
Roskilde University

IMT

Energy consumption of .Net Object
Relational Mappers

Patrik Kolesár

supervised by
Maja Hanne Kirkeby and João Paulo Fernandes

June 01, 2023

Abstract

This thesis critically investigates the en-
ergy efficiency implications of Object Rela-
tional Mapping (ORM) frameworks within the
.NET landscape, particularly focusing on Dap-
per, Entity Framework, and nHibernate. The
primary objectives involve evaluating their en-
ergy consumption and execution time, explor-
ing the impact of various query types and ta-
ble sizes. Data was gathered through con-
trolled experimental setups, running numer-
ous database queries across different frame-
works, query types, and table sizes. The data
were subjected to descriptive statistics, non-
parametric tests, and visual aids for compre-
hensive analysis.

Findings within this research reveal that
Dapper outperforms in terms of energy ef-
ficiency compared to nHibernate and Entity
Framework, suggesting its potential role in

energy-conscious software development. Ad-
ditionally, the type of query plays a signifi-
cant role in energy consumption and execution
time, with ”Get” operations showing higher
energy usage and increased execution time.
Larger tables were also found to consume more
energy during data retrieval processes.

The insights gained from this study pro-
vide a valuable contribution to understand-
ing the energy efficiency nuances among dif-
ferent ORM frameworks, informing software
engineers in making strategic decisions related
to ORM framework selection, query type us-
age, and data management. These findings
bear significant implications for both the aca-
demic field and the industry, enabling the ad-
vancement towards sustainable software de-
velopment practices and contributing to the
broader dialogue on energy efficiency.

Contents

1 Introduction 2

2 Related work 4

3 Experiment Context 5

4 Experiment design 6
4.1 Experiment definition . 6
4.2 Variable selection . 7
4.3 Sample selection . 7
4.4 Instrumentation . 8
4.5 Experiment execution . 8
4.6 Hypothesis formulation . 9

1

4.6.1 Hypothesis 1: Framework Energy Consumption 10
4.6.2 Hypothesis 2: Framework Execution Time 10
4.6.3 Hypothesis 3: Query Types Energy Consumption 10
4.6.4 Hypothesis 4: Query Types Execution Time 10
4.6.5 Hypothesis 5: Table Size Energy Consumption 11
4.6.6 Hypothesis 6: Table Size Execution Time . 11

5 Results 11
5.1 Statistics . 11

6 Discussion 17

7 Threats to validity 22
7.1 Construct validity . 22
7.2 Internal validity . 23
7.3 Conclusion validity . 23
7.4 External validity . 24

8 Conclusion 25

A Appendix - Additional Statistics 29

B Appendix - Experiment code 47

1 Introduction

The energy consumption of data centers re-
mains a significant concern in the digital sec-
tor, especially in the context of energy consump-
tion, which is one the main focus of this mas-
ter’s thesis. Projections indicated a potential
increase in power usage from approximately 33
GW to around 89 GW in the last decade [9].
Other studies suggest that data centers glob-
ally consumed around 400 TWh of electricity in

2018 [10]. Looking ahead, projections estimate a
substantial growth in data center electricity con-
sumption, with a potential usage exceeding 2000
TWh by 2030 [9] [10]. Additionally, it is acknowl-
edged that the digital sector, including comput-
ing infrastructure, plays a significant role in new
electricity use and CO2 emissions [8]. The energy
efficiency of Object relational mapping (ORM)
frameworks needs to address the challenges posed

2

by data centers, such as their substantial power
requirements and the hypothesis that servers de-
liver only about 30% of their nominal electrical
efficiency improvements, leading to reduced elec-
tricity costs and carbon emissions [23]. By exam-
ining these factors and aligning with the growing
concern for sustainable energy practices, this re-
search aims to contribute to the development of
energy-efficient ORM frameworks that can help
mitigate the environmental impact of data cen-
ters and other factors in the digital sector.

The concept of Object Relational Mapper
(ORM) refers to a design pattern utilized in
object-oriented programming languages to fa-
cilitate seamless access to relational databases.
Implementations of ORM exist for various pro-
gramming languages, providing developers with
a range of options. The fundamental function-
ality of an ORM includes support for a spe-
cific persistence engine and essential CRUD op-
erations. Additionally, advanced ORM features
may encompass custom-SQL extensions to en-
hance query building capabilities. In essence,
an ORM library leverages the object-oriented
paradigm within a specific programming lan-
guage, enabling developers to construct queries
that retrieve data and map it into corresponding
object types [27].

In recent years, there has been a growing
recognition of the importance of incorporating
environment-friendly practices, such as reduc-
ing power consumption, paper usage, and car-
bon emissions, in the software development pro-
cess [28]. However, there is a noticeable gap
in the existing literature and research when it

comes to studying energy efficiency in Object-
Relational Mapping (ORM) frameworks, partic-
ularly in the context of Dapper, Entity Frame-
work, and nHibernate. The lack of empirical
studies and comparative evaluations specifically
focused on these frameworks’ energy consump-
tion leaves a significant knowledge gap. There-
fore, this master thesis aims to bridge this gap
by conducting an in-depth investigation into
the energy efficiency of these ORM frameworks.
By providing valuable insights and comparative
analysis, this research aims to contribute to the
development of sustainable software practices
and inform decision-making processes in the se-
lection and optimization of ORM frameworks.

The research conducted in this master thesis
was carefully planned using the Goal-Question-
Metrics (GQM) approach [12], a recognized
methodology for designing and conducting em-
pirical studies. The research question (RQ)
that drove the experimentation can be succinctly
stated as follows: ”What is the impact of ORM
frameworks, specifically Dapper, Entity Frame-
work, and nHibernate, on energy consumption
and performance?” This research question serves
as the guiding principle for the investigation into
the energy efficiency implications of these ORM
frameworks within the .Net framework, with a
specific focus on the essential CRUD (Create,
Read, Update, Delete) operations. The aim of
the research is to evaluate and compare potential
differences among the chosen frameworks look-
ing at their energy consumption and performance
considering different metrics like table sizes or
chosen CRUD operations.

3

2 Related work

In the domain of performance evaluation for
.NET Object Relational Mappers (ORMs), pre-
vious studies [11] [17] [34] have primarily focused
on comparing the time performance and mem-
ory consumption [30] of different ORM tools,
highlighting their features and capabilities within
a .NET environment. These studies have con-
tributed valuable insights into query execution
time, transaction management, and data pro-
cessing. However, to the best of our knowledge,
none of these studies specifically considered the
energy efficiency implications of the ORM frame-
works. In contrast, our current research extends
this knowledge gap by investigating both time
performance and energy consumption, offering
a comprehensive evaluation to guide developers
in selecting ORM frameworks that optimize per-
formance and energy efficiency in their applica-
tions. Additionally, a notable contribution to
the field comes from [20], where the study not
only explores performance analysis but also ex-
amines multiple databases, providing a broader
perspective on the capabilities and limitations of
.NET-based Object-Relational Mapping frame-
works across different database systems.

Other researches address practical perfor-
mance issues [13] and offer benefits compared
to plain SQL approaches [15]. However, there
are also known disadvantages, and the choice be-
tween simpler ORMs like Dapper and more com-
plex ones like EF Core or NHibernate depends
on the desired trade-off between performance and
functionality. None of the studies provide a com-

prehensive comparison among all three ORMs
and analyze multiple CRUD calls with varying
complexity [13] [15] [30].

In the field of energy efficiency evaluation for
Object Relational Mappers (ORMs), it is worth
noting two relevant research studies. First, [25]
focuses on the energy efficiency of different ORM
approaches within PHP applications, providing
an empirical evaluation of their energy consump-
tion patterns. Although this study diverges from
our focus on .NET-based ORMs, it shares a
common interest in energy efficiency and high-
lights the importance of considering energy opti-
mization in ORM usage across various program-
ming languages. Second, [24] explores the im-
pact of database-related practices on the energy
efficiency of software applications, providing in-
sights into how certain practices can contribute
to improved energy efficiency. While their study
does not directly investigate ORMs or the .NET
environment, it complements our research focus
on energy optimization in the context of ORM
frameworks in the .NET ecosystem. Together,
these studies emphasize the significance of con-
sidering energy efficiency in ORM usage and soft-
ware development practices, providing valuable
insights for energy-efficient software engineering.

