complexity is highest “[…] when objects are scrambled-up with the greatest variety 
and diversity.” This interpretation of complexity is represented in this paper by observing standard deviation (SD) as an 
indication of how dispersed a given dataset is – i.e., more dispersion equals less order (Shiner et al., 1999). It should be 
noted, however, that I merely apply SD as a comparative metric for complexity, more so than an absolute measure of 
complexity itself. This enables me to observe potential changes in the demographic data across different spatial scales. 

Issues relating to scalability in planning are commonly referred to as the modifiable areal unit problem (MAUP), which 
describes how data tabulated for different spatial scale levels or zonal systems will not provide consistent analytical 
results, despite representing the same region (Wong, 2009). Simply put, the MAUP expresses the sensitivity of analytical 
results to the definition of units for which data are collected (Fotheringham and Wong, 1991). Figure 1 illustrates 
different levels of scale in a fractal system for planning on two axes. A vertical axis through which information is 
distributed across the different levels, and a horizontal axis through which the system acquires disorder on each level. 
This way the global and the local gets defined simultaneously, and “the onward progression along the coupled multiple 
levels can thus allow for variety and order to co-exist at the same time” (Chettiparamb, 2005: p. 330). Specifically for 
this paper, these levels represent the administrative units wherein demographic data is aggregated. It is thus 
hypothesized, that self-similarity in complex system characteristics can be observed across parishes, municipalities, and 
regions. 

 

Figure 1: The four guiding parameters of a fractal system for planning (Chettiparamb, 2005). 

In summation, the theoretical framework for this paper observes complexity as the degree of interrelatedness between 
systemic attributes and interfaces (Kermanshachi et al., 2016); the practice of planning as taking place in a social system 
in which complexity is a function of disorder (Boeing, 2018); and, finally, planning itself as a fractal system where self-
similarity can be observed across its hierarchical levels (Chettiparamb, 2005; 2019). 

3. Methodology 
This paper is a predominantly quantitative analysis, albeit qualitatively informed by a theoretical framework of 
complexity. Hence, a mixed methods approach is applied (Frederiksen et al., 2014), which utilizes a combination of 
statistical regression analysis of demographic registry data, and a discussion of the results from this analysis that is 
inferred through complexity theory in a social science context. The methodology section features two tables for 
providing an overview of the applied theoretical terms and concepts (table 1), and methodology for data aggregation 
analysis across spatial scales (table 2), in the subsequent analysis. Note however, that these descriptions and examples 
of use are general and will be elaborated throughout the paper as needed. 
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Context Term/concept Description Use in paper 

Complex systems Complexity Iterative and nonlinear real-world behavior Theoretical framework 

 Interrelatedness Having mutual or reciprocal relations Defining attribute of complexity 

 Numerosity Consisting of many components Defining attribute of complexity 

 Disorder State prone to unpredictable behavior Comparative complexity measure 

 Fractals Self-similar patterns across different scales Framing of administrative units 

Statistical analysis Standard deviation (SD) Measure of how dispersed a dataset is Comparative metric for dispersion 

 Standard error (SE) SD relative to sample size (n) Proxy for numerosity when needed 

 Correlation (R2) Dependence between two variables Modeling relationship strength 

 Residuals Difference between observation and prediction Identification of outliers 

 Significance (p-value) How likely it is a result happens by chance Test for statistical significance 

Table 1: Overview of general theoretical terms and concepts used in this paper. 

The Danish municipal unit corresponds to a local administrative unit (LAU) in Eurostat’s ‘Nomenclature of Territorial 
Units for Statistics’ (NUTS) and is generally used in Danish planning. To identify and analyze the hypothesized statistical 
changes between administrative units, a hierarchical deconstruction of the municipal administrative unit of Denmark, 
in which a group of parishes constitutes a municipality (LAU in NUTS), is conducted. In Denmark, an ecclesiastical parish 
is a geographically delimited area with at least one church. 

Each deconstruction consists of two datasets, referred to as ‘method A’ and ‘method B’, respectively. As illustrated in 
table 2, on the cross-regional level, the dataset for method A consists of one column for each municipality that features 
the number of people who are the same age – i.e., aggregated data. For instance, 258 people of age 0, 279 people of 
age 1, 343 people of age 2 and so on up to 173 people of age 82. In this example for method A, this results in 83 
observations – one for each age increment – and an SD of 84. In method B, these aggregations are deconstructed as a 
matrix across the parishes that constitute the given municipality – i.e., disaggregated data. For instance, the sum of 258 
for age 0 in method B is spread across five parishes, and so is the sum for age 1, age 2 and on so on up to age 82. 
Following the same example, this results in 415 observations – one for each age increment multiplied by the number of 
parishes – and an SD of 40. 

  Cross-regional level analysis  Municipal level analysis 

  Method A  Method B  Method A 

Age  Municipality  Municipality  Municipality 

    Parish Parish Parish Parish Parish  Parish Parish Parish Parish Parish 

0  258  26 26 59 95 64  26 26 59 95 64 

1  279  28 19 60 105 67  28 19 60 105 67 

2  343  36 30 79 119 75  36 30 79 119 75 

…  …  … … … … …  … … … … … 

82  173  11 20 14 92 32  11 20 14 92 32 

n  83  415  83 83 83 83 83 

SD  84  40  13 9 16 31 27 

Table 2: Methodology for comparing aggregated data to disaggregated data. 

