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ABSTRACT 

This thesis delves into the exploration and analysis of eBPF (extended Berkeley Packet Filter), an 

advanced technology designed to bolster low-level observability and control, through user space logic 

directly in the Linux kernel. The focus of this study is to unravel the capabilities of eBPF, understand 

its potential in the realms of cloud and container security, and provide a comprehensive analysis of 

its advantages and disadvantages. Through the development of an eBPF program that prevents 

“mount” syscalls from privileged containers, we demonstrate the practical applications of eBPF in 

a real-world scenario. This study does not only illuminate the potential of eBPF in addressing urgent 

security situations but also aims to make this technology more accessible and understandable. While 

the journey was not without its challenges, the insights gained, and the skills acquired underscore the 

transformative potential of eBPF in the landscape of cloud and container-based security.    
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LIST OF ABBREVIATIONS & GLOSSARY  

 

Enterprise Public- or private-sector organizations with 1,000 or more employees 

SMBs Small to midsized businesses with fewer than 1,000 employees 

eBPF Extended Berkeley Packet Filter 

BTF (BPF Type Format) 

(BPF Type Format (BTF) — The Linux Kernel Documentation, 2023) 

XDP Express Data Path 

cGroups Control groups 

RCE Remote Code Execution 

Reverse Shell A shell on a victim machine that is controlled by an attacker using an RCE or 

similar. 

CVE Common vulnerabilities and exposures 

Kubernetes node Kubernetes node, a (virtual) machine that hosts containers for the 

Kubernetes cluster. 

CI/CD Continuous integration and continuous deployment, the act of deploying and 

updating code often and without dedicated service windows or downtime for 

customers. 

 

LOC Line of Code often used with # e.g., “See LOC#56” (see line of code 56)  
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1. INTRODUCTION 

The security of cloud infrastructures has become a major concern for organizations as they 

increasingly adopt cloud computing to store, process, and manage sensitive data. With the increased 

adoption of the cloud for business-critical operations and data transfer, the bigger the target cloud 

infrastructure will be for threat actors. This highlights the need for robust and effective security 

measures to protect against attacks on cloud infrastructure and environments which is a challenge 

for Small to medium sized businesses as they do not have the same financial resources as enterprise 

businesses spending less than $600,000 annually, compared with only six percent of enterprises 

(Flexera, 2021). According to the survey conducted by Flexera the top cloud challenge is security 

cited by 81% of the 750 respondents (Flexera, 2021, p. 39), which is a challenge for SMBs as it can 

be complex, time consuming and requires technical skills (Flexera, 2021, p. 12). As cloud consumer 

failing to properly configure and manage the cloud infrastructure, from a security perspective, can 

result in vulnerabilities and ultimately in data loss. 

“Our research found that the failure of subscribers to properly secure the configuration of cloud services 

is an additional contributor to data loss.” 

(Oracle & KPMG, 2020) 

The most common security threats and vulnerabilities faced by infrastructures in organizations 

includes malicious software, inadequate security controls, misconfigured systems and lack of visibility 

and control among others (Fortinet, 2021). Each of these threats presents significant risks to the 

security and privacy of data and systems, and with the scale of cloud computing increasing rapidly 

hence (Alvarenga, Gui, 2023) suggest a need for guidelines, and best practices considering 

monitoring for misconfigurations, implementation of cloud security policies, securing containers and 

implementing zero trust approach. This is especially important for organizations choosing to manage 

their own cloud infrastructure (Freeze, 2020) and for that reason we want to look deeper into a 

specific tool called eBPF which we will cover in the following chapters. 
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Larger companies like Amazon - AWS, Microsoft - Azure and Google - GCP, have the resources to 

secure their IT-infrastructure. Furthermore, are they responsible for securing their own environment 

from malicious attackers and their many consumers (Violino, 2023). But small and medium size 

businesses do not have the same resources and expert knowledge required when operating a cloud 

infrastructure in a fast-moving field, hence not having the same capabilities to secure their cloud 

infrastructure, creating a higher risk for malicious attacks, and a greater need for secure solutions 

and easy-to-adopt solutions.  

The Cloud Security Reports (Fortinet, 2021) and (Fortinet, 2023) from Cybersecurity Insider are 

based on comprehensive global surveys of 572 respondents (Fortinet, 2021) and 752 respondents 

(Fortinet, 2023) of top cyber security and IT professionals, which analyzes the current state of cloud 

security and identifies potential risks and threats for organizations that are using cloud services. The 

Oracle and KPMG Cloud Threat Report (Oracle & KPMG, 2020) is also a joint research publication 

between KPMG and Oracle centered around a survey of 750 cyber security and IT professionals 

that identifies the key risks and challenges that organizations are facing when implementing and 

maintain cloud solutions. All three reports highlight that misconfiguration is a top security threat for 

organizations using cloud services: 

According to the KPMG and Oracle Threat Report, 51% of the respondents experienced data loss 

due misconfiguration errors of their cloud services (Oracle & KPMG, 2020, p. 25) and of those 

organizations that shared their misconfigured cloud service experience, encountered 10 or more 

data loss incidents in 2020 (Oracle & KPMG, 2020). This problematic trend could possibly be 

coursed by inadequate security configuration skills, to secure their cloud environment cited by 57%. 

According to The cloud Threat Report from Fortinet (Fortinet, 2023, p. 11), 32% of the 752 

surveyed cybersecurity professionals states that ‘Improved Security’ is a key benefit for their cloud 

deployment.  
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Choosing one of the big cloud providers does not solve the issue of misconfiguration as these 

providers are responsible for securing their own infrastructure, and customers are responsible for 

securing their own data, and according to the (Oracle & KPMG, 2020) this is a challenge for 

businesses using public clouds as they struggle with acquiring the technical expertise to properly 

implement their own security measures. 

According to the Oracle and KPMG Cloud Threat Report, misconfiguration is the most significant 

risk to cloud security, with 51% of organizations experiencing a misconfiguration incident in the past 

year. 

Some of the most common misconfigurations occurs within areas of:  

• Storage: where unallocated resources are left open and vulnerable hence open to attacks.  

• Databases: when moving from databases to cloud-native, creates security holes. 

• Search: Misconfigured search functions that allow for broad access through generic IDs, 

introducing security loopholes. 

• Misconfigured  Containers: Based on whether resources are read-only or can be written to 

and if roles-based access controls are enabled or not (Barot, 2021). 

Gaining observability and heightening security in the cloud is a difficult task due to the ephemeral 

and distributed nature of cloud infrastructures. The cloud environment is constantly changing, 

making it difficult for organizations to keep track of changes happening in the environment. 

Additionally, the architecture of cloud infrastructures is typically complex, making it difficult to get 

a clear picture of the overall environment.  

Misconfigured cloud infrastructures and containers can be particularly difficult to observe, as they 

often run across multiple services and networks. The lack of visibility can make it difficult to detect 

and identify any misconfigurations or security issues that may be present. 

To address the issue of misconfigured containers, one way to increase visibility and control is to 

investigate the use of eBPF (Extended Berkeley Packet Filter. By using eBPF, organizations can gain 
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better visibility and control over their container environment, helping to ensure that containers 

remain secure. 

1.1 PROBLEM AREA 

Cloud providers provide resources - either by SAAS or IAAS
1

 - to cloud consumer, and often 

abstract away most of the platform and infrastructure and underlying applications through various 

services like AWS Fargate, AWS lambda, Azure functions and more. This suggests that even small 

teams without their own IT-Infrastructure team, can still use the cloud to utilize benefits provided 

by building cloud native applications. Using a public cloud from a cloud provider like Google, 

Amazon or Microsoft - typically has benefits including scalability and flexibility, faster time to market, 

data loss prevention and more (Advantages Of Cloud Computing - Google Cloud, 2023). 

Adapting to either a public cloud or private cloud
2

 (a datacenter managed and controlled by an 

organization), exposes organizations to new risks of inadequate control, lack of observability, and 

potential misconfiguration, hence requiring the right technical IT expertise within the organization 

to properly manage and configure the cloud environment, preventing a possible security challenges 

(Tabrizchi & Kuchaki Rafsanjani, 2020). Not having the right technical IT expertise within an 

organization, can have serious implications, particularly in terms of data security and compliance 

and ultimately result in data loss.  

The lack of control and observability encountered by adopters of cloud-based paradigms, presents 

a substantial problem when trying to take advantage of the cloud-based- approach. Small and 

medium sized companies that lack the expertise to configure and maintain their own cloud 

infrastructures, are therefore at risk of misconfiguration. We assume that without sufficient control 

and observability, as well as the necessary expertise, companies with misconfigured cloud 

environments are thus putting their data and systems at risk. 

 

1

 https://www.ibm.com/topics/iaas-paas-saas 
2

 https://aws.amazon.com/what-is/private-cloud/ 
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As a solution to improve observability and heighten security in a distributed cloud environment 

utilizing containerization, implementing Extended Berkeley Packet Filter (eBPF) technology could 

prove to be beneficial. eBPF is a Linux kernel technology that serves as a bridge between applications 

running in user-space and the underlying kernel programs and events (Rice, 2023, p. 9). eBPF can 

be used to monitor most system calls, including everything related to network traffic, resource 

consumption, processes and much more, which we will dive further into in the following chapters. 

RESEARCH QUESTION 

Considering the previously mentioned problems of small to medium sized companies not having 

the resources or expertise to secure their cloud environment, we raise the question:  

How can eBPF technology be leveraged to improve security through observability and 

runtime control of a container-based infrastructure? 

 

1.2 THESIS OBJECTIVE   

The objective of this master's thesis is to undertake an exploratory study examining the efficacy of 

Extended Berkeley Packet Filter (eBPF) as a mechanism for heightening security while also 

enhancing low-level observability and control, within cloud and container environments. Our 

particular focus is on implementing and analyzing eBPF's potential for runtime security control. By 

delving into the intricacies of how eBPF can be utilized and implemented, we aim to shed light on 

the possibilities of this technology for not only increasing security and control, but also for advancing 

the realm of low-level observability. Furthermore, an integral part of the thesis is to make the 

understanding and application of eBPF more accessible to a wider audience, and developers of 

varying skill levels. We envision our thesis as a catalyst for demystifying eBPF and inspiring further 

innovation in the field of cloud and container security through kernel-based instrumentation.  
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2. BACKGROUND & TECHNOLOGIES 

In this chapter we will touch upon and explain the theory that 

that is needed to understand the basics for eBPF, and the 

technologies required to understand our exploratory study.  

Initially, we will discuss the origin of Linux, then dive into 

containerization and virtualization, move on to the 

orchestration tool Kubernetes and finally go in depth with the 

eBPF technology itself. The diagram on the right gives an 

overview of the technological elements required to understand 

eBPF, which we will dive further into in this chapter. 

 

2.1 THE ORIGIN OF LINUX: A BRIEF 

HISTORY 

Linux is an operating system, created in the early 1990s by Linus 

Torvalds, and the Free Software Foundation (FSF). Torvalds started developing Linux while still a 

student at the University of Helsinki with the aim of creating a system like MINIX, a UNIX operating 

system. In 1991, he released version 0.01 and 0.02 of Linux. It was not until 1994 that version 1.0 

of the Linux kernel, the core of the operating system, was released. 

While Torvalds was developing Linux, the FSF and American software developer Richard Stallman 

were also working on creating an open-source UNIX-like operating system called GNU. Unlike 

Torvalds who began by creating the kernel, Stallman and the FSF first focused on creating utilities 

for the operating system (Debian GNU/Linux Installation Guide, 2023). These utilities were later 

Figure 1: Diagram giving the 
technological overview to understand 

eBPF 
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added to the Linux kernel to create a complete system called GNU/Linux or, more commonly, just 

Linux. 

Linux gained popularity in the 1990s due to the efforts of hobbyist developers. While it is not as 

user-friendly as popular operating systems such as Microsoft Windows and Mac OS, it is considered 

an efficient and reliable system that rarely crashes. In addition, combined with Apache, an open- 

source web server, Linux accounts for  ̃99% of the super-computer market,  ̃ 90% of the public cloud 

workload and  ̃82% of the smartphone market (Cloud Computing with Linux | Realise the True 

Potential & Value, 2020). 

Linux-based operating systems are often preferred by cloud providers due to their flexibility, light 

weight, uses few recourses, reliability, security and is open source (Linux for Cloud Computing, 

2023). Many cloud providers, such as Amazon Web Services, Microsoft Azure, and Google Cloud 

Platform, offer Linux-based virtual machines and containers as part of their services (The State of 

Linux in the Public Cloud for Enterprises, 2019). And are themselves running one or more Linux 

distributions in their own technology stack. 
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Figure 2: Kernel- and user-space communication overview 

Linux’s open-source nature allows for easy customization and adaptation to specific cloud 

infrastructures, catering to a variety of needs. This, coupled with its efficient resource management, 

makes Linux ideal for cloud environments where resources are shared among multiple users and 

applications. The system calls (syscalls) in Linux provide efficient interfaces between the user space 

and the kernel space, enabling effective process control, file management, and communication. 

Moreover, Linux's support for eBPF technology has certainly bolstered its popularity in securing and 

monitoring cloud environments. The eBPF technology's ability to filter and analyze network traffic 

and control containers through kernel layer, significantly enhances use cases for cloud and container-

based environments. Linux is an increasingly attractive choice for performance-sensitive scenarios 
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exemplified by Facebook's eBPF-based L4 load balancer, Katran
3

, which they released as open-

source. 

Furthermore, Linux's monolithic kernel design allows for dynamic loading and unloading of 

modules at runtime, providing extensibility and adaptability to various hardware and software 

environments. Its inherent security features, such as discretionary access control and mandatory 

access control (MAC), along with the ability to fine-tune user permissions, make Linux a preferred 

choice for maintaining system integrity and confidentiality. Finally, the vast and active Linux 

community continuously contributes to its development, ensuring that the operating system stays 

abreast of the latest technological advancements. This, coupled with the extensive support available, 

makes Linux a reliable and future-proof choice for cloud providers and developers alike. 

2.2 CLOUD NATIVE LANDSCAPE 

Microservice architecture has taken the world by storm (CloudZero, 2022). This paradigm-shift no 

doubt took hold because of the improved scalability, flexibility, and reliability that a distributed 

microservice architecture offers. Cloud technologies empower users to deploy and scale their 

applications in a distributed manner, tailoring to specific metrics and responding to increased 

application demand. (Jamshidi et al., 2018). 

