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Summary

This thesis aims to understand the construction and application of climate
models in the climate scientific practice. It aims to analyse some of the
mechanisms at play when generating scientific knowledge in this discipline,
by examining the role of “model agreement”, or the “robustness” of model
results, to support hypotheses about the climate. In particular, it inves-
tigates whether Jonah Shupbach’s framework of “explanatory robustness
analysis” can be applied to results detected by multi-model ensembles, thus
establishing this robustness as an epistemologically sound method.

In order to do so, firstly a number of important features of the climate
system are reviewed, before describing relevant types of climate models that
aim to represent this system. Their implementation as computer simulations
is also discussed, along with a review of different ways of discretizing and
parameterizing aspects of the climate system reviewed.

Secondly, the use of these models in the climate scientific practice is re-
viewed. In particular, with focus on the Intergovernmental Panel on Climate
Change (IPCC) uses multi-model ensembles in detection and attribution,
and projection studies. It will become apparent that despite of some of the
difficulties and uncertainties relating to the model outputs, the IPCC still
uses these outputs to make hypotheses about the climate with high levels of
confidence. This then leads to the question of what kind of practices allow
for this high level of certainty, and the robustness of the model outputs is
highlighted as one such method in the climate scientific practice.

The epistemological power of this robustness is then analysed in terms of
“robustness analysis” from the philosophy of science. Robustness analysis
systematically considers the relations between different means of detection
and exactly when a commonly detected result among these should increase
confidence in a hypothesis supported by these results. Some of the classi-
cal conceptions of robustness analysis based on independence between the
means of detection are reviewed, but shown to be unfeasible. However,
Jonah Shupbach’s revised notion of robustness analysis, namely “explana-
tory robustness analysis”, is emphasised as an especially promising frame-
work in the context of climate models. Eric Winsberg’s attempt at placing
climate models within this framework is analysed, and is consequently re-
vised to fully accommodate its application to multi-model ensembles. Shup-
bach’s framework is also, step-by-step, applied to three example models
from IPPC’s modelling ensembles, demonstrating that it can be successfully
applied.
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The main finding of this thesis is that hypotheses supported by multi-
model ensembles satisfy Shupbach’s framework of robustness analysis, and
that therefore, the robustness of climate model detections should increase
our confidence in these hypotheses. This gives a normative epistemological
power to this common practice in climate science. However, it is also high-
lighted that this does equate to full confirmation, nor does it imply that
the multi-model ensembles are constructed in an ideal way to maximally
increase our confidence in a corresponding hypothesis. In light of this, the
possibility of explanatory robustness analysis acting as a guiding principle
to construct better multi-model ensembles is briefly discussed. Revisiting
detection and attribution studies, it is also noted how explanatory reason-
ing is characteristic of climate science, and extending ERA to other types
of evidence is considered.
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Preface

With a bachelor’s degree and (hopefully) almost finished master’s degree in
physics and philosophy, I have by now grown used to the various reactions
to the somewhat unfamiliar combination of these two disciplines. However,
something has changed in the very recent years, especially when telling
people about this thesis. In the light of the complexities of climate science,
the role of this science in politics, social life and ultimately, for the way we
view the role of humans in the world, this synthesis of science and philosophy
seems to be growing less alien to many, and the reactions less baffled.

However, what seems to be ignored is that philosophy and science evolved
together, and only diverged in the recent past. The extreme politicisation
and ethical and social inertia of climate scientific knowledge only serve to
highlight the artificiality of this separation. Furthermore, it also highlights
some of the pitfalls that could be partially attributable to this bifurcation;
namely people blindly trusting the science but keeping it at a distance, and
thus not acting on the scientific knowledge, or people not understanding its
methods and therefore thinking they are in a position to challenge them,
thus denying the science.

This thesis will not try to provide an answer to these complex problems.
It will, however, aim to shed some light on the interesting philosophical
discussions present in the climate scientific discipline, and to show that
there can be valuable reflections in the philosophy of science that in return
can contribute to the scientific practice. Nonetheless, combining these two
disciplines in the same thesis comes at a cost. It will be beyond the scope
of this thesis to delve fully into the details of the climate system and the
models describing it (however, such a task is arguably outside the scope of
any master’s thesis). Similarly, it will be beyond the scope of this thesis
to create a fully comprehensive picture of the currents in the philosophy of
science that has led to the interesting discussion of robustness analysis, nor
to entertain further discussions of the relationship between theory, models
and experiment (although arguably, this is also outside the scope of any
master’s thesis).

Instead, I aim to present a philosophical argument contributing to the
question of what the value of model robustness in climate science is, heavily
informed and inspired by fundamental climate science, an understanding of
climate models, and the climate scientific practice. In general, I believe any
philosophy of science should pay careful attention to the scientific details of
the practice in question. Conversely, I also believe there should be space for
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the philosophy of science to inspire reflection and revision in any scientific
discipline.

Moving in between disciplines is never an easy task. I therefore want
to thank my physics (although with a strong footing in the philosophy of
science) main-supervisor Martin, and my philosophy (although with a strong
footing in mathematics and science) co-supervisor Patrick, for helping me
in this endeavour. I also want to thank them both for consistent guidance
and support, for spending way more time on me than what was allocated,
and for providing invaluable perspectives during this process.
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1 Introduction

In his speech to the Conference of Parties in 2022 (COP27), Secretary-
General of the United Nations António Guterres named climate change the
“defining issue of our age”. Further describing the situation, he also said that
“[w]e are on a highway to climate hell with our foot still on the accelerator”.1

The past eight years are the warmest on record. Regional temperature
records all over the world keep reaching new extreme peaks. The summer of
2022 was the second warmest on record for Europe, with its second warmest
June ever recorded at about 1.6°C above average and its warmest October,
with temperatures nearly 2°C above average. Not to mention that both
polar regions saw episodes of record temperatures during 2022, also with
six months seeing record or near-record low Antarctic Sea ice extents for
the corresponding month. Furthermore, in 2022 we also saw large areas
of Pakistan flooded, with major economic losses and human casualties, as
well as other extreme-weather related events such as wildfires across Eu-
rope. Record breaking heatwaves were also observed in China, North and
South America. (Copernicus, 2023) And, perhaps most importantly, these
dramatic records and extreme weather events appear to be caused by hu-
man actions. The CO2 levels in the atmosphere are the highest in 2 million
years, and this is attributable to human burning of fossil fuels. (ibid) In
light of these facts, one might begin to understand the choice of Guterres’s
dramatic words.

However, to anyone paying attention to the news, the facts above will
perhaps not sound so unfamiliar. Yet, the familiarity with these climate sci-
entific facts and hypotheses does not necessarily equate to an understanding
of what climate science is, or how these facts come into being. Climate sci-
ence is certainly not one of the sciences we were taught in school, and that
even the non-scientist might remember experimentally testing hypotheses
in, such as physics. Still, physics is certainly a central component of cli-
mate science. Applied mathematics and chemistry are two other important
components that might also invoke more familiarity than the composite and
perhaps mysterious “climate science”. However, these are by far not the
only disciplines important in climate science. In fact, as philosopher of
science Eric Winsberg points out, climate science is really an incredibly in-
terdisciplinary science, drawing on fields such as climatology, meteorology,
atmospheric physics, atmospheric chemistry, solar physics, applied math-

1Speech available at https://www.un.org/sg/en/content/sg/speeches/2022-11-
07/secretary-generals-remarks-high-level-opening-of-cop27
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ematics and mathematical modelling, only to mention a few of his listed
examples. (Winsberg, 2018)[p. 3]

This incredibly rich science is not just critical to the study of how the liv-
ing conditions for all life on Earth is responding to anthropogenic influence;
it also hosts a number of interesting philosophical discussions. As Winsberg
points out, it contains all the conceptual, methodological and epistemolog-
ical issues that preoccupy modern philosophers of science.2 (ibid) One can
find characteristic philosophical discussions such as how theory, data, mod-
els and scientists are connected in climate science (Lloyd, 2012), decision
theory in light of uncertainty (Bradley and Steele, 2015), and the role of
values in climate science (Bender et al., 2022), to mention only a few.

This thesis focuses on perhaps the most archetypal question of all in
the philosophy of science, namely what makes scientific knowledge reliable.
Although an age-old question, it takes on a more modern form in the face of
climate modelling, because it concerns how complex computer simulations
can be used to build confidence in climate scientific knowledge. In par-
ticular, this thesis investigates how the common climate scientific practice
of referring to “model-agreement” and results “robust” across multi-model
ensembles can be placed within a framework of “robustness analysis” in
the philosophy. Achieving this would explain why this agreement should
make the scientific knowledge more reliable. Specifically, it will inversti-
gate whether Jonah Shupbach’s (2016) framework of explanatory robustness
analysis can be applied to multi-model ensembles used to support hypothe-
ses about the climate. Such a unification would explain exactly why and
how the model agreement should carry the epistemological weight it seems
to do in the climate scientific practice.

