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The introduction of direct-acting antiviral (DAA) treatment of hepatitis C virus (HCV) infected patients has greatly
increased treatment success rates. However, viral response kinetics to DAA treatment may depend on pre-existing
resistance-associated substitutions (RASs) in HCV. The aim of this study was to describe how pre-existing RASs affect
DAA treatment-induced reduction in HCV RNA titers in HCV genotypes 1- and 3-infected individuals. Patients with
HCV genotype 1 infection (N = 31) treated with either sofosbuvir/ledipasvir/ribavirin or paritaprevir/ombitasvir/ritona-
vir/dasabuvir/ribavirin and HCV genotype 3-infected patients (N = 16) treated with either sofosbuvir/daclatasvir/
ribavirin or sofosbuvir/ribavirin were analyzed. HCV RNA levels were determined at baseline and frequently during
treatment, and RAS profiles were obtained by deep sequencing at baseline. In total, 33/47 (70.2%) of the patients
had baseline RASs. However, treatment-specific RASs were detected at baseline only in 12.9% and 18.8% of HCV
genotypes 1- and 3-infected patients, respectively. In genotype 1-infected individuals, reduction in HCV RNA titer
during the first week of treatment was not affected by evidence of either treatment-specific RASs or cirrhosis or treat-
ment regimen. In genotype 3-infected individuals receiving sofosbuvir/daclatasvir/ribavirin, the presence of
daclatasvir-specific NS5A RASs at baseline correlated with a reduced decline of HCV RNA in the first treatment
week. For both genotypes 1- and 3-infected individuals, cirrhosis but not treatment-specific RAS were associated
with the time of clearance of HCV RNA. It is, however, important to note that this study involves DAA regimens
that were used only during the original introduction of interferon-free DAA-based treatments.

Key words: Hepatitis C virus; direct-acting antiviral therapy; sofosbuvir; viral kinetics; clearance; resistance-associated
substitutions.
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Treatment of hepatitis C virus (HCV) infection
with direct-acting antiviral (DAA) drugs targets key
replicative viral nonstructural (NS) proteins NS3,
NS5A, and NS5B, and is highly successful with

cure rates (defined as sustained virologic response
(SVR): HCV-RNA negative 12 weeks after the end
of treatment) above 95% [1–3]. Treatment duration
is generally 8–12 weeks [4], but shorter treatment
periods have been considered in relation to patient
compliance and reduced treatment cost [5–7].Received 18 May 2023. Accepted 24 May 2023
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Treatment failure may depend on multiple host fac-
tors such as advanced liver disease, treatment inten-
sity, duration, and adherence [8], as well as the
presence of resistance-associated substitutions
(RASs) within the drug target regions of the HCV
genome [9, 10], and in non-targeted regions such as
NS2 [11, 12]. Current available DAA treatment
includes three sofosbuvir-containing regimens [ledi-
pasvir/sofosbuvir (Harvoni, Gilead, San Dimas,
CA, USA), velpatasvir/sofosbuvir (Epclusa, Gilead,
San Dimas, CA, USA), and voxilaprevir/velpatas-
vir/sofosbuvir (Vosevi, Gilead, San Dimas, CA,
USA] and two regimens containing only protease
and NS5A inhibitors [grazoprevir/elbasvir (Zepa-
tier, MSD, Rahway, NJ, USA) and glecaprevir/
pibrentasvir (Maviret, abbVie, North Chicago, IL,
USA) [4]. Sofosbuvir has a potent antiviral activity
across a diverse range of NS5B variants in different
HCV genotypes and is considered the backbone in
the sofosbuvir-containing regimens [13]. No new
DAA treatment options are in the pipeline and the
cost of DAA treatment is still to be considered in
relation to achieving the goal of eliminating HCV
as a public health threat by 2030 [14].