When it comes to energy efficiency in
database systems, several studies have investi-
gated power-performance tradeoffs and energy
estimation of relational operations [32] [33]. Lang
and Patel explored the concept of eco-friendly
database management systems [22], while Chen

4

et al. focused on integrating renewable energy
to achieve green databases [14]. Xu further con-
tributed to the field by proposing a power-aware
database management system [31]. Addition-
ally, Song et al. compared and analyzed the

energy efficiency of cloud databases and parallel
databases [29]. These studies provide valuable
insights into the energy efficiency considerations
and strategies in the broader context of database
systems.

3 Experiment Context

To shed light on the energy efficiency impli-
cations of these widely embraced ORM frame-
works within the .NET landscape, this study
meticulously examines the distinctive attributes
of Dapper [3], Entity Framework [5], and nHiber-
nate [7]. These frameworks have gained signifi-
cant popularity among developers in the .NET
community, as evidenced by their impressive
download statistics from the NuGet package
repository. For instance, Entity Framework has
been downloaded over 212 million times, show-
casing its widespread adoption and recognition
[4]. Dapper, with over 228 million downloads,
is highly favored for its lightweight and high-
performance nature [2]. Similarly, nHibernate,
with over 30 million downloads, is renowned for
its advanced features and flexibility [6].

All of the frameworks share common func-
tionality such as automatic mapping of database
entities to object models, support for CRUD op-
erations (Create, Read, Update, Delete), and
the ability to perform database queries using
object-oriented syntax. They also provide fea-
tures for managing database connections, trans-
action handling, and caching mechanisms to op-
timize performance.

While frameworks like Dapper, Entity Frame-
work, or nHibernate offer numerous advantages
in data management within relational database
management systems (RDBMS), they also ex-
hibit certain drawbacks. In their pursuit of sim-
plifying usage and abstracting the complexities
of SQL, these frameworks occasionally obscure
advanced functionalities and features inherent in
SQL, thereby limiting developers’ control and
flexibility [16].

Despite their shared functionality, Dapper,
Entity Framework, and nHibernate exhibit dis-
tinct characteristics that set them apart. Dap-
per prides itself on its lightweight and high-
performance nature, relying on raw SQL queries
and leveraging ADO.NET for efficient data re-
trieval. On the other hand, Entity Framework
offers a rich set of features, including a pow-
erful object-relational mapping designer, sup-
port for advanced querying capabilities through
LINQ (Language Integrated Query), and auto-
matic database schema generation. Meanwhile,
nHibernate is known for its extensive support
for complex mapping scenarios, including inheri-
tance, associations, and advanced caching mech-
anisms providing a flexible and customizable

5

ORM solution, often preferred in enterprise-level
applications.

Moreover, the significance of energy efficiency
in the digital sector cannot be understated. En-
ergy consumption has a direct impact on cost
savings, environmental sustainability, and overall
system performance. Hence, it is crucial to eval-
uate the energy efficiency implications of these
ORM frameworks within the context of the .NET
ecosystem.

In this research, the focus specifically lies
on the energy performance trade-offs associated
with the essential CRUD (Create, Read, Up-

date, Delete) operations, which form the foun-
dation of data manipulation in software appli-
cations. By rigorously evaluating the energy
consumption profiles and conducting compara-
tive analyses, valuable insights will be provided
into the energy efficiency implications of these
ORM frameworks, specifically within the .NET
domain. The goal is to identify the framework
that best balances performance and energy ef-
ficiency, enabling developers to make informed
decisions in their ORM framework selection and
optimization processes.

4 Experiment design

4.1 Experiment definition

According to the established Goal-Question-
Metrics (GQM) approach [9], and building upon
the design proposed by Procaccianti [25], the
main objective of this investigation is to analyze
the impact of three ORM frameworks, namely
Dapper, Entity Framework, and nHibernate, on
energy consumption and performance in software
development. The study aims to provide insights
into the energy efficiency implications of these
frameworks from a software engineer’s perspec-
tive, facilitating the identification of best prac-
tices and recommendations for optimizing data
management processes. The research question
guiding this study is: ”What is the impact of
Dapper, Entity Framework, and nHibernate on
performance and energy consumption?”.

To achieve this goal, the study utilizes specific
metrics to assess their influence. These metrics
include Energy Consumption, measuring the en-
ergy consumed by the software system in joules
(J), and Execution Time, capturing the dura-
tion of an experimental unit in milliseconds (ms).
By analyzing these metrics, the study aims to
gain a comprehensive understanding of the per-
formance and energy consumption characteristics
of the examined ORM frameworks. Additionally,
the study calculates Power Consumption (P) as
the product of average energy consumption (E)
and execution time (t), providing insights into
the overall energy efficiency performance.

6

4.2 Variable selection

In the ”Variable selection” section, the study
carefully considers the selection of independent
variables that can be manipulated and con-
trolled. The primary variable of interest is the
ORM framework, which includes three differ-
ent frameworks: Dapper, Entity Framework,
and nHibernate. These frameworks are chosen
based on their popularity and significance in the
.NET development community.

To address potential confounding factors and
ensure a comprehensive analysis, two additional
variables are identified. The first is the Query
type issued to the database, encompassing the
fundamental CRUD operations:Create, Read
(Get and GetById), Update, and Delete.
By considering different query types, the impact
of each ORM framework on various data manip-
ulation scenarios can be assessed.

The second independent variable is the Ta-
ble size involved in the queries. Three distinct
table sizes are considered:Small, Medium, and
Large. The categorization is based on the table
size in kilobytes (KB), with small tables being
less than 100 KB, medium tables ranging from
100 KB to less than 1 MB, and large tables ex-
ceeding 1 MB. By examining different table sizes,
the potential influence of data volume on the per-
formance and energy consumption of the ORM
frameworks can be explored.

These carefully selected independent vari-
ables and their corresponding treatments en-
able a comprehensive investigation into the en-
ergy efficiency implications of the Dapper, Entity

Framework, and nHibernate ORM frameworks.
By systematically examining the effects of differ-
ent query types and table sizes, this study aims
to provide valuable insights into the performance
and energy consumption characteristics of these
frameworks. Furthermore, by considering poten-
tial confounding variables and controlling the se-
lected factors, a rigorous analysis of the variables’
impacts on energy efficiency can be ensured.

By incorporating these variables into the
study design, a deeper understanding of how dif-
ferent factors affect the performance and energy
consumption of ORM frameworks in various data
management scenarios can be gained.

4.3 Sample selection

The ”Sample selection” section outlines the pro-
cess of selecting samples from the Adventure-
Works2019 database [1] for the experiment. Ad-
ventureWorks2019 is a widely used Microsoft
database that showcases the capabilities of Mi-
crosoft’s SQL Server. It contains multiple tables
with millions of rows, offering a comprehensive
dataset for evaluation.

Convenience sampling was employed to select
the samples from AdventureWorks2019, allowing
for the choice of relevant tables that align with
the research objectives. This approach enables
the evaluation of the energy efficiency implica-
tions of the ORM frameworks under investiga-
tion.

The selected tables from Adventure-
Works2019 are as follows:

7

Table: Locations:

• Characteristics: A small table with 16 rows
and 6 columns

• Size: 32.0 KB

• Data: 8.0 KB

Table: Purchases:

• Characteristics: A medium-sized table
with 4,012 rows and 13 columns

• Size: 496.0 KB

• Data: 336.0 KB

Table: Addresses:

• Characteristics: A large table with 19,614
rows and 9 columns

• Size: 5812.5 KB

• Data: 2784.0 KB

It is important to note that the provided row
numbers and sizes represent the initial state of
the tables before the start of the experiment. It
is also acknowledged that some test cases involve
the creation and subsequent deletion of rows,
which may impact the final measurements.

By selecting these specific tables from Adven-
tureWorks2019, the study ensures a diverse rep-
resentation of table sizes and characteristics, en-
abling a comprehensive evaluation of the energy
efficiency implications of the ORM frameworks
in different data management scenarios.