Two variables are then isolated for each dataset for comparison. These are the sum of inhabitants, and SD of age 
distribution. For the purposes of this paper, I utilize SD as a basic, comparative measure of dispersion, which I in turn 
interpret as a measure of complexity by increase of disorder (Boeing, 2018). This approach is inspired by Lee and Rogers 
(2019), who applies the coefficient of variance (SD divided by the mean) as a dispersion measure for geographic 
distribution. The correlations (R2) between the two variables were then calculated by linear regression to compare the 
strength of the relationship between the sum of inhabitants, and SD of age distribution across different spatial scales. 
The parish level (also a LAU in NUTS) represents the lowest abstraction level of the analysis and for this reason only 
method A can be applied to this administrative level (table 2), seeing that a parish is the smallest administrative unit 
accessible in the dataset. This means an SD is calculated for each parish on the municipal level, the same way an SD is 
calculated for each municipality on the cross-regional level. Herein lies the comparison, namely how the analysis and 
resulting outcomes are affected by the two different methods regarding the number of observations, SD, and correlation 
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dispersion. Because this is a comparison between two different treatments of the same population, the analytical focus 
lies on the differences in the results between the two methods and how these can be interpreted as complexity 
indicators. 

The results from this analysis will inform my working hypothesis, which states that statistical outliers based on 
aggregated data differs considerably from results based on disaggregated data, even though both datasets are intended 
to represent the same population. All the empirical data is extracted from Statistics Denmark, the central authority on 
Danish demographic statistics. In the following analysis, I will thus be focusing on age as an independent variable, i.e., 
the number of people between age 0 and 82 – 82 years, which is the average combined lifespan for Danish men and 
women (Statistics Denmark, 2021). This variable is selected because it is simple, universally applicable, and its 
representative data is easily obtained. In addition to this delimitation, Statistics Denmark’s definition of a rural 
municipality (Statistics Denmark, 2018) will be applied in the analysis. This definition states that a rural municipality 
cannot contain any cities with more than 30,000 inhabitants and must have a job availability below 40,000 – i.e., the 
number of jobs that are accessible within the municipal border. This means that 67 municipalities from a total of 98 are 
excluded from the analysis, as these all contain relatively large cities with high job availability, which opposes the rural 
scope of the paper. The remaining 31 municipalities represents a total population sample of 1,121,813 (19.7%) of the 
country’s entire population within the age group 0 to 82, and 806 (37.8%) of all the country’s parishes. 

4. Analysis and results 
4.1 Cross-regional deconstruction of rural municipalities 
As a proof-of-concept for the basic logic that is applied in the analysis, a cross-regional analysis of all the 31 rural 
municipalities is conducted by exploring the relationship between population size and SD by its residuals. Simply put, 
residual values represent the distance between dot and trendline in a scatterplot, commonly referred to as the 
difference between predicted and observed value. A value of zero is a perfect fit to the trendline, whereas a negative 
number puts the dot beneath the line, while a positive number puts it above it. The larger the number, negative or 
positive, the weaker the relationship between the dot and the trendline. Moreover, this analysis serves to demonstrate 
the effects on correlation dispersion in aggregated data versus disaggregated data; specifically, as a demonstration of 
the importance of spatial data scientists recognizing the potentially concealing effects statistical treatment can have on 
DDDM in planning, as well as to demonstrate how such practices can benefit from adopting a qualitative understanding 
of the real-world phenomena they strive to model, namely through complexity theory. 

The regions of Denmark (NUTS 2) represent the highest abstraction level of the analysis with all five regions represented. 
Table 3 ranks all 31 rural municipalities according to their residual values from top to bottom and compares the results 
in method A to the results in method B, represented by two major columns. Each column is divided into intervals with 
dotted lines that indicates a range of residuals with similar values. The grey area indicates residuals that are within the 
range -5,000 to 5,000, which are the municipalities that are closest to zero, thus isolating the largest deviations at the 
far top and bottom of the table. This range was chosen solely to capture enough differences between the two methods 
to make a comparison, while staying relatively close to zero. Note how for method A, the R2 (model strength) is 0.81 
and the residuals range from -18,021 to 13,333, while for method B the R2 is 0.41 and the residuals range from -28,854 
to 24,835. Thus, the data in method B is more dispersed than the data in method A. 

For instance, with a residual value of 13,333, Svendborg Municipality is the largest positive outlier for method A, while 
Odsherred Municipality is the largest negative outlier, with a residual value of -18,021. For each method in table 3, 13 
municipalities have been denoted with one or two asterisks. These asterisks denote considerable changes in rank 
between the two methods relative to the residual range closest to zero (the grey area). One asterisk denotes that a 
municipality considered an outlier in method A falls within the low residual range in method A, and vice versa. In method 
A these municipalities are Varde (9,454), Frederikshavn (-7,113), Vordingborg (-10,303), Bornholm (-14,765), and 
Odsherred (-18,021). The SD for the whole dataset in method A ranges from 12 to 166 with an average of 105. This 
places Varde close to the average with an SD of 101, and Frederikshavn, Vordingborg, Bornholm and Odsherred well 
above with SDs of 166, 141, 138, and 130, respectively. However, this order changes in method B. 
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Method A 
R2 = 0.81 | N = 2,573 

Method B 
R2 = 0.41 | N = 66,898 

Municipality Population Parishes n SD Residual Municipality Population Parishes n SD Residual 