Shortened treatment durations from 3 to 6 weeks
have been tested on small cohorts of genotype (GT)
1-infected patients obtaining rates of SVR between
20% and 100%, as reviewed previously [6]. Retro-
spective modeling of viral kinetics during DAA
treatment estimated that 80% of the treated study
cohort could have had a reduced treatment period
[15]. Romani et al. [16] have associated specific
CD8+ T cell frequencies at baseline and end of
treatment with patients achieving SVR with
4 weeks of therapy. In this context, immunological
markers including CD3+ and CD8+ T cells have
been found to be predictors of fast (<4 weeks) or
slow (>4 weeks) viral clearance during DAA treat-
ment. In contrast, patient age, HCV genotype, and
fibrosis score were not associated [17]. The effect of
pre-existing RASs on treatment failure can be diffi-
cult to demonstrate in clinical studies due to the
low number of failures. Reduction in HCV RNA
titers after initiation of treatment thus merited stud-
ies as a potential surrogate parameter for treatment
efficacy.

Resistance-associated substitutions that are
important for therapy outcomes are selected during
DAA treatment and may be present as only minor-
ity genome populations prior to treatment. We
have developed an Illumina-based sequencing assay
of almost full-length HCV open-reading frame
amplicons capable of detecting low-frequency RASs
[18]. We have applied this method to baseline sam-
ples obtained from a published clinical study evalu-
ating adverse events to DAA treatment [19]. In this

study, HCV GT1-infected patients were randomized
to either paritaprevir/ombitasvir/ritonavir/dasabu-
vir/ribavirin (PrODR) or sofosbuvir/ledipasvir/riba-
virin (SLR) and HCV GT3 patients to either
sofosbuvir/daclatasvir/ribavirin (SDR) or sofosbu-
vir/ribavirin (SR). HCV RNA was measured at
baseline and weekly intervals. Using baseline sam-
ples from the above-mentioned study, we determined
the presence of pre-existing RASs and investigated if
the presence of RASs in the allocated treatment
influenced the reduction of HCV RNA titers. The
overall objective was to access whether pre-existing
RASs could affect DAA treatment-induced reduc-
tion in HCV RNA in HCV GT1- and GT3-infected
individuals.

MATERIALS AND METHODS

Patient samples

Forty-seven patients with HCV GT1 or GT3 infec-
tion, previously described in detail [19], were ini-
tially included from a single center that routinely
performs Next Generation Sequencing (NGS) for
HCV GT and DAA resistance determination. All
patients had a baseline sample taken on the day of
initiation of DAA treatment and consecutive sam-
ples taken during and after treatment at weeks 1, 2,
3, 4, 8, 12, 16, 24, and 36. In short, patients were
DAA treatment-na€ıve but could have had prior
treatment with pegylated-interferon and/or ribavi-
rin. Cirrhosis was previously confirmed in 22
patients and was according to national treatment
guidelines defined as the presence of one of the fol-
lowing: a liver biopsy with a Metavir score of F4
and/or median elasticity at transient elastography
(TE) of ≥17 kPa [19]. All samples were stored at
�80 °C until usage. Patients were treated according
to national guidelines at the time of treatment [19,
20] with different DAA regimens including ribavi-
rin. Combinations were 12 weeks of SLR or
PrODR for GT1-infected patients, SR for
24 weeks, or SDR for 12 weeks for GT3-infected
patients (Table S1). HCV RNA in plasma samples
was quantified using the Aptima HCV Quant Dx
Assay (Hologic Inc, San Diego, CA, USA) with a
lower limit of quantification at 10 IU/mL, as previ-
ously described [21].

Near full-length genome amplification and sequencing

Near full-length genome HCV sequences and RASs
profiles were obtained from baseline samples using
the method previously described [18]. Briefly, the
near full-length HCV genome was amplified in a
long-range RT-PCR. Library preparation and
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sequencing of the PCR product were conducted
using a NEBNext Ultra II DNA Library Prep Kit
and an Illumina MiSeq Reagent Kit v2 (300 cycles).
An in-house pipeline [18] processed the reads,
and all RASs detected above a 2% frequency
threshold were included. Treatment-specific RASs
were further confirmed with HCV-GLUE project
version 0.1.44 [22]. Genome-wide population het-
erogeneity analysis was calculated with SNPGenie
[23], as previously described [24], with a 1%
threshold.