4.4 Instrumentation

The experiment for this research was conducted
using a Lenovo ThinkPad X260 laptop with the
model identifier 20F6007WMD. The laptop was
equipped with an Intel Core i5-6200U CPU run-
ning at a base frequency of 2.30GHz. The system
had 16 GB of DDR4 RAM for efficient memory
operations. The primary storage device used was
a SanDisk SD8TB8U2 SSD with a capacity of
256GB, providing fast and reliable storage. The
research was performed on this laptop running
Ubuntu 22.04 as the operating system. Power
consumption measurements were captured using
the RAPL (Running Average Power Limit) in-
terface, a powerful tool for measuring and mon-
itoring power consumption in cloud computing
servers [21]. Additionally, for the execution time
measurements, code instrumentation was em-
ployed, with timestamps logged at the end of
each experimental run to capture the duration
of the execution.

4.5 Experiment execution

To ensure accurate data interpretation, the exe-
cution time was measured in milliseconds using
RAPL’s high-resolution timer, as well as energy
consumption that was recorded in joules using
the RAPL interface. These measurements pro-
vided precise and granular data for analysis.

In order to capture a sufficient number of
query executions, batches of 1000 consecutive
queries were performed for each experimental
condition. This approach allowed for a robust as-

8

sessment of the average energy consumption per
query, enabling meaningful comparisons between
the ORM frameworks.

To maintain consistency and eliminate any
potential interference, each test script initiated
a fresh database connection and generated new
objects, if applicable to the ORM frameworks be-
ing evaluated. Caching of objects and queries
was disabled to ensure accurate measurements
and prevent any performance optimizations that
could skew the results.

Furthermore, careful consideration was given
to the selection and design of the specific queries
used in the experiments. The queries were cho-
sen to be representative of real-world scenarios,
encompassing various levels of complexity, diver-
sity, and relevance to software applications. This
approach aimed to provide a comprehensive eval-
uation of the ORM frameworks’ performance and
energy consumption under different query condi-
tions.

Additionally, efforts were made to control ex-
ternal influences during the data collection pro-
cess, such as minimizing background processes
and ensuring a stable and controlled testing en-
vironment.

Due to time limitations and resource con-
straints, two trials per experimental unit was
conducted. While multiple trials would have pro-
vided more statistical power, the careful design
and execution of the experiments aimed to max-
imize the reliability and validity of the results
within the available resources.

By adhering to these rigorous experimental
procedures, this study aimed to generate mean-

ingful and reliable data for the subsequent anal-
ysis and interpretation of the results, ensuring
that the conclusions drawn are based on sound
experimental evidence.

Software versions:

• .NET Framework version 7.0.203

• Microsoft SQL Server version 16.0.1050.5

• Dapper version 2.0.123

• Entity Framework version 7.0.5

• nHibernate version 5.4.2

These specific versions were chosen based on
their stability, compatibility, and relevance to
the research objectives. It is important to note
that the choice of software versions may impact
the performance and energy efficiency results,
and using different versions in future experiments
may yield different outcomes.

4.6 Hypothesis formulation

The hypotheses are formulated in a two-tailed
fashion. The following hypotheses examine the
energy consumption, execution time, and the ef-
fect of different frameworks, query types, and
table sizes. To test whether there are statisti-
cally significant differences between chosen enti-
ties, ANOVA (Analysis of Variance) [18] is con-
ducted. In the case where the data is not nor-
mally distributed, a (non-parametric) permuta-
tion test [19] is conducted.

9

4.6.1 Hypothesis 1: Framework Energy
Consumption

Null hypothesis H10: The energy consump-
tion of the frameworks does not differ signifi-
cantly from each other.

µE,dapper = µE,entity framework = µE,nHibernate

Alternative hypothesis H1a: The energy con-
sumption of at least one of the three frameworks
significantly differs from the other two.

∃ i, j with i ̸= j ∧ i, j ∈ {dapper, entity framework,

nHibernate} | µE,i ̸= µE,j (1)

4.6.2 Hypothesis 2: Framework Execu-
tion Time

Null hypothesis H20: The execution time of
the frameworks does not differ significantly from
each other.

µt,dapper = µt,entity framework = µt,nHibernate

Alternative hypothesis H2a: The execution
time of at least one of the three frameworks sig-
nificantly differs from the other two.

∃ i, j with i ̸= j ∧ i, j ∈ {dapper, entity framework,

nHibernate} | µt,i ̸= µt,j (2)

4.6.3 Hypothesis 3: Query Types Energy
Consumption

Null hypothesis H30: There is no significant
difference in energy consumption between the
different query types: Create, Read (Get, Get-
ById), Update, and Delete.

µE,create = µE,read = µE,update = µE,delete

Alternative hypothesis H3a: There is a sig-
nificant difference in energy consumption be-
tween at least two of the different query types.

∃ i, j with i ̸= j ∧ i, j ∈ {create, read,

update, delete} | µE,i ̸= µE,j (3)

4.6.4 Hypothesis 4: Query Types Execu-
tion Time

Null hypothesis H40: There is no significant
difference in time between the different query
types: Create, Read, Update, and Delete.

µt,create = µt,read = µt,update = µt,delete

Alternative hypothesis H4a: There is a sig-
nificant difference in time between at least two
of the different query types.

∃ i, j with i ̸= j ∧ i, j ∈ {create, read,

update, delete} | µt,i ̸= µt,j (4)

10

4.6.5 Hypothesis 5: Table Size Energy
Consumption

Null hypothesis H50: The size of the queried
table does not have a significant effect on energy
consumption.

µE,small = µE,medium = µE,large

Alternative hypothesis H5a: The size of the
queried tables has a significant effect on energy
consumption.

∃ i, j with i ̸= j ∧ i, j ∈ {small,medium,

large} | µE,i ̸= µE,j (5)

4.6.6 Hypothesis 6: Table Size Execution
Time

Null hypothesis H60: The execution time of
the different table sizes does not differ signifi-

cantly from each other.

µt,small = µt,medium = µt,large

Alternative hypothesis H6a: The execution
time of at least one of the table sizes significantly
differs from the other two.

∃ i, j with i ̸= j ∧ i, j ∈ {small,medium,

large} | µt,i ̸= µt,j (6)

Note: The decision to conduct ANOVA or an
alternative non-parametric test will depend on
the distribution of the data. If the data deviates
from normality, we will employ a permutation
test.

5 Results

In this section, the study’s findings are pre-
sented, summarizing the dataset’s characteris-
tics using descriptive statistics. The distribution
of response variables is explored, and hypothe-
sis testing is conducted to assess the validity of
the formulated hypotheses. Visual aids, such as
boxplots, are used to enhance data visualization.
These results contribute valuable insights to the
field and have practical implications for future
research and applications.

5.1 Statistics

The section presents the descriptive statistics for
energy consumption, execution time, and energy
consumption, which were derived from the col-
lected data. The statistics include the mean,
median, standard deviation (σ), and coefficient
of variation (CV) for each variable. It is worth
noting that energy consumption exhibited rela-
tively minor variations, indicating a consistent
energy usage throughout the experiment. On
the other hand, execution time showed more sig-

11

nificant fluctuations, suggesting varying perfor-
mance levels across different treatments. These
findings highlight the substantial impact of treat-
ment variations on system performance, which
consequently influenced the overall energy con-
sumption. The descriptive statistics provide a
comprehensive overview of the characteristics of
these variables and shed light on the relationship
between energy consumption, execution time,
and power consumption in this study.