Before attempting to answer such questions however, and to understand
why the discussion of robustness analysis is at all relevant in climate science,
it is necessary to have an understanding of some of the mechanisms of the
climate system, the models we have for representing it, and how these are
implemented as computer simulations. This will be the topic of chapter 2.
The focus will be on simple Energy Balance Models, which are discussed for
pedagogical reasons, and Global Circulation Models, which are crucial for

2Winsberg further argues that climate science being loaded with philosophical issues
does not mean that there is a corresponding overwhelming literature on the philosophy of
climate science. He points to two potential reasons for this; firstly, that philosophers of
science tend to cluster around a very narrow collection of scientific subjects and climate
science has not been one of those; secondly, that the tradition of philosophy of science in
the English-speaking world has been to stay clear of issues of social concern and science
with strong political and social consequences. (Winsberg, 2018)[p. 3-4]
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understanding the models used to make projections in the climate scientific
practice. We will see how the models are based on some simple physical
processes, but that the complexity of the Earth system, intrinsic limitations
when implementing the models on a computer, as well as further biogeo-
chemical processes, various simplifications and abstractions are necessary.
In particular, the discretization of the models, and so-called “parameteriza-
tions”, i.e. processes that cannot be resolved in the grid-scale chosen, will
be discussed.

In chapter 3, the ways in which these models are used to construct
and test hypotheses about the climate is discussed. The focus is on the
practice of the Intergovernmental Panel on Climate Change (IPPC), and
its Assessment Reports focusing on the physical scientific basis of climate
change. The IPPC’s assessment reports are the culmination of the most up-
to-date climate scientific research from research groups across the world, and
therefore represent the state-of-the-art of the discipline. Two main research
uses for climate models are identified and reviewed, namely detection and
attribution studies, and projection studies. The IPPC’s use of multi-model
ensembles will become apparent from this. We will also see how the IPCC
makes strong statements about the behaviour of the climate system based on
the output of these multi-model ensembles, and the robustness between the
output of these. This naturally leads to the question of exactly what gives
the scientists such a high confidence in hypotheses supported by the model
outputs, especially in light of the many inaccuracies and imperfections in
the models that became apparent in chapter 2.

Chapter 4 will then turn to the discussion of robustness analysis in
the philosophy of science. Robustness analysis will be highlighted as one
method capable of explaining why the agreement of various means of detec-
tion should increase our confidence in a hypothesis supported by a commonly
detected result among these means. Closely following the analysis of Shup-
bach (2016), we will see how traditional conceptions of robustness analysis
rooted in the independence between the different means is insufficient. I will
also extend this to an example of climate modelling, illustrating how these
traditional accounts cannot be applied in this case. Shupbach’s Explanatory
Robustness Analysis will then be reviewed, as will Winsberg’s application
of it to climate science. However, Winsberg argues that explanatory robust-
ness analysis based on models alone is not necessarily confirmatory in the
case of multi-model ensemble. It is contended that Winsberg’s argument is
based on an incomplete application of Shupbach’s framework to the example
in question, thus requiring revision.

This revision is the topic of chapter 5. It is shown that by rewriting the
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two alternative hypotheses used by Winsberg, Shupbach’s weaker condition
for the fulfillment of explanatory robustness analysis can be applied, which
in turn shows how the framework really can be applied to the multi-model
ensemble in Winsberg’s example. The details of three examples of climate
models will also be reviewed to see if Shupbach’s framework can be applied to
these real-world models. Some of the limitations of Explanatory Robustness
Analysis are also discussed, as well as its potential for use in the climate
scientific practice. Lastly, it is also extended beyond models to also include
experimental evidence, by again looking at the example of detection and
attribution studies.
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2 The Climate System, Climate Models and Cli-
mate Simulations

Our climate is complex. So are the mathematical models of our climate.
It is therefore no easy task either to accurately describe the climate, nor
to exhaustively represent the models of it. In this section, however, I will
attempt to give an account of the components of the climate system and
climate modelling that are relevant for the discussions of this thesis. I will
begin by defining the climate and describe some of the essential processes
that constitute it, before I will move on to the models that attempt to
represent all these processes. I will then give an account of some different
types of climate models, starting from the most simple ones, namely Energy
Balance Models, gradually building up to the models that are used the most
for climate scientific research, namely Global Circulation Models and Earth
System Models.

2.1 The Climate System

Intuitively, we might know that the “weather” describes the specific atmo-
spheric conditions at a specific time, which will in turn define whether we
get rain or snow, sun or hail, if it is windy or not. The “climate” also en-
compasses some of these familiar variables, but in a different way. However,
exactly when does weather turn into climate? If we talk about the average
weather over a week, is that the climate? What about a summer, or a year?

The IPCC defines climate in the following way:

Climate in a narrow sense is usually defined as the average
weather, or more rigorously, as the statistical description in terms
of the mean and variability of relevant quantities over a period
of time ranging from months to thousands or millions of years.
The relevant quantities are most often surface variables such as
temperature, precipitation and wind. Classically the period for
averaging these variables is 30 years, as defined by the World
Meteorological Organization. (Cubasch et al., 2013)[p. 126]

This definition illustrates two important features. Firstly, it describes the
climate as statistical description over a time interval, in terms of both the
mean and the variability. In fact, the variability is essential when defining
the climate, because perhaps more than in what remains unchanged, we
are interested in the climatic conditions that change over time. Secondly,
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as the definition states, we can operate on many time-scales when defining
the climate, but the the standard in the climate scientific practice today is
an average over 30 years, defined by the World Meterological Organization.
(Arguez and Vose, 2011) This means that when discussing the “climate”,
we are discussing the variability trends of certain variables over a period of
30 years.

This answers the question of what time-scale we are operating with.
However, what exactly is measured when studying the climate? As stated
in the definition above, well known variables such as temperature, precip-
itation, and winds are certainly of importance, however, so are perhaps
less-familiar variables such as surface radiation budget, properties of clouds,
and ice sheet cover. Understanding what variables are important to moni-
tor the climate and any climatic changes, require an understanding of the
processes that constitute the climate. Let us therefore review some relevant
components of the climate system.

Arguably the most defining feature of the climate system is that it is
a dynamic system in transient balance. (McGuffie and Henderson-Sellers,
2005) Importantly, there is a balance between incoming energy from the
sun, and the energy that is returned to space again. Any disturbance to
this energy balance will therefore lead to a change in the energy contained
in the Earth system. The Earth’s radiation budget is a record of how much
energy enters the Earth system, and how much energy goes back out, and a
schematic of this is given in figure 1. If the energy balance is disturbed (and
the radiation budget consequently changed) there is more energy contained
within the climate system, and this extra energy needs to go somewhere.

There are four main ways energy in the climate system can be absorbed
by its components. Firstly, it can go into the atmosphere, raising the air
temperatures. Secondly, it can go into the land, increasing the land tem-
peratures. Thirdly, it can go into the oceans, leading to more heat content
in the oceans and increased sea temperatures. And lastly, it can go directly
into the phase transition of snow and ice, melting glaciers and ice sheets.
(Lee et al., 2021) This explains why we are so interested in monitoring the
temperatures of the Earth system, namely because it is a good indicator of
energy being added or taken away from the system due to an energy imbal-
ance. Any factor that imposes a change on the planetary energy balance is
called a climate forcing. (ibid) So what kind of climate forcings are there?

As we can see in figure 1, the main source of incoming energy to the
climate system is radiation from the Sun. Therefore, it might not be sur-
prising that the Earth’s energy balance is very dependent on any changes
to the amount of sunlight reaching the Earth. The most significant way in-
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Figure 1: The radiation budget of the Earth’s climate system. We can see
how some components of the incoming light is directly reflected back to
space, some are absorbed by the Earth and then re-released as infra-red
waves, and correspondingly trapped in the climate system by greenhouse
gases and clouds, or re-released into space. The figure is taken from (Lee
et al., 2021).

solation to the Earth can change is if the orbit of the Earth around the Sun
changes. There are three ways in which this can happen, namely changes
in eccentricity (changes in the shape of the Earth’s orbit from elliptical to
more circular), changes in obliquity (the tilt of the Earth’s axis of rotation),
and changes in orbital precession (direction of the Earth’s axis of rotation).
The way these variables change are known as Milankovitch cycles, and have
periodicities of 100,000/413,000 years, 41,000 years, and 19,000-23,000
years respectively. (Campsiano, 2012) Evidently, albeit significant, all these
changes happen over periods too long to be of importance to our current so-
ciety. Also remember from above that we are interested in climatic changes
that happen over 30-year periods, and the Milankovitch variations would ob-
viously go unnoticed over such a short period. Ergo, although Milankovich
cycles are of massive importance when trying to understand past climate,
these forcings are of diminishing importance when studying the climatic
changes over the past few centuries.