Statistical analysis

The effect of virus genotype (GT1/GT3) and the
presence of cirrhosis on HCV RNA at baseline was
evaluated using univariate analysis of variance in a
general linear model. The effect of the presence of
treatment-specific RASs, HCV subtype, cirrhosis,
and DAA regimen on the reduction in HCV RNA
in the first week of treatment was evaluated using a
univariate analysis of variance in a general linear
model. In the latter analysis, GT1- and GT3-
infected patients were analyzed separately. All cal-
culations were done using IBM SPSS Statistics ver-
sion 25. All statistical analyses were two-tailed and
the tests were considered statistically significant if
the p value was ≤0.05.

Ethics

The study was conducted in compliance with the
Declaration of Helsinki and written informed con-
sent was provided by all patients. The Regional
Ethical Committee (H-15007265) and the Danish
Data Protection Agency (2012-58-0004) approved
the study and patient plasma samples were
obtained from the Danish Database for Hepatitis B
and C (DANHEP) biobank [25].

RESULTS

Patient characteristics

We analyzed 47 HCV-infected individuals initiat-
ing antiviral treatment; 31 were infected with
GT1 and 16 with GT3. In the GT1-infected
patients, of whom 14/31 (45.2%) had evidence of
cirrhosis, 16/31 (51.6%) received treatment with
SLR while 15/31 (48.4%) received treatment with
PrODR. In the GT3-infected patients, of whom
8/16 (50%) had evidence of cirrhosis, 8/16 (50%)
received treatment with SR, and 8/16 (50%)
received SDR. Only two patients (Id. #1 and 43)
failed treatment; one experienced a late virus
relapse and the other turned non-compliant after
10 weeks of treatment.

Virus baseline characteristics

Hepatitis C virus viral load at baseline before initia-
tion of antiviral treatment was available for all 47
patients and did not differ significantly between cir-
rhotic and non-cirrhotic patients (HCV RNA 6.06
Log IU/mL (95% CI: 5.80–6.32) and 6.06 Log IU/
mL (95% CI: 5.81–6.31), respectively) or between
GT1- and GT3-infected patients (HCV RNA 6.10
Log IU/mL (95% CI: 5.89–6.31) and 6.02 Log IU/
mL (95% CI: 5.73–6.31), respectively). An unex-
pected and unexplained significant interaction
between GT and cirrhosis and baseline HCV RNA
was observed (p = 0.019; univariate ANOVA), in
which baseline HCV RNA was higher in GT1-
infected patients with cirrhosis than in patients
without cirrhosis, and the opposite was the case for
GT3-infected patients. This was not explored
further.

Detection of baseline RASs

In total, 33/47 (70.2%) of the patients had baseline
RASs but the majority were not relevant in relation
to the used DAA treatment regimen or viral GT
(Table S1). Genotype-relevant baseline RASs
towards the used DAA treatment regimen were
detected in only 7/47 (14.9%) of the sequenced
patient samples.

In 4/31 (12.9%) GT1-infected individuals,
treatment-relevant RASs were detected. The RASs
intra-population frequencies ranged from 4.5% to
99%. In 4 patients (Id. # 10, 14, 27, 33) RASs at
position 30R in the NS5A region and at position
159F, 316N, 321I, and 556G in the NS5B region
were detected. We did not detect treatment-specific
RASs in the NS3 region.

In 3/16 (18.8%) HCV GT3-infected patients (Id.
# 11, 43, 47), treatment-relevant RASs were
detected. RASs in the NS5A region at positions
30K and 93H with intra-population frequencies
between 48% and 99% were found while no
treatment-relevant RASs were detected in the NS5B
region.

Viral population heterogeneity

The occurrence of RASs towards NS5A inhibitor
daclatasvir, the first NS5A inhibitor developed [26],
was hypothesized to be due to an overall higher
heterogeneity in the samples. Samples from Id. # 1,
8, 11, 43, 47, and 48 with RASs towards daclatasvir
were compared to the other GT3a samples. The
analysis did not show an increased population het-
erogeneity compared to the other samples in NS5A
(with RASs p = 0.01244 (95% CI: 0.001989–
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0.02289); without RASs p = 0.008296 (95% CI:
0.0009754–0.01562); p = 0.49), or across the ORF
(with RASs p = 0.01093 (95% CI: 0.003009–
0.01885); without RASs p = 0.008072 (95% CI:
0.001536–0.01461); p = 0.49). Visual investigation
of the heterogeneity across the genomes did not
either indicate any differences (Fig. S1).