Svendborg 56,944 28 83 115 13,333 Ringkøbing-Skjern 53,549 3 3,818 18 24,835 

Sønderborg 70,409 25 83 156 10,773 Sønderborg 69,273 45 2,075 32 21,736 

Haderslev 53,059 27 83 115 9,468 Svendborg 56,782 20 2,324 23 21,428 

Varde* 47,644 28 83 101 9,454 Hjørring 61,153 13 3,320 28 18,895 

Ringkøbing-Skjern 53,993 46 83 119 8,685 Kalundborg** 46,536 25 2,490 21 14,870 

Hjørring 61,188 40 83 141 7,576 Lolland 38,050 27 3,984 17 10,953 

Aabenraa 56,490 20 83 130 7,249 Skive 43,456 23 3,735 21 10,845 

Brønderslev 34,864 20 83 76 6,432 Thisted 41,437 1 4,399 20 10,742 

Thisted 41,450 53 83 94 6,122 Guldborgsund** 57,597 28 3,569 32 10,569 

Billund 25,741 11 83 54 5,835 Tønder** 35,268 28 2,490 19 6,105 

Vesthimmerlands 34,794 38 83 78 5,474 Vesthimmerlands 34,885 26 3,154 19 5,708 

Skive 43,193 45 83 100 5,384 Haderslev 52,982 11 2,241 32 5,524 

Jammerbugt 36,817 28 83 88 3,818 Jammerbugt 36,835 48 2,324 21 4,663 

Mariagerfjord 40,098 29 83 102 1,393 Mariagerfjord 39,899 21 2,407 24 3,172 

Morsø 19,159 32 83 51 313 Frederikshavn 56,162 22 1,826 37 2,856 

Kalundborg 46,660 30 83 126 -1,142 Vordingborg 43,431 46 2,158 29 -169 

Norddjurs 35,407 35 83 97 -1,371 Lemvig 18,518 35 1,909 12 -980 

Tønder 35,230 30 83 97 -1,531 Varde 47,216 32 2,324 33 -1,206 

Guldborgsund 57,696 43 83 155 -1,533 Odsherred 31,446 28 1,079 22 -2,050 

Struer 19,907 16 83 59 -1,906 Norddjurs 35,406 43 2,905 26 -3,890 

Læsø 1,656 3 83 12 -1,907 Bornholm 37,648 40 1,743 29 -4,903 

Fanø 3,278 1 83 19 -3,139 Langeland 11,543 20 1,494 11 -7,163 

Lemvig 18,509 23 83 58 -3,150 Læsø** 1,644 18 249 5 -8,179 

Samsø 3,503 1 83 21 -3,669 Aabenraa 55,199 30 1,660 44 -8,603 

Ærø 5,652 6 83 31 -5,443 Morsø** 19,141 1 2,656 18 -9,354 

Frederikshavn* 56,141 22 83 166 -7,113 Brønderslev 34,750 6 1,660 33 -14,124 

Vordingborg* 43,493 26 83 141 -10,303 Struer** 19,903 30 1,328 22 -14,135 

Langeland 11,555 18 83 60 -10,803 Ærø 5,642 53 498 12 -14,202 

Bornholm* 37,721 21 83 138 -14,765 Fanø** 3,274 29 83 19 -26,515 

Lolland 38,153 48 83 141 -15,511 Samsø** 3,505 16 83 21 -28,575 

Odsherred* 31,409 13 83 130 -18,021 Billund 25,607 38 913 37 -28,854 

* Denotes a municipality with a residual range that is outside the range -5,000 to 5,000 (grey area) in method A, but is inside the range in method B. 
** Denotes a municipality with a residual range that is outside the range -5,000 to 5.000 (grey area) in method B, but is inside the range in method A. 
 
Pop. = Population in each municipality 
n = Number of observations for each municipality 

Table 3: Cross-regional analysis of data aggregation based on the 31 rural municipalities of Denmark. 

With a considerably lower correlation of R2 0.41, method B is more dispersed than method A, as previously illustrated. 
The SD for the whole dataset in method B ranges from 5 to 44 with an average of 25, calculated on sample sizes that 
ranges from 83 to 4,399. Here, only nine municipalities fall within the grey area in table 3, compared to 12 in method 
A. Moreover, eight municipalities that were within the grey area in method A, are placed outside the grey area in method 
B, with four of them at the far ends of the residual range. In other words – one third of the municipalities that were 
most correlated in method A, are among the least correlated in method B. The outliers in method B shares some 
common characteristics. Samsø, Fanø, and Læsø are all island municipalities with populations below 5,000 – a 
characteristic that contradictorily appeared to place their residual values closer to zero in method A. Interestingly, some 
of the municipalities with large populations have remained extreme outliers in both methods, e.g., Svendborg, 
Sønderborg and Ringkøbing-Skjern. 

Given that the only difference between the two methods is based on the number of parishes within each municipality, 
and thus their fragmentation, this is a plausible part of the explanation. To test this notion, SD was replaced with 
standard error (SE) for a second trial. Method A is based on an aggregated dataset with equal sample sizes (there are 
83 observations in each municipality) and is therefore unaffected by replacing SD with SE, observed with an identical R2 
of 0.81. Contrarily, method B displayed a virtually non-existing correlation between the two variables SE and population 
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size, observed with an R2 of 0.09. Considering SE as a function of SD and sample size, this observation supports the 
notion of the model’s sensitivity to numerosity and fragmentation – i.e., on the municipal level, there are 26 times more 
samples in method B than method A. As observed by the reduced correlation between SD and population size from 
method A to method B, the model’s sensitivity to numerosity and aggregation becomes even more apparent when 
observing SE instead of SD. 

The preliminary results from this cross-regional analysis indicates noticeable differences between using aggregated data 
(method A) or disaggregated data (method B) for analyzing variance within populations. Overall, the analytical model 
demonstrated here is sensitive to scale, as quantifiable differences in SD and SE can be observed when parishes factor 
in on the population samples, versus when it does not. Figuratively, in the coastline metaphor mentioned earlier on 
(Mendelbrot, 1982), this compares to choosing one unit of measurement over the other: large units produce simple 
measurements but at the same time they potentially obscure the underlying nuances embedded within them. Following 
this proof-of-concept, which by a clear dispersion of correlation indicated an increase in complexity in the datasets used 
between the two methods, the next step is to home in on the paper’s use case and apply this analytical framework to 
identify complexity attributes within the municipality, and potentially reveal otherwise hidden statistical patterns within 
the aggregated data. 

4.2 Deconstruction of Guldborgsund Municipality 
The municipal level represents the basic abstraction level of the analysis, defined as the level on which rural planning is 
administered in Denmark. There are 57,696 inhabitants distributed across 43 different parishes in GM, ranging from 88 
inhabitants in Sønder Alslev parish to 16,163 inhabitants in Nykøbing Falster parish (Statistics Denmark, 2022b). A parish 
will be identified by its parish code and name, for instance ‘7584 Sønder Alslev’ or ‘7578 Nykøbing Falster’. 