Total CPU Energy Consumption:

• Mean: 78.92J
• Median: 39.53J
• Standard Deviation (σ): 126.54J
• Coefficient of Variation (CV): 160.34J

Total Execution Time:

• Mean: 29553.12ms
• Median: 8522.54ms
• Standard Deviation (σ): 58160.40ms
• Coefficient of Variation (CV): 196.80ms

Total Power Consumption:

• Mean: 4.06W
• Median: 4.61W
• Standard Deviation (σ): 1.42W
• Coefficient of Variation (CV): 34.90W

Upon conducting the Shapiro-Wilk normality
test [26] on our dataset, we made some interest-
ing observations. For the variables ”Get”, ”Cre-
ate”, ”Dapper”, ”EntityFramework”, ”nHiber-
nate”, ”Purchases”, and ”Addresses,” the test

indicated that the data does not follow a nor-
mal distribution (p ¡ 0.05), as evidenced by the
low p-values and W-statistics less than 0.5. How-
ever, for the variables ”GetById”, ”Update”,
”Delete”, and ”Locations,” the test did not pro-
vide sufficient evidence to reject the null hypoth-
esis, suggesting that the data may adhere to a
normal distribution. These findings highlight
the importance of considering the distributional
characteristics of the data when selecting appro-
priate statistical methods for analysis. Based on
these facts it was decided to perform permuta-
tion tests as we could not find enough evidence
for normal distribution of data.

Please note, the box plots presented in this
section have been adjusted to enhance their read-
ability by extending the whisk values. The stan-
dard box plots including outliers can be con-
sulted in Appendix A, under the ’Additional
Statistics’ section (see Figures 11 through 16).
For a more comprehensive visualization of the
differences among frameworks, operations, and
tables, refer to the histograms of mean differ-
ences provided in the same section (see Figures
17 through 26).

Hypothesis 1 results: Framework Energy
Consumption:
In Hypothesis 1, the energy consumption of dif-
ferent frameworks was examined without consid-
ering the query types or table sizes. The over-
all means of the energy consumption for each
framework were compared. The permutation
test revealed no significant difference among the
frameworks. Therefore, the null hypothesis failed

12

to be rejected. Figure 1a displays a box plot de-
picting the distribution of energy consumption
samples, grouped by framework. The box plot
provides a visual representation of the range,
median, quartiles offering insights into the dis-
tribution of energy consumption across different
frameworks.

Empirical probabilities between different frame-
works where A = Dapper, B = nHibernate, and
C = Entity Framework:

Empirical Probability (AB): 0.4153
Empirical Probability (AC): 0.367
Empirical Probability (BC): 0.4385

The group means for each treatment are as fol-
lows:

Framework A: 72.872798J
Framework B: 79.479555J
Framework C: 84.401406J

Hypothesis 2 results: Framework Execu-
tion Time:
Hypothesis 2 aimed to assess the difference in
execution time among the selected frameworks.
The permutation test does not demonstrate a sig-
nificant difference among the frameworks. Thus,
the null hypothesis cannot be rejected. Figure 1b
presents a box plot illustrating the distribution of
execution time samples, grouped by framework.
The box plot provides a visual representation of
the range, median, quartiles allowing for insights
into the distribution of execution times across
different frameworks.

Empirical probabilities between different frame-

Figure 1: (a) Energy Consumption in J per framework (b) Execution time in ms per framework

13

works where A = Dapper, B = nHibernate, and
C = Entity Framework:

Empirical Probability (AB): 0.5035
Empirical Probability (AC): 0.4682
Empirical Probability (BC): 0.4593

The group means for each treatment are as fol-
lows:

Framework A: 29067.558889ms
Framework B: 29045.221852ms
Framework C: 30546.564815ms

Hypothesis 3 results: Query Types En-
ergy Consumption:
For Hypothesis 3, the energy consumption dif-
ference among the query types was investigated
without considering frameworks or table sizes.
The permutation test identified a noticeable dif-
ference among the query types (especially for
Get operation). Therefore, the null hypothesis
can be rejected. Figure 2a illustrates a box plot
representing the distribution of energy consump-
tion samples, grouped by query type. The box
plot helps understand the range and variation in
energy consumption for each query type, high-
lighting the differences in energy usage across
different types of operations.

Empirical probabilities between different frame-
works where A = Get, B = GetById, C = Create,
D = Update, and E = Delete :

Empirical Probability (AB): 1.0
Empirical Probability (AC): 1.0
Empirical Probability (AD): 1.0
Empirical Probability (AE): 1.0
Empirical Probability (BC): 0.5107
Empirical Probability (BD): 0.5014
Empirical Probability (BE): 0.4569
Empirical Probability (CD): 0.5003
Empirical Probability (CE): 0.4478
Empirical Probability (DE): 0.4531

The group means for each treatment are as fol-
lows:

Query Type A: 219.422058J
Query Type B: 39.054369J
Query Type C: 38.306769J
Query Type D: 38.660007J
Query Type E: 39.374871J

Hypothesis 4 results: Query Types Ex-
ecution Time:
Hypothesis 4 aimed to assess the effect of query
types on the execution time without consider-
ing frameworks or table sizes. The permutation
test identified a noticeable difference among the
query types (especially with Get and Delete op-
erations). Therefore, the null hypothesis can be
rejected. Figure 2b showcases a box plot display-
ing the distribution of execution time samples,
grouped by query type. The box plot helps in
understanding the range and variation in execu-
tion times for each query type, highlighting the
differences in execution duration across different
types of operations.

14

Figure 2: (a) Energy Consumption in J per operation (b) Execution time in ms per operation

Empirical probabilities between different frame-
works where A = Get, B = GetById, C = Create,
D = Update, and E = Delete:

Empirical Probability (AB): 1.0
Empirical Probability (AC): 1.0
Empirical Probability (AD): 1.0
Empirical Probability (AE): 0.9996
Empirical Probability (BC): 0.4693
Empirical Probability (BD): 0.4598
Empirical Probability (BE): 0.2086
Empirical Probability (CD): 0.4893
Empirical Probability (CE): 0.2195
Empirical Probability (DE): 0.2325

The group means for each treatment are as fol-
lows:

Query Type A: 91512.231111ms
Query Type B: 8048.633333ms
Query Type C: 9610.167778ms
Query Type D: 10067.179444ms
Query Type E: 27501.613333ms

Hypothesis 5 results: Table Size En-
ergy Consumption:
In Hypothesis 5, the effect of table size (Small,
Medium, Large) on energy consumption was in-
vestigated. The permutation test identified a no-
ticeable difference among the table sizes. Thus,
the null hypothesis can be rejected. Figure 3a
displays a box plot representing the distribution
of energy consumption samples, grouped by table
size. The box plot provides a visual representa-
tion of the energy consumption distribution for
each table size, allowing observation of the vari-

15

Figure 3: (a) Energy Consumption in J per table (b) Execution time in ms per table

ations in energy usage across different table sizes.

Empirical probabilities between different frame-
works where A = Small Table(Locations), B =
Medium Table(Purchases), and C = Large Ta-
ble(Addresses):

Empirical Probability (AB): 0.3121
Empirical Probability (AC): 0.0003
Empirical Probability (BC): 0.0025

The group means for each treatment are as fol-
lows:

Table A: 36.221592J
Table B: 54.441248J
Table C: 146.090920J

Hypothesis 6 results: Table Size Execu-

tion Time:
Hypothesis 6 aimed to assess the effect of ta-
ble size (Small, Medium, Large) on the execu-
tion time for all frameworks. The permutation
test identified a noticeable difference among the
tables. Therefore, the null hypothesis can be
rejected. Figure 3b presents a box plot illustrat-
ing the distribution of execution time samples,
grouped by table size. The box plot provides a
visual representation of the execution time dis-
tribution for each table size, allowing observation
of the variations in execution duration across dif-
ferent table sizes.

Empirical probabilities between different frame-
works where A = Small Table(Locations), B =
Medium Table(Purchases), and C = Large Ta-
ble(Addresses):

16

Empirical Probability (AB): 0.4112
Empirical Probability (AC): 0.0014
Empirical Probability (BC): 0.0021

The group means for each treatment are as fol-
lows:

Table A: 13208.922593ms
Table B: 16864.110370ms
Table C: 58586.312593ms

6 Discussion

In this study, the focus was on analyzing the
energy efficiency implications of three widely-
used ORM frameworks in the .NET landscape:
Dapper, Entity Framework, and nHibernate.
The goal was to understand how these frame-
works impact power consumption and execution
time. The metrics used for evaluation included
energy consumption, execution time, operation
type, and table size. By conducting this research,
valuable insights were gained to assist software
engineers in making informed decisions when se-
lecting an ORM framework and optimizing en-
ergy efficiency in their applications.