Viral load response to treatment

Hepatitis C virus RNA viral load 1 week after initi-
ation of antiviral treatment was available for 44/47
(93.6%) of patients for whom the reduction in
HCV RNA during the first week of treatment was
used as a measure of treatment effect. The effects of
cirrhosis, treatment regimen, and the presence of
treatment-specific RASs were investigated in a uni-
variate model analyzing GT1- and GT3-infected
patients separately.

For GT1-infected individuals, a reduction in
HCV RNA during the first week of treatment did
not differ significantly between patients with GT1a
or 1b infection, with or without evidence of cirrho-
sis, by treatment regimen, or by the presence of
RASs (Table 1). Individuals treated with PrODR
without treatment-specific RASs (N = 13) had an
average reduction in HCV RNA during the first
treatment week of 3.80 Log IU/mL (95% CI: 3.37–
4.24), while the individual with treatment-specific
RASs showed a reduction of HCV RNA on 3.94
Log IU/mL. Similarly, individuals treated with
SLR without treatment-specific RASs (N = 13) had
an average reduction in HCV RNA on 3.85 Log

IU/mL (95% CI: 3.49–4.21) during the first week
of treatment, while the three individuals with
treatment-specific RASs displayed an average
reduction of 4.48 Log IU/mL (95% CI: 3.57–5.38).
The presence of cirrhosis did apparently not affect
the reduction of HCV RNA during the first week
of treatment, as seen in Table 1.

For GT3-infected individuals, reduction of HCV
RNA during the first week of treatment was associ-
ated with treatment regimen [SDR 3.79 Log IU/mL
(95% CI 3.42–4.17) vs SR 3.39 Log IU/mL (95%
CI: 3.03–3.73)] (Table 2). The presence of
treatment-specific RASs in NS5A at baseline in
SDR-treated individuals reduced the decline of
HCV RNA compared to SDR-treated individuals
without RASs [RASs present 3.40 Log IU/mL
(95% CI; 2.79–4.00) vs RASs absent 3.79 Log IU/
mL (95% CI: 3.51–4.07)] (Fig. 1). Evidence of cir-
rhosis was not associated with reduction of HCV
RNA during the first week of treatment [with cir-
rhosis 3.43 Log IU/mL (95% CI: 3.06–3.80); with-
out cirrhosis 3.86 Log IU/mL (95% CI: 3.47–4.30)].

Clearance of HCV RNA

Hepatitis C virus RNA was measured during treat-
ment and the first week of undetectable HCV RNA
was registered. The week of clearance of detectable
HCV RNA was not influenced by the presence or
absence of treatment-specific RASs, the median
week of clearance was 4 [IQR: 4–8 (N = 7)] and 4
[IQR: 3–8 (N = 40)], respectively.

The week of clearance of detectable HCV RNA
appeared to be influenced by the presence of cirrho-
sis. In cirrhotic and non-cirrhotic patients, the
median week of clearance was 8 [IQR: 4–8Table 1. Univariate model of reduction of HCV RNA in

genotype 1-infected individuals during the first week of
treatment

N DHCV RNA
(week 1)
(Log IU/mL)

95% CI p-value

Subtype
1a 20 4.11 3.74–4.49 0.065
1b 8 3.79 3.26–4.31

Cirrhosis
Yes 11 3.90 3.39–4.41 0.807
No 17 4.04 3.69–4.41

Treatment
PrODR 13 3.80 3.37–4.24 0.821
SLR 15 4.10 3.71–4.52

RASs
Yes 4 4.25 3.68–4.89 0.474
No 24 3.81 3.50–4.51

Treatment combinations were sofosbuvir/ledipasvir/ribavi-
rin (SLR) and paritaprevir/ombitasvir/ritonavir/dasabuvir/
ribavirin (PrODR). Subtype, cirrhosis, treatment, and
resistance-associated substitutions (RASs) did not have a
significant effect on viral load reduction during the first
week of treatment.