Solar activity also undergo more frequent cyclical changes related to the
sunspot cycle. This refers to the production of sunspots, i.e. dark areas,
and faculae, i.e. bright areas that will accordingly change the emitted solar
radiation, and consequently also the insolation to the Earth. (McGuffie and
Henderson-Sellers, 2005) When looking at shorter-term climatic changes it
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is therefore relevant to consider the climate forcing due to the solar activity
of that time. However, when looking at the observed climatic changes over
the past centuries, solar activity cannot account for these changes. (Solanki
and Krivova, 2003) Evidently, there are other climate forcings present in the
system.

Perhaps the most well-known mechanism that regulates the energy con-
tained within the climate system is the greenhouse effect. Giving a compre-
hensive outline of the greenhouse effect is beyond the present scope. How-
ever, let us summarize it as the mechanism by which sunlight, which is
in the high-energy spectrum, passes through the atmosphere, and is then
absorbed by the Earth and re-emitted at a much lower wavelength. The
radiation at this wavelength, which lies in the infrared spectrum, does not
pass back into space as easily. In particular, so-called greenhouse gases ab-
sorb certain wavelengths of the emitted radiation, trapping the heat inside
the system instead of letting it pass back to space. (Le Treut et al., 2007)
Greenhouse gases therefore act as climate forcings, where an increase in con-
centration will lead to an increase in the energy of the climate system. The
most important forcings altering the greenhouse effect are human emissions
of greenhouse gases, including carbon dioxide, methane, and nitrous oxide.
However, volcanic eruptions can also release large quantities of greenhouse
gases. (Lee et al., 2021)

Another type of climate forcing is troposheric aerosols. These are par-
ticles in the troposheric layer of the atmosphere, affecting the amount of
incoming light. Typically these aerosols reflect radiation back into space
which leads to a cooling effect, but there are also particles, such as soot,
which do the opposite. Troposheric aerosols also affect how and how many
clouds are formed. The effect of clouds in the climate system is two-fold,
firstly the amount and type of cloud affect the incoming radiation because
they reflect radiation back into space; secondly they also trap heat within the
Earth system, affecting the amount of outgoing radiation. (McGuffie and
Henderson-Sellers, 2005) Increased concentrations of aerosols can be a result
of the combustion of fossil fuels, biomass and other sources of pollution, but
are also released in large quantities in volcanic eruptions.

Other mechanisms that can change the energy balance include changes
to the ozone layer, which again affects the total solar radiation entering the
Earth system, and changes in surface reflectivity described by the albedo
effect. Albedo describes ability of surfaces to reflect sunlight. Light sur-
faces reflect more light (high albedo) than dark-surfaces, which absorb the
light. The albedo of the surface of the Earth will be affected by changes to
the land-surface, for example through desertification, re- and deforestation
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and urbanization. It can also be affected by dark particles, for example
those coming from the combustion of fossil fuels, sticking to surfaces that
would otherwise have a high albedo, such as ice and snow. There also ex-
ists further climate forcings, such as aviation trails and cosmic rays; a more
comprehensive overview can be found in (Lee et al., 2021).

It is possible to classify climate forcings into two main categories, namely
“natural” and “anthropogenic”. It is not difficult to understand that solar
forcings are natural, as they are completely external to the Earth system
and consequently also outside human influence.3 Similarly, although internal
to the climate system, volcanic eruptions are outside human influence and
thus a natural forcing. Further emissions of greenhouse gases, aerosols from
pollution, ozone depletion as a result of chlorofluorocarbons and land-surface
changes on the other hand, all belong to the “anthropogenic” category.

So far, some climate forcings with potential of disturbing the energy bal-
ance and thus the climate system have been described. What remains then,
is to describe how this system responds to the changes. As mentioned above,
there are a few different ways in which additional energy can be absorbed
in the system, namely by the atmosphere, land, oceans or cryosphere. How-
ever, after being absorbed by one of these, the temperature increase will lead
to further reactions in the climate system. This is because there are pro-
cesses internal to the climate system that will act to amplify or dampen the
effect of any energy imbalance, namely feedback effects. Positive feedback
effects amplify the effect of a perturbation to the system, meaning that a
temperature increase for example will lead to a further temperature increase,
without any more added energy. A negative feedback on the other hand, is
one that opposes the effect of a perturbation to the system. In the case of
a temperature increase, this would mean that the negative feedback effect
would lead to a temperature decrease. (McGuffie and Henderson-Sellers,
2005)

There are a multitude of feedback effects of importance in the climate
system. The most universal feedback mechanism is the Planck response,
which is an effect due to the Planck blackbody radiation law, describing how
the emitted radiation from a body is temperature dependent. Consequently,
with a higher temperature, the Earth will also re-emit more radiation, and
thus, this feedback is a strongly negative feedback which plays a crucial role

3The external forcings are at least outside human reach at the present moment. How-
ever, proposals of space-based solar geoengineering would break this distinction down.
This includes proposals of so-called “sun-shields”, which are constructions located in space
between the Earth and the Sun and would block some of the incoming light from ever
reaching the Earth. (Baum et al., 2022)
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in stabilizing the climate. However, despite this strong negative feedback,
the total effect due to feedback mechanisms in the climate system is be-
lieved to be positive. (Lee et al., 2021) This is because of the presence of a
multitude of other, positive feedback mechanisms.

Positive feedback mechanisms in the Earth system include the ice-albedo
feedback, which describes the contribution of melting of ice leading to a
decrease in the reflectivity of the surface of the Earth because the highly
reflective, white ice covers are replaced with darker substances such as land
or water. The decrease in the albedo effect in turn leads to more radiation
being absorbed, and thus a further temperature increase. However, although
strong, this is a highly localised feedback mechanism, and therefore does not
contribute accordingly to the totality of feedback effects. (Lee et al., 2021)
Another important positive feedback mechanisms is water vapour feedback.
This entails the enhanced greenhouse effect resulting from more water evap-
orating due to increased temperatures, which in turn works to increase the
temperature further. Other feedback mechanisms include lapse rate feed-
back, clouds, and biogeophysical and biogeochemical processes. (ibid)

An important concept arising from this is that of climate “sensitivity”.
Generally, this is a measure of the response of the climate system when ex-
posed to a change. Effectively, the climate sensitivity measures the combined
effect of all the feedback and regulation mechanisms of the climate system,
and is therefore an extremely important emergent feature of the climate sys-
tem, that is essential to understand how the climate will change in the future.
(McGuffie and Henderson-Sellers, 2005) However, different components of
the climate system respond to changes on different time-scales. Water for
example, because of its high heat capacity and high density compared air,
has a much slower thermal inertia, meaning that the oceans respond to
changes much slower than the atmosphere. There are therefore different
ways of measuring this climate sensitivity, depending on how much time is
allowed for the system to adjust. Equilibrium Climate Sensitivity, Transient
Climate Response and Effective Climate Sensitivity are three methods to
measure the sensitivity of the climate operated with by the IPCC. (Flato
et al., 2013)

In this section, we have seen how the climate is described by a certain set
of climatic variables over a defined time period. It was then demonstrated
how it is the energy balance of climate system and any disturbances to it
that ultimately defines the climate on Earth. This energy drives all the pro-
cesses that constitute both the climate and the weather. The dynamics of
the climate system, including winds and ocean currents, as well as precip-
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itation patterns, are all dependent on the energy contained in the system.
There are certain climate forcings, usually categorised as either natural or
anthropogenic, that have the potential of changing the energy balance. The
climate system will then respond accordingly.

This is an incredibly crude description of the climate system. However,
for our purposes, this will be sufficient. Let us therefore move on to the
models that aim to represent this climate system.

2.2 Climate Models

Climate modelling is the effort to represent the many processes that pro-
duce climate. Both physical, chemical and biological processes constitute
the climate, and a mathematical model of the climate consists of equations
expressing these different mechanisms. So climate models describe these
processes mathematically, and implement the mathematical equations nu-
merically on a computer, simulating the behaviour of the climate system.
This can be done in varying degrees of complexity and detail, and with dif-
ferent components being focused on, or included at all. In this section we
will look at some of the different choices that can be made when modelling
the climate.