The municipality is located withing Region Zealand. A region that represents some of the poorest rural municipalities of 
Denmark, which includes GM, despite having a relative proximity to the Capital Region and Copenhagen (Jepsen, et al., 
2020). According to Jepsen et al. (2018), the population of GM and Lolland Municipality (collectively ‘Lolland-Falster’) 
has a lower life expectancy, is less educated than the rest of Denmark, has a lower income, has more people outside 
the workforce and, especially on Lolland, more people move out of the area than into it. 

Similar to the cross-regional comparison, figure 2 illustrates the correlation between SD and population size, while figure 
3 illustrates the correlation between SE and population size for GM. With an R2 of 0.81, there is a strong correlation 
between increase in population and increase in SD, which is in line with the findings made on the cross-regional level of 
the analysis. The SD for the whole dataset ranges from 1 to 34 with an average of 9. The correlation of 0.29 for SE 
indicates a high sensitivity to numerosity on the municipal level, also similar to the cross-regional level. 
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Figure 2: Parish population vs. SD in GM 

 

 

Figure 3: Parish population vs. SE in GM 

Two considerable outliers can be identified in both charts as they do not fit the trendline. These outliers are 7580 
Væggerløse and 7578 Nykøbing-Falster. The parish 7580 Væggerløse is characterized by a disproportionate amount of 
summerhouses compared to the rest of GM, while 7578 Nykøbing-Falster accounts for roughly 25% of the total 
population of GM. The next part of the analysis further deconstructs the parishes within GM for the purpose of isolating 
complexity factors other than numerosity within the parishes, and outline some basic demographic characteristics 
across GM. The results from this deconstruction are presented in table 4, with each parish ranked by parish code.  
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 Test Areaa Populationb Densityc Avg. aged Gendere Educationf Employmentg Commutersh Ethnicityi Churchj 

 Jarque-Bera 0.49 0.21 0.00 0.22 0.58 0.10 0.25 0.42 0.23 0.26 
 VIF 4 6,902 8 2 2 202 906 101 58,560 42,536 
 Coefficient β 0.1665 - - -0.009 -19.2275 - - - - - 
 P-value 0.0034 - - 0.9667 0.0058 - - - - - 
Code Parish           
7575 Ønslev 15 681 47 45.3 1.1 20 352 286 642 562 
7576 Eskilstrup 15 1,331 91 44.6 1.0 39 614 474 1,241 1,091 
7577 Tingsted 32 3,026 95 40.6 1.0 138 1,605 1,368 2,875 2,536 
7578 Nykøbing Falster 19 16,954 889 44.8 0.9 743 7,249 3,200 14,558 12,582 
7579 Idestrup 33 1,889 58 48.5 1.0 54 866 685 1,781 1,562 
7580 Væggerløse 45 3,297 73 56.2 1.0 117 1,257 890 3,123 2,771 
7581 Skelby 19 263 14 49.3 1.0 11 107 86 244 202 
7582 Gedesby 9 276 31 55.0 1.1 14 104 79 248 195 
7583 Sønder Kirkeby 10 250 25 41.1 1.0 11 137 117 224 180 
7584 Sønder Alslev 11 93 8 59.3 0.8 10 50 36 89 69 
7585 Karleby 9 257 30 46.2 1.1 13 127 107 239 205 
7586 Horreby 11 505 44 45.5 1.0 7 255 205 485 432 
7587 Nørre Ørslev 12 447 37 40.9 1.2 27 246 209 425 370 
7588 Systofte 12 713 59 45.6 1.1 19 366 319 658 593 
7589 Horbelev 30 1,133 38 45.9 1.1 40 521 379 1,058 895 
7590 Falkerslev 21 247 12 44.2 1.1 9 124 97 225 207 
7591 Aastrup 37 789 21 51.1 1.1 40 367 261 733 627 
7592 Tårs 23 453 20 43.2 1.1 15 253 200 442 385 
7593 Vigsnæs 12 127 11 53.8 1.0 10 78 55 124 105 
7594 Majbølle 23 975 42 51.0 1.1 28 446 336 914 784 
7595 Radsted 36 744 21 45.2 1.2 14 381 318 693 625 
7596 Toreby 71 5,359 76 45.7 1.0 242 2,450 1,809 4,983 4,351 
7597 Slemminge 19 444 23 45.8 1.2 13 198 160 412 372 
7598 Fjelde 7 178 24 46.6 1.2 2 75 55 160 149 
7599 Døllefjelde 8 172 23 45.8 1.1 8 86 70 165 142 
7600 Musse 9 198 23 48.1 1.4 4 92 79 188 170 
7601 Herritslev 16 400 25 49.9 1.1 11 188 140 378 338 
7605 Kettinge 30 1,148 38 46.1 1.2 27 581 450 1,065 934 
7606 Bregninge 10 146 14 41.2 1.3 8 72 54 142 123 
7607 Stubbekøbing 4 2,163 562 50.6 0.9 72 760 504 1,991 1,734 
7608 Maglebrænde 11 288 26 47.6 1.2 9 149 121 265 224 
7609 Torkilstrup 17 406 24 46.0 1.1 18 196 143 364 312 
7610 Lillebrænde 8 264 32 46.1 1.3 9 128 109 230 199 
7611 Gundslev 23 544 24 47.4 1.2 20 277 225 520 446 
7613 Nørre Alslev 14 2,500 176 48.2 0.9 55 1,040 742 2,376 2,139 
7614 Nørre Kirkeby 9 211 24 42.4 1.3 4 116 87 202 182 
7642 Sakskøbing 23 4,667 207 49.7 1.0 115 1,771 1,197 4,343 3,878 
7644 Våbensted 22 630 28 44.7 1.1 15 333 257 590 520 
7645 Engestofte 11 94 9 47.9 1.5 2 39 37 86 78 
9249 Gedser 8 711 90 53.7 1.2 14 250 169 652 586 
9318 Nordvestfalster 81 2,836 35 46.8 1.1 123 1,393 1,299 2,646 2,326 
9319 Nysted-Vantore* 29 1,582 54 53.9 0.9 59 575 0 1,479 1,275 
9330 Krumsø** 39 807 20 45.2 1.3 0 0 0 764 680 