Table 2. Univariate model of reduction of HCV RNA in
genotype 3-infected individuals during the first week of
treatment

N DHCV RNA
(week 1)
(Log IU/mL)

95% CI p-value

Cirrhosis
Yes 8 3.89 3.47–4.30 0.086
No 8 3.43 3.06–3.80

Treatment
SDR 8 3.79 3.42–4.17 0.010
SR 8 3.39 3.04–3.73

RASs
Yes 3 3.40 2.79–4.00 0.039
No 13 3.80 3.51–4.07

Treatment combinations were sofosbuvir/ribavirin (SR)
and sofosbuvir/daclatasvir/ribavirin (SDR). Treatment
and resistance-associated substitutions (RASs) had a sig-
nificant effect on viral load reduction during the first week
of treatment.
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(N = 22)] and 3 [IQR: 3–4 (N = 25)], respectively
(p = 0.0021; Mann–Whitney U test). This difference
was significant among GT1-infected patients [8
(IQR: 4–8 (N = 14)) vs 3 (IQR: 2.5–4 (N = 17))
(p = 0.045) in the presence and absence of cirrhosis,
respectively]. A similar trend, though not statisti-
cally significant, was observed for GT3-infected
patients [6 (IQR: 3–8 (N = 8)) and 3 (IQR: 3–4
(N = 8)) (p = 0.226) for cirrhotic and non-cirrhotic
patients, respectively].

DISCUSSION

In this study, pre-existing treatment-specific RASs
did not influence the kinetics of treatment-induced
virus reduction in GT1 patients, which has also
been observed in another study [27]. We observed
that viral load reduction after the first week of
treatment was increased for GT3-infected patients
if daclatasvir was added to treatment with sofosbu-
vir and ribavirin. However, if treatment-specific
RASs against daclatasvir were present, the viral

load reduction did not differ between patients
receiving sofosbuvir and ribavirin compared to
those receiving sofosbuvir, daclatasvir, and ribavi-
rin. The observed increase in viral load reduction at
week 1 by adding daclatasvir to sofosbuvir com-
pared to treatment with only sofosbuvir has also
been observed in other studies with different NS5A
inhibitors [28, 29].

Three GT1-infected patients had pre-existing
RASs within NS5B, and one had pre-existing RASs
within NS5A. The NS5B RAS 321I has to our
knowledge not been tested in in vitro experiments
with subtype 1b, but has been observed at treat-
ment failure [30]. The observed RASs NS5B 159F
and 316N only convey a 1.6-fold increase in EC50

to sofosbuvir when combined [31, 32]. NS5B RAS
556G results in an 11-fold increase in EC50 towards
dasabuvir [33]. This limited loss of potency is
apparently not reflected in the reduction of HCV
RNA under treatment. The remaining GT1-infected
patient had NS5A 30R, which confers a 632 to
>1000-fold increase in EC50 to ledipasvir used in
treatment [34, 35]. Despite this considerable loss in
potency, the patient responded well to treatment
with SLR and experienced a rapid reduction of
HCV RNA.

All three GT3-infected patients with pre-existing
RASs in the NS5A region had RASs that conferred
significant resistance to daclatasvir. NS5A 30K and
NS5A 93H increase EC50 of daclatasvir by 29.6–44
fold [36, 37] and 1000–2154 fold [35–37], respec-
tively, explaining the decreased efficacy of daclatas-
vir in these patients. A relation between a high
viral population heterogeneity in NS5A or the
entire ORF and the presence of RASs against
daclatasvir in the GT3 samples was not present.
The newer NS5A inhibitors used for GT3, pibren-
tasvir, and velpatasvir, however, are less inhibited
by RASs presence [35], and current HCV treatment
guidelines [4] do not recommend that baseline test-
ing for RASs is done prior to DAA treatment initi-
ation as it can hamper access to treatment.
However, as these RASs only have a low cost of fit-
ness they have been observed to be sustained a long
time after treatment discontinuation [38] and might
influence retreatment, which is why resistance-
guided retreatment after DAA failure is useful [4]
and have shown good results in relation to success-
ful retreatment outcome [39, 40].