The Cloud Native Computing Foundation (CNCF) Landscape, is a comprehensive map and 

overview of the cloud native ecosystem, providing a visual representation of the projects and products 

that make up the cloud native software stack used to design, develop, deploy, and operate cloud 

applications (Cloud Native Landscape, 2023). The term “cloud-native” is frequently used to describe 

applications built on a microservices architecture and run on container orchestration platforms like 

Kubernetes. These applications are highly scalable, resilient, and agile. It is designed to help 

organizations navigate the rapidly changing cloud native landscape and make informed decisions 

about their technology investments. CNCF Landscape provides a simplified view of the cloud native 

 

3

 https://github.com/facebookincubator/katran - Katran from Facebook L4 Loadbalancer using eBPF. 

https://github.com/facebookincubator/katran
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landscape, including project categories, maturity levels, and project statuses, as well as detailed 

information about each project. It also provides links to resources and educational materials, such 

as tutorials and case studies, to help organizations understand the technology and its potential. 

However, the complexity of cloud-native environments makes it difficult to maintain visibility into 

application behavior and detect security threats (Reuner, Tom, 2022).  

2.2.1 CILIUM 

In the rapidly evolving cloud-native landscape, Cilium emerges as a groundbreaking open-source 

technology that redefines network connectivity and security for application services in Linux 

container orchestration platforms such as Kubernetes. The cornerstone of Cilium's innovation is its 

utilization of eBPF (Extended Berkeley Packet Filter), a powerful feature within the Linux kernel, 

which will be explained in depth in 2.5. This unique application of eBPF enables Cilium to adeptly 

address the networking, load balancing, and security requirements of cloud-native, containerized 

applications (Cilium - Get Started, 2023). 

In Kubernetes, a cornerstone of the cloud-native ecosystem, Cilium replaces the traditional kube-

proxy and network plugin (Cilium - Get Started, 2023). It provides a unified solution for network 

connectivity, load balancing, and network policy enforcement, thereby simplifying the networking 

stack and reducing the potential for security vulnerabilities. This consolidation is particularly 

beneficial in the cloud-native landscape, where simplicity and security are paramount. 
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Figure 3: Cilium architecture 

The Cilium architecture consists of an agent running on all cluster nodes and servers in the cloud 

environment. This agent is responsible for monitoring and enforcing the desired network and 

security policies for the workloads running on the nodes. Cilium uses the Linux Kernel's native 

networking and security capabilities, such as iptables and eBPF, to provide visibility, segmentation, 

and security for container-based applications. It also provides distributed firewall policies, service 

identity, and Kubernetes Network Policies (Isovalent, 2022).  

We have chosen to include Cilium in our thesis as it is an industry leader in cloud native security 

through observability. In addition, Cilium provides a platform for discussing the current challenges 

of networking and security in the cloud, and the various approaches taken to address them, such as 

using eBPF for observability or runtime security. 
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2.3 CONTAINERIZATION AND VIRTUALIZATION 

To understand the environment that we work in and the concepts we use and build upon, it is 

important to understand the base for the work and findings we will dive into, that is containerization 

technology. This section aims to clarify this and provide a solid base to understand the further 

abstractions and concepts introduced throughout the thesis.  

2.3.1 VIRTUAL MACHINES 

A virtual machine (VM) is a virtual environment that acts like a real computer. It emulates an entire 

computer system, including the operating system, on top of the physical hardware and is created 

using a combination of software and hardware components, largely through a hypervisor (or virtual 

machine monitor) which allocates physical resources to the virtual environment making it resource-

intensive but more isolated than containers (Azure, 2023).  

VMs serve multiple purposes, including running applications, operating systems, and programming 

environments. They can be migrated across different physical hosts to enhance scalability and 

availability. VMs are commonly used to operate multiple operating systems on a single physical 

machine, catering to testing, development, and production environments (IBM, what are virtual 

machines? 2023). 

VMs are a useful tool for creating virtual environments that can be used for running operating 

systems, applications, and programming environments. They are distinct from containers, which are 

typically used for deployment, and are more portable and lightweight than VMs (IBM, What are 

virtual machines?, 2023).   

2.3.2 CONTAINERS 

Containers are a form of operating system virtualization. A single container might be used to run 

anything from a small microservice or software process to a larger application. Inside a container are 

all the necessary executables, binary code, libraries, and configuration files. Compared to server or 
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the virtual machine approaches, containers are lightweight because they and the host OS share the 

same kernel and use the same system resources. Containers allow for software to be packaged into 

isolated, stand-alone units that can run anywhere, simplifying the development, testing, and 

deployment of applications. This has made containers a key technology in the cloud-native 

landscape, enabling the development of distributed microservices-based applications. 

“Containers provide a way to package and isolate applications with their entire runtime environment—

all of the files necessary to run.” 

(IBM, Containerization Explained, 2023). 

This allows users to quickly move and scale applications across environments. Users can create and 

deploy containers on cloud services such as Amazon Web Services (AWS), Microsoft Azure, and 

Google Cloud Platform (GCP). Containers are popular in cloud computing because they make it 

easy for developers to move applications from one cloud environment to another. Docker is one of 

the leading containerization platforms, and it provides users with tools to build, ship, and run 

applications in containers (Docker, 2021). Containers can also be used to quickly deploy applications 

across multiple cloud environments, which allows users to easily scale their applications as needed. 

“A container is a standard unit of software that packages up code and all its dependencies, so the 

application runs quickly and reliably from one computing environment to another. A Docker container 

image is a lightweight, standalone, executable package of software that includes everything needed to 

run an application: code, runtime, system tools, system libraries and settings.” 

(Docker, 2021) 

The choice between containers and VMs depends on the specific needs of the application and the 

available resources and is often used together for a highly flexible setup. 

 

CONTAINERIZED WORKLOADS 

Docker is an open-source container management tool, that allows developers to create, deploy, and 

run applications inside containers. Containerized workloads refer to the practice of running 
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applications inside containers, which offers key benefits such as isolation, scalability, and portability. 

By isolating each application in a container, developers can avoid conflicts between dependencies 

and ensure that the application runs consistently across different underlying environments. 

Furthermore, the use of containerized applications enables distributed scaling of applications in a 

horizontal way, across a set of computing resource nodes using an orchestration tool like Kubernetes 

(Bernstein, 2014). 

Docker and other container management tools are very beneficial. For example, if a developer wants 

to deploy a web application that requires a specific version of a database server, they can create a 

container with the web application and another container with the database server, each with its own 

isolated environment. These containers can be deployed on any host system that supports Docker 

or other container and virtualization management platforms like podman, vagrant or other - without 

worrying about compatibility issues. 

2.3.3 UNDERLYING TECHNOLOGIES 

The magic of containers is largely due to features provided by the Linux kernel, including 

namespaces, cgroups, and layered union filesystems. 

Cgroups, (control groups), is a feature of the Linux kernel that allows for the allocation and isolation 

of system resources such as CPU, memory, and network bandwidth. Docker is an example of 

leveraging cgroups to limit and monitor the usage of system resources by containers, ensuring that 

containers do not consume too much of the host system's resources. 

Namespaces is another Linux kernel feature that provides process isolation by creating separate 

instances of system resources for each container. Docker uses these namespaces to provide 

containerization by creating separate instances of the file system, network interfaces, and other 

system resources for each container, enabling isolation and preventing conflicts between containers. 

Union file systems are used to create lightweight and efficient images that can be used to create 

containers. Docker uses a union file system to create images by layering file systems on top of each 

other, enabling efficient sharing and reusing of common layers between different images. This is 
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what allows container images to be lightweight and quick to start, as only the topmost layer needs to 

be written when a container is launched (Ciorba, 2020). 

2.4 KUBERNETES 

Kubernetes is an open-source platform designed to automate the deployment, scaling, and 

management of containerized applications. Kubernetes provides a framework to run distributed 

systems resiliently, scaling and recovering as needed. 

2.4.1 PODS 

Pods are the smallest deployable unit of computing in Kubernetes, and are the basic building blocks 

of the system (Pods, Kubernetes, 2023). A Pod is composed of one or more containers (such as 

Docker containers), and each container shares the same IP address and port space and are relatively 

tightly coupled. Pods are ephemeral, meaning they can be created and destroyed on demand. They 

can also be rescheduled to other nodes in the cluster in the event of a node failure (Pods, Kubernetes, 

2023).  

Pods are designed to be co-located on the same node, and as such, are able to share resources like 

storage volumes and network resources. This allows for a high degree of efficiency, since resources 

are not wasted on unused or duplicate components (Pods, Kubernetes, 2023). In addition, Pods are 

able to communicate with each other via the Kubernetes API and the shared network (Pods, 

Kubernetes, 2023). 

2.4.2 NODES 

Kubernetes runs a workload by placing containers into Pods to run on Nodes. A node may be a 

virtual or physical worker machine in Kubernetes and is the place where containers are deployed 

and run (Nodes, Kubernetes, 2023). Nodes have a unique nodeName and a nodeID that are used 

to identify them. Each node is managed by the Kubernetes Master, which is responsible for managing 

the workload and directing communication across the cluster (Nodes, Kubernetes, 2023). Nodes 
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contain the services necessary to run applications, such as a container runtime like Docker or 

ContainerD and kubelet. The kubelet is responsible for managing the containers, monitoring their 

health, and reporting back to the master (Kubernetes, 2021).  

 

Figure 4: Node overview 

In addition to running containers, nodes also have networking components such as the pod network 

and the service proxy. These components allow for communication between containers and services 

within the cluster (Nodes, Kubernetes, 2023). Nodes are an essential part of the Kubernetes 

architecture, as they are the machines responsible for running applications and services in the cluster. 

2.4.3 CONTAINER ORCHESTRATION 

Kubernetes is an industry leader in the container orchestration space, created and open-sourced by 

Google in 2014 (IBM, What is Kubernetes?, 2023). A container orchestration tool like Kubernetes 

is used to manage and configure a cluster of virtualized resources by scheduling computing tasks 

(pods) on nodes. The Kubernetes system is then responsible for the resources and deploying, 

scaling, and balancing containerized workloads on the cluster nodes. 

Most cloud providers, provide a service for a managed or self-managed Kubernetes cluster using 

their compute resources. Big cloud providers allow for fully managed services that abstract the 

Kubernetes cluster away from the customer which can be used by organizations where the expertise 
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to setup, configure and run their own Kubernetes cluster, is missing. AWS Fargate and AWS lambda 

are great examples of fully managed solutions provided by the AWS (Serverless Computing - AWS 

Lambda - Amazon Web Services, 2023). These services enable a developer or organization to only 

manages the type of application that need to run, which means they never interact with the underlying 

Kubernetes cluster or other orchestrator that deploys and runs the container workload. 

Managed services are great for organizations that fit into the limitations and costs associated with 

fully managed services like Fargate and lambda However, organizations that have special needs or 

strict requirements that are not in line with what the fully managed services offer, will have to manage 

their own Kubernetes cluster. This can be a daunting task and require specialized knowledge to 

efficiently run a distributed computing environment. Security is only one of the concerns that a 

Kubernetes administrator will have to deal with, and the task associated with monitoring potentially 

hundreds of small containers, is also very different task than monitoring a handful of standalone 

application servers. The encapsulation and isolation mechanism provided by containers, allow for 

great features like reducing blast radius from a security incident because of the sandboxed 

environment. But require systems administrators to keep up to date with the latest best-practices and 

the quickly evolving cloud native landscape. 

2.5 BERKELEY PACKET FILTERING (BPF) 

Berkeley Packet Filter (BPF) was originally designed as a technology to filter network packets 

efficiently. It was introduced in the early 1990s as a solution to the problem of how to efficiently filter 

packets on a network interface without copying each packet into user space. BPF provided a way to 

describe packet filters in a simple, high-level language that could be compiled into efficient, low-level 

code for the operating system to execute. originally developed at the University of California, 

Berkeley in 1992. BPF was designed as a low-level packet filtering mechanism that allowed 

developers to filter and modify network packets at the kernel level (McCanne & Jacobson, 1992). 
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A notable user of BPF was Tcpdump
4

, a command-line packet analyzer. Tcpdump used BPF to 

capture network traffic and provide a detailed view of the packets flowing through a network. BPF 

allowed tcpdump to efficiently filter out irrelevant packets and focus on the ones of interest to the 

user. Interestingly it is still extremely fast on exponentially larger networks than when it was first 

implemented, which speaks to the use of BPF for user-supplied low level logic that BPF and eBPF 

provides (Majkowski, 2014). 

2.5.1 EXTENDED BERKELEY PACKET FILTERING – EBPF 

eBPF, which stands for Extended Berkeley Packet Filter, is a continuation of BPF, which is a Linux 

kernel technology that enables safe and efficient execution of arbitrary code in the kernel space. It 

was originally designed for network performance analysis and optimization but, has since evolved 

into a general-purpose platform for monitoring, tracing, and securing the Linux operating system 

through kernel code. 

Conceptually, eBPF is a virtual machine that runs inside the Linux kernel, providing an interface to 

execute user-defined programs within the kernel context (Rice, 2023). The programs written in the 

eBPF framework, are called eBPF programs or simply BPF programs, and they are executed in 

response to specific events, such as system calls, network events, or CPU performance events. These 

programs are written in C but can be combined with higher level languages for example with BCC, 

which is covered later in this thesis. 

The key technical features of eBPF includes: 

1. Sandboxing: eBPF programs run in a restricted environment, known as a sandbox, that is 

isolated from the rest of the kernel. This combined with the eBPF verifier, ensures that eBPF 

programs cannot compromise the stability or security of the kernel. 

 

 

4

 https://www.tcpdump.org/ - What is Tcpdump. 



25 

 

2. Tracing: eBPF programs can be attached to specific points in the kernel, such as system calls 

or network events, and can collect data about these events in real-time. This makes eBPF 

ideal for tracing and profiling systems. 

 

3. Programmable: eBPF programs themselves, are only written in a limited C language with 

special restrictions to ensure kernel safety. But eBPF programs can be combined with other 

high-level languages to enable advanced control and modern design. This makes eBPF highly 

versatile and useful for a wide range of tasks, including security and performance analysis. 

 

4. Safe execution: eBPF programs are executed with limited resources, such as CPU time, 

memory, and stack space, and they cannot access kernel memory directly. This ensures that 

eBPF programs are safe and efficient to run. 

By leveraging eBPF for observability, organizations can enhance the security and stability of their 

container and cloud environments and protect their data and applications from threats, such as a 

container escape (Ivánkó, 2021). 

 

Figure 5 eBPF.io seen 01/04/2023. 