The discipline of climate modelling is relatively new, and although earlier
analogue models exist, the first global circulation models appeared in the
1950s. (McGuffie and Henderson-Sellers, 2005) However, since these first
attempts at modelling the climate system, there have been great advances
in this field. The advances are both a result of better understanding of
the physical processes that constitute the behaviour of the climate system,
as well as a great increase in available computing power and simulation
techniques. It is today the general consensus that these modelling efforts
provide the most effective means for answering questions that require future
climate and implications of future changes to the climate. (ibid)

However, as mentioned a few times already, the climate is an incredibly
complex system, and it is not possible to represent it perfectly.4 Although
great advances has been made the last decades, we simply still do not have
either the complete understanding of the processes in our climate, nor the
computational power to do this, and it is questionable whether we ever
will. This means that the models consists of major simplifications. First

4An interesting question is whether it is ever possible to represent any physical system
perfectly by a mathematical model? However, what I mean here when saying that it is
not possible to represent it perfectly is the fact that there are simplifications, idealisations
and abstractions involved in models of the climate.
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of all, it is necessary to make simplifications by idealising or approximating
certain phenomena, known as parameterizations. These parameterizations
will be revisited later in section 2.3.2, however it is important to note that
it is possible to implement climate models based on the same fundamental
equations very differently because of this.

In addition to making simplifications to the processes involved in cli-
mate models, it is also necessary to make another type of simplification:
namely the model resolution, both in time and space. It seems evident that
a finer spatial resolution would also give us more accurate model output.
However, computational time and data availability put limitations to the
spatial resolution of our models. In terms of the temporal resolution, there
are also similar considerations for the balance between computational cost
and accuracy. Most computational procedures require ’timestepping’. This
means that the processes are allowed to act for a certain length of time
before new conditions are calculated, then the process is iterated until the
required length of time has been achieved. Ideally, we would want the tem-
poral resolution to be able to capture changes relevant to all the processes
we are interested in. However, to do this, we would need to have timesteps
of a few seconds, which when we want to simulate the climate system for
more than a hundred years, obviously is extremely computationally expen-
sive. Instead, modern climate models usually have timesteps of around 30
minutes. (McGuffie and Henderson-Sellers, 2005)

So, it is evident that there are numerous considerations that need to be
made when building a climate model. In the first part of this section we
will look at some of the components of a climate model, and what different
types of climate models look like. Specifically, the focus will be on energy
balance models, which for pedagogical reasons will be treated in quite some
detail, and Global Circulation Models (GCMs), which are the basis for the
models used in current climate scientific research. The second part of this
section will consider climate simulations, i.e. the output of climate models
when run on a computer. Once again, the focus is on GCMs. This will allow
us to understand the considerations required in translating the model into
a computer implementation.

2.2.1 Types of Climate Models

When constructing a climate model, we can identify a few central compo-
nents that need to be accounted for. Following the framework of McGuffie
and Henderson-Sellers (2005), those are

1. Radiation - this entails the input and absorption of solar radiation in

18



the atmosphere and the surface of the earth, and the corresponding
emission of infrared radiation;

2. Dynamics - this implies the circulation of energy around the globe,
both horizontally in terms of wind and ocean currents, and vertically in
terms of small-scale turbulence, convection, and deep-water formation;

3. Surface processes - the effects of sea and land ice, snow, vegetation
and the resultant change in albedo, emissivity and surface-atmosphere
energy and moisture interchanges are all a part of these processes.

4. Chemistry - this specifies the chemical composition of the atmosphere
and the interactions with other components, such as the carbon cycle
(i.e. the exchange of carbon between ocean, land and atmosphere).

Recalling the importance of the energy contained in the climate system
discussed in section 2.1, it is easy to understand the importance of the first
component. The difference between the incoming and outgoing radiation
will define the amount of energy in the climate system, which is the driving
force of all the other processes in the climate. Energy balance models, that
will be discussed shortly, is a type of model focusing solely on this aspect of
the climate. The remaining three components respectively deal with what
happens to the energy inside the climate system, surface processes that
affect the amount of energy absorbed, and chemical processes that affect
the concentration of radiatively active species, i.e. greenhouse gases and
aerosols. The different approaches to treating these four components and
the interplay between them, as well as choices for spatial and temporal
resolution as mentioned above, is what separates different types of climate
models from each other. Some commonly distinguished types of climate
models are:

1. Energy balance models (EBMs) of zero or one dimension. These mod-
els predict the surface (or strictly, the sea-level) temperature as a func-
tion of the energy balance of the Earth. This means it does not take
large-scale wind and atmospheric circulation systems, ocean currents,
convective features, or other essential components of the climate sys-
tem into account. In the zero-dimensional case, the Earth is simply
treated as a single, mathematical point in space. It then balances the
incoming and outgoing radiation. Simplified relationships are used to
calculate the terms contributing to the energy balance in each latitude
zone in the one-dimensional case.
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2. Dimensionally-constrained models that represent either two horizontal
dimensions or the vertical plus one horizontal dimension. The general
circulation is assumed to be composed mainly of cellular flow between
latitudes, which is defined using a combination of empirical and the-
oretical formulations. Models that belong to this category include
the early ’statistical dynamical (SD) models, and Earth Models with
Intermediate Complexity (EMICs).

3. General Circulation Models (GCMs). These can either include the
atmosphere (including land surfaces) only, with prescribed sea sur-
face temperatures and sea ice. Simulations with such atmosphere only
models are used intensively to validate climate models against observa-
tions - often based on remote sensing. Or, they can model the oceans
with sea ice, and prescribe the atmospheric conditions (i.e. wind,
precipitation, downward radiation). Lastly, they can combine the at-
mospheric and land components and the sea and ice components into a
fully coupled GCM. These models do not however, include the carbon
cycle or advanced online atmospheric aerosol chemistry. Several of the
models the IPCC operates with are of this type, because of the further
computational demands to include the aforementioned components.

4. Earth system models (ESM). These can either be earth system mod-
els of intermediate complexity (known as EMICs), which include im-
portant Earth system components such as interactive vegetation, ice
sheets, oceanic and terrestial carbon cycles, and so on. However, at the
expense of these factors, the dynamics of the atmosphere and oceans
are simplified to allow for faster computations. This means that the
atmospheric behaviour from timestep to timestep (i.e. the weather)
is not modelled, and instead, the climatic impact of weather is pa-
rameterized or simplified. ESMs can also be fully coupled, dynamic
Earth System Models which in principle include all components im-
portant to climate. These share some common features with GCMs as
they are based on the same atmospheric and ocean components, dif-
ference being that ESMs include more components. However, at the
present moment, they usually do not include features such as interac-
tive ice sheet model components or long-term geological processes such
as weathering, as it is impossible with present computer technology to
perform simulations that cover sufficiently long periods of time.

It is straightforward to see that these different types of models make
different choices in terms of exactly which of the components mentioned
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above (radiation, dynamics, surface components, chemistry), and in how
much detail they are to be included. Let us now review EBMs and GCMs
in more detail, before briefly discussing ESMs, which are the most common
type of model used to make projections in the climate scientific practice.

2.2.2 Energy Balance Climate Models

Despite their naive simplicity seen in light of the complex coupled circula-
tion models, energy balance models have been and still are instrumental in
increasing our understanding of the climate system. Their main advantage
is that they are easy to program and computationally light to run. This
makes them suitable for developing parameterizations for more complicated
models, as simulations can be made quickly so the statistics of the solution
fields are readily available. The computational efficiency also mean that
they have applications in paleoclimate studies, where the climate for very
long time periods is modelled. (North and Stevens, 2006)

As mentioned above, zero-dimensional EBMs simply treat the Earth as
a single, mathematical point in space, in which the incoming, short-wave
radiation from the sun and outgoing long-wave radiation from the Earth are
balanced. Let us now look to how such a model can be derived.

We start by assuming that the amount of shortwave radiation absorbed
by the Earth simply is the expression

(1− α) · S/4 (1)

where S is the solar constant, i.e. the flux density measuring the total
solar irradiance per unit area, measured at the distance from the Sun to
the Earth5. We divide the solar constant by four as this is the ratio of the
entire surface of the Earth (4πr2) and the cross sectional area of the Earth
(πr2), which is the actual surface area that ’sees’ the Earth at any given
time. Recall from section 2.1 that the amount of light being reflected is the
planetary albedo, which is represented α, and (1−α)-term correspondingly
represents the amount of radiation that is absorbed. The expression above
then represents the total amount of radiation absorbed by the surface of the
Earth. (McGuffie and Henderson-Sellers, 2005)[pp. 82-84]

As mentioned before, an energy balance model balances the incoming and
outgoing radiation. The expression above gives us the incoming radiation,

5Strictly speaking, it is measured on a surface perpendicular to the rays, one astronom-
ical unit (au) from the Sun (roughly the distance from the Sun to the Earth). However,
for most purposes this difference is insignificant.
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so the We now have an expression for the incoming radiation, and therefore
the next step is to derive an expression for the outgoing radiation. This can
be done by treating the Earth as a black body, i.e. a body that absorbs all
radiation that is incident upon it. The Stefan-Boltzmann law then gives the
amount of radiation produced by a blackbody per unit surface area per unit
time, j, as

j = σ · TS
4 (2)

where σ is the constant of proportionality, known as the Stefan-Boltzmann
constant, and T is the temperature of the blackbody. If the body is not a
perfect blackbody, this relation still holds if the emissivity of an object, ϵ,
is also inserted into the equation. Since ϵ is always between 0 and 1, where
an emissivity of 1 means a perfect blackbody, this effectively reduces the
radiation produced by a so-called ’grey-body’. However, the emissivity of
the Earth is in fact very close to 1, and for most purposes Earth is simply
assumed to be a perfect black body.