Viral load information is no longer used to guide
treatment decisions as in the interferon treatment
era [41] and patients are treated for fixed treatment
durations regardless of HCV RNA results during
treatment. New DAA treatment is shorter, highly
effective, and generally well tolerated, but shorter
treatment duration may be beneficial in patients

Fig. 1. Genotype 3-infected patients constituted three
groups: (1) sofosbuvir/daclatasvir/ribavirin (SDR) treated
individuals without treatment-specific RASs (N = 5), (2)
SDR-treated individuals with treatment-specific RASs
(N = 3), and (3) sofosbuvir/ribavirin (SR) individuals
without treatment-specific resistance-associated substitu-
tions (RASs) (N = 8). When these three groups were
directly compared (1) SDR-treated individuals without
RASs had a significantly better treatment response (mean
4.22 Log IU/mL; 95% CI: 3.90–4.54) than both (2) SDR-
treated individuals with RASs (mean 3.31 Log IU/mL;
95% CI: 2.49–4.13) (p = 0.039; one-way ANOVA) and (3)
SR treated individuals without RASs (mean 3.39 Log IU/
mL; 95% CI: 2.89–3.88) (p = 0.017; one-way ANOVA).
Error bar indicates SD.
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with cirrhosis where ribavirin is added to treatment
in some cases and where side effects may influence
treatment, and in patients with severe comorbidities
where drug–drug interactions can be an issue.
Treatment costs can also advocate for more indi-
vidual approaches using viral kinetics modeling.
Prior studies have indicated that viral kinetics can
have an impact on outcomes. Paolucci et al. [42]
detected significantly higher viral loads during
treatment at weeks 1, 4, and 8 in patients failing
DAA treatment compared to patients with SVR.
Furthermore, Maasoumy et al. [43] found that
week 2 viral load can predict viral relapse in GT3-
infected patients when treated solely with sofosbu-
vir and ribavirin but not with other DAAs.

The treatment week for clearance of detectable
HCV RNA was not influenced by pre-existing
RASs but instead by the presence of cirrhosis. Our
result is in accordance with the study by Gambato
et al. [44] including patients with compensated and
decompensated cirrhosis, where a slower viral clear-
ance rate was seen in patients with a transient elas-
tography >21 kPa. Persistence of detectable HCV
RNA may rather reflect the presence of less rapidly
clearing compartments than the reduced potency of
treatment.

Our study presents some limitations. First, the
low number of patients in each treatment arm
makes it difficult to compare RASs and their influ-
ence among the different DAA regimens. Addition-
ally, only patients with compensated cirrhosis at
baseline were included which excludes patients con-
sidered most difficult to treat. Lastly, the majority
of the patients treated received DAA regimens that
are currently considered sub-optimal, and we can-
not exclude different results when using next-
generation pan-genotypic DAA regimens. Larger
clinical studies are warranted to validate if viral
kinetics can be used as a surrogate marker in rela-
tion to response-guided therapy, and whether base-
line RAS may hamper viral kinetics. As different
factors such as HCV genotype, liver fibrosis status,
baseline HCV RNA load, presence of baseline
RAS, and DAA regimen may influence viral load
reductions these factors should be considered when
designing future studies, as larger homogeneous
patient groups would provide more conclusive data.

CONCLUSION

We found that pre-existing RASs in the NS5A -
and NS5B regions did not influence viral kinetics in
patients with GT1. In patients with GT3 treated
with SDR pre-existing RASs in the NS5A region
reduced the decline of HCV RNA in the first treat-
ment week but was not related to the time of

clearance of HCV RNA. The presence of cirrhosis
was related to the time of clearance of HCV RNA
for both GT1 and GT3 patients. Further studies
including a larger number of patients who are trea-
ted with DAA regimens including 2nd and 3rd gen-
eration NS5A inhibitors with regular viral load
testing during treatment are needed to understand
the interaction between RASs and viral kinetics
during DAA treatment.
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