Shown above is an illustration of how eBPF fits into a given system. eBPF is denoted by the bee 

illustration . Seen above, is 3 major fields where eBPF has a clear use case according to ebpf.io, 

and the technology has already been adopted and is heavily used. These 3 categories are huge and 

encompasses many types of programs. For example can it be used in an event driven serverless 
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system described in (Qi et al., 2022). This system utilizes the low overhead and event driven nature 

of working with eBPF inside of the Linux kernel in a safe manner, to build a serverless platform like 

AWS Lambda. 

eBPF programs are verified by the eBPF verifier (EBPF Verifier — The Linux Kernel 

Documentation, n.d.). The verifier ensures that programs running in the kernel are safe and cannot 

crash the kernel. This is important for our use of eBPF because, we are using it in a container 

environment where several containers share the same kernel, meaning that if the kernel was to crash, 

all the containers would crash as well.  

A key benefit of this approach - to kernel instrumentation and extension - is to monitor, secure and 

extend the kernel, without creating and applying kernel modules, which are cumbersome and prone 

to compatibility issues if the kernel is updated. 

eBPF can help organizations with the security of their cloud environments, as well as to detect and 

respond to any potential threats in a quick and efficient way, without the need to wait for an upstream 
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kernel patch or creating a potentially crucial kernel module. Essentially providing an easier way to 

respond to threats and emerging vulnerabilities, by “live patching” the kernel (Lawler, 2022). 

 

Figure 6 eBPF diagram, how does it work. 

Recall Error! Reference source not found.. The illustration above shows how eBPF fits into the 

Linux kernel, which also gives an idea of why and how it could be advantageous to use this 

technology. eBPF programs are loaded into the kernel from user space, which means it is done while 

the kernel is running and can be done from other applications based on more advanced logic. 

This is what makes eBPF easy and efficient to monitor cloud infrastructure and applications, since 

containerized applications are the backbone of the cloud, and they share the same kernel. Well 

documented use cases of the kernel-based eBPF approach, is for providing organizations with greater 

visibility into their cloud environments and help identify potential threats and vulnerabilities (Cilium 
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Users and Real World Case Studies, 2023). Furthermore, eBPF based programs can be modified 

and restarted without disrupting
5

 or instrumenting
6

 any containers manually (Rice, 2023). 

MEANINGLESS ACRONYM 

eBPF has undergone significant development over the years, thanks to the contributions of more 

than 300 kernel developers and numerous user space tools, compilers, and programming language 

libraries. Originally, eBPF programs were limited to 4096 instructions. However, this limit has been 

expanded to over one million instructions (Rice, 2023). 

eBPF's capabilities now extend far beyond packet filtering to include a broad range of applications. 

This expansion of functionality has led to eBPF becoming a standalone term, with the acronym 

essentially meaningless. Moreover, since the extended parts of eBPF are supported in the Linux 

kernels used widely today, eBPF and BPF are often used interchangeably. In kernel source code 

and eBPF programming, the common terminology is BPF. For example, the name of the system 

call for interacting with eBPF is ’bpf()’, helper functions begin with ’bpf_’, and different types 

of eBPF programs are identified with names that start with ’BPF_PROG_TYPE’ (Rice, 2023). 

Outside of the kernel community, the name eBPF has persisted. For instance, it is the name of the 

eBPF Foundation and the community site eBPF.io. 

EXAMPLE OF EBPF 

eBPF in practice is written in C, with libraries for more modern languages like Python, Go C++, and 

Rust, which allow the user to create logic around eBPF programs and eBPF map data, without using 

bpftool to manually attach programs and get output from eBPF maps. Python is one of the popular 

tools to develop eBPF programs using the BCC library
7

. Developing eBPF programs in Python, or 

any other modern language, does not remove the need to write the eBPF program itself in the limited 

 

5

 https://kubernetes.io/docs/concepts/workloads/pods/disruptions/ - What are node disruptions. 
6

 https://newrelic.com/blog/best-practices/observability-instrumentation -  What is instrumentation. 
7

 https://github.com/iovisor/bcc/blob/master/docs/tutorial_bcc_Python_developer.md  

https://kubernetes.io/docs/concepts/workloads/pods/disruptions/
https://newrelic.com/blog/best-practices/observability-instrumentation
https://github.com/iovisor/bcc/blob/master/docs/tutorial_bcc_python_developer.md
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C, they are merely wrappers to make logic around the eBPF programs in action and when they run.  

For example: 

 

Figure 7: Python example wrapped around an eBPF program. 

This is an extremely simple program that uses the Python BCC library to run the program denoted 

by the program variable. This is the common syntax for writing eBPF programs using BCC, the user 

defines a C program in a variable and passes it to the BPF class text parameter. This program prints 

hello world every time there is a clone syscall (system call). The clone syscall creates a new child 

process, from some parent process, for example running ‘cat’, ‘echo’, ‘ls’ or any other 

executable from a bash shell, uses the clone syscall 
8

. 

2.5.2 EBPF IN THE CLOUD NATIVE LANDSCAPE 

The introduction of eBPF opened new possibilities for system introspection and control, making 

eBPF a key technology in the modern Linux system. Which also means in the cloud (The State of 

Linux in the Public Cloud for Enterprises, 2019). 

As cloud environments become increasingly complex, maintaining visibility into application 

behavior, and detecting security threats has become a significant challenge for security and risk 

management teams. To address this issue, eBPF has gained significant attention in recent years as a 

promising solution to enhance security and risk management in cloud environments (Bosworth, 

2023). 

Because eBPF is run directly in the kernel layer, it can immediately observe and instrument all the 

underlying container workloads without modifying or changing the way they run. This enables eBPF 

to provide valuable insights in container environments like a Kubernetes cluster managed directly, 

 

8

 https://man7.org/linux/man-pages/man2/clone.2.html - The clone syscall 

https://man7.org/linux/man-pages/man2/clone.2.html
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or a container service like Amazons Elastic Contaier Service (ECS
9

), from the perspective of the 

cloud provider (Rice, 2023). 

eBPF allows container orchestration admins to observe the whole container landscape of potentially 

hundreds of different workloads, without instrumenting any of them individually. The adoption of 

Cilium, Falco, and other eBPF-based projects amongst the large cloud providers (Thomas, 2021, 

2022), speak to the power and need for efficient and scalable observability and control.  

Before eBPF, a sidecar approach was a common way to instrument observability and monitoring of 

a cloud landscape (Rice, 2023). This approach meant that administrators would need to modify 

application specifications to inject this sidecar workload into the application. This is more prone to 

error and is more cumbersome when the landscape consists of maybe hundreds of different 

workloads. An admission controller like kyverno
10

 could be used to automatically append and inject 

the sidecar workload to every workload that is applied to a Kubernetes cluster. But this approach is 

still more intrusive to application logic, than observing directly at the kernel layer.  

2.5.3 OTHER USERS OF EBPF AND USECASES 

From the perspective of cloud providers (Amazon, Google, Microsoft etc.), eBPF can help to 

improve the security and stability of their cloud environments by detecting and preventing threats in 

real-time, monitoring resource usage to prevent denial-of-service attacks and enforcing security 

policies. An example is; when a cloud provider offers a serverless platform, they must be able to 

monitor, isolate and secure each container running the serverless functions, on each machine. If a 

container escape (Ivánkó, 2021) happens, a threat actor could compromise the data, memory, and 

business logic of many customers using the serverless functionality. 

 

9

 https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html - What is ECS? 
10

 https://kyverno.io/docs/introduction/ - Kyverno introduction. “Validate, mutate, generate, or cleanup (remove) any resource.”  

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://kyverno.io/docs/introduction/
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eBPF can help to improve the security and privacy of their data and applications in the cloud. By 

monitoring system activity and detecting and preventing threats in real-time, eBPF can help to ensure 

that sensitive data and applications are protected from unauthorized access, theft, or compromise. 

A notable high performance use case of eBPF is described in (Qi et al., 2022) where the in-kernel 

event-driven functionality provided by eBPF, allows the CPU usage and latency to be significantly 

lower, for a serverless platform tested in various experiments. Serverless computing is the concept 

of executing some application code on some hardware, where the hardware and infrastructure is 

abstracted away from the developer like Amazon AWS Lambda (Serverless Computing - AWS 

Lambda - Amazon Web Services, 2023), Google Functions (Cloud Functions, 2023) and Azure 

Functions (Azure Functions – Serverless Functions in Computing | Microsoft Azure, 2023).  Other 

high profile use cases of eBPF can be seen below: 

 

Figure 8: (eBPF - Introduction, Tutorials & Community Resources, 2023) 

2.5.4 EBPF SECURITY 

While eBPF provides significant benefits for monitoring and securing cloud and container 

environments, it's important to also consider the potential security risks and concerns associated with 
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its use. When an attacker is allowed to use eBPF it can bypass most observability security measures 

as shown at the Defcon conference (Dileo, 2019). However, the author states that the way he would 

conduct the attack, would be using eBPF, which speaks to the good and evil of easy access to kernel 

level, control, and observability. 

A list of some security concerns when developing eBPF programs could be: 

KERNEL-LEVEL ACCESS 

eBPF operates at the kernel level, providing it with a high degree of visibility and control over system 

operations. While this is a strength, in terms of its monitoring and enforcement capabilities, it also 

means that any vulnerabilities or bugs in eBPF programs could potentially have serious implications 

for system security. 

COMPLEXITY OF EBPF PROGRAMS 

eBPF programs are written in a restricted C language and can be quite complex if the developer 

does not know C, particularly when used for advanced monitoring or enforcement tasks. This 

complexity can increase the risk of bugs or vulnerabilities in the program itself.  

PRIVILEGE  

eBPF programs are designed to run with super user privileges. If an attacker were able to infiltrate a 

system that could run eBPF programs, they will be able to compromise the whole system and hide 

exfiltration of data, for example. 

 

2.5.5 LINUX SECURITY MODULES (LSM) AND EBPF 

Linux Security Modules (LSM) is a framework that allows the Linux kernel to support a variety of 

security models while avoiding favoritism toward any specific security implementation. The LSM 

interface provides a set of hooks that security modules can use to implement access control checks 
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and other security checks throughout the kernel (Linux Security Module Development — The Linux 

Kernel Documentation, n.d.).  

 

Figure 9: Kernel and user-space overview incl. LSM 

TIME OF CHECK TO TIME OF USE ATTACKS 

Time of Check to Time of Use (TOCTOU, pronounced TOCK) is a class of software bugs and 

attacks where a program's control flow is disrupted due to a change in system state between a check 

(time of check) and the use of the results of that check (time of use). This can lead to serious security 

vulnerabilities if an attacker can manipulate the system state in the interval between the check and 

use, an example snippet of pseudocode is seen below. 

 

Figure 10 - TOCTOU attack pseudocode 

In the context of eBPF, LSM has since 2019 been used to write custom mandatory access control 

(MAC) as an additional layer of security (Mitigating Attacks on a Supercomputer with KRSI, 2020). 

For example, eBPF programs can now be used in conjunction with the LSM framework to 

implement fine-grained access control policies, controlling the execution flow. Using the LSM 
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framework, and the eBPF hooks has the purpose of ensuring that parameter checking is as close to 

execution as possible. This mitigates risk of TOCTOU attacks, by ensuring that parameter checking, 

and validation is just before execution. By using LSM eBPF hooks, we are also restoring some of 

the security measures disabled by running containers in privileged mode, as when a user defines 

privileged mode, it disables the AppArmor and SELinux profiles attached to containers by default.  

 

Figure 11 https://www.bluetoad.com/publication/?i=701493&article_id=3987581&view=articleBrowser 

Understanding and mitigating TOCTOU attacks, and effectively using LSM, are crucial for 

maintaining the security of any Linux based environment. By combining these strategies with the 

capabilities of eBPF, it is possible to build highly secure and efficient container-based systems. 

  

https://www.bluetoad.com/publication/?i=701493&article_id=3987581&view=articleBrowser
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3. METHOD & PROCEDURE 

This chapter will dive into the specifics of how a developer or Kubernetes administrator could 

enhance observability and security in their container environment, using eBPF. This section will 

showcase an approach of using eBPF to prevent an introduced security vulnerability, in a private 

cloud-like environment. Furthermore, the section will lead into a discussion about existing 

observability and security measures, that could be incorporate in a container-based 

environment. 

We will purposely introduce a Remote Code Execution (RCE) vulnerability in a container running 

in our demonstration cluster. This vulnerability will serve as an entry point into the Kubernetes 

cluster which we simulate using a tool called K3d (K3d, 2023). K3d deploys a lightweight 

Kubernetes distribution called k3s, but inside docker containers, which means, that a multi node 

Kubernetes cluster can be run on a single virtual machine through the power of containerization. 

A clarification of the demonstration environment is seen below: 

 

Figure 12 - The demonstration environment showing the layers of virtualization. 
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A Kubernetes environment would usually not run on a single node like in our case. The Ubuntu 

virtual machine, which mimics a multi node Kubernetes setup. In a real-world scenario, the 

Kubernetes cluster would run on a set of virtual machines (nodes) without the extra virtualization 

layers we get from using K3d. But since we are showcasing a vulnerability in a container workload, 

it is not important that the underlying Kubernetes environment runs performant and resource 

optimized. A low performance, but fully featured version of the Kubernetes environment is adequate 

to demonstrate the attack and how eBPF would work in a real scenario. 

3.1 EXPLORATION GOAL 

The method we will explore to escape the containerization, is by mounting
11

 the root filesystem 

device into the container, which is allowed because of the privileged security context, which will be 

discussed and explained further in the chapter. We will showcase how to prevent this specific attack, 

using a custom made eBPF program. This program will monitor container processes and keep track 

of containers which are trying to execute a ‘mount’ syscall. One of the interesting difficulties but 

awesome features of using eBPF in this case, is filtering of containers achieved from user space, and 

preventing specific syscalls from certain containers in kernel space. Importantly, this is achieved, 

even though it is running in a privileged context with all capabilities.  

One of the key challenges to achieve the desired result as described above, is to keep track of 

container pIDs (process IDs) in kernel space. A curious reader may think that there would be some 

indication as to what processes tasks originate from a container in kernel space. However, being 

certain that a task struct and process belongs to a container in kernel space is difficult, because the 

kernel has no concept of docker, containerD
12

 or any other container management tool. The kernel 

only knows cgroups, namespaces and other isolation mechanisms in the kernel, and the use of these 

functionalities are not exclusive to container technologies. How we overcome this limitation, using 

an eBPF based approach, will be demonstrated in this chapter.  

 

11

 https://askUbuntu.com/questions/20680/what-does-it-mean-to-mount-something  
12

 https://containerd.io/ - ContainerD container runtime 

https://askubuntu.com/questions/20680/what-does-it-mean-to-mount-something
https://containerd.io/
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3.2  SETTING UP DEVELOPMENT ENVIRONMENT 

To work with eBPF, access to a Linux distribution with a kernel version above 4.4 (Rice, 2023) is 

needed. For our work, we have chosen to setup Ubuntu in virtual machines from which we will 

conduct our experiments. The experiments and further documentation of the processes can be 

found at the thesis GitHub repository
13

. The specific Linux distribution we chose for this project, 

was Ubuntu 22.04.2 using kernel version 5.19.0-41. Most Linux-based distribution comes with the 

BPF kernel flags enabled, but some distributions require to manually be built, using the desired 

kernel flags to enable eBPF/BPF. 