a Km2, based on vector data from Danmarks Administrative Geografiske Inddeling (DAGI), extracted on November 14th, 2022 
b Sum of males and females, Statistics Denmark, KM5: Population 1. January by parish, sex, age and member of the National Church, released February 17th, 2022 
c Population per km2, calculated using data from SOGN1 and DAGI 
d Average age regardless of age, Statistics Denmark, KMGALDER: Average age 1. January by parish and sex, released February 17th, 2022 
e Male to female ratio as 1:X, Statistics Denmark, KM5: Population 1. January by parish, sex, age and member of the National Church, released February 17th, 2022 
f People with an education level equal to or above a bachelor’s degree, Statistics Denmark, KMST007A: Population 1. October (15 years+) by parish, member of the National Church and highest 
education completed, released March 21st, 2022 
g Employment rate, Statistics Denmark, KMSTA005: Population 1. January (15 years+) by parish, socioeconomic status and member of the National Church, released February 17th, 2022 
h Commuters to other parishes, Statistics Denmark, KMSTA009: Population 1. January (15 years+) by parish, member of the National Church and commuting, released December 8th, 2020 
i Ethnic Danes, Statistics Denmark, KMSTA001: Population 1. January by parish, ancestry and member of the National Church, released February 17th, 2022 
j National Church membership, Statistics Denmark, KM5: Population 1. January by parish, sex, age and member of the National Church, released February 17th, 2022 
 
* Contains null values for commuting and is therefore ignored in this analysis. 
** Contains null values for education, employment, and commuting, and is therefore ignored in this analysis. 

Table 4: Multiple regression analysis variables 

A total of ten different independent variables were tested by multiple regression analysis against SD as an independent 
variable, which was previously identified as a preliminary indication of complexity within an administrative unit – i.e., a 
parish. These values were selected solely on availability of official demographic data from Statistics Denmark and 
applicability to the parish level. A multiple regression analysis including all variables resulted in a high R2 of 0.93, with 
population size as the only significant result with p-values below 0.05. Nine of the original ten variables were normally 
distributed, calculated by applying the Jarque-Bera test to the dataset for each separate variable – a test for normal 
distribution of a population sample, which in turn enables further statistical testing. A value above 0.05 indicates that a 
population sample is normally distributed. Seven of these variables displayed a variance inflation factor (VIF) above five 
and was then excluded from the analysis, as these would otherwise artificially inflate the variance and overall correlation 
of the model. The R2 for the remaining three variables was 0.36. Two of these variables scored a p-value below 0.05 and 
were thus deemed statistically significant. These variables were the parishes’ area in km2 and gender ratio. Conclusively, 
gender ratio provides the strongest explanation for an increase in SD, followed by the physical size of the parish. Thus, 
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uneven gender distributions (illustrated by highlighted parishes within GM in figure 4) combined with large parishes, 
seemingly cause an increase in SD. 

 

Figure 4: Gender ratio distribution of GM vs. built-up areas. Numbers = parish codes; light areas = low gender ratios; grey areas = high gender ratios; 
red areas = buildings. Source: author’s own work based on data from the analysis in this paper and vector data from GeoDanmark. 

There are two notable clusters in figure 4, namely on either side of the municipality (grey areas). Each cluster represents 
a gender ratio between 1.15:1 and 1.5:1. The cluster on the far left is the largest of the two and consist of eight parishes 
with an average SD of 3: 7595, 7597, 7598, 7600, 7605, 7606, 7645 and 9330. The top-right cluster consist of four 
parishes, also with an average SD of 3: 7608, 7610, 7611, and 7614. The two remaining parishes, 7587 and 9249, have 
an SD of 3 and 5, respectively, placing all four SDs well below the overall average SD of 9 for the dataset. This observation 
is arguably counterintuitive considering the prior observation that a disproportionate gender ratio contributes to an 
increase in SD, albeit explainable by the overall model strength of R2 0.36. However, as figure 4 also depicts, the clusters 
generally cover sparsely populated areas with relatively scattered settlement patterns (red areas). This raises another 
question, namely as to why these parishes are disproportionately populated by males, compared to other parishes with 
similar settlement patterns within GM. A possible explanation to this phenomenon is clustering, i.e., an emergent 
pattern that has been formed by and within the municipality (Jeon and Jung, 2019). For instance, based on figure 4, one 
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might suspect that men are attracted to the grey areas, whereas an alternative explanation could be that they are in 
fact figuratively pushed into or retained in them instead, by the properties of the surrounding areas. 

Following this analysis, the upcoming discussion addresses three different themes: one, qualifying the theoretical 
framework for observing and analyzing municipalities as complex systems; two, the paper’s use of statistical methods 
for comparative analysis, and model strength; and three, the results’ potential implications on a DDDM planning model 
for GM and subsequent consequences. 