The descriptive statistics reveal the charac-
teristics of the dataset, with energy consump-
tion exhibiting minor variations and execution
time showing slightly more significant fluctua-
tions. The Shapiro-Wilk normality test indicates
that the data distribution varies across differ-
ent variables. Hypothesis testing results indicate
that there is no significant difference in energy
consumption among the frameworks, while there
is a mild difference in execution time. The anal-
ysis of query types reveals noticeable differences
in energy consumption and execution time, with

Get operations having the highest impact. Ad-
ditionally, table size has a significant effect on
energy consumption and execution time. These
results contribute to a better understanding of
the performance and energy efficiency implica-
tions of these ORM frameworks, enabling read-
ers to better understand how to optimize energy
consumption in their applications.

An interesting finding from the analysis is the
notable variation in energy consumption and ex-
ecution time levels among the frameworks (Dap-
per, Entity Framework, and nHibernate) com-
pared to the overall mean level. Figure 4a
presents a plot which reveals that Dapper demon-
strates better energy consumption for this re-
search compared to both nHibernate and Entity
Framework, indicating its potential for energy-
efficient software development. Moreover, Fihure
4b shows that Dapper and nHibernate exhibit
similar execution time levels, suggesting compa-
rable performance in terms of time efficiency. In
contrast, Entity Framework stands out with sig-
nificantly higher execution time and energy con-
sumption, indicating potential performance and
energy drawbacks. However, it is worth mention-

17

Figure 4: (a) Differences in mean levels of Energy Consumption per framework. (b) Differences in
mean levels of Execution time per framework.

ing that Entity Framework enjoys widespread
popularity in the development community and
offers a rich set of features and functionalities. Its
user-friendly interface and extensive tooling sup-
port make it still an attractive choice for develop-
ers seeking convenience and productivity in their
projects. Therefore, when choosing a frame-
work, developers and engineers should consider
the trade-off between performance, energy con-
sumption, popularity, and functionality. By se-
lecting frameworks with better energy consump-
tion and comparable execution time, they can
strike a balance between efficient performance,
energy efficiency, functionality, and the practical
considerations of popularity and ease of use.

The analysis of the two plots in Figure 5 sheds
light on the performance variations among differ-

ent operations within the studied ORM frame-
works (Dapper, Entity Framework, nHibernate).
The plot Figure 5a highlights a significant dispar-
ity in energy consumption between the ”Get” op-
eration and the other operations (GetById, Cre-
ate, Update, and Delete) among all the frame-
works. The ”Get” operation exhibits noticeably
higher energy consumption, which can be at-
tributed to the retrieval of data from larger ta-
bles. In contrast, the energy consumption lev-
els for the remaining operations remain relatively
consistent. Similarly, the plot Figure 5b unveils
that the ”Get” operation has the longest exe-
cution time, followed by the ”Delete” operation,
while the execution times for the other operations
are comparable. These findings underscore the
importance of optimizing the energy consump-

18

Figure 5: (a) Average Energy Consumption in J per framework and operation (b) Average Execu-
tion time in ms per framework and operation

tion and execution time of the ”Get” operation.

The analysis of the two additional plots in
Figure 6 provides valuable insights into the en-
ergy consumption and execution time variations
among different tables within the studied ORM
frameworks. In the plot Figure 6a, the energy
consumption levels across the tables vary signif-
icantly. Notably, the ”Locations” table exhibits
lower energy consumption across all three frame-
works compared to the ”Purchases” and ”Ad-
dresses” tables. This discrepancy suggests that
the ”Locations” table demonstrates superior en-
ergy efficiency in terms of resource utilization,
possibly due to its smaller data volume. Sim-
ilarly, in the plot Figure 6b, the ”Locations”
table demonstrates faster execution time across
all frameworks, while the ”Purchases” and ”Ad-
dresses” tables exhibit slightly longer execution

times. These findings imply that the ”Locations”
table offers better performance in terms of execu-
tion time, which can be attributed to the reduced
data volume and complexity within the table.

The analysis of the additional two plots in
Figure 7 provides valuable insights into the en-
ergy consumption and execution time variations
across different operations and tables. The first
plot Figure 7a reveals intriguing trends in av-
erage energy consumption by table and opera-
tion. In the ”Locations” table, the energy con-
sumption remains relatively consistent across all
operations, suggesting that table size has min-
imal impact on energy consumption. However,
for the ”Purchases” and ”Addresses” tables, en-
ergy consumption for “Get” operation increases
significantly as the table size grows larger, while
the energy consumption for the other operations

19

Figure 6: (a) Average Energy Consumption in J per framework and table (b) Average Execution
time in ms per framework and table

remains relatively stable. This finding indicates
that the amount of data stored in a table in-
fluences energy consumption, with larger tables
consuming more energy during data retrieval.
Moving on to the second plot Figure 7b, the
trends align with the first graph Figure 7a, with
one intriguing exception. The execution time of
the ”Delete” operation for the ”Locations” ta-
ble stands out as notably higher compared to
the other tables, despite the similar execution
times of other operations across all tables. This
unexpected finding suggests that there may be
specific factors or complexities associated with
the ”Delete” operation in the ”Locations” table
that resulted in longer execution time. These
findings underscore the significance of consider-
ing table size and operation type when analyzing
energy consumption and execution time in ORM

frameworks. By optimizing data retrieval pro-
cesses and addressing potential inefficiencies in
specific operations and table combinations, de-
velopers can enhance energy efficiency and opti-
mize performance in their applications.

In the domain of performance evaluation for
.NET Object Relational Mappers (ORMs), pre-
vious studies have primarily focused on compar-
ing time performance and memory consumption,
providing insights into query execution, transac-
tion management, and data processing. How-
ever, these studies have often overlooked the
energy efficiency implications of ORM frame-
works. In contrast, this research addresses this
gap by conducting a comprehensive evaluation
of both time performance and energy consump-
tion, specifically focusing on the newer versions of
.NET and selected ORM frameworks. By consid-

20

Figure 7: (a) Average Energy Consumption in J per operation and table (b) Average Execution
time in ms per operation and table

ering the latest advancements in technology, this
study provides valuable guidance for developers
in selecting ORM frameworks that optimize both
performance and energy efficiency, ensuring the
use of efficient and up-to-date tools in software
development.

The findings of this research have significant
implications for both academia and industry. By
meticulously examining the energy efficiency im-
plications of widely embraced ORM frameworks
within the .NET landscape, this study adds valu-
able insights to the existing knowledge base.
The comprehensive analysis of energy consump-
tion, execution time, and other relevant metrics
sheds light on the performance characteristics
and trade-offs associated with different frame-
works, query types, and table sizes. These in-
sights can be applied in practice by software en-

gineers and developers to make informed deci-
sions regarding ORM framework selection and
data management practices, ultimately optimiz-
ing energy efficiency in software systems. Fur-
thermore, the potential impact of these find-
ings extends to relevant stakeholders, includ-
ing software development companies, IT depart-
ments, and sustainability-focused organizations,
who can leverage the knowledge gained from this
study to enhance energy-efficient software devel-
opment processes and contribute to broader sus-
tainability goals in the field.

While this research provides valuable insights
into the energy efficiency implications of ORM
frameworks, there are several areas that war-
rant further investigation. Firstly, future studies
could delve deeper into the specific factors influ-
encing energy consumption and execution time,

21

such as the underlying hardware configurations,
database optimizations, or network latency. Ad-
ditionally, the impact of different database man-
agement systems (DBMS) on the performance
and energy efficiency of ORM frameworks could
be explored. Furthermore, considering the evolv-
ing nature of software development and the emer-
gence of new frameworks, it would be valuable to
conduct longitudinal studies to assess the long-
term energy performance of ORM frameworks

and track any changes or improvements over
time. Finally, investigating the scalability of en-
ergy consumption and execution time across dif-
ferent system sizes and workloads could provide
insights into the performance characteristics in
real-world scenarios. These potential areas of
investigation would build upon the findings of
this study and contribute to a more comprehen-
sive understanding of energy efficiency in soft-
ware systems.