For Windows we used the software VirtualBox from Oracle, to install and run the Ubuntu virtual 

machine, using the official Ubuntu 22.04.2 ISO image
14

. The virtual machine will be used to run the 

microservice system and experiment and implement the eBPF programs, we will dive into how this 

is different than a real-world scenario later. The chosen host operating system it not important, but 

we state it, to allow a full reproduction of our work, using the same tools and same versions, see 

‘setup.md’ in the thesis repo. 

3.3 PREVIOUS VULNERABILITIES THAT WOULD ALLOW 

THIS APPROACH 

We will introduce a RCE vulnerability into the development cluster, which will serve as the entry 

point into the cluster. The exact vulnerability introduced in this thesis is unlikely, however, similar 

RCE with the same or similar consequences, is not unlikely. If an RCE vulnerability got discovered 

in a container application, that is running in privileged context, it could also serve as an entry point 

from which a container escape could happen and, compromise the surrounding environment. RCEs 

happens all the time in different libraries, and custom code implementations, that are used in live 

 

13

 https://github.com/Havnevej/Sockshop-speciale – Sockshop: A fork of Weaveworks Sockshop microservice demo by Anton and 

Leon 
14

 https://Ubuntu.com/download/desktop - Ubuntu 22.04.2, latest from Ubuntu.com 

https://github.com/Havnevej/sockshop-speciale
https://ubuntu.com/download/desktop
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production environments (CVE - Search Results, 2023). At the time of writing there has already 

been a handful of RCE vulnerabilities in 2023, and if any of these vulnerabilities exists in a privileged 

container, our method, or the numerous other privileged container escape methods publicly 

available on the internet, would be a very critical issue (Polop, 2020/2023). In this chapter we will 

show how a misconfigured workload (a vulnerable Python container) combined with an RCE 

vulnerability, compromises the whole Sockshop demonstration cluster. 

3.4 SOCKSHOP MICROSERVICE DEMONSTRATION 

For demonstration purposes we have implemented our vulnerable container workload, within a 

reasonable microservice-based web shop demo project. We chose the microservice web shop demo 

project from (weaveworks, 2023), which we have forked and worked within for our demonstration. 

The Sockshop demo system, created by Weaveworks, is an example of how a real world 

microservice architecture could be built to facilitate a web shop. The extra resource usage and 

complexity overhead, when working with a fully-fledged web shop, serves to illustrate the criticality 

of the attack, and the consequences of a cascading threat. Furthermore, it serves to highlight the 

danger of misconfiguration even when working in container environments, that have the extra 

isolation security layer. Lastly, we want to show how eBPF could be implemented to enhance security 

and mitigate emerging threats to a misconfigured or vulnerable container environment like a 

Kubernetes cluster. 

3.4.1 DEPLOYMENT 

We deploy the modified version of the Sockshop demo on a K3d cluster: “K3d is a lightweight 

wrapper to run k3s (Rancher Lab’s minimal Kubernetes distribution) in docker.” (K3d, 2023). We run 

K3d and docker in the Ubuntu virtual machine see Figure 12. 

  

https://github.com/rancher/k3s
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The Sockshop application architecture is built to demonstrate a real-world application, and contains 

the full functionality of a web shop: 

 

Figure 13 Weaveworks 2023 https://github.com/microservices-demo/microservices-demo/blob/master/internal-docs/design.md 

The demo application is deployed using the ‘complete-demo.yaml’ manifest
15

. This manifest 

describes all the components of the Sockshop application. Running ‘kubectl apply -f 

complete-demo.yaml’ applies the Sockshop demo system and our appended modifications to 

the connected Kubernetes cluster denoted by the ‘KUBECONFIG’ environment variable. This 

environment variable should point to a Yaml configuration file, allowing access to the cluster. In our 

scenario, the connected Kubernetes cluster is a k3d cluster running in docker. 

When the system is deployed to the cluster, and the microservice demo application is up and 

running, the only connection to the broader internet, is through the frontend service, see Figure 13. 

Internal components (database, message queue system, etc.) are not reachable by the internet. To 

 

15

 https://github.com/Havnevej/Sockshop-speciale/blob/master/deploy/kubernetes/complete-demo.yaml  

https://github.com/Havnevej/sockshop-speciale/blob/master/deploy/kubernetes/complete-demo.yaml
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compromise this setup, a threat actor in a real-world scenario, would need to find a way to leverage 

an unsecure API call, or some unsecure and vulnerable logic in the frontend, which could 

communicate with the internal components. If such a vulnerability was found, this could lead to an 

attacker establishing a reverse shell
16

 into a container within the system. And if the attacker finds a 

way to a privileged container, it will likely lead to a privilege escalation, resulting in the compromise 

of the container host, and most likely the whole cluster. 

3.4.2 OUR CHANGES TO THE SYSTEM 

As referred to, we have modified the Sockshop microservice demonstration project, to show how a 

specific security oversight and misconfiguration could affect a real-world container-based cloud 

environment. To simulate a vulnerable hole in the frontend, we have introduced a security hole in 

the form of a privileged vulnerable application, alongside the rest of the cluster, which allows an 

attacker to establish a reverse shell into the vulnerable pod (container). Once this connection is 

established, we will illustrate how devastating this configuration can compromise the whole 

Kubernetes cluster and the underlying host nodes. 

This is an introduced vulnerability which we have control over, but even if this was a real 0day
17

 RCE 

vulnerability, it would be possible to prevent this critical cascading issue with the use of eBPF. It 

would be trivial to remove the purposeful vulnerability, introduced by us, but the point is, when an 

organization is developing a potentially large application, consisting of hundreds of containers, there 

might be introduced or discovered a vulnerability. For example, a new Common Vulnerabilities and 

Exposures (CVE) could be disclosed that compromises the otherwise secure application. When 

such a discovery is made, it is best to have proactively secured the IT-landscape - than retroactively. 

 

 

16

 https://www.imperva.com/learn/application-security/reverse-shell/ - What is a reverse shell? 
17

 https://www.microsoft.com/en-us/microsoft-365-life-hacks/privacy-and-safety/zero-day-vulnerability-exploit - What are 0days? 

https://www.imperva.com/learn/application-security/reverse-shell/
https://www.microsoft.com/en-us/microsoft-365-life-hacks/privacy-and-safety/zero-day-vulnerability-exploit
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THE VULNERABLE WORKLOAD 

The vulnerable workload we introduce, is a 

simple Python Flask app (Flask is a popular 

Python library that makes it easy to create a 

webservice quickly, Flask has over 60.000 stars 

on GitHub
18

). Flask is a quick way to create the 

vulnerable container, which will serve as the 

vulnerable entry point into the cluster for the 

attack. Introducing a workload that is 

vulnerable, is extremely problematic should the 

workload be run with the ‘privileged’ 

security context. The privileged context means 

that, the spawned container will have access to 

the underlying system outside the container, 

compromising the isolation mechanism and 

thereby providing access to the underlying node 

in the case that, an attacker could get access to the 

container.  

  

 

18

 https://github.com/pallets/flask  

Figure 14 Vulnerable container in the Sockshop manifest 

https://github.com/pallets/flask
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The container image: ‘havnevej/special-Python’ is built using the Dockerfile in the thesis 

repository
19

. This image is a Python Flask app -. The vulnerable web app
20

 is extremely simple and 

the entire source code, can be seen below:  

 

Figure 15: Entire flask app source code 

Notice that line 13 is extremely dangerous, because it takes a user defined parameter and appends 

it to a direct system shell command. It achieves the desired result, but in a dangerous and highly 

discouraged way, as it allows for user defined logic to be run directly. A safer and dedicated way to 

achieve this functionality, without using ‘os.system’, would be to use the dedicated 

‘os.listdir('dir_path’)’ function. This function returns a list of all the files from the 

specific directory and eliminates the possibility of user defined parameters. 

 

19

 https://github.com/Havnevej/Sockshop-speciale/blob/master/test/Python/Dockerfile  
20

 https://github.com/Havnevej/Sockshop-speciale/blob/master/test/Python/server.py  

https://github.com/Havnevej/sockshop-speciale/blob/master/test/python/Dockerfile
https://github.com/Havnevej/sockshop-speciale/blob/master/test/python/server.py
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PRIVILEGED CONTAINERS VERSUS UNPRIVILEGED CONTAINERS 

As briefly covered, running a container in privileged mode means, that the container has full access 

to the host system's resources, including kernel capabilities, devices, and file systems. Privileged 

mode effectively removes all isolation, provided by the containerization technology, and allows the 

container to interact with the host system, as if it were a regular process running on the host. In 

contrast, running a container in non-privileged mode, provides the container with a limited view of 

the host system's resources and restricts its access to the minimum necessary, for it to function. In 

our context, this means that the privileged pod is essentially a vulnerability to the host system, from 

the container. The actual container escape can be achieved in a variety of ways, as the privileged 

container bypass many security mechanisms like AppArmor profiles and SELinux profiles. 

Furthermore, the common practice, of running a container as root, makes a privileged container of 

the highest threat, as it will be root on the host machine if it escapes to the host system. 

3.4.3 DESIGNING THE PERFECT APPLICATION 

Figure 15 shows the introduced problematic code, and while it is very dangerous and extremely bad 

coding practice, a vulnerability with similar consequences, could feasibly be introduced by bad 

coding practice, and a disregard for code quality. It would be uncommon for this exact example code 

to reach the production environment, for any sized business or organization, due to the deliberate 

vulnerability. But due to lack of resources or expertise, a piece of code that enables this kind of 

Remote Code Execution (RCE) vulnerability, would not be infeasible. Accidents happen, and 

security vulnerabilities and fatal security issues, that allows RCE, are sometimes found in popular 

libraries, like the recent Log4j CVE-2021-44228 exploit
21

. This vulnerability would likely have 

allowed attacks, similar to ours, to take place in an otherwise perfectly designed application
22

. This 

exploit was aptly called Log4shell, which is exactly the kind of RCE that would be needed for the 

 

21

 https://www.paloaltonetworks.com/blog/security-operations/hunting-for-log4j-cve-2021-44228-log4shell-exploit-activity/ - TheLog4j 

exploit 
22

 https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?name=CVE-2021-

44228&vector=AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H&version=3.1&source=NIST - Log4shell CVE severity calculator 

https://www.paloaltonetworks.com/blog/security-operations/hunting-for-log4j-cve-2021-44228-log4shell-exploit-activity/
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?name=CVE-2021-44228&vector=AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H&version=3.1&source=NIST
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?name=CVE-2021-44228&vector=AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H&version=3.1&source=NIST


44 

 

first step of this demo attack vector, we are simulating. This vulnerability was extremely critical, as it 

compromised most standalone web application servers, if they used a special logging format for the 

very popular library, ‘log4j’. Web servers are often run with some elevated privileges, which can 

be exploited once an attacker has achieved the reverse shell into the server, from an RCE, like 

Log4shell.  

Running a web application server in a container, would provide an extra baseline layer security, 

through the abstraction and compartmentalized approach of containers. It is not to say, that 

containers are not more secure than without, if not being aware of how containers operate and 

communicate and not following best security best practices. For example, with our introduced 

vulnerability, we will showcase how it is possible to compromise the whole Sockshop system, through 

a container in the cluster, which gives a sense of separation. This separation between containers does 

not exist when essentially having superuser rights in the cluster, hence you cannot feel secure without 

the right configuration in the cluster and the workloads present. 

3.1 THE SYSTEM VIEWPOINT 

For the attack, we port forward directly into the vulnerable pod using the ‘kubectl port-

forward’ command, which allows us to communicate directly with the container in the cluster, 

eliminating the need for us, to create a security breach in the frontend through a vulnerable API or 

other vulnerabilities. This approach was chosen to avoid the extra overhead to understand and 

tamper with the existing frontend code in the Sockshop demo system. This allowed more time to 

focus on the attack and prevention flow as this is the important subjects for this thesis. The frontend 

and rest of the Sockshop, is only present to illustrate the criticality of a breach in another workload 

in the cluster and is therefore, not relevant for this demonstration.  

The RCE vulnerability we are introducing is as stated, a simple Python-based directory search 

endpoint, which we pretend that we can access through some vulnerability in the frontend service, 

or through a misconfiguration of the cluster, allowing outside access from the vulnerable workload. 

The perspective is to demonstrate the possibilities for attackers, when they get inside a container, 

and not the specific approach of getting ind. The viewpoint of the system, with our entry point into 
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the vulnerable container, and the regular interaction with the cluster through the internet, is shown 

below: 

 

Figure 16: Vulnerable system 

Figure 16 represents the Sockshop demonstration cluster. We are gaining entry through the 

Kubernetes API using the previously mentioned port forward, which is possible as we are admins of 

the cluster.  

3.2 THE ATTACK IN ACTION 

This section will showcase how to exploit the vulnerable Python application, and how to get root 

privileges on the host node, from inside the insecure container, in the demonstration cluster. The 

full step-by-step attack walkthrough is available in the thesis repo
23

. 

 

23

 https://github.com/Havnevej/Sockshop-speciale/blob/master/test/docs/attack.md - Thesis repo, executing the attack. 

https://github.com/Havnevej/sockshop-speciale/blob/master/test/docs/attack.md
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As mentioned, for the RCE we are attacking a Python-based directory search endpoint which we 

have access to through the internet. The search function ‘def search()’ is coded as follows: 

 

Figure 17: The vulnerable Python workload, see 20 above 

The above implementation is vulnerable, since it allows user supplied arguments, to be run directly 

on the system. To capture a reverse shell session into the container, and to verify that we have 

discovered a vulnerability in the application, we use the ‘netcat24’ utility. ‘Netcat’ can listen 

for incoming connections to our target machine on port ’4444’ – the port number is not important.   

 

Figure 18: Netcat setup to listen on local port 4444 for incoming connections. 

Now we are listening for incoming connections on our attacker machine, which in our case is the 

same machine running the cluster and the whole demonstration. However, this is not relevant as the 

 

24

 https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/networking_guide/sec-

managing_data_using_the_ncat_utility 
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listener could have been on any machine anywhere on the internet, the only criteria being an open 

port to listen on and the public IP address sent together with the payload.  

To attack the vulnerable endpoint, we invoke the following request: 

 

Figure 19: The command run to connect to attacker machine by spawning a bash shell through Python. 