5. Discussion 
5.1 Municipalities as complex systems 
The premise of informing planning theory through complexity theory is widely accepted (e.g., Portugali, 2012; Hartman 
and Roo, 2013; Samet, 2013; Rydin and Tate, 2016; Totry-Fakhouri and Alfasi, 2017; Boeing, 2018; Chettiparamb, 2019). 
According to Chettiparamb (2006), complexity theory has been applied as a theoretical metaphor to many different 
research areas, including the natural sciences (thermodynamics, physics, chemistry, biology, computer science, 
information technology, etc.) and social sciences (economics, political science, management science, etc.). 
Chettiparamb (2006) identifies two general streams within this body of work concerning complexity theory in planning: 
a quantitative stream concerned with modeling-related issues, and a non-quantitative stream concerned more with 
qualitative aspects. Both streams deal with similar concepts within complexity theory, but the theory has received 
criticism for the arguably vague manner it has been applied. For instance, in analyzing current literature and planning 
theory, Cameli (2021) typifies cities as cyborg systems, referring to a clear distinction between the human beings living 
in them and their social structures, and the buildings and infrastructure that constitutes its physical environment. 
Although the distinction between the built environment and the humans who occupies it is logically sound from an 
analytical standpoint, such metaphors arguably support the argument of somewhat vague applications of complexity 
theory in research areas outside of the natural sciences, including the social sciences. Mitleton-Key (2004) soberly 
emphasizes how complexity theory derives from different research disciplines that shares the common notion of 
creation of new order – i.e., emergent properties. Byrne (2003: p. 176) preemptively addresses this notion regarding 
complexity theory in planning and modeling: “The crucial thing complexity offers in terms of modeling is the idea of 
alternatives – not a limitless range of alternatives but a set of more than one future with action determining which future 
is possible. There is a really substantial problem of method here. The traditional linear models of statistical reasoning 
are absolutely not isomorphic with processes of social transformation, precisely because they are incremental and 
cannot deal with changes of kind.” In line with Byrne’s (2003) reasoning in terms of modeling, this methodological 
problem calls for a pragmatic take on how ‘real world’ phenomena are abstracted for decision-making modeling 
purposes. 

There is an interesting catch-22 in the field of spatial data science, as demonstrated in the paper, namely in the context 
of political decision-making. As a political organization, Guldborgsund Municipality intend to base future planning 
strategies on the results of this type of research, which effectively creates a potential causal relationship between the 
research and the future physical layout of the municipality – and, arguably more importantly, its citizens. Consequently, 
the research will inevitably impact the subject matter that is being studied. This entails an ethical responsibly in terms 
of how the results are communicated to the decision-makers. They must understand the context in which the analysis 
has been conducted, and how the apparently objective data produced through e.g., statistical modeling and probability 
analysis is entirely dependent on how the reality they represent is perceived. Summarily, I argue that for spatial data 
science to make sense in a real-world setting, any research design based hereon should combine inductive and 
deductive reasoning. Inductive in terms of how we observe the world we live in (i.e., ontological logic), and deductive 
in terms of how we can detect the large-scale emergent patterns that each of us contributes to as individual systemic 
components (i.e., epistemological logic). Utilizing the hypothetico-deductive model or abductive reasoning (Upmeier zu 
Belzen et al., 2021), thus combining ‘the best of both worlds’ is arguably a sensible middle ground here. 

First, by using metaphors to both articulate and empirically analyze complex dynamics in physical planning 
(Chettiparamb, 2006), the theoretical framework of this paper constitutes an important role as a communicator 
between the research and the municipalities’ practitioners. Emphatically heavily reduced, complexity theory 
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characterizes a complex system as dynamic and ever evolving, perpetually creating new order (Mitleton-Kelly, 2004). 
Check, municipalities change over time, demographically as well as physically. Thus, the theoretical framework serves 
as a metaphorical mediator to emphasize what exactly it is we ontologically, qualitatively mean by ‘complex’, when 
addressing the complications of designing a data-driven decision-making model for planning. Moreover, as complex 
behavior is a measurable phenomenon, the framework also serves as an epistemological, quantitative methodology. 

A complicated system differs from a complex system in that complicatedness is a linear dynamic and thus predictable, 
unlike complexity, which is a nonlinear dynamic – a fundamental trait in deterministically chaotic and complex systems 
(Gleick, 1987). Following this reasoning, is it then reasonable to expect that a DDDM model can be based on a complex 
system? This distinction is difficult to make, seeing that a fractal system is arguably predictable in the sense that it is 
self-replicating across its hierarchical levels (Chettiparamb, 2005), thus providing a pattern. As self-contradictory this 
may seem, these patterns are the result of emergent behavior, which itself is unpredictable (Stacey, 1995). However, 
when it comes to modeling ‘real world’ phenomena, this distinction is arguably not necessary to make: “Models do not 
necessarily have to be very detailed in order to provide an understanding of the strategic changes that may occur, and 
this is where one can distinguish between a ‘complicated model’, for example, with a great deal of detail and needing 
perhaps a very large computer, and a ‘complex systems’ model, that may generate changing, complex patterns of 
behavior and of organization, from relatively simple interacting equations” (Allen, 1997: p. 2). Applying this distinction 
to a practical modeling setting inevitably fosters a high level of abstraction, thus effectively defining the subject matter 
as a highly aggregated entity. In other words, because Guldborgsund Municipality as the subject matter encompasses 
more than 60,000 people and 85,000 buildings spread across an area of over 90,000 hectares, a high level of abstraction 
is a prerequisite more so than a methodological choice. 

5.2 Statistical analysis and model strength 
As the research question of this paper is on model generalizability, the strength of the statistical model is discussed prior 
to discussing potential implications of a DDDM model for rural planning in GM. The input data for the statistical model 
stems from Statistics Denmark, an official institution that provides free and highly valid and almost complete registers 
of demographic data of the Danish population (Petersson et al., 2011; Baadsgaard and Quitzau, 2011; Jensen and 
Rasmussen, 2011), a service which is accessible in only a few other countries apart from Denmark (Jepsen et al., 2020). 
This service allowed for the model’s input data to be extracted as aggregated (method A) and disaggregated (method 
B) data sets with a high level of accuracy, thus enabling the analysis of the paper to identify differences in correlation 
dispersion across different scales. The data was then applied to multivariate regression analysis, which produced a 
model strength of R2 = 0.36. Intuitively, this indicates a weak statistical model. 