Now, let’s approximate this TS as the average temperature over the en-
tire planet. Seeing that this layer is 70% ocean water, the thermal properties
of the ocean are obviously very important. Now, we treat the ocean as a
so-called ’mixed-layer’, meaning that there are no ocean currents, no tem-
perature variations or any other differences; the ocean is simply a stagnant
layer. This allows us to approximate the thermodynamic effect of this mixed
layer ocean in terms on an effective heat capacity of the entire earth system,
and this heat capacity can be estimated to be C = 2.08 · 108JK−1m−2.

We are then in a position to write an expression for the energy balance.
The change in the internal energy per unit area per time can be written
as an expression of the heat capacity of the Earth system and the rate of
change of surface temperature:

∆U = C
dTS

dt
(3)

This must in turn balance the rate of net heating. The rate of net heating
is going to be the difference between the incoming radiation from the sun,
and the outgoing radiation from the surface. From this we get the following
expression of energy balance:

C
dTS

dt
=

(1− α) · S
4

− σ · TS
4 (4)

From this we can easily recognise the fact that if the incoming radiation is
more than the outgoing radiation, that will lead to a rise in surface tempera-
ture of the Earth system, just like it was established in 2.1. That means that
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TS is increasing, which in turn will increase the outgoing radiation, even-
tually bringing the two terms on the right-hand side into balance. When
these terms are balanced, there is no longer any change in surface temper-
ature, meaning the left-hand side is zero. This means the two terms on the
right-hand side are completely balanced, i.e.

σ · TS
4 =

(1− α) · S
4

(5)

The value of the solar constant S can be approximated to be 1370Wm−2,
and the value of the planetary albedo can be approximated as α = 0.3. σ is
just a constant whose value is 5.67 ·10−8Wm−2K−4. (ibid) We can therefore
solve the equation above for TS :

TS =

(
(1− 0.3) · 1370Wm−2

4 · 5.67 · 10−8Wm−2K−4

) 1
4

≈ 255K ≈ −18◦C (6)

So in this model we get that the average surface temperature of the entire
Earth should be minus 18 degrees, which we know very well is not the case.
This is clearly because the greenhouse effect is not accounted for in this
model. It is possible to change the simplistic model discussed here into an
EBM where the greenhouse effect is also accounted for, consequently getting
more realistic values for the average surface temperature, see for example
the simple revision described in (McGuffie and Henderson-Sellers, 2005)[pp.
83-85].

Furthermore, it is also possible to add more complexity to EBMs by
leaving this zero-dimensional view. Most EBMs are in fact one-dimensional,
where the dimension of the Earth’s latitude is taken into account. Since
the energy balance is allowed to vary from latitude to latitude, a horizontal
energy transfer term must be introduced, and we get the following general
expression for the energy balance at each latitude, ϕ:

C
dTS(ϕ)

dt
= Rin(ϕ)−Rout(ϕ) + nettransportintozoneϕ (7)

where Rin(ϕ) and Rout(ϕ) is the incoming and outgoing radiation respec-
tively, and can be substituted by the explicit expressions above, and the net
transport into zone ϕ is the amount of energy that is transported into lati-
tude zone ϕ from other latitude zones. So one-dimensional EBM allows for
horizontal energy transfer across the Earth, making it slightly more realistic
than the zero-dimensional EBM. However, still there are no atmospheric
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dynamics modelled in an EBM; this is simply approximated by having all
heat transfer modelled by latitudinal heat diffusion. (ibid)

As mentioned a few times already, perhaps the most defining character-
istic of the climate system is its energy balance and disturbances to it. This
is exactly what EBMs try to model. We have seen how some of the features
of the climate system discussed before can be translated into mathematical
equations, and we solved the very simplest case analytically. It is easy to
imagine that slightly more complicated versions of this could also without
much problem be implemented on a computer. Although intuitive and easy
to understand and run on a computer, EBMs are not able to simulate other
climatic variables than the temperature, which greatly limits their potential
use. Neither are they good at modelling temperature changes over longer
periods, as they do not take the dynamics or biogeochemical processes such
as the carbon cycle into account. However, as we will see in the following
section, taking these further components of the climate system into account
greatly complicates things.

2.2.3 General Circulation Models

In contrast to EBMs, which are either zero- or one-dimensional, the aim of
GCMs is the calculation of the full three-dimensional character of the atmo-
sphere and/or ocean. They are based on fundamental physical laws govern-
ing the temporal and spatial evolution of atmospheric and oceanic flow and
thermodynamics. These equations are well known from other physical con-
texts, and include the equation of state, Newton’s equation of motion, the
first equation of thermodynamics, and continuity equations for air or water
mass, water vapour, liquid water (cloud droplets), ice (ice crystals in clouds),
and other atmospheric or oceanic traces such as chemical compounds and
aerosols, or salinity in ocean water. (McGuffie and Henderson-Sellers, 2005)

That means that in effect, we have a set of four equations that define
the dynamics of the whole climate system. This might raise the question as
to why climate models are so complex, and so computationally expensive.
However, let us first have a look at these equations in turn, and then return
to the implementation, and the problems of implementing, these equations
later on.

Equation of state
The equation of state describes the state of the system in terms of its state
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variables. For the atmosphere, the equation of state, ρ is given by

ρ = f(p, T, C) (8)

where f is some function, p is pressure, T is temperature, and C is the
actual composition of the atmosphere in terms of various gases, including
water vapour. Since the atmosphere can be considered a mixed ideal gas,
the equation of state can be simplified by the help of the ideal gas law,
yielding

ρ =
p

RT
(9)

where R is the gas constant for air. For the ocean, this is

ρ = f(p, T, S) (10)

where S is salinity. The oceanic equation of state is a more complicated
non-linear function that can be estimated empirically. (GCM˙eqn)

Momentum equation (Newton’s second law/Navier-Stokes’ equa-
tion)

Newton’s second law of motion the rate of change of momentum of a
body to the forces acting on that body. Expressed per unit mass of air or
water, it can be expressed as

DU

Dt
= −2Ω×U ×−1

ρ
∇p+ g + F r (11)

where U is the three-dimensional velocity vector relative to the rotating
Earth, i.e. the wind or ocean current vector, t is time, Ω is the angular
velocity of the Earth, g is the centrifugal and gravitational forces combined,
and F r are the molecular frictional forces. Expressed in this form, the
equation is also known as Navier-Stokes’ equation (in vector form).

Just as in the perhaps more familiar generic form of Newton’s equation,
a = F /m, the left-hand side of the equation above represents the accel-
eration, in this case of an air or water parcel. And correspondingly, the
right-hand side represents the forces per unit mass, i.e. per kilogram of air
or water. The first term on this side, involving the cross product of Earth’s
angular velocity Ω and the velocity vector U , corresponds to Coriolis force;
a force apparent in any system whose velocity is relative to a rotating refer-
ence frame. (McGuffie and Henderson-Sellers, 2005)
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Thermodynamic equation
The first law of thermodynamics describes the relationship between internal
energy, heat and work in a thermodynamic system. For a unit mass air
parcel it can be expressed as

cv
DT

Dt
+ p

Dα

Dt
= J (12)

where cv is the specific heat of air at constant volume, T is the temperature,
p is the pressure, α the specific volume (the volume of one unit mass of air
is α = 1/p, and J is heat per unit mass added or extracted to or from the
air parcel. The equation above therefore states that if heat is added to an
air parcel it will go into increasing the internal energy (the first term on the
left hand side), or to do work on the surroundings (the second term on the
left hand side).

By inserting for the equation of state for atmospheric air above, it is
possible to rewrite this equation as

cp
DT

Dt
− α

Dp

Dt
= J (13)

where cp is the specific heat of air at constant pressure.
The heat term J represents condensation of water vapour into cloud

droplets or ice crystals, evaporation of falling precipitation or of cloud droplets/ice
crystals, and radiation, and in some models also the net heating effect of
molecular friction taking place at microscopic scales, i.e. heat from radia-
tion, and heat from latent heat and phase transitions. (GCM˙eqn)

Continuity equations
Continuity equations describe the transport of some quantity. In our case
they are used to describe the transport of mass, and since mass is a conserved
quantity, the equations take on a particularly simple form. For dry air, the
continuity equation can be written as

Dρd
Dt

= −ρd∇ ·U , (14)

and it states that the dry air density of an air parcel decreases proportionally
if the flow is divergent, because in this case the volume of the air parcel
increases and therefore density must decrease.