Naturally we benefit from being the creators that setup the environment, and a real attacker would 

likely have to try many vectors to find one that works. Because we know it is a Python application 

we are working with, and we know it is a container, we naturally use Python to spawn the shell session. 

We send the request using Postman, which is an API platform for testing and configuring APIs
25

. 

The “<IP>” in the figure above, is the public IP address of the threat actors control machine, perhaps 

 

25

 https://www.postman.com/product/what-is-postman/ - What is postman. 

Figure 20 K3d cluster start command output. 

https://www.postman.com/product/what-is-postman/
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a command-and-control server. The port specified (<PORT>) needs to be open to outside 

connections on the attacker’s network and the ’localhost:5000’ is in our case, the vulnerable 

service which we have port forwarded directly into. 

For our demonstration the IP address shown above, is what Docker uses as the internal IP and will 

usually be something like ’172.22.0.1’ - this IP address serves as the public IP from within the 

container, pointing to the host machine. In our scenario, this is also the attacker IP from which we 

are running the ’netcat’ capture. 

Invoking the ’GET’ request, shown in Figure 21, will spawn a Bash shell in the container, which we 

can control from our attacker shell. Now, that we are in the container as the attacker, we need to 

escape the container environment, which we know is possible by simply mounting the host filesystem 

block device, into the container. The container escape can be achieved in a variety of ways, due to 

the privileged flag used on the workload - recall Figure 14. 

Figure 21: Executing the RCE from postman. Getting a shell is shown in the terminal in the bottom, commands are run to see we 
are indeed in the container. 

Invoking the ’GET’ request achieves the reverse shell from the listening terminal, shown in the 

bottom of the figure above. We now have a shell connection into the container from our attacker 
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shell and can start to escape the container and take control of the node itself, since the pod is run 

with privileged access. 

 

Figure 22: the simple and effective attack vector to escape using the mount command. 

After verifying that the ’mount’ command is present in the container, all we need to find out, is 

where the host system is located. The goal of mounting the host filesystem device, into the container 

and use this vector, is to do whatever we want on the host system. For example, we can retrieve the 

’KUBECONFIG’ file located at ’/etc/rancher/k3s.yaml’. This is the root “KUBECONFIG” 

file for a k3s Kubernetes cluster, which allows interaction with the API servers and management of 

the cluster, which means, that the whole cluster is compromised. 

Figure 22 shows that we execute ’findfs’ and ’cat /proc/cmdline’ from within the 

container. These commands are used to find the host filesystem device if the ’mount’ command 

or ’fdisk’ command does not reveal it. 
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Figure 23: Reverse shell showing the escape using mount and navigation to find interesting files on the underlying node. 

Shown above is navigating to the user directory from within the container. This is two levels of 

containerization, instead of the expected one layer, because we are running a Kubernetes cluster 

using Docker.  
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The actual escape is shown in the illustration below: 

 

Figure 24  Escaping all the way to the Ubuntu VM because of the K3d environment. 
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In fact, we are getting access all the way down to the host system, instead of the virtualized Kubernetes 

nodes running in docker, this is of course because the Kubernetes nodes are containers themselves. 

Navigating to ’/var/lib/docker/ and running the command: ’find . | grep secret’ we 

can retrieve a secret file we have placed in another pod in the cluster, see Figure 25. 

Reading the file, gives us the information we have stored as a test, of reading data from other 

containers in the cluster. For this example, we have highly sensitive credit card information stored 

in a file, which the attacker now can read. This should illustrate the severity of this security breach. 

At this point, we would be able to find information used to connect to the Kubernetes cluster API 

server, because we are root on the node host machine, which would have been a worker node in a 

real-world scenario and, is the Ubuntu VM in this demonstration. Note that the illustration does not 

show the mounting of the host filesystem to the ’test/’ folder, this has been done in another shell 

in the container. 

  

Figure 25: Retrieving critical information from another container in the cluster. 
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As highlighted in the previous section (see Figure 25 above), we have effectively compromised the 

full container environment, further proving this can be seen below: 

This image shows that we are in the host machine and are able to find all the “KUBECONFIG” files 

like the previously mentioned ’k3s.yaml’ which resides on k3s nodes, that they use to 

communicate with the Kubernetes control plane nodes. Once we have access to these, we read one 

of them that seems interesting for an attack, for example: 

’./volumes/03293283e…/_data/server/cred/admin.KUBECONFIG’ 

Figure 26: Finding the Kubeconfig file 
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Once we read this file we get as expected, an Yaml manifest that is a ’KUBECONFIG’ file, as shown 

below: 

This shows that this user called ’user’, is using a private key located at the path: 

’/var/lib/rancher/k3s/server/tls/client-admin.key’ and a certificate for the client 

located in the same folder.  

  

Figure 27: Finding a user’s private key and certificate. 
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We will retrieve these, by a simple find command like so: 

Figure 28: Reading of the private key data. 

Shown above is reading of the private key file, which we have access to since we are root on the node 

because of the privileged container, and the root user being used. This is also an area where eBPF 

could be introduced, to make it more difficult for an attacker to retrieve these files. It could monitor 

for access of sensitive files, and deny all access other than known sources, like the k3s server binary. 
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Now that we have the secret key file and the certificate file, we can create a ’KUBECONFIG’ file to 

interact with the cluster through the admin user we extracted from the escaped shell: 

 

Figure 29: The constructed kubeconfig yaml file using the stolen certificate and private key. 

The ’KUBECONFIG’ uses the stolen key and certificate to authenticate to the cluster API server 

which is located on ’0.0.0.0:34231’ this is the address, because we are running the Kubernetes 

cluster within Docker using K3d. In a real scenario, the address would likely be a different internal 

IP on the network the attacker has infiltrated. In our scenario, we attack the cluster from the same 

virtual machine that runs the cluster, that is the Ubuntu VM. It is a different approach, but 

functionally identical to connect to a Kubernetes control plane through the internet. A Kubernetes 

cluster would likely not be open to the internet in a real-world scenario, and an attacker would use 

the internal IP and exfiltrate data extracted.  

An attacker could use the reverse shell session, to copy a binary like ’curl” or even ’kubectl’ 

to the compromised container through a Secure Copy ’SCP’ for example ( The SCP is a command-

line utility in Linux, that allows to securely copy files and directories between two locations using the 
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SSH protocol
 26

). For this demonstration we pretend an attacker has learned, that the control plane 

node is open to the internet, alternatively the attacker would have to go through the previously 

mentioned transferring of a binary, to the compromised container to communicate with the 

Kubernetes API: 

 

Figure 30: Executing ‘kubectl’ to get pods which returns the pods, meaning the kubeconfig file works. 

This illustration shows how the constructed ’KUBECONFIG’ file, using the stolen certificate and key, 

can retrieve all the pods in the cluster, including the Sockshop pods, which means that it is 

compromised, and the attacker can retrieve all information on the cluster, including secrets and 

’CONFIGMAPS’, which usually contain the credentials, to connect to databases and other services. 

The system is compromised from the RCE -> ’mount’ of filesystem into container, approach. 

 

 

26

 https://linuxize.com/post/how-to-use-scp-command-to-securely-transfer-files/ 
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3.3 PREVENTING A “MOUNT” CONTAINER ESCAPE 

USING EBPF 

We will now explore how eBPF can be used to restrict the invocation of the ’mount’ syscall, that 

we used to escape the container. This adds an extra layer of security for an environment where a 

privileged workload is compromised or becomes vulnerable to a discovered Common 

Vulnerabilities and Exposures (CVE). The program will be created using the BCC library from 

Python, which will compile, run, and attach the C program we have written, and provide a frontend 

to interact with the eBPF program through Python. We will illustrate how, a systems administrator 

or eBPF developer, can implement a kernel-based countermeasure, to handle situations such as the 

’mount’ container escape attack vector, shown in this chapter. Importantly, the program lives in 

the kernel, but without developing a kernel module or kernel patch, that could become incompatible 

with a future kernel update. 

eBPF is traditionally used for observability and network-based defense and optimization but for this 

thesis, we will uncover how the recently implemented eBPF Linux Security Module (LSM) eBPF 

hooks, will allow us to control the flow of execution for a syscall or process that might be malicious 

of character, meaning that, we will disallow the ’mount’ syscall using an LSM-hook. Hooking into 

LSM with eBPF enables us to modify the return code from the security module framework, which 

will disallow the final execution, if the return code is not 0. 

3.3.1 BCC AND WRITING EBPF PROGRAMS 

Before we dive into the program, it is important to understand how BCC works, and what it has 

helped us with in this thesis. Writing eBPF programs is no easy task, it requires knowledge about 

the Linux kernel internals, proficiency in the C language, memory management and pointer-based 

structures. Even compiling the eBPF program requires the correct kernel headers, kernel flags 

enabled, and vast knowledge of how to pin a program to a specific trace point in the kernel. This is 

where BCC can be beneficial speeding up development and lowering the knowledge threshold to 
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get started developing eBPF programs. BCC is also the go-to way to develop eBPF programs in 

(Rice, 2023). 

BCC is a toolkit for creating efficient kernel tracing and manipulation programs and 

includes several useful tools and examples. It makes use of extended BPF (Berkeley 

Packet Filters) […] BCC makes BPF programs easier to write, with kernel 

instrumentation in C (and includes a C wrapper around LLVM), and front-ends in 

Python and Lua. It is suited for many tasks, including performance analysis and 

network traffic control. 

(BPF Compiler Collection (BCC), 2015/2023) 

For this thesis we are using the Python BCC library to run the eBPF written in C
27

. Writing the C 

program and understanding the possibilities of eBPF, was time-consuming due to the degree of 

knowledge required to understand what is and what is not possible, when developing an eBPF 

program. However, a great advantage when developing eBPF programs, is that the eBPF scene is 

mainly open-source, and there is a lot of active projects using eBPF in production. This helps when 

trying to get the syntax right, the program flow, data structures and hooks working correctly.  

The examples in the BCC repository, has been paramount to help getting started with BCC eBPF 

and Python - the eBPF programs can be found in the thesis repo 
28

, alongside all the code. In addition 

to the compiling, pinning, and running of the eBPF program, BCC makes it easy to implement user 

space logic written in a much higher-level language, like Python. This enabled us to combine the 

capabilities of eBPF kernel instrumentation, with the modern features and application design 

patterns, without dealing with the compilation, pinning, and running of the eBPF program itself.  

 

27

 https://github.com/Havnevej/Sockshop-speciale/blob/master/eBPF/deny_mounts.py - Python program 

https://github.com/Havnevej/Sockshop-speciale/blob/master/eBPF/deny_mounts.c - C program 
28

 https://github.com/Havnevej/Sockshop-speciale/tree/master/eBPF  

https://github.com/Havnevej/sockshop-speciale/blob/master/ebpf/deny_mounts.py
https://github.com/Havnevej/sockshop-speciale/blob/master/ebpf/deny_mounts.c
https://github.com/Havnevej/sockshop-speciale/tree/master/ebpf
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Figure 31: Running C deny_mounts.c with Python BCC library. 

Seen on LOC#77 and LOC#85 is the only necessary Python code to attach, pin and run eBPF C 

programs. In our case we specify the ’deny_mounts.c’ program and run the 

’bpf.trace_print()’ function, that is an infinitely running function, to watch for and print the  

’bpf_trace print()’ calls from the eBPF program to the Python console, which is great for 

debugging and observing the program. 

3.3.2 THE PROGRAM AND HOW IT INFLUENCES THE ATTACK SCENARIO 

The full program to deny ’mount’ syscalls is accessible in the thesis repo, see foot note 27 above. 

The program is designed to keep track of container process IDs, and check if any ’mount’ syscalls 

originates from a process ID that belongs to a container. The program utilizes an BPF array that is 

initially filled from user space with current running containers and their processes, and updated if 

new containers are spawned. Once the eBPF program is running, it will in kernel space, keep track 

of newly spawned processes, if its parent process matches one of the monitored processes, thereby 

keeping track of sub-processes in containers. The program and development process will be 

explained throughout this chapter, and ultimately a full system implementation will be presented by 

a diagram.  

Throughout development of this program, we have experimented with several different solutions 

and approaches to address the ’mount’ container escape vector. The first working prototype of the 

program looked at the task struct associated with a ’mount’ syscall using the Linux Security Module 

https://www.wordhippo.com/what-is/another-word-for/accessible.html
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(LSM) ’mount’ hook. Then if the task struct 
29

 had parent pID (process id)  = 1, we knew that the 

’mount’ call came from a container, as the parent pID is likely to be 1, when it is in the context of 

a new Linux namespace, similar to when a process originates from the first process in a container. 

 

Figure 32: Split terminal, left showing the denying of a mount from within a privileged container, right showing the mount attempt. 

Seen above is this first working iteration of the program, that denies the ’mount’ when inside the 

container but allows the prior ’mount’ calls (see left side ’mount OK’), which happen to be the 

’mount’ syscall executed when running the container. The program then denies the “mount” 

when originating from the container (see right side and left side ’Deny mount path: test’).  

Expanding on this, we quickly found out, that we had to find a more consistent way to deny ’mount’ 

syscalls, because a simple execution of a new shell e.g., ’sh’ would move the pID parent to 2, which 

would bypass the eBPF program logic. To achieve this, we implemented logic to keep track of the 

chain of processes, originating from containers, and stored them in the eBPF map - recall that eBPF 

maps are shared between user space and kernel space (see Figure 6). Working with eBPF maps is 

different from working with standard data types in Python. Python has somewhat arbitrary sizes for 

data types, which makes them handy to work with, but not ideal for very specific memory boundaries. 

Because of this, we make sure to use the Python ’cTypes’ library, which will as the name suggests, 

ensure that a ’cType’ integer in Python, is the same size as an integer in C. An example of this, is 

seen on LOC#61-63 below. 

 

29

 https://github.com/torvalds/linux/blob/47a2ee5d4a0bda05decdda7be0a77e792cdb09a3/include/linux/sched.h#L739 - Task struct 

from sched.h. 

https://github.com/torvalds/linux/blob/47a2ee5d4a0bda05decdda7be0a77e792cdb09a3/include/linux/sched.h#L739
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Figure 33:  Deny_mounts.py showing cTypes used. 

This is the user space code that updates the BPF map with new process ids once new containers are 

started on the system, see LOC#62. It does this, by using the Docker client to monitor for the 

’container started’ event, shown below on LOC#32. This will call the function on LOC#35 

which finally calls the update function, that will add the PID to the eBPF map for the container. 

 

Figure 34: deny_mounts.py logic to capture container create and start events from the docker client (LOC#29&31). 
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This code in action, can be seen below where we print out the container ID and the ’c_uint’ 

representing the initial process, for a newly started container: 

 

Figure 35: Split terminal, eBPF program left and container shell right. 