However, on the discussion of the importance of R2 in social sciences, Moksony (1999) argues that a low R2 simply 
indicates that the dependent variable is affected by other factors than those included in the model, and that the R2 in 
general is overvalued and misused as a measure for model reliability and validity. In the case of GM, this means that on 
a finer aggregation level that includes parishes, the variables ‘area size’ and ‘gender ratio’ are only part of the 
explanation as to why age dispersion increases parallelly to population size. This notion is supported by Ozili (2022), 
who argues that an R2 lower than 0.50 is acceptable in social science research when most of the explanatory variables 
are statistically significant. There are three variables included in this model, of which two are statistically significant, 
meaning the model meets these criteria. A similar view is presented by Tian et al. (2014) in a study of rural settlement 
and policy implications, in which an R2 between 0.20 and 0.50 is considered correlated, while a value above 0.60 is 
considered significantly correlated. This metric generally fits the current literature on planning in social science that 
utilizes regression analysis (e.g., Villarraga et al., 2014; Chen and Lui, 2016; Li et al., 2016; Jeon and Jung, 2019; Huang 
et al., 2021; Qi et al., 2022). With model strengths ranging between R2 values of 0.51 and 0.75 with p-values below 0.01, 
Zhang et al. (2017: p. 12) attributes complexity properties by linking the sprawl of built-up land to systemic disorder: 
"Fractal dimension values increased significantly during the ten years, which means that urban growth brought a more 
complex, scattered and disordered distribution of built-up land patches in Wen-Tai region. If this trend continues, 
complex and fragmented landscapes will increase rapidly with urbanization, which might lead to the inefficient usage of 
built-up land resources. Accordingly, the authors suggest that local government implement reasonable built-up land 
plans by balancing economic growth with the construction of settlements and industrial land in order to guide the city 
toward sustainable development." This argument is supported by Xu et al., (2020: p. 163), whose model produces an R2 
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value of 0.37 based on ordinary least squares: "The authors suggest that in the process of resettlement, the distance 
between settlements should be kept less than [5,000 meters] if possible. The government needs to further improve and 
implement preferential land use policies, with appropriate increases in the area of built-up land." The results presented 
in this paper are in line with the current literature on the general topic of planning and regression analysis, namely 
wherein disorder can be interpreted as a notion of an increase in complexity. Referring to the basic property of 
numerosity and interrelatedness in complex systems (Mitleton-Kelly, 2004), this notion entails a discussion of 
aggregated vs. disaggregated datasets and potential implications on a DDDM model for planning in GM. 

5.3 Implications on a data-driven decision-making model 
Due to the macro-organizational nature of their work, politicians on all hierarchal levels deals with abstract issues. Prime 
ministers deal with national issues such as international relations, while mayors and city councilors deal with local issues 
for whichever city they represent. Issues can arise, however, regarding the human factor, when the people in charge 
makes decisions out of ignorance that are misaligned with practical concerns and feasibility (Laursen et al., 2021). For 
this reason, the appropriate scale of analysis depends on what is being analyzed (Qi et al., 2019). Thus, if one cannot 
simply go out and modify a real-world system like a municipality to reduce its complexity for the sake of improving the 
generalizability of a DDDM model, only the complicatedness of the DDDM model representing a complex system can be 
reduced – e.g., by data aggregation. 

Employing a model-based planning practice arguably fosters a reductionist approach to qualitative properties. However, 
there are arguably some potential issues regarding generalizability and reductionism when applying quantitative 
decision-making models to qualitative research fields, and vice-versa. According to McGreevy (2018), modern planners 
evoke a top-down planning approach that is belligerently set on reducing complexity, though also fascinated by the 
bottom-up self-organizing capabilities of complex adaptive systems such as cities. Moreover than addressing local 
issues, planning is also a global concern, as evident by the United Nations’ (UN) 11th Sustainable Development Goal 
(SDG), specifically target 11.a: “[…] support positive economic, social and environmental links between urban, peri-urban 
and rural areas by strengthening national and regional development planning” (United Nations, 2015). The UN provides 
a quantitative indicator for this target (11.a.1), which is based on whether a country has a national urban policy or 
regional development plan or not. This arguably provides an issue regarding oversimplification, as the target is paired 
with this one simple indicator alone (Berisha, Caprioli and Cotella, 2022). Raising concerns with reducing the planning 
strategies and approaches of an entire country to one single indicator is perfectly reasonable, although the point in 
doing so is arguably a pragmatic necessity. However, one must consider how abstract a scale-dependent decision-
making model can be without compromising its generalizability (Costanza et al., 1993). For instance, the European Union 
(EU) operates with four administrative levels (NUTS), which are defined by population thresholds. Starting at the 
national level, the NUTS-system abstracts from populations of 7M to 150k inhabitants. In the case of Denmark, with 
close to 6M citizens, this effectively puts the entire population within one abstraction level of populations ranging from 
800k to 3M, divided into five regions, thus not considering e.g., municipalities, parishes, cities, or towns. 