There are also continuity equations for other quantities, such as water.
Since water can condensate and evaporate, it is necessary to include ’source’
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and ’sink’ terms which account for these respective processes. For any tracer
partial density i, the continuity equations are

Dρi
Dt

= ρi∇ ·U + ssi (15)

where i = 1, ... and ssi is source or sink terms. For example, if water vapour
condenses onto liquid cloud droplets the water vapour density will decrease
(i.e. ss will be negative), while the liquid water density in the same air
parcel will increase accordingly. GCM˙eqn

Although GCMs formulated in this way have the potential to closely ap-
proach the real oceanic and atmospheric situation, at present there are a
number of practical and theoretical limitations In principle, these equations
fully describe the dynamics of the climate system. However, biogeochemical
cycles, such as the carbon cycle, are not modelled, neither is land physics,
dynamic vegetation, nor ice sheets. GCMs are just descriptions of the dy-
namics of the atmosphere and oceans. This is however, exactly what ESMs
aim to do. The ESMs used in most reasearch for the IPCC are fully coupled
ESMs, which are at their core based on GCMs, but the coupled to other
components that model these processes. (McGuffie and Henderson-Sellers,
2005) A review of the details of this is not within the scope of this thesis.
However, because of their many similarities, looking at GCMs allow us to
understand essential features of ESMs as well. Let us therefore continue to
focus on the GCMs, but now shift the focus to how they can be implemented
on a computer.
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2.3 Climate Simulations

In the previous section, we encountered the general circulation models that
are widely used to make climate predictions in climate science today. We
also encountered the simple laws governing the behaviour of the atmosphere
and ocean, namely Newton’s laws of motion, the conservation of mass, and
the first law of thermodynamics. However, what we get out of these laws is
a coupled set of non-linear partial differential equations for which there is no
closed-form solution. (McGuffie and Henderson-Sellers, 2005) That means
that we cannot solve them exactly and analytically; rather, we have to get a
numerical approximation of how a system obeying these laws should behave.

This process of discretization is done by approximating the original, con-
tinuous differential equations into discrete difference equations. A computer
can then solve these difference equations step-by-step over discrete intervals
of time for discrete points in space. Instead of a continuous function that
provides us with the values of the variables of interest, such as temperature,
for any point in time and space, we end up with numerical approximations
for these variables on a discrete space-time grid. This means that the com-
puter has to calculate the difference equations at each point in time and
space. (ibid) When we then consider the resolution in both time and space
and the timescale we are interested in to capture an accurate description of
the behaviour of the climate system, we can begin to understand why such
simulations are so computationally costly.

Despite the complexity of simulating the atmosphere alone, this is only
a part of the climate models used today. We saw that some of the equations
in the previous section also apply to the ocean, and we also saw that in more
complex models, the complete hydrosphere (including not only oceans, but
also rivers, lakes and other water components), the cryosphere, the land
surfaces and the biosphere are also included, each with their own sets of
equations. Full ESMs also tracks sources and sinks of carbon and other
biogeochemical processes. To make simulations of such models then, the
computer need to solve for all these equations, and account for the interac-
tions between them, at each step in time and point in the space-grid.

This serves to illustrate a point that has been frequently repeated so
far; namely that state-of-the-art climate models are complex and their sim-
ulations immensely computationally costly. There is a reason why massive
resources are being put into making supercomputers that can run these sim-
ulations, and even using our best supercomputers, it takes months to make
climate simulations of a couple of hundreds of years. The labour behind
producing simulation results also provides an understanding for the motiva-
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tion behind the close collaborative effort of the IPCC combining the efforts
of different climate simulation groups around the world.

It should therefore come as no surprise that a complete overview of the
simulation process of the most complex climate models is a lengthy task,
one which is far beyond the scope of this thesis. Instead, we will settle
on the more modest goal of describing two relevant ingredients in the long
recipe for making climate model simulations, namely the discretization and
parameterizations.

2.3.1 Discretization

Discretization refers to the process of turning continuous quantities into
something discrete that can be solved by a computer. For climate models,
this process refers to several sub-processes. Firstly, the Earth itself needs to
be divided up into discrete points. The climate phenomena of interest, such
as temperature and wind, cannot really be assigned to discrete points, but
we need to somehow represent this continuous data discretely. Secondly, we
need to estimate the spatial derivatives of the fluid equations encountered
before of the discrete data. Thirdly, we also had time derivatives in these
equations, and these also need to be estimated discretely. I will consider two
main methods for performing these processes, namely finite-grid methods
and spectral methods.

Finite-grid methods involve, as the name suggests, dividing the Earth
up into a finite grid. So first of all, let us consider exactly how we can
represent the Earth as a discrete grid. This process involves dividing the
Earth up into grid-boxes, i.e. boxes with a certain extension in three dimen-
sions. These boxes cover the surface of the Earth all around, and also extend
vertically to include the oceans and the atmosphere. The simplest way to
do this is to just divide the Earth’s surface up into rectangular boxes, in a
so-called ’regular latitude-longitude grid. This method has the advantages
of the faces all being regular, and the coordinate lines being orthogonal to
each other, making it easy to define spatial derivative operators. However,
since the Earth is round and not square, this means that towards the poles
the grid boxes will get smaller and smaller, eventually converging. This is
known as “polar singularities”. (S. N. Collins et al., 2013) As we will see
below, the size of the grid-box is also intimately connected with the length
of the time step required, meaning that a very high temporal resolution is
needed for these small grid-boxes.

To avoid the polar singularity, other methods of discretizing the Earth
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have been utilized. The Cubed-Sphere grid for example, is obtained by
placing a cube inside a sphere and ’inflating’ it to occupy the total volume
of the sphere. This means that it consists of the eight panels of the cube
instead. Effectively, this means that the two polar singularities from the
regular latitude-longitude grid are split up into eight weaker singularities at
the corners of the cube. However, at the panel edges there are some kinks,
meaning that it is difficult to construct differential operators here. (ibid)

Many global models also use the icosahedral geodesic grid. This grid can
be viewed as an arrangement of triangular tiles covering the sphere. Each
vertex on this shape is a model grid point. There are no polar singularities
on this grid, and it has the most uniform element spacing, but the grid is
largely unstructured, meaning that it can be difficult to compute high order
differential operators. (ibid) The three types of grids mentioned here are
just a few of many, and there are numerous alternatives to how to divide
the Earth up into grid boxes. (S. N. Collins et al., 2013)

Vertically, the norm for all the grids is that they are divided up into a
fixed amount of pressure levels, which typically follow the terrain by so-called
“sigma co-ordinates”, which makes mountain ranges easier to handle. Unlike
the horizontal resolution, the vertical resolution is not usually uniform, and
there is often finer vertical resolution near areas of particular interest, such
as the tropopause and the surface. (McGuffie and Henderson-Sellers, 2005)

After choosing how to divide the Earth up into a grid, it is also neces-
sary to define how and where the data in the individual grid-cells should
be stored. For the rectangular grid boxes discussed above, the data can
either be stored in discrete points, which is what is done in finite-difference
(FD) models, or as averages over the whole cell, which is what is known
as finite-volume (FV) models. The FV-method use an integrated form of
the governing equations to track the flux of energy, mass and momentum
at the cell boundaries. This leads to a conservative relationship between
the fluxes and the enclosed entity reminiscent to that of Gauss’ divergence
theorem, and therefore the conservation of these quantities is an automatic
consequence of this method. (Peiro and Sherwin, 2005)

In the FD-method, it is also possible to store the data either in an un-
staggered way (Arakawa-A grid), where the scalar quantities such as density
and temperature, and the vector quantities such as wind are stored in the
same point in the cell, or in a staggered way (Arakawa-B, -C, -D grids6)
where these quantities are stored in different locations. (ibid)

6Whereas Awakawa-C and -D grids are commonly used in different climate models, the
type B grid is not implemented because of unphysical behaviour.
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When the grid-boxes and how they store the data is defined, it further
is necessary to define how to advance the difference equations in time. In
finite grid methods, at every point the variables for a particular location
in the grid is simply moved into computer memory and new calculations
undertaken for the next step in time. The length of this timestep is chosen
based on the timescale of the physical processes involved in the simulations,
and in fact different processes are calculated at different timesteps, with the
dynamics of the simulation usually having the finest temporal resolution.
However, there is another important constraint on the timestep arising from
numerical considerations. That is, it has to be short enough so that the
maximum speed of propagation of information does not permit any transfer
from one grid point to another within one timestep. This means that the
timestep ∆t has to obey the condition that

∆t ≤ ∆x/c (16)

where ∆x is the grid spacing and c is the fastest propagation velocity, which
in GCMs is the speed of gravity waves. (McGuffie and Henderson-Sellers,
2005)[p. 170] This is what was hinted towards before, when it was mentioned
that the time steps would lead to issues for the regular grid; when the grid
boxes become very small towards the poles, ∆x also become very small,
meaning that the timesteps must be very short. As mentioned before, it is
possible to use filters to diminish this effect, specifically the filters are used
to overcome the instability caused by not matching the requirement above.
(ibid) Conversely, it is possible to overcome this problem by using so-called
“Langrangian time-stepping”, which is a semi-implicit timestepping scheme
which treats the motion of gravity waves, which effectively is what restricts
the timestep, different so that longer timesteps become available. (El amrani
and Seaid, 2008)

There is much more to say about finite-grid methods and the details of
how these are implemented to produce climate simulations, but going into
further detail about this is again beyond the current scope. Nevertheless, the
point I want to make in this section is that firstly, simulating climate models
is a complex process, and secondly, this complexity gives rise to alternative
mathematical ways to simulate climate models. The spectral method of the
following section will provide us with yet another mathematical alternative
to the simulation of climate models.