Any future processes from existing containers (child processes) will be handled in the eBPF program 

using the ’BPRM_CHECK_SECURITY’ LSM hook
30

. We needed to find a LSM hook that would be 

called in process execution, which lead is to this hook. Reading from the source code: 

“This hook mediates the point when a search for a binary handler will begin”. 30 above 

  

 

30

 https://elixir.bootlin.com/linux/latest/source/include/linux/lsm_hooks.h#L62 - BPRM_CHECK_SECURITY LSM hook 

https://elixir.bootlin.com/linux/latest/source/include/linux/lsm_hooks.h#L62
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This hook was what we needed to make sure to capture all new process executions and catch any 

sub shells or nested processes in containers, that could be used to circumvent our defense. The hook 

and eBPF program: 

 

 

Figure 36: deny_mounts.c - eBPF program snippet. 

We do not want to block any processes from being created, so the function always returns 0 to allow 

normal execution flow. The function first retrieves the parent process ID for the process, which is 

about to be executed, see LOC#209. Then the program loops the BPF array, to check if any value 

in the array is equal to the parent PID, see LOC#219. If there is a match, we know that this process, 

which is about to spawn, originates from a container so we iterate the array again to find an empty 

spot to set it. 
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An illustration of a sub process being added to the container map can be seen below in a split 

terminal, (to the left the eBPF program, to the right a shell in container):  

 

Figure 37: Split terminal eBPF program left and container shell right. 

This function flow seems immediately inefficient but is necessary when working with BPF arrays, as 

it must be certain a program exits and does not crash the kernel. For this reason, we create two 

iterator variables because the looping iterator: ’I’ on LOC#213 cannot be passed to functions in 

the loop, as the eBPF verifier will not know, if the value is changed elsewhere, for example in the 

lookup function (see LOC#216&224).  
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Having achieved a way to keep track of all new container processes using the C program, and initial 

container processes using the Python program, we still need to remove them from the BPF array, 

which we do using a ’TRACEPOINT_PROBE’ shown below: 

 

Figure 38: deny_mounts.c Tracepoint probe to remove processes from array on exit. 

This program once more initializes a struct for the context of the task, from which we can get the 

pID (see LOC#184). This function checks the eBPF-array for the exiting process’s ID, and if the 

lookup is successful, it removes the pID from the array. This function is very similar to the previously 

shown function, because of the eBPF-array manipulation and similar flow. This function logic 

ensures that we also free up spaces in our limited eBPF-array.  
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Illustration of a process getting removed from the array is shown below: 

 

Figure 39: Split terminal, eBPF program left and container shell right. 

Lastly, we must block ’mount’ syscalls from containers, which we can now determine confidently 

using the eBPF-array we populate and maintain, using the previously shown functions above. The 

LSM hook we utilize is the ’SB_MOUNT’ hook. We implement the logic to deny ’mount’ calls 

from containers below: 

 

Figure 40: deny_mount.c sb_mount LSM probe, logic to deny mounts from within containers. 
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The logic in this function is similar in the way, that we once more need to iterate the eBPF-array to 

figure out, if the executing process parent is in the list of container PIDs (see LOC#245&257). If the 

parent PID is a known container process, we will return ‘-EPERM’, which is a special integer 

indicating permission denied -it would result in the same denial if we returned any non-zero value. 

This special constant is understood by the system, and promptly displays permission denied in the 

executing shell. An illustration is shown below: 

 

Figure 41: Split terminal, eBPF program left and container shell right. 
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A full overview of the program and functionality, is shown in the diagram below: 

 

Figure 42 - Full system overview, user space and kernel space. 

This diagram shows the three different probes that we have implemented in the C program, and the important logic in the Python program, 

that is the initialization where we get all current container processes, and the container start events from the Docker client to get all new 

containers.  
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3.3.3 LIMITATIONS AND CONTRAINTS ON THE EBPF PROGRAM 

Writing, compiling, and executing eBPF programs requires researching the Linux kernel's inner 

workings, and in our case, understanding the specifics which make containers unique. These areas 

of expertise are themselves topics needing specialized knowledge from experts. For this reason, the 

application we have built is limited in functionality and has many possible improvements and 

limitations that will be discussed further in the coming evaluation chapter. 

As stated in the beginning of the chapter, the initial goal for our defense was to disallow ’mount’ 

syscalls if they originated from a container. However, this is not entirely straight forward, as eBPF is 

mainly a technology that gathers information from the system through instrumenting specific syscalls 

and controlling network packages through eXpress Data Path (XDP). Disallowing syscalls, based on 

certain context, e.g., syscall originating from a container, is not an angle that is thoroughly researched 

or implemented yet. Therefore, most of the monitoring and examples of eBPF uses uProbes(user 

probes) or kProbes (kernel probes), which attach to a desired function or syscall, to observe and 

populate certain metrics. In our case we use the newer Linux Security Module (LSM) probes which 

is also a type of kernel probe, but as we have demonstrated in this chapter, the LSM probes can also 

control the flow of execution based on user-defined logic in the kernel. There is, however, some 

limitations we would like to highlight, for example: 

• There could be a negative performance impact on iterating potentially large arrays each time 

a LSM hook is executed. 

• What if an attacker also has access to eBPF programs, due to the privileged nature? 

Furthermore, the program development and steep learning curve required to understand and 

implement the eBPF technology was a limitation for further development. We are satisfied with the 

functionality highlighted in this chapter, but there are theoretical bypasses such as:  

• Bypassing our eBPF program using eBPF 

o Likely a great attack angle against our system, should an attacker know the defense is 

using eBPF. 
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• Other container escape vectors not covered. 

o We are aware of several other container escape methods that could be executed from 

a compromised privileged container, which are not covered by our program
31

.  

• Knowledge of the Linux kernel and special techniques 

o There could be various improvements to determine if a task originates from a 

container like described in (Lin et al., 2018). More techniques and optimizations 

should be tried. 

These limitations should indicate that the program we have created, is not ready for real use cases, 

as it has many areas in which it could be improved to be more robust and cover a larger attack 

surface. The program does exactly as expect, but during the development of the program, we have 

encountered many areas where we wanted to tweak the program to cover more attack vectors and 

make it more efficient against a persistent attacker.   
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 https://github.com/carlospolop/hacktricks/blob/master/linux-unix/privilege-escalation/escaping-from-a-docker-container.md - 

Hacktricks github, container escapes from privileged containers 

https://github.com/carlospolop/hacktricks/blob/master/linux-unix/privilege-escalation/escaping-from-a-docker-container.md
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4. EVALUATING THE SYSTEM AND EBPF 

We will in this chapter, evaluate the system and discuss the plausibility of this attack and how our 

introduction of the eBPF program will defend against the attack. Furthermore, we will cover other 

use cases of eBPF and discuss the learning curve associated with developing eBPF programs for 

container environments. Lastly, we will cover another attack vector that could be used to gain the 

initial foothold in the vulnerable container, as it is not only this type of RCE vulnerability that can 

serve as an entry point. The complete and full system we have developed is shown in: “Figure 42 - 

Full system overview, user space and kernel space.”. The system has the capability to deny ’mount’ 

syscalls, from even privileged container processes and allow all ’mount’ syscalls that originates from 

a process, that is not in our blacklist eBPF-array. 

4.1 THE PLAUSABILITY OF THIS ATTACK 

The attack vector through a Remote Code Execution (RCE) vulnerability, is not uncommon, but 

crucial if this vulnerability leads to a privileged container, since the full system will be compromised, 

as opposed to if the container would run in unprivileged mode, then the attack, through the RCE 

vulnerability, would be limited to the container. The containerization technology provides a 

convenient way to contain fatal vulnerabilities and reduces blast radius, but not if the containers are 

run in privileged mode and an attacker somehow get a RCE into this pod.  

The plausibility of this vector and attack happening, is somewhat likely, judging by the pace at which 

cloud, and container technologies are getting adopted (CloudZero, 2022), and the frequency of RCE 

based vulnerabilities are discovered (CVE - Search Results, 2023). 

We recognize that the attack vector and our methodology would be significantly more complex if 

the Remote Code Execution (RCE) vulnerability was undiscovered, meaning it existed but was not 

yet known to adversaries, or if the container was operating in an unprivileged mode. To perform the 

attack we have shown, an attack would have to identify existing vulnerabilities in the container or the 

Docker system itself. Vulnerabilities could be found in the application running inside the container, 
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the Docker runtime, or the underlying host operating system. Misconfigurations, such as insecure 

container configurations or insecure Docker daemon configurations, could also provide the attack 

vector. Common misconfigurations include leaving inter-container communication open or binding 

container ports directly to the host. 

Should someone decide to use privileged mode, they should be aware that it carries substantial risk. 

There are, however, a few necessary use cases, such as running Docker within Docker for a 

Continuous Integration/Continuous Deployment (CI/CD) system or working with container images 

on a host that is itself a container, for instance, running the CI/CD tool Jenkins in a container.  

Another use case for running Docker containers in privileged mode could be scenarios where a 

container needs access to hardware devices, like a GPU. In such cases, the container must be run in 

privileged mode to directly interact with these devices. Utilizing the root user for containers is also 

exceedingly risky especially when the privileged flag is enabled because using the root user in the 

container equates to the root user on the host. 

4.1.1 AN UNPRIVILEGED CONTAINER 

The initial stage of the attack would still involve the exploitation of an RCE vulnerability. This could 

be achieved through various means, such as sending specially crafted data or commands, that triggers 

the vulnerability in a container. The attacker then identifies a method to escape the container. This 

could involve exploiting a vulnerability in the container runtime, or the host kernel or misconfigured 

containers. For instance, if the container is not properly isolated from the host system or if it has 

unnecessary capabilities or permissions, these could be used as escape vectors like mentioned in 

(Lin et al., 2018). 

Our program would prevent the escape vector, if it used the ’mount’ syscall as we block all 

“mount” calls from containers, which is not likely to be the attacker’s chosen escape vector, due to 

the container properly having AppArmor and or SELinux profiles, that already disallow this type of 

call, but we have hopefully highlighted how a developer could implement and extra layer of security 
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based on needs. Our program and eBPF in the context we use it, works best to adapt to an emerging 

situation, but with further development it would ideally be like the project Tetragon 
32

.  

4.1.2 THE PROGRAM AND ITS CABABILITIES  

The program does as expect and due to the narrow attack vector that we cover, it is vulnerable to 

other trivial attack vectors widely available on the internet. The point is however, that we prevented 

one vector very effectively and presented our program, which could easily be expanded to cover 

more cases and more logic. An evaluation of the performance impact would have been necessary, 

especially when expanding upon the program logic, as this is something we have not had the time to 

investigate, and something that is extremely relevant when deployed to a container environment 

where potentially hundreds of containers are monitored and controlled, in a volatile Kubernetes 

environment. 

Our program logic could properly be integrated and adapted to work with the mentioned project 

Tetragon and be deployed as Tetragon profiles. The advantage being, that the program could be 

written in human readable Yaml instead of our implementation in C and Python. This would be the 

best option for smaller organizations, as they would properly not have the resources or expertise, to 

develop eBPF programs from scratch. They would, however, most likely have expertise in writing 

Yaml, as it is widely known for many CI/CD pipeline implementations. 

4.1.3 ANALYSIS OF SECURITY TECHNIQUES WITH EBPF 

eBPF is traditionally a technology that is used for network traffic management, monitoring of security 

through alarms and observability.  In this thesis we took another approach where we implement logic 

that disallows system wide functionality i.e., the ’mount’ syscall, if a process or task matches our 

implemented filter. The proactive approach of anticipating a vulnerability or providing the fail-safe 

as an enforced policy through the Linux Security Module (LSM) hooks, rather than audit or alerting 
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of the problem, is also explored by larger companies like (Lawler, 2022). We view our 

implementation to proactively use eBPF to provide a fail-last (FL) option for a container 

environment like a private cloud, by denying ’mount’ calls out of a container, to circumvent a 

potential critical vulnerability.  

A FL-valve traditionally is a term to describe a control valve that stays put, if it loses signal 
33

. This 

concept fits well into the implementation of being proactive to specific concerns or emerging 

situations, whether it be a container environment or other system. This demonstration shows that 

even though it is still highly dangerous and should almost never be done, it is possible to run a 

privileged container with some degree of extra security. Security implementations like AppArmor 

and SELinux would already accomplish the needed Mandatory Access Control (MAC) restrictions, 

but since they are disabled, when running the container in privileged mode, we are left with custom 

solutions like the one explored in this thesis. 

“LIVE” PATCHING OF THE KERNEL 

Prominent actors in the cloud space, are beginning to make use of eBPF as a framework and tool 

for patching the Linux kernel, with certain custom logic,  like (Cassagnes et al., 2020; Isovalent, 2022; 

Jackson, 2020; Lawler, 2022), further supporting the use case we have described. The live patching 

approach, could also be the approach we had taken where we could have imagined that a 

development team had a very specific need to have a privileged container run in a container 

environment (the Sockshop) and they discover that their application is suddenly vulnerable, leading 

to a completely compromised Kubernetes cluster, had it not been for the eBPF program.  

We have showed how a development or security team could prevent a specific consequence of a 

Remote Code Execution (RCE) in their container environment, and prevent the inevitable container 

escape, if an adversary were to use the same escape vector, as we have in our scenario. A live and 

production ready implementation of our program, would require a much more thorough evaluation 

of container escape methods and an investigation of other attack vectors, if it was to be made as a 
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standalone tool for preventing all container escapes. But as an emergency patching tool for emerging 

threats and quick and effective prevention of a critical vulnerabilities, it is relevant, and the program 

achieves the desired result.  

4.2 EFFECIENCY AND FUTURE DEVELOPEMNT 

The program that we have developed achieves the result expected, and demonstrated how, it is 

possible to instrument the Linux kernel to extend it with custom logic based on needs. There is, 

however, a need to understand how the kernel works on a deeper level, if one wants to be entirely 

certain they have covered their bases. Attackers will use all the tricks in the book and will try whatever 

is needed to bypass your defenses, especially if they have already infiltrated a privileged container. 

This means that if one wants to be sure that they have appropriate kernel-based defenses in place 

with eBPF, they also must acquire a substantial amount of knowledge about the kernel, like for 

example how eBPF could also be used against one as an attack method. highlighted by (Dileo, 2019; 

Fournier et al., 2021) at the Blackhat conference and DefCon conference. 

For this reason, it would be paramount to continue to learn and investigate the kernel structures and 

flow, to ensure an attack surface is sufficiently covered using eBPF, if that is the approach chosen. 

For the program developed, in this thesis, there are many improvements that would be needed 

assure that the implementation in fact does prevent the attack vector completely.  