7 Threats to validity

Threats to validity are an important consid-
eration in this study. The threats are classified
according to validity types following the struc-
ture proposed by Wohlin et al. [16].

7.1 Construct validity

During the research, potential threats to con-
struct validity were identified, particularly in re-
lation to the energy consumption and execu-
tion time of database queries. One such threat
involved the influence of internet connectivity,
specifically in scenarios with remote data access
or online resources. Unreliable or unstable in-
ternet connections could introduce variability in
query execution time and data retrieval, poten-
tially impacting the accuracy and consistency of
the measured constructs.

To mitigate this threat, measures were taken
to maintain a stable and reliable internet con-
nection throughout the experiments, minimizing

the potential impact of internet connectivity on
the results. Additionally, the Running Average
Energy Limit (RAPL) interface was utilized as a
standardized mechanism for monitoring and con-
trolling the energy consumption of the systems
under test. Although a calibration of the RAPL
interface was not conducted, it provided valuable
insights into the energy efficiency of the ORM
frameworks.

By addressing the potential influence of inter-
net connectivity and leveraging the RAPL inter-
face, the research aimed to enhance the accuracy
and reliability of the measurements, strengthen-
ing the construct validity. These steps were taken
to ensure valid and meaningful conclusions re-
garding the energy consumption and execution
time of the ORM frameworks under investiga-
tion.

22

7.2 Internal validity

Threats to internal validity have been meticu-
lously addressed in this study. Given the ab-
sence of randomization techniques, the analysis
employed robust non-parametric tests that ac-
counted for deviations from normality. These al-
ternative tests ensured the reliability of the infer-
ential analysis and bolstered the internal validity
of the study.

In an effort to reduce the impact of any po-
tential confounding variables, the experimental
environment underwent close monitoring. Con-
certed efforts were made to identify and manage
any elements that could distort the outcomes.
This rigorous strategy enhances the internal va-
lidity of the study by asserting a clear correlation
between the observed effects and the specific fac-
tors under investigation.

While the reuse of the same samples for as-
sessing different factors and treatments may in-
troduce a potential threat to internal validity,
steps were taken to mitigate this concern. Each
experimental object was meticulously restored to
its initial state before applying each treatment,
minimizing the influence of prior measurements.
Additional measures, such as the disabling of
caching, were implemented to ensure an impar-
tial and equitable comparison between the differ-
ent ORM systems.

Considering these rigorous measures, it is ev-
ident that the potential threats to internal va-
lidity have been thoroughly acknowledged and
effectively addressed in this master thesis. This
comprehensive approach bolsters the internal va-

lidity of the study and instills confidence in the
validity and reliability of the findings.

7.3 Conclusion validity

The thorough examination of this research study
highlights several important aspects that need to
be considered when evaluating the conclusion va-
lidity of the findings. Despite the meticulous ap-
proach and robust methodology employed, it is
crucial to acknowledge the potential threats that
could impact the reliability and generalizability
of the conclusions.

The potential for measurement error also
needs to be acknowledged. Despite rigorous ef-
forts to minimize measurement error through in-
strument configuration and repeated measure-
ments, some degree of variability or measurement
error may still exist. It is important to recognize
and account for these factors to ensure the accu-
racy and validity of the conclusions drawn. The
reliability and validity of the measurement in-
struments used in the study should be carefully
evaluated to ascertain the robustness of the find-
ings.

Another critical aspect to consider is the
representativeness of the selected samples. In
this study, convenience sampling was employed,
which may introduce potential biases and limit
the generalizability of the findings. It is vital to
acknowledge the limitations associated with con-
venience sampling and recognize that the con-
clusions drawn from these samples may not fully
capture the variability and diversity present in
the larger population. Thus, the findings should

23

be cautiously applied to other populations or
contexts, and the limitations of the sample repre-
sentativeness should be transparently discussed.

The method used for assigning treatments
or factors to the experimental units is an addi-
tional factor that could influence the conclusion
validity. Randomization or systematic allocation
methods were not utilized in this study. While
this decision was made based on practical con-
siderations, it is important to acknowledge the
potential biases or limitations introduced by the
chosen assignment method. The potential im-
pact of the assignment method on the validity of
the conclusions should be openly recognized and
discussed.

By thoroughly addressing these potential
threats to conclusion validity, this research study
strives to provide a comprehensive evaluation of
the limitations and potential biases that may af-
fect the conclusions drawn. The openness and
transparency in discussing these considerations
contribute to the overall strength and reliability
of the conclusions, allowing readers to critically
evaluate the implications of the findings in dif-
ferent contexts.

7.4 External validity

External validity also played a role in this re-
search, as it aimed to assess the generalizability

of the findings beyond the specific research con-
text. Several potential threats to external va-
lidity were acknowledged and addressed. One
such threat was the need to ensure the represen-
tativeness of the sample used in the study. Care-
ful consideration was given to selecting a sample
that accurately reflected the characteristics and
diversity of the target population, enhancing the
external validity of the findings.

Another important consideration was the ap-
plicability of the treatments or interventions im-
plemented in the research. It was recognized that
the effectiveness and feasibility of these treat-
ments could be influenced by the specific con-
ditions and resources available in the chosen re-
search setting. Thus, the research took into ac-
count the contextual factors and carefully as-
sessed the transferability of the treatments to
different settings, strengthening the external va-
lidity of the study.

By addressing these potential threats and
diligently considering the representativeness of
the sample and the applicability of the treat-
ments or interventions, the research aimed to en-
hance the external validity of the findings. This
approach ensured that the results could be more
confidently generalized to broader contexts and
provided meaningful insights beyond the specific
research setting.

24

8 Conclusion

In conclusion, this master thesis examined
the energy efficiency implications of three ORM
frameworks in the .NET landscape: Dapper, En-
tity Framework, and nHibernate. The findings
provide valuable insights for software engineers
in selecting an ORM framework and optimizing
energy efficiency in their applications.

Noticeable differences in energy consumption
and execution time were observed among the
studied frameworks. Dapper exhibited better
energy consumption, while Entity Framework
showed higher execution time and energy con-
sumption, despite its popularity and extensive
tooling support.

The analysis of query types and table sizes
highlighted the impact on energy consumption
and execution time. The ”Get” operation
demonstrated higher energy consumption and
longer execution time, especially for larger ta-
bles, emphasizing the need for optimization in
data retrieval processes.

Threats to validity were considered, and mea-
sures were taken to enhance the validity and reli-
ability of the study. This research contributes to
the existing knowledge base and offers practical
insights for software engineers and development
companies.

Further research could explore additional

factors, such as hardware configurations and
database management systems. Longitudinal
studies and scalability analyses would provide
a more comprehensive understanding of perfor-
mance and energy efficiency.

Reflecting on the context of data centers as
brought up in the Introduction, the energy effi-
ciency considerations of ORM frameworks hold
even more significance. With projections indi-
cating a rise in power usage of data centers, im-
proving energy efficiency at the software level be-
comes a vital contribution. Improved energy ef-
ficiency in ORM frameworks can help mitigate
the growing power demands of data centers, sub-
sequently leading to reduced operating costs and
environmental impact. This study, thus, not only
serves to guide the choice of ORM frameworks for
software engineers but also provides a valuable
perspective in the broader context of sustainable
and energy-efficient practices in the digital sec-
tor.

In conclusion, this master thesis provides
valuable guidance for selecting ORM frame-
works and optimizing energy consumption in
software systems. By applying these insights,
software engineers can make informed decisions
and contribute to sustainable software develop-
ment practices.

25

References

[1] Adventureworks2019, 2023. Microsoft. (n.d.). AdventureWorks2019. Retrieved May
18, 2023, from https://learn.microsoft.com/en-us/sql/samples/adventureworks-install-
configure?view=sql-server-ver16tabs=ssms.

[2] Dapper, 2023. (n.d.). NuGet. Retrieved May 18, 2023, from
https://www.nuget.org/packages/Dapper.

[3] Dapper: Dapper, 2023. (n.d.). GitHub Repository. Retrieved May 18, 2023, from
https://github.com/DapperLib/Dapper.