The spectral method is based on a spherical coordinate system, making
it particularly suitable for modelling the atmosphere, which effectively is a

31



continuous spherical shell of air. Similarly to finite grid GCMs, spectral
GCMs also divide the atmosphere into grid cells. However, fundamentally
different is how the atmospheric fields are held and manipulated: namely in
the form of waves. This makes it easier to calculate the gradients from the
difference equations, thus making it computationally faster. (McGuffie and
Henderson-Sellers, 2005)

The basic idea of spectral methods is based upon Fourier’s theorem.
This states that any ordered sequence of numbers can be represented as a
sum of sine and cosine waves. In our context, the variation of any quantity
around a latitude zone can be represented as a sum of a number of waves.
The relationship between these waves and the original climate data is that
they are the Fourier transform of this data. All the original information in
the initial data series is still contained in this Fourier formulation, but the
advantage is that some computations are much more readily done. (ibid)

However, this does not mean that all parts of the model are formulated
by waves; a rectangular grid is used for vertical transfers, radiative transfer
and surface processes are simulated in this grid space. This means that the
spectral fields are transformed to grid space at every timestep via fast Fourier
transforms and Gaussian quadrature (a form of numerical integration), and
back to spectral space via Legendre transforms and Fourier transforms. The
timestepping is thus performed with the waveform representation, while the
grid-point physics is incorporated after the transformation into grid space.

The resolution of a spectral model is determined by what is known as
the wavenumber of truncation. (McGuffie and Henderson-Sellers, 2005) For
example, if a model uses 15 waves to represent each variable in a latitude
zone at each vertical level, then it is said to be truncated at wavenumber
15. In fact, 15 was the wavenumber used in early applications of spectral
modelling, whereas the norm in current spectral models is to use 42 zonal
waves. Higher resolution is also used, and some weather forecasting models
for example use 60 levels, which corresponds to a resolution of about 40
km. The resolution of the so-called ’Gaussian grid points’, i.e. the points
in grid-space, are determined by the truncation level of the model. A reso-
lution too low compared to the truncation level will lead to aliasing of the
high frequencies, whereas a resolution too low will not surprisingly lead to
excessive computation times. (ibid)

Once again, this description is by no means exhaustive, and there is much
more to say about this waveform description. However, just like before, this
is not my intention. My intention has been to provide the reader with a basic
idea of how a GCM can be implemented on a computer to make a computer
simulation of the climate system. It has also been my intention to show how
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discretizing continuous equations describing a system continuous in time
and space is not so straightforward, and can lead to different mathematical
alternatives to this process. Hopefully this allows us to readily move on to
the next topic: namely how processes that cannot be solved by the fluid
equations at a specific resolution are treated.

2.3.2 Parametrizations

The fact that climate models are discretized sets of continuous equations on
a grid is probably their most defining feature. The second most important
feature then, is how the interactions that happen below the scale of the
chosen grid are modelled, or at temporal scales shorter than the time steps
used. The climate system consists of many sorts of processes, that happen
at many different scales. The formation of clouds for example, can happen
at scales down to meters and even millimeters, and from what I have been
saying about the computational cost of running climate models, it seems
obvious that we cannot resolve models to get this resolution (at least not
now, or in the near future).

Despite the fact that we cannot solve for cloud formation, it also seems
important to have them in our models. Clouds affect the climate to a
large extent, as they both reflect sunlight and absorb LW-radiation from
the Earth, not to mention they cause precipitation. Therefore, processes
such as this need to be treated with a “sub-grid model”, more commonly
known as “sub-grid parametrization” or simply “parameterization”. This
is opposed to the so-called “resolved parameters”, such as temperature and
pressure, that are solved for by the dynamical equations, and are aptly re-
ferred to as the “dynamics” of the model. The sub-grid parametrizations
then, are referred to as the “physics”. It seems a bit mysterious why the
dynamics of the model should be unphysical, especially because parameter-
izations usually involved various non-physical parameters. The parameters
are ’non-physical’ because their value do not correspond to anything in na-
ture, instead they are “made-up” to best mimic the effect of the real physical
processes, but do not aim to causally describe these effects. Both the need
for parameterization and the appropriate values for these parameters are
simply artifacts of the computation scheme, and hence non-physical. In ad-
dition to small-scale processes, parameterizations can also include processes
that are too complex to be physically represented in the discretized model.
(McGuffie and Henderson-Sellers, 2005)[ch. 2.5]

Important parameterizations include for example the vertical exchange
of water in the oceans and small-scale turbulent mixing. However, by far
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the most problematic parameterization is that one mentioned above; namely
clouds. In earlier climate models, the cloud parameterization simply con-
sisted of calculating the percentage of a grid cell filled with clouds as a
mathematical function of a few grid variables such as humidity and convec-
tion. However, cloud formation is a complex process involving complicated
interactions between large-scale circulations, convection, turbulent mixing,
radiation, and microphysical processes like precipitation (which is also de-
pendent on aerosols), melting and freezing, and the nucleation of ice crystals.
Modern cloud parameterization schemes therefore involve parameterizing
some or all of these processes and then calculating the overall contribution
to cloud physics. This is as complicated as it sounds, and in fact much of
the differences in model output can be attributed to different approaches to
this. (Winsberg, 2018)[ch. 4]

However, although these parameterizations are non-physical, that is not
to say they are completely unphysical, because they are usually based on
physical considerations. One can differ between three categories of parame-
terization. (McGuffie and Henderson-Sellers, 2005)[pp. 72-73] The first and
simplest one is the null parameterization, where a process, or a group of pro-
cesses, is simply ignored. Although this perhaps sounds rather unphysical,
this choice is still based on careful considerations of what processes actually
significantly contribute to the phenomena of interest. If some processes only
slightly or maybe not at all contribute to the output, one should not spend
unnecessary computation time on them either. (ibid)

The second group of parameterizations have more rooting in reality.
They are climatological specifications, and entails using empirical data to fix
the parameterization. In early climate modelling for example, it was com-
mon to fix the oceanic temperature, including a seasonal variation, based
on data of this. This type of parameterization is also utilized in present-
day-modelling, but with land-surface characteristics, such as features of the
soil and vegetation. It is important to realise that fixing variables like this
means that feedback effects are suppressed: the effect of these variables
are not allowed to change with changing climate forcings. Another type of
parameterization that belongs to this category is that of “tuning”. This
involves parameterizing processes by relating them to present-date observa-
tions, constants or functions describing the relationship between variables
are tuned to obtain agreement. (ibid)

The third type of parameterizations are those that have theoretical jus-
tifications. (ibid) An example of this is in some two-dimensional, zonally
averaged dynamical models, the fluxes of heat and momentum are param-
eterized by baroclinic theory. (Sasamori and Melgarejo, 1978) This means
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that although the processes are parameterized, they are determined by the-
oretical considerations, and therefore can still be said to exhibit some causal
structure akin to the real-life phenomenon.

In section 2.1 we saw some of the basic components of the climate and in
section 2.2 we saw how we can model aspects of the climate system differ-
ently, but that we in principle have a thorough physical understanding of
the dynamics of the system that can be described through a set of differen-
tial equations. However, in this section, it became apparent that we cannot
solve these equations directly, and that simulating them leads to a number
of complications. This means that there are inherent simplifications and
idealisations in any climate model. Despite of this, climate models are still
viewed as one of the most valuable tools we have for studying the climate.
In the next chapter, we will therefore look at how these models are used to
make hypotheses about the climate in the climate scientific practice.
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3 Application of Climate Models: An IPCC Case
Study

In chapter 2, the climate system was defined and briefly described, and the
some types of models that aim to represent it were explained, as well as
how they are numerically solved as computer simulations. From this we
can infer that climate models can be used to simulate the behaviour of the
climate system, and output certain climatic variables of interest. However,
exactly what are these simulations used for in the climate scientific practice?
In this chapter we will look at some characteristic examples of this, which
will ultimately help us understand why robustness is so important in this
discipline.