For example, we are aware of a possible bypass of the final program, where an attacker would spawn 

’CONTAINER_PIDS_MAX’ processes in a container, and the next process from this point, would 

overflow the array and fail to get inserted into the BPF-array until a process, we track, have exited. 
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Figure 43: Example-script of overflowing the BPF map. 

A script like Figure 43 would overflow the BPF-map and run a command from the first PID, which 

would be from a process no longer tracked by our program, so given the container is privileged, it 

would bypass the eBPF program and be able to ’mount’ the host system. This attack, on our 

system, is rudimentary and is easy to create. It is, however, very targeted, and an attacker would have 

to know how the defense mechanism was implemented, e.g., the size of the map and the problem 

of overflowing the map. Solutions to this problem will be discussed in the next chapter. 

This bypass of the program by overflowing the eBPF-map, calls for a larger map and a child process 

tracker, that could disallow a certain depth of child processes originating from containers. This would 

prevent any further container processes, if it reaches the upper limit, thereby preventing the overflow. 

Summarized, below are the immediate tasks and considerations that we would have worked towards, 

had we continued developing the program. 

• Increase the list of container pIDs to have a larger buffer of possible container processes and 

implement a check, to disallow new container processes if the map is full. 

• Determine the performance-loss of implementing LSM hooks on all processes created, and 

process kill syscalls. 

o Try to incorporate more of the logic into user space, if possible, and compare the 

performance and security, e.g., ability, to defend against TOCTOU attacks as 

described earlier, see Figure 10. 



78 

 

• Determine specific compiler optimizations and compiling the eBPF program manually, 

tweaking the Clang compiler for this use case. 

• Investigate the use of the Docker Client and determine how the program would be different 

if the system is using another container orchestrator or management service.  

o Try other methods of container filtering like in (Lin et al., 2018).  

These are some of the key factors that could be detrimental to a real-world use case of this program. 

However, the program shows the potential of eBPF to cover emerging threats and cases, like the 

issue with having privileged containers in a cluster. 

Had we introduced a vulnerability in the frontend service, it would also be relevant to showcase how 

an attacker could find vulnerable API endpoints or other interesting resources on a web server. A 

tool like Gobuster
34

 would be suitable to explore in addition to monitoring and capturing network 

calls, when navigating a website. For our exploratory study, we are communicating directly with the 

vulnerable service through a port forward since we have chosen to focus on container escape and 

post-RCE exploiting and mitigation. 

4.3 USE CASE & USERS 

eBPF for observability and network-based management through Express Data Path (XDP), have 

since 2013 been adopted and supported by some of the largest actors in the cloud space, and have 

grown rapidly ever since, for some of the prominent users and supporters of eBPF (Cilium Users 

and Real World Case Studies, 2023). An interesting use case, highlighted on previous reference, is 

(Bosworth, 2023), which references many of the same points as we have highlighted in this thesis, 

for example: 
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 https://www.kali.org/tools/gobuster/ - Gobuster: Gobuster is a tool used to brute-force URIs including directories and files as well 

as DNS subdomains.  
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“Kernel modules raise concerns about operational stability and complexity. While 

writing a kernel module does indeed allow a developer to change kernel behavior, it 

is a highly specialized skill, which therefore makes staffing and retention an issue. “ 

(Bosworth, 2023) 

Although the eBPF approach presents its own challenges, as we have demonstrated, e.g., writing and 

understanding C language, understanding Linux kernel structures, syscalls, and the process of 

compiling, pinning, and running the programs. However, it is still easier and more stable than 

developing kernel modules, which requires extensive knowledge about the Linux kernel, and how 

to extend it, without compromising other parts of the kernel or introduce severe unseen 

consequences.  

In the scenario we have setup in this thesis, we pretended that we were a small to medium sized 

company with a couple of engineering resources at our disposal to handle the case of a privileged 

container in our web shop environment. It is feasible to imagine a solution like what we created, to 

be developed by a couple of full-time engineers working on the problem. However, we acknowledge 

that the engineering time could be spent, investigating the flourishing open-source community 

developing eBPF security tools like Falco, Tetragon from Cilium or perhaps an enterprise solution 

from SentinelOne like singularity cloud (Bosworth, 2023). The solution we have developed does 

provide a fail-last control mechanism to the problem scenario we have produced, but it is not unlikely 

to implement this sort of program, to live patch an emerging threat or a critical vulnerability, that 

could perhaps target and compromise many pods in a Kubernetes environment.  

4.4 THE EBPF LEARNING CURVE 

This section is named the eBPF learning curve, because of the realization we came to, during the 

thesis work. It was like an opening that kept expanding, when researching how to achieve the desired 

result. Especially in terms of demonstrating how the eBPF technology could be used as a runtime 

security control and patching tool.  
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The approximate knowledge path we took, is described as follows: 

1. What can be done with eBPF, example projects like Cilium, Falco & Tetragon. 

2. compiling, pinning, and running programs. 

a. BCC as a tool to help this process. 

3. Using eBPF helpers to leverage the kernel space. 

4. What is allowed by the eBPF verifier? 

a. How to use eBPF maps to share data from user space 

5. Linux structs, what can be accessed and imported and what cannot. 

6. C eBPF programming and Python BCC knowledge, view samples of BCC programs and 

open source eBPF tooling 

7. Different types of probes and hooks 

a. Kprobes and raw trace points using BCC. 

b. Linux Security Modules  

This is a simplified list of learning points that constitute the learning path that we took. This is the 

path a systems administrator or developer were to take, for developing our eBPF program, which 

would no doubt be longer had the program container more advanced logic and if it was used in a 

production-critical context.  

Understanding the eBPF verifier, and what is allowed, was mostly discovered by trial and error based 

on existing example snippets from Github and the previously listed open-source projects like Falco, 

Cilium and Tetragon. If an eBPF developer has enough time and resources, the developer could 

read the extensive verifier source code
35

 but this is simply not feasible for a project of this scale, as 

the source code is currently as of writing, 19.000 lines long and requires an extensive understanding 

of C and the surrounding kernel code. 

The BCC library is home to great examples of different observability features and is entirely open 

source. BCC shows how to instrument and observe every component of the full system in kernel 
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 https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c - The eBPF verifier source code 

https://github.com/torvalds/linux/blob/master/kernel/bpf/verifier.c
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space using eBPF. An overview of BCC tools used by many large companies like Netflix, Meta and 

more, is shown below:  

 

Figure 44: BCC tools overview 

To accomplish our objective, we initially employed 'mountsnoop.py'
36

 from the BCC repository, 

as it provided a clear illustration of how to interact with the 'mount' syscall. A review of the 

evolution of the 'deny_mounts.py' file in the thesis repository reveals its similarities to 

'mountsnoop.py', but our final product is markedly different. Our journey to learn eBPF, 

underscores the efficacy of the open-source approach, which helps to make eBPF and the Linux 

kernel more accessible to developers and administrators who may not be familiar with Linux's inner 

workings.  

 

36

 https://github.com/iovisor/bcc/blob/master/tools/mountsnoop.py - Mountsnoop Python BCC code 

https://github.com/iovisor/bcc/blob/master/tools/mountsnoop.py
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The open-source projects and utilizing BCC for development, smooths out the learning curve. 

However, by manipulating the kernel through BPF and having access to a wealth of examples for 

observability, potential developers are still exposed to the vast Linux kernel and must determine the 

following: 

• The specifics on what should be monitored or controlled using eBPF. 

o Possible performance impact? 

o Is there a single syscall that provides enough information? 

o Existing examples? 

• Specific syscalls that should be instrumented. 

o Probe type? 

o Unintended consequences? 

• How to instrument them. 

o BPF helpers? 

o BPF maps? 

o Sharing between user space and kernel space 

o Size limit of the eBPF program? 

When these points are taken care of, hopefully a working eBPF program should be the result which 

instruments the kernel using eBPF, depending on complexity and desire, a developer might have to 

instrument multiple syscalls and implement more advanced logic in the user space application, which 

fortunately is the primary selling point of eBPF.  

4.5 EXISITING PROJECTS AND EBPF FOR CLOUD AND 

CONTAINER RUNTIME SECURITY 

We have mentioned open-source projects, that can be a big help in developing eBPF programs, like 

Cilium, Falco, and Tetragon. Cilium being the least relevant in this thesis, because we are working 

with security control mechanisms, and not as much security through observability. Had we 
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developed an observability tool instead of a control mechanism, Cilium would have been a clear 

contender as it: 

“[Cilium] Has been specifically designed from the ground up to bring the advantages 

of eBPF to the world of Kubernetes and to address the new scalability, security and 

visibility requirements of container workloads.” 37 

Our direct contenders for the program we have developed is however, primarily Falco and Tetragon. 

Falco is a cloud native runtime security project, originally created by Sysdig and now open-sourced
38

. 

Falco would be a great alerting alternative to our implementation, where a developer or systems 

administrator would get a set of default rules, that would cover many attack vectors and abnormal 

behavior in a cloud-container environment
39

.  

Tetragon like Falco is a Kubernetes aware kernel-based runtime security tool. Tetragon is created 

by Isovalent (authors and core maintainers of Cilium
40

). Tetragon is, also an enforcement tool that 

apply user-defined policies written as Yaml manifests, to control certain cases using eBPF hooks, 

like the one described in this thesis with the ’mount’ escape from a privileged container. An 

example can be seen in the Tetragon repository
41

, that terminates all processes that tries to create 

new user namespaces.  

Tetragon is still defined as an emerging project on the eBPF application list (see 37 above), which 

means that, as a systems administrator one should be cautious using this tool for production context, 

but nonetheless the project is very active and could be implemented as an alternative to our solution. 

We do still value the result we have produced, but acknowledge that a tool like Tetragon, that can 

actively block malicious or suspicious patterns from even occurring, can prevent the attacker from 

establishing a foothold, like the solution we have created. Ease of use is by far in favor of Tetragon, 

 

37

 https://eBPF.io/applications/ - eBPF based applications. 
38

 https://github.com/falcosecurity/falco - Falco Github 
39

 https://github.com/falcosecurity/rules/ - Falco rules Github 
40

 https://isovalent.com/tetragon/ - Isovalent, authors behind cilium launch Tetragon. 
41

 https://github.com/cilium/tetragon/blob/main/examples/sandbox/linux-

namespaces/kill_unprivileged_user_namespace_in_pID_namespace.yaml - Tetragon example, killing processes that tries to create 

new user namespaces. 

https://ebpf.io/applications/
https://github.com/falcosecurity/falco
https://github.com/falcosecurity/rules/
https://isovalent.com/tetragon/
https://github.com/cilium/tetragon/blob/main/examples/sandbox/linux-namespaces/kill_unprivileged_user_namespace_in_pid_namespace.yaml
https://github.com/cilium/tetragon/blob/main/examples/sandbox/linux-namespaces/kill_unprivileged_user_namespace_in_pid_namespace.yaml
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as it is written in simple Yaml, which is much more human readable and require even less 

understanding of the Linux kernel than an eBPF program with the help of BCC. 

A project or tool being cloud native or for Kubernetes, typically means that the tool is aware of 

Kubernetes specific concepts like namespaces, pods, nodes, services, and other resources. What we 

have developed does not understand any of these concepts and has significant shortcomings as it 

only understands containers through the Docker client. We would have to modify the program to 

understand both Kubernetes concepts and other container management tools and container 

runtimes like containerD. Further developing this application, for the cloud, is on the list of 

important improvements, and during the development, we already gained a good amount of insight 

into the user space and kernel space cooperation, to monitor container environments.  

Monitoring containers on several nodes means, that the application should be deployed on all the 

nodes, which could be done through automation in Kubernetes by using the DaemonSet resource. 

This would involve packaging the ’deny_mounts.py’ application as a container itself and 

deploying it to the cluster. A ‘DaemonSet’ is a Kubernetes resource, that ensures that one 

replication of a workload is present on all nodes in the cluster, which would be ideal for node 

monitoring for example. The caveat is, that the container would have to run in privileged mode and 

have access to the container runtime, to enforce policies, which could be an interesting area to 

explore. 

In our opinion, using eBPF in a cloud context, is a popular paradigm and a valuable technology for 

instrumenting cloud, which makes sense when an environment with many containers to monitor and 

perhaps, as in our case, control without adding, modifying, or reconfiguring any existing workloads 

are considered. SentinelOne also points to this, with their Singularity cloud, Cloud Workload 

Protection Platform (CWPP), identifying many of the same points as we have, in this thesis, i.e., no 

kernel modules, live patching, real-time and threat mitigation (Bosworth, 2023). The advantages are 

clear, compared to the traditional sidecar approach. 
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4.5.1 EVALUATION OF SIDECAR BASED APPROACH VS EBPF IN-KERNEL 

BASED APPROACH 

While there are many factors to consider, when choosing an approach for container observability 

and security in an organization, we have throughout our research, come to five significant areas that 

we find evident, when evaluating a potential eBPF-based application: 

• Performance: eBPF allows safe, efficient, and programmable access to data in the kernel. It 

operates with minimal overhead, which makes it ideal for high-performance monitoring. On the 

other hand, the sidecar approach, which involves deploying an additional container alongside 

each service container, can add extra overhead, especially in large-scale environments. 

• Scalability: Both eBPF based and the sidecar approach can scale with the size of your container 

environment. However, the sidecar approach might require more resources (CPU, memory) as 

the number of containers grows, as each container will have its own sidecar and therefore 

baseline performance cost. 

• Ease of Use: The sidecar approach might be easier to implement and manage, especially with 

orchestration tools like Kubernetes that support sidecar patterns out of the box. eBPF, while 

powerful, can be more complex to set up and requires a deeper understanding of kernel 

internals. 

• Visibility and Control: eBPF can provide a deep level of visibility into system and network 

metrics, as it operates at the kernel level and can observe all the underlying system. The sidecar 

approach can provide detailed metrics about the application it's paired with but likely does not 

have the same level of system-wide visibility and if it has, it will be performance costly. 

• Security: eBPF operates with a high level of privilege, which can raise security concerns. The 

sidecar approach, being itself isolated in its own container, can provide a level of security through 

container isolation. 

These points change based on the use case, resources available and context. It is naturally different 

to dedicate resources to developing an eBPF in-kernel based approach if, for example, an 

organization only have few engineering resources available. Likewise, it is a different case if only 
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application observability or advanced user space logic attached to a container workload is required, 

then the sidecar-based approach might be more beneficial. 

In terms of usage scenarios, eBPF will be more advantageous in high-performance, large-scale 

environments, where detailed system-level monitoring and control is strictly required. On the other 

hand, the sidecar approach might be more suitable for smaller-scale environments, in addition to, 

when application-level monitoring and control is the primary concern. 