[4] Entity framework, 2023. (n.d.). NuGet. Retrieved May 18, 2023, from
https://www.nuget.org/packages/EntityFramework.

[5] Entity framework: Microsoft, 2023. (n.d.). Entity Framework. Retrieved May 18, 2023, from
https://learn.microsoft.com/en-us/aspnet/entity-framework.

[6] nhibernate, 2023. (n.d.). NuGet. Retrieved May 18, 2023, from
https://www.nuget.org/packages/NHibernate.

[7] nhibernate: Nhibernate community, 2023. (n.d.). nHibernate. Retrieved May 18, 2023, from
https://nhibernate.info/.

[8] Anders SG Andrae. Hypotheses for primary energy use, electricity use and co2 emissions of
global computing and its shares of the total between 2020 and 2030. WSEAS Transactions on
Power Systems, 15:4, 2020.

[9] A.S.G. Andrae. Prediction studies of the electricity use of global computing in 2030. Interna-
tional Journal of Science and Engineering Investigations, 8:27–33, 2019.

[10] A.S.G. Andrae and T. Edler. On global electricity usage of communication technology: trends
to 2030. Challenges, 6:117–157, 2015.

[11] Irakli Basheleishvili, Avtandil Bardavelidze, and Khatuna Bardavelidze. Study and analysis
of the. net platform-based technologies for working with the databases. In Proceedings of the
33rd International Conference on Information Technologies (InfoTech-2019), Bulgaria, 2019.

26

[12] V. Basili and G. Caldiera. Rombach. The goal question metric approach, volume 2. Wiley,
1994.

[13] Suhas Chatekar. Learning NHibernate 4. Packt Publishing Ltd, 2015.

[14] Cheng Chen et al. Green databases through integration of renewable energy. CIDR, 2013.

[15] Tse-Hsun Chen et al. Detecting performance anti-patterns for applications developed using
object-relational mapping. In Proceedings of the 36th International Conference on Software
Engineering, 2014.

[16] Tse-Hsun Chen et al. An empirical study on the practice of maintaining object-relational
mapping code in java systems. In Proceedings of the 13th International Conference on Mining
Software Repositories, 2016.

[17] Stevica Cvetković and Dragan Janković. A comparative study of the features and performance
of orm tools in a. net environment. In Objects and Databases: Third International Conference,
ICOODB 2010, Frankfurt/Main, Germany, September 28-30, 2010. Proceedings 3. Springer
Berlin Heidelberg, 2010.

[18] Ronald Aylmer Fisher. Design of experiments. British Medical Journal, 1(3923):554, 1936.

[19] Phillip I. Good. Permutation Tests: A Practical Guide to Resampling Methods for Testing
Hypotheses. Springer Science and Business Media, 2013.

[20] Aleksandra Gruca and Przemys law Podsiad lo. Performance analysis of. net based ob-
ject–relational mapping frameworks. In Beyond Databases, Architectures, and Structures: 10th
International Conference, BDAS 2014, Ustron, Poland, May 27-30, 2014. Proceedings 10.
Springer International Publishing, 2014.

[21] Kashif Nizam Khan et al. Rapl in action: Experiences in using rapl for power measurements.
ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOM-
PECS), 3:1–26, 2018.

[22] Willis Lang and Jignesh Patel. Towards eco-friendly database management systems. arXiv
preprint arXiv:0909.1767, 2009.

[23] R.B. Mitchell and R. York. Reducing the web’s carbon footprint: Does improved electrical
efficiency reduce webserver electricity use? Energy Research and Social Science, 65, 2020.

27

[24] Giuseppe Procaccianti, Héctor Fernández, and Patricia Lago. Empirical evaluation of two
best practices for energy-efficient software development. Journal of Systems and Software,
117:185–198, 2016.

[25] Giuseppe Procaccianti, Patricia Lago, and Wouter Diesveld. Energy efficiency of orm ap-
proaches: an empirical evaluation. In Proceedings of the 10th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, 2016.

[26] Nornadiah Mohd Razali and Yap Bee Wah. Power comparisons of shapiro-wilk, kolmogorov-
smirnov, lilliefors and anderson-darling tests. Journal of statistical modeling and analytics,
2.1:21–33, 2011.

[27] K. Roebuck. Object-Relational Mapping: High-impact Strategies - What You Need to Know.
Lightning Source Publisher, 2011.

[28] K. M. Smith, S. Wilson, P. Lant, and M. E. Hassall. How do we learn about drivers for
industrial energy efficiency—current state of knowledge. Energies, 15:2642, 2022.

[29] J. Song, T. Li, X. Liu, and Z. Zhu. Comparing and analyzing the energy efficiency of cloud
database and parallel database. In Advances in Computer Science, Engineering Applications,
pages 989–997. Springer, 2012.

[30] Witoon Wiphusitphunpol and Thitiporn Lertrusdachakul. Fetch performance comparison of
object relational mapper in. net platform. In 2017 14th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-
CON), 2017.

[31] Zichen Xu. Building a power-aware database management system. In Proceedings of the Fourth
SIGMOD PhD Workshop on Innovative Database Research, 2010.

[32] Zichen Xu, Yi-Cheng Tu, and Xiaorui Wang. Exploring power-performance tradeoffs in
database systems. In 2010 IEEE 26th International Conference on Data Engineering (ICDE
2010), 2010.

[33] Zichen Xu, Yi-Cheng Tu, and Xiaorui Wang. Online energy estimation of relational operations
in database systems. IEEE transactions on computers, 64:3223–3236, 2015.

28

[34] Doina Zmaranda et al. Performance comparison of crud methods using net object relational
mappers: A case study. International Journal of Advanced Computer Science and Applications,
11:1, 2020.

A Appendix - Additional Statistics

This appendix includes graphs and statistics that are integral to the thorough understanding of the
research but were not included in the main body of the thesis. The reasoning behind this decision
pertains to the large volume of data and the aim to maintain a succinct and focused narrative in
the main discussion. However, for those desiring a deeper dive into the data, these supplementary
figures and statistics offer an expansive view of the collected data and a more detailed understanding
of the experiment’s outcomes.

29

Figure 8: Average Energy Consumption per Framework

30

Figure 9: Average Energy Consumption per Operation

31

Figure 10: Average Energy Consumption per Table

32

Figure 11: Energy Consumption Distribution By Framework

33

Figure 12: Execution Time Distribution By Framework

34

Figure 13: Energy Consumption Distribution By Operation

35

Figure 14: Execution Time Distribution By Operation

36

Figure 15: Energy Consumption Distribution By Table

37

Figure 16: Execution Time Distribution By Table

38

Figure 17: Mean Difference Energy Consumption By Framework

39

Figure 18: Mean Difference Energy Consumption By Operation

40

Figure 19: Mean Difference Energy Consumption By Operation

Figure 20: Mean Difference Energy Consumption By Operation

41

Figure 21: Mean Difference Energy Consumption By Table

42

Figure 22: Mean Differences Execution Time By Framework

43

Figure 23: Mean Differences Execution Time By Operation

44

Figure 24: Mean Differences Execution Time By Operation

Figure 25: Mean Differences Execution Time By Operation

45

Figure 26: Mean Differences Execution Time By Table

46

B Appendix - Experiment code

The subsequent appendix presents a selection of code snippets taken from the practical component
of this Master’s thesis. These snippets are fundamental, demonstrating the implementation of three
distinct object-relational mapping (ORM) frameworks: Dapper, Entity Framework, and nHibernate.
Each code snippet highlights the specific methods used to perform various operations with these
frameworks, thus providing an in-depth view of the research methodology. While the snippets cover
significant portions of the implemented code, they encapsulate only parts of the entire codebase
utilized during the research.

Listing 1: Dapper: Fetching All Locations

1 using (SqlConnect ion connect ion = new SqlConnect ion (connec t i onSt r ing))
2 {
3 connect ion . Open () ;
4 for (int i = 0 ; i < i t e r a t i o n s ; i++)
5 {
6 var r e s u l t s = connect ion . Query<Location>("SELECT * FROM Production.