The effects of aggregating spatial units are well-known and well-established: “Aggregating smaller areal units into 
regions filters out the harmonics whose wavelengths are smaller than the size of the regions, [and, if two or more] space 
series have harmonics which are filtered out by a given aggregation, the correlation and regression coefficients of the 
series before the aggregation will differ from the coefficient obtained after the aggregation” (Casetti, 1966; Tobler, 
1989). A notion that is supported by Jelinski and Wu (1996), who argues that because aggregating spatial data has a 
filtering effect, the impact of MAUP is far more complex and unpredictable on multivariate analysis, than it is on 
traditional statistical analysis, e.g., correlation analysis and linear regression. In a more recent study, Jacobs-Crisioni 
(2014: p. 53) observes this phenomenon where the model strength decreases as the data aggregation level increases: 
“[...] aggregating by averaging is a sound strategy for limiting scale dependencies; on the other hand […] data in very 
coarse resolutions are not fit for assessing the impacts of factors that are important on the micro level". Hennerdal and 
Nielsen (2017) supports this position and argues that if one does not vary the geographical extent of the area of 
reference to test how the results differ with different delineations of the area of reference, then the results of such an 
analysis can be rendered arbitrary. Utilizing a disaggregated dataset (NUTS-4) on rural development domains/variables 
in Poland and Slovakia, a rural development index (RDI) is developed by Michalek and Zarnekow (2012) for the purpose 
of measuring the overall level of rural development and quality of life in individual rural regions. Comparable to the 
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methodology in this paper, the authors emphasize that in addition to the need for simplicity to encourage practical 
application, the model should be based on cheap and freely available data. Lee and Rogers (2019) demonstrate a similar 
methodology in their analysis of geographic distributions in a political context and stresses that “[…] the best way to 
manage concerns with the measure of geographic distribution lies in the articulation of a clear theory linking the unit of 
geography to a particular characteristic of interest.” I.e., political practice in planning is unavailing and potentially 
aimless if not informed by scientific insight and theorization. 

Now, as we are approaching the conclusion of the discussion, and of this paper, the underpinning MAUP-issue of this 
paper’s methodology and analysis is duly addressed. Naturally, there is a prevailing focus on areal and spatial units in 
studies that deals with the MAUP. Hennerdal and Nielsen (2017: p. 572) provides part of the explanation for this notion: 
“It is vital to acknowledge the bias due to the part of the MAUP related to the area of reference because the outcomes 
of clustering and segregation studies influence policy. Therefore, methodologies that cannot fully cope with the MAUP, 
including the part of the problem related to the area of reference, should be avoided.” This argument entails a direct 
implication for any DDDM planning model, namely its requirement to be able to manage the MAUP. Because not just 
the areal units themselves are susceptible to the MAUP, but also the variability of the descriptive statistics, such as SD 
and correlation coefficients, are scale-dependent (Gomes and Cunto, 2020). So why even bother designing a DDDM 
planning model, if the MAUP will inevitably distort its predictions? Ironically, part of the answer may lie within the 
nature of complexity itself. Because although sensitive to control parameters and attractors, complex systems are 
robust, for two reasons (Byrne, 2003): one is that they remain complex systems, regardless of changes; two is that they 
can change radically without losing their systemic integrity. Moreover, the identification of MAUP as a problem can be 
misleading, as it simply reflects the nature of the real hierarchically structured systems (Jelinski and Wu, 1996). In terms 
of modeling, complexity theory offers the idea of alternative futures determined by social actions: "Despite these 
qualities, bottom-up and unplanned, self-organized spaces are not easily adapted to the rapid change in the needs of a 
modern, urbanized society. In the face of modernization, unexpected conflicts arise that require planning intervention. 
Although self-organizing systems, urban areas and traditional societies included, are most flexible and adjusting, the 
current lifestyle demands external intervention consistent with local values and existing circumstances" (Totry-Fakhouri 
and Alfasi, 2017: p. 37). Accordingly, I argue, that recognizing systemic complexity in planning, including the MAUP and 
its effects on data aggregation and generalization etc., is a prerequisite – not necessarily a limitation – for designing any 
model intended to represent the real world, as defined by those who intend to plan it. 

6. Conclusions 
With a practice-oriented purpose in mind, I aimed to obtain an understanding of the intrinsically complex nature of 
planning through complexity theory with this paper. This practical purpose consisted of laying out the foundation for 
designing a DDDM planning model for GM that is both quantitively accurate and qualitatively realistic, all the while 
striving for as much generalizability as possible. Perhaps most noticeably, the analytical results demonstrated three 
things: one, scale-dependency by sensitivity to numerosity, as there are considerable differences in correlation 
coefficients between aggregated and disaggregated data; two, fractal properties, as dispersion increases with 
fragmentation both cross-regionally and municipally; three, emergence by clustering in gender ratios across the 
municipality. Having demonstrated these systemic properties, I conclude that GM can justifiably be identified and 
analyzed as a complex system. These insights make for a rather straightforward answer to the paper’s research question 
on how abstract a political decision-making model can be without compromising its generalizability: the model should 
inform the user, not the other way around. For instance, instead of relying on administrative units for spatial and 
demographic analysis, a finer grid would presumably produce more accurate results and reveal sub-level behavior 
otherwise hidden on even the parish level. Thus, the administrative units ought to be removed from the equation of the 
DDDM planning model to reduce the effects of the MAUP – albeit the MAUP merely reflects the natural behavior of the 
real world and therefore only presents an issue to humans who insist on quantifying reality. In addition to this 
implication, a DDDM planning model should be scenario-based, more so than simply a passive data collection platform. 
Case in point, changes in one parish may affect the dynamics of another, which an optimal DDDM planning model should 
be able to predict. 
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By applying a theoretical framework rooted in complex social systems, the analysis in this paper provides a novel 
contribution to the integration of complexity science into the field of spatial data science, which is arguably still in its 
formative stages. Moreover, this study offers valuable insights into the evaluation of the applicability and transferability 
of administrative units. The adoption of such a framework not only enhances our understanding of the intricate 
dynamics of social systems, but also enriches the methodology and approach employed in spatial data science. These 
insights have the potential to refine our comprehension of the complexities inherent in administrative units and enable 
more accurate assessments of their generalizability. Overall, this research sheds light on the practical implications of 
complexity science within the evolving field of spatial data science. 

Further studies could benefit from employing a grid-based methodology on a low abstraction level smaller than parishes 
and exploring alternative metrics for complexity other than SD or SE, as well as conducting multivariate regression 
analysis or similarly on a finer level. This could identify more explanatory variables with stronger correlations and reveal 
a more comprehensive depiction of any given rural municipality, or other administrative unit, which in turn could 
provide for a more informed planning strategy. 
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