Because of this, it is important, that the eBPF verifier is very strict and does not allow programs to 

run if they have any execution path, that could result in a crash or permanently run. If a kernel crash 

occurred on all the Kubernetes cluster nodes at once, it would be extremely critical and circumvent 

the reliability and the stability offered by distributed systems.  

4.6 OTHER TYPES OF ATTACK VECTORS IN THE CLOUD 

NATIVE LANDSCAPE 

While we have primarily focused on the attack vector into a Kubernetes cluster, via a Remote Code 

Execution (RCE) vulnerability in a privileged application, where the rapidly evolving and complex 

cloud-native environment presents a significantly larger attack surface. One key area of concern is 

supply-chain security. 

In the cloud-native landscape, applications and configurations are frequently torn down and 

reestablished, sometimes multiple times a day. This rapid pace, combined with the open-source 

nature of many cloud-native tools, can lead to vulnerabilities. For instance, human errors in 

configuration or the introduction of malicious or exploitable code, from various repository sources, 

can pose significant risks, and possibly introduce a vulnerability that could expose the system to the 

same kind of attack we have proposed. 

Language-based ecosystems (LBEs), such as the Node Package Manager (NPM) ecosystem for 

JavaScript and PyPI for Python, are very common in this landscape. These ecosystems encourage 

code-reuse between packages. However, the same aspects, that make these systems popular - ease 
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of publishing code and importing external code - also creates novel security issues (Vaidya et al., 

2019). 

These security issues are inherent to the ways these ecosystems work and cannot be resolved by 

correcting software vulnerabilities in either the packages or the utilities, e.g., package manager tools, 

that build these ecosystems. The ecosystems make an opportune environment for attackers to 

incorporate stealthy supply-chain- based attacks. Their significance also makes them attractive targets 

for attackers. A software supply chain encompasses all parties and processes involved in constructing 

and delivering a final software product. This includes package managers, package repositories, 

package developers, and maintainers of package repositories. Recent high-impact attacks on package 

managers, have highlighted their importance in the supply chain, and the potential for supply chain 

attacks on package managers is a growing concern (Vaidya et al., 2019). 

While we have focused on the RCE vulnerability, as a primary attack vector in this thesis, it is crucial 

to consider the broader attack surface, presented by the cloud-native environment, including the 

potential for supply chain attacks due to the rapid pace combined with borrowed third party libraries. 

4.7 KEY FINDINGS AND IMPLICATIONS 

Looking forward, eBPF is poised to continue its growth and become an increasingly integral part of 

the Linux container ecosystem. The flexibility and power of eBPF, makes it a valuable tool for a 

wide range of applications, from networking and security through control and observability to, 

performance tuning and troubleshooting. As more developers become familiar with eBPF and its 

capabilities, through open-source projects like Tetragon, we are likely to see more use cases and 

examples of writing eBPF programs to observe, control, audit and instrument the cloud and 

container space.  

• Our program provides a powerful control mechanism, at a level previously unavailable to 

developers and administrators with insufficient knowledge of the Linux kernel (Jackson, 

2020).  
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• Our findings indicate cloud and container adoption is storming ahead, and eBPF is a great 

tool to tackle emerging threats in cloud environments, due to its kernel-based nature 

(Bosworth, 2023; Cassagnes et al., 2020; Lawler, 2022). 

• Using BCC, eBPF programs can be developed and implemented with less knowledge, in a 

safe way (Rice, 2023). 

• Many big cloud vendors already use eBPF for a variety of use cases (Cilium Users and Real 

World Case Studies, 2023; CNCF [Cloud Native Computing Foundation], 2022; Johar & 

Marupadi, 2020). 

• Prominent actors in the cloud space, are implementing and using eBPF for live patching of 

the Linux kernel and container environments (Bosworth, 2023; Lawler, 2022). 

Throughout development, we found that it was both difficult but also surprisingly easy to instrument 

the kernel with user-defined logic in a safe way. The program is functionally complete and blocks 

the ’mount’ syscalls, if they originate from containers, using kernel-based logic. We discovered the 

project Tetragon, which could compete with our program, had it been further developed. This 

means, that we could have pivoted to implement our logic as a Tetragon extension, rather than 

develop the program ourselves. 

We experienced that there are many vulnerabilities being discovered all the time, and there exists a 

plethora of security implementations to address emerging threats, from a variety of vendors. Reading 

the previous chapters, a reader should also have gotten a sense of the relative ease of developing 

custom eBPF programs, to address specific threats, using helper libraries like BCC and open-source 

projects. The functionality of the program we developed, is limited but very effective and works like 

we intended, when formulating the thesis research question, and there are many areas of 

improvement and interesting angles to take the program further. 

However, there are many other things that can be done with the use of eBPF. We have in this thesis 

mentioned Tetragon, Cilium and Falco, because these are most relevant to our use case, but there 

exist many commercial and open-source projects, that leverage eBPF to instrument the Linux kernel 

(eBPF Applications Landscape, 2023). This provides a good overview, of what can be done using 
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the already existing eBPF projects, but a developer or systems administrator could aim to implement 

a very niche and custom use case themselves, using our work as a reference. 
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5. DISCUSSION 

As we embark on the discussion of our findings, it is important to reflect on the journey we have 

undertaken in this thesis. We have delved into some complexities of eBPF technology, its integration 

with Linux Security Modules (LSM), and its potential of enhancing security in cloud and container 

environments. We have navigated the rapidly evolving landscape of these technologies, from the 

origins of Linux to the intricacies of containerization and virtualization, and the orchestration tool 

Kubernetes. Our exploration led us to develop an eBPF program that denies ’mount’ syscalls from 

privileged containers, demonstrating the practical applications of eBPF in a real-world context. In 

this chapter, we will discuss our findings, the challenges we encountered, and the implications of our 

work for the field of cloud security. 

Building on the exploration of eBPF technology and its potential in enhancing security in cloud and 

container environments, it is important to consider recent advancements and studies in the field. For 

instance, the commercial solution Singularity Cloud from SentinelOne (Bosworth, 2023) and open 

source projects like the ones covered in (eBPF Applications Landscape, 2023). 

5.1.1 EBPF FOR CONTAINER RUNTIME SECURITY ENFORCEMENT: A 

DOUBLE-EDGED SWORD 

The use of eBPF (extended Berkeley Packet Filter) for container runtime security enforcement, 

presents a compelling yet complex landscape. As our exploration has shown, eBPF offers a powerful 

tool for enhancing security, through fine-grained control in cloud environments, using projects like 

Tetragon and Falco. Its ability to execute kernel code, from user-space written in a limited C 

language, provides a valuable control mechanism for the behavior of containers, allowing 

organizations to identify and adapt to potential threats or vulnerabilities swiftly and efficiently 

(Lawler, 2022). 

However, while such advancements provide promising avenues for improving cloud security, they 

also underscore the complexity and challenges associated with these technologies. As we have seen 
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in our exploration of eBPF, and its integration with Linux Security Modules (LSM), navigating these 

complexities requires a deep understanding of the underlying technologies and their interactions. 

Furthermore, an attacker could also make use of eBPF as a means to hide malicious activity from 

observability and security tools, like in (Dileo, 2019) and demonstrated by the symbiote malware 

(blogs.blackberry.com, 2022) and (Liber, 2022). It is therefore highly relevant to investigate if eBPF 

is somehow able to be used by an attacker on the system, where the defense is deployed, because of 

the capabilities of eBPF programs. 

5.1.2 CONTRIBUTIONS AND SIGNIFICANCE 

The program is simple, yet effective in this specific use case, and the eBPF C program and the 

Python BCC program, illustrates how to instrument the Linux kernel easily and without 

implementing or creating kernel modules. The goal of this thesis was to explore eBPF in action and 

how to prevent a threat actor by implementing a fail-last control program, to prevent a critical 

vulnerability that could lead to a total environment compromise, through mounting the host system 

of a Kubernetes node, into the compromised container and gaining a foothold in the system hence 

potentially exfiltrating sensitive data from other workloads. 

Our work has clarified the potential of eBPF in addressing urgent security situations. The ability of 

eBPF, to provide low-level observability and runtime control without modifying existing workloads, 

makes it a powerful tool in the cloud-native landscape. We believe that this, has significant 

implications for the future of cloud and container security. 
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6. CONCLUSION & FUTURE WORK 

As we reach the conclusion of this thesis, we will reflect on the journey we have undertaken. We set 

out with the objective of, exploring, implementing, and analyzing eBPF as a technology to enhance 

security, through runtime control in cloud and container environments. We hope that the 

exploratory study will serve to demonstrate, what can be done, and the effort required, for 

development teams with many or limited resources. The focus has been, to delve into the capabilities 

of eBPF, understand its potential in the realms of cloud and security, and provide a comprehensive 

study and analysis of its advantages and disadvantages. 

Our exploration led us to develop an eBPF program that denies ’mount’ syscalls from privileged 

containers, thereby enhancing the security of vulnerable container applications. This program, which 

we have discussed in detail in Chapter 3, represents out work and is built upon the many 

contributions to eBPF projects in the open-source community. The program demonstrates the 

practical applications of eBPF in a constructed real-world context. 

The journey was not without its challenges. The complexity of eBPF and its integration, with the 

Linux Security Modules (LSM), presented a steep learning curve. However, the skills we acquired 

and the insights we gained, into the workings of eBPF and LSM were valuable and during the 

previous chapters, further development ideas have been presented, which could improve the 

program and implementation. 

Reflecting on our study, we see the possibilities of eBPF in addressing urgent security situations in 

cloud i.e., container environments, are immense. Furthermore, the ability of eBPF to provide low-

level observability and runtime control without adding, modifying, or reconfiguring any existing 

workloads, makes it a powerful tool in the cloud-native landscape. We compared the existing eBPF-

based projects like Cilium, Falco, and Tetragon, and acknowledge that there are many other projects 

existing and emerging in the field. Furthermore, there is also a clear advantage for commercial 

products using eBPF covering these needs, see closed source implementations like Singularity Cloud 

from SentinelOne (Bosworth, 2023). 
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In the following sections, we will summarize the study, discuss the recommendations for further 

potential research and close of the thesis. We acknowledge the valuable contributions of other 

projects that supported our research. As we conclude, we hope that our work and more importantly 

the ideas and exploratory study, can contribute to the potentials of the capabilities using eBPF, but 

also inspire further exploration and innovation in this field. 

6.1.1  SUMMARY OF THE STUDY 

This thesis has offered an in-depth exploration of a specialized and relatively niche use case of eBPF, 

specifically its ability to control execution flow and restrict syscalls, filtered to work in a container 

environment. As explained in previous chapters, this is not an unrealistic scenario. For instance, 

there could be legitimate use cases for privileged containers, which, when combined with a newly 

discovered Remote Code Execution (RCE) vulnerability, would make eBPF and our use case a 

viable emergency security solution. Developers proficient in eBPF within an organization would have 

the capability to swiftly implement eBPF to mitigate risk effectively while awaiting an official fix for 

their vulnerable software. 

We conclude that our implementation effectively counters the attack we proposed, though we 

acknowledge that it represents a relatively niche scenario. We trust that this thesis has illuminated 

the potential of hooking into specific system calls to control a container environment, which in our 

scenario could be a Kubernetes cluster with the eBPF program installed on all nodes. Given the 

inevitability of more Common Vulnerabilities and Exposures (CVEs) targeting popular container 

software or Kubernetes itself being discovered and exploited by threat actors, eBPF is well-positioned 

to enforce real-time solutions to emerging threats. This is achieved by controlling the underlying 

system through the kernel, rather than potentially hundreds or thousands of containers. 

6.1.2 RECOMMENDATIONS FOR FUTURE RESEARCH 

The development and implementation of our eBPF program, as discussed in Chapter 3, has opened 

several avenues for further research. While our program effectively denies ’mount’ syscalls from 

privileged containers, enhancing the security of vulnerable container applications, are there several 
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areas where additional research could provide further significant benefits, such as an easier way to 

write policies and fixes, like the way Tetragon implements Yaml based policies. 

Our eBPF program currently has a specific focus on ’mount’ syscalls. However, there are 

numerous other syscalls and kernel functions that could be monitored or controlled using eBPF, to 

bolster security in cloud environments. Further research could explore the development of eBPF 

programs that target these other areas, potentially providing even greater security for container 

applications. 

While our eBPF program performs its intended function effectively, there may be opportunities to 

improve its efficiency. This could involve optimizing the program code, exploring alternative eBPF 

features or capabilities, or investigating ways to measure and reduce the overhead, associated with 

the program. Ideally, this would amount to an investigation into the mentioned performance 

uncertainties and determine the best security for performance and maintainability. 

Our eBPF program operates independently, but it could potentially be integrated with other security 

tools or platforms, to provide a more comprehensive security solution. Further research could 

explore potential integration-opportunities and the benefits they could provide. For example, 

implementing its logic as a rule specification for Tetragon. 

While our eBPF program was developed and tested in a containerized environment, further 

research could investigate its application in real-world scenarios, with a proper Kubernetes 

distribution. This could involve deploying the program in a live cloud environment, to investigate 

their custom OS distributions and evaluate the program’s performance and effectiveness in this 

context. 

It is important to investigate the resource impact of the program at scale, as a Kubernetes 

environment is designed to scale horizontally, this is something that would be important to research 

further. The research focused on a specific and relatively niche attack vector, which means that it is 

also important to further investigate the system performance over time as the number of containers 

increase, and its ability to adapt to changes in the threat landscape.  



95 

 

6.1.3  CLOSING 

Overall, this thesis has explored the eBPF technology as a method for enforcing runtime security in 

a container environment. Using the BCC library, we have mitigated a niche container threat scenario, 

and shown that if an organization is vulnerable, to a certain kind of threat to their container 

environment where a privilege escalation is possible, eBPF could be the tool of choice. In 

conclusion, this study has explored some of the potential of eBPF for enhancing container security, 

but there is still much to explore in this rapidly evolving field.  

The challenging journey of this thesis has been a rewarding one. The relatively steep learning curve, 

presented by eBPF and its integration with Linux Security Modules, has enriched our understanding 

and skills in this area, especially related to kernel instrumentation for container-based interaction. 

We hope our experiences and insights can inspire and guide future researchers in this field, and 

further exploration with runtime control of containers, using eBPF. 
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8. APPENDIX 

 

8.1 REPORTS 

The files below are attached separately when submitting this report: 

1. Cloud Security Report Fortinet 2021 

2. Cloud Security Report Fortinet 2023 

3. Cloud Threat Report by Oracle and KPMG 2020 

4. Flexera 2023 State of the Cloud | Report. (2021) 

 

8.2 CODE 

The code is present on the thesis GitHub and attached as a zip file (sockshop-speciale.zip) 
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