Location") ;
7 }
8 connect ion . Close () ;
9 }

Listing 2: Dapper: Fetching A Specific Location

1 using (SqlConnect ion connect ion = new SqlConnect ion (connec t i onSt r ing))
2 {
3 connect ion . Open () ;
4 for (int i = 1 ; i < i t e r a t i o n s ; i++)
5 {
6 var r e s u l t = connect ion . QueryFirstOrDefault<Location>("SELECT * FROM

Production.Location WHERE LocationID = @Id" , new { Id = i }) ;
7 }
8 connect ion . Close () ;
9 }

Listing 3: Dapper: Inserting Locations

1 using (SqlConnect ion connect ion = new SqlConnect ion (connec t i onSt r ing))
2 {
3 connect ion . Open () ;

47

4 for (int i = 0 ; i < i t e r a t i o n s ; i++)
5 {
6 var i n s e r t S q l = "INSERT INTO Production.Location (Name, CostRate,

Availability , ModifiedDate) VALUES (@Name, @CostRate , @Availability ,

@ModifiedDate)" ;
7 var inse r tParamete r s = new { Name = "Name" , CostRate = 1 , Av a i l a b i l i t y =

1 , Modif iedDate = new DateTime (2023 , 5 , 18 , 15 , 30 , 0) } ;
8 var rowsAf fected = connect ion . Execute (i n s e r t Sq l , in se r tParamete r s) ;
9 }

10 connect ion . Close () ;
11 }

Listing 4: Dapper: Updating Locations

1 using (SqlConnect ion connect ion = new SqlConnect ion (connec t i onSt r ing))
2 {
3 connect ion . Open () ;
4 for (int i = 1 ; i < i t e r a t i o n s ; i++)
5 {
6 var updateSql = "UPDATE Production.Location SET ModifiedDate =

@ModifiedDate WHERE LocationID = @Id" ;
7 var updateParameters = new { ModifiedDate = new DateTime (2023 , 5 , 19 ,

15 , 30 , 0) , Id = i } ;
8 var rowsAf fected = connect ion . Execute (updateSql , updateParameters) ;
9 }

10 connect ion . Close () ;
11 }

Listing 5: Dapper: Deleting Locations

1 using (SqlConnect ion connect ion = new SqlConnect ion (connec t i onSt r ing))
2 {
3 connect ion . Open () ;
4 for (int i = 1 ; i < i t e r a t i o n s ; i++)
5 {
6 var d e l e t e Sq l = "DELETE FROM Production.Location WHERE LocationID = @Id"

;
7 var de le teParameters = new { Id = i } ;
8 var rowsAf fected = connect ion . Execute (de l e t eSq l , de l e teParameters) ;
9 }

10 connect ion . Close () ;
11 }

48

Listing 6: Entity Framework Core: Fetching All Locations

1 for (int i = 0 ; i < i t e r a t i o n s ; i++)
2 {
3 var r e s u l t s = contex t . Locat ions . AsNoTracking () . ToList () ;
4 }

Listing 7: Entity Framework Core: Fetching A Specific Location

1 for (int i = 1 ; i < i t e r a t i o n s ; i++)
2 {
3 var r e s u l t = contex t . Locat ions . AsNoTracking () . S i ng l e (x => x . Locat ionId ==

id) ;
4 }

Listing 8: Entity Framework Core: Inserting Locations

1 for (int i = 0 ; i < i t e r a t i o n s ; i++)
2 {
3 var l = new Locat ion ()
4 {
5 Ava i l a b i l i t y = 1 ,
6 CostRate = 1 ,
7 ModifiedDate = new DateTime (2023 , 5 , 18 , 15 , 30 , 0) ,
8 Name = "Name"

9 } ;
10 contex t . ChangeTracker . QueryTrackingBehavior = QueryTrackingBehavior .

NoTracking ;
11 contex t .Add(l) ;
12 contex t . SaveChanges () ;
13 }

Listing 9: Entity Framework Core: Updating Locations

1 for (int i = 1 ; i < i t e r a t i o n s ; i++)
2 {
3 var row = context . Locat ions . AsNoTracking () . F i r s tOrDefau l t (r => r . Locat ionId

== id) ;
4 row . Modif iedDate = new DateTime (2023 , 5 , 19 , 15 , 30 , 0) ;
5 contex t . SaveChanges () ;
6 }

49

Listing 10: Entity Framework Core: Deleting Locations

1 for (int i = 1 ; i < i t e r a t i o n s ; i++)
2 {
3 var row = context . Locat ions . AsNoTracking () . F i r s tOrDefau l t (r => r . Locat ionId

== id) ;
4 contex t . Locat ions . Remove(row) ;
5 contex t . SaveChanges () ;
6 }

Listing 11: NHibernate: Fetching All Locations

1 using (var s e s s i o n = se s s i onFac to ry . OpenSession ())
2 using (var t r an sa c t i on = s e s s i o n . BeginTransact ion ())
3 {
4 for (int i = 0 ; i < i t e r a t i o n s ; i++)
5 {
6 var l o c a t i o n s = s e s s i o n . Query<Location >() . ToList () ;
7 }
8 t r an sa c t i on . Commit () ;
9 }

Listing 12: NHibernate: Fetching A Specific Location

1 using (var s e s s i o n = se s s i onFac to ry . OpenSession ())
2 using (var t r an sa c t i on = s e s s i o n . BeginTransact ion ())
3 {
4 for (int i = 1 ; i < i t e r a t i o n s ; i++)
5 {
6 var query = s e s s i o n . Query<Location >() . F i r s tOrDefau l t (l => l . Locat ionId

== i) ;
7 }
8 t r an sa c t i on . Commit () ;
9 }

Listing 13: NHibernate: Inserting Locations

1 using (var s e s s i o n = se s s i onFac to ry . OpenSession ())
2 using (var t r an sa c t i on = s e s s i o n . BeginTransact ion ())
3 {
4 for (int i = 0 ; i < 3 ; i++)
5 {

50

6 var l o c a t i o n = new Locat ion
7 {
8 Name = "Name" ,
9 CostRate = 1 ,

10 Ava i l a b i l i t y = 1 ,
11 ModifiedDate = new DateTime (2023 , 5 , 18 , 15 , 30 , 0)
12 } ;
13

14 s e s s i o n . Save (l o c a t i o n) ;
15 }
16 t r an sa c t i on . Commit () ;
17 }

Listing 14: NHibernate: Updating Locations

1 using (var s e s s i o n = se s s i onFac to ry . OpenSession ())
2 using (var t r an sa c t i on = s e s s i o n . BeginTransact ion ())
3 {
4 for (Int16 i = 1 ; i < i t e r a t i o n s ; i++)
5 {
6 var l o c a t i o n = s e s s i o n . Get<Location>(i) ;
7

8 l o c a t i o n . Modif iedDate = new DateTime (2023 , 5 , 19 , 15 , 30 , 0) ;
9

10 s e s s i o n . Update (l o c a t i o n) ;
11 }
12 t r an sa c t i on . Commit () ;
13 }

Listing 15: NHibernate: Deleting Locations

1 using (var s e s s i o n = se s s i onFac to ry . OpenSession ())
2 using (var t r an sa c t i on = s e s s i o n . BeginTransact ion ())
3 {
4 for (Int16 i = 1 ; i < i t e r a t i o n s ; i++)
5 {
6 var l o c a t i o n = s e s s i o n . Get<Location>(i) ;
7

8 s e s s i o n . De lete (l o c a t i o n) ;
9 }

10 t r an sa c t i on . Commit () ;
11 }

51

	Introduction
	Related work
	Experiment Context
	Experiment design
	Experiment definition
	Variable selection
	Sample selection
	Instrumentation
	Experiment execution
	Hypothesis formulation
	Hypothesis 1: Framework Energy Consumption
	Hypothesis 2: Framework Execution Time
	Hypothesis 3: Query Types Energy Consumption
	Hypothesis 4: Query Types Execution Time
	Hypothesis 5: Table Size Energy Consumption
	Hypothesis 6: Table Size Execution Time

	Results
	Statistics

	Discussion
	Threats to validity
	Construct validity
	Internal validity
	Conclusion validity
	External validity

	Conclusion
	Appendix - Additional Statistics
	Appendix - Experiment code