Perhaps the most defining limitation of a science that aims to describe a
system as big and complex as the Earth system is that it is impossible to do
traditional experiments to test hypotheses about it.7 We cannot increase the
radiative forcing to see how fast the ice caps will melt, and we cannot take
human emissions out of the atmosphere to see how much of an impact they
make. We only have one Earth system, the one we are living in; and it only
has one history, the one we have observations of. There is no counterfactual
information, no appropriate alternatives we can compare our reality with.8

However, this is exactly what climate model simulations allow us to do. With
them, it is possible to model the historical climate without the influence of
human emissions, and we can even model what we think the future climate
will look like under different conditions. We can also model the past climate
in the periods where observations are sparse, to gain a more comprehensive
description of it. And in all these processes, the scientists can learn more
about the behaviour and mechanisms in the climate system. Evidently, the
climate models provide the scientists with an incredibly powerful tool to
study the climate.

The number one climate scientific organ is the Intergovernmental Panel
on Climate Change (IPCC).9 The IPCC do not produce their own climate
models or do their own climate research, this is left to climate scientific

7This is of course not referring to experiments testing the physical theories the models
are based on. These are well-established and essential to our understanding of the climate
system. This is referring to the testing of the behaviour of the climate system as a whole,
or the output of the models.

8It is interesting to note that we most certainly can compare components of our climate,
in particular the greenhouse effect and climate sensitivity, to that on other planets. (Idso,
1988) However, this still cannot provide us with any knowledge of anthropogenic forcings,
climate feedbacks specific to our planet, or possible future scenarios for our climate system.

9https://www.ipcc.ch/
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research groups of the member countries, but they create extensive reports
that are released around every six to seven years, where results from climate
science are collected and discussed in one comprehensive report. There
are three different workings groups under the IPCC that work on different
aspects of climate, and each publish one report every report cycle, the so-
called assessment reports (ARs). Working Group I deals with the physical
basis of climate science and models representing the climate system. (Chen
et al., 2021) Consequently, it is their ARs and the use of models in these
that will be the focus in this chapter, as it represents the state-of-the-art of
climate science and modelling.

The ARs are based on the Coupled Model Intercomparison Project
(CMIP), which for the current AR, AR6, is running in its 6th cycle, CMIP6,
whereas AR5 is based on CMIP5, and so on. Climate simulations that are
made for the CMIP cycles consist of the outputs of many of the state-of-the-
art climate models from the biggest climate modelling centres, and follow
a specified protocol and specified experiment (i.e. initial conditions and
forcing conditions). Their outputs are then combined to give the overall
output of the CMIP cycle, which in turn gives the results and figures in the
ARs, that IPCC base their conclusions and hypotheses about the climate
on. (O’Neill et al., 2016)

In general, there are three key research uses of climate model simulations,
namely detection, attribution and projection. Detection and attribution are
closely linked, and involve detecting some change climatic change and then
attributing this to specific causes, whilst projections simulate future climatic
changes. In other words, detection and attribution deal with identifying
changes that have been in the past up until today, whilst projections deal
with possible future outcomes. Let us now have a look at each of these in
turn.

3.1 Detection and Attribution

Although two separate processes, detection and attribution are really two
sides of the same coin. In short, detection and attribution involve quan-
tifying the evidence for a causal link between external drivers of climate
change and observed changes in climatic variables. Ergo, it is the process
of detection and attribution that allows us to establish whether and how
much climatic changes are caused by humans, and other sources of climatic
forcing. Since 2010, the IPCC good practice guidance paper on detection
and attribution has existed (Hegerls et al., 2009), and its methods are used
by the IPCC today. (Bindoff et al., 2013)
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It is important to note that the process of detection and attribution is
two-fold, and involves first detecting some change, and then attributing it
to specific causal factors. It is therefore possible to detect some climatic
change without being able to attribute it to specific causal factors. We can
have high confidence in the fact that some climatic change is happening,
without being so sure about what is causing it. On the other side, to make
an attribution, it is necessary to already have established a detection. Let
us now look at the characteristics of each of these processes in turn, to
understand both their distinctiveness and their interdependence.

3.1.1 Detection

In the IPCC guidance paper on detection and attribution, detection of cli-
mate change is defined as

“the process of demonstrating that climate or a system affected
by climate has changed in some defined statistical sense, without
providing a reason for that change.” (Hegerls et al., 2009) [p. 2]

It becomes clear from this definition what was mentioned before; namely
that it is not the aim of detection to give any reason why the detected change
is happening. However, what is important is that a detected change should
not be attributable to internal variability in the climate system:

“An identified change is detected in observations if the likeli-
hood of occurrence by chance due to internal variability alone is
determined to be small, for example <10%.” (ibid) [p. 2]

From this it follows that detecting climate change also requires an estimate of
how much a quantity or field of interest might fluctuate as a result of internal
variability, a so-called “null-hypothesis”. This is not so straightforward to
estimate from observational records. Although for some variables, estimates
have been made based on paleoclimate data, they are usually obtained from
long GCM/ESM simulations in which external conditions are held constant.

In its periodic assessments, the IPCC has reached increasingly strong
conclusions about the detection of climate change in observations. In AR5
it was concluded that it is “virtually certain” (which means a probability
greater than 99%) that the increase in global mean surface temperature seen
since 1950 is not due to internal variability alone. (Bindoff et al., 2013)[p.
885] That is, the probability that the warming is due to internal variability
alone was assessed by the scientists, on the basis of available evidence and
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Figure 2: The black lines represent three different observational estimates
of the Global Mean Surface Temperature (GMST), whilst the dark blue
and red lines represent the median of the Coupled Model Intercomparison
Project 3rd cycle (CMIP3) and Couped Model Intercomparison Project 5th
cycle (CMIP5) outputs respectively. The light blue and the yellow lines
correspond to the individual model outputs within these model ensembles.
Note that temperature is represented as anomalies relative to 1880–1919
and not absolute temperatures. The figure has been taken from the AR5
(Bindoff et al., 2013) [p. 879, figure 10.1a]

expert judgment, to be less than 1%. Indeed, it was noted that, even if
internal variability were three times larger than estimates from simulations,
a change would still be detected. (ibid)[p. 881]

So let us look at an example of detection of global warming. Perhaps
the most notable and familiar detection of warming is that of rising global
mean surface temperatures (GMST). In figure 2 we can see a detection of
rising GMST.

In figure 2 it seems apparent that the GMST is rising. However, remem-
ber that to classify as a detection of a climatic change, this change also has
to be very unlikely to be caused by internal variability in the system. An
apparent change could always very well be caused by natural variability, so
we should be careful when “seeing” such trends with the naked eye. How-
ever, it has been shown that this observed trend in GMST since the 1950s
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is very large compared to model estimates of internal variability. When the
observed trends in GMST were compared with a combination of simulated
internal variability and the response to natural forcings, it was found that
the observed trend would still be detected for trends over this period even
if the magnitude of the simulated natural variability were tripled. (Knutson
et al., 2013)

The detection of rising GMSTs therefore seems evident according to the
definition of detection given above. Furthermore, if there is more energy
added to the climate system, we would also expect to see a rise in ocean
heat content (OHC). A warmer ocean also means that the volume of the
ocean should increase, i.e. we should also see an increase in sea level. Some
of the energy should also be absorbed by the Earth’s cryosphere, and we
would expect see the ice masses melting at an increased rate. Therefore, the
IPCC also support the detection of rising temperatures with the detection
of related variables. This reduces the possibility that the detection of any of
the variables is faulty, or that the rise in GMST is due to some other causal
process. The observation of changes in such variables can be seen in figure
3.

When a detection is made, and if it the change is unlikely to be because of
natural variability, what remains is then to understand why it is happening.
Put differently, what remains is to attribute the change to some causal factor.

3.1.2 Attribution

Apart from the difficulty in establishing a baseline for natural variability,
and uncertainties in observational data-sets, detection is relatively unprob-
lematic. Attribution on the other side, is a bit more complex. In the IPCC
guidance paper on detection and attribution, attribution is defined as

“the process of evaluating the relative contributions of multiple
causal factors to a change or event with an assignment of statisti-
cal confidence. The process of attribution requires the detection
of a change in the observed variable or closely associated vari-
ables”. (Hegerls et al., 2009) [p. 2]

Ergo, unlike detection, attribution also requires knowledge of physical
causal factors, as well as statistical analysis. Remember that we in section
2.1 reviewed some climate forcings, i.e. processes that have the potential
of disturbing the energy balance of the climate system, thus changing it.
Attribution then, aims to ascribe a detected climate change in terms of one
or more of these forcings.
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Figure 3: Detected changes in various climate variables. In the left section of
the figure, we can see the detected changes in land surface air temperature,
sea-surface air temperature, marine air temperature, sea level, and summer
arctic sea-ice extent. In the right section of the figure we can see the detected
changes in troposheric temperature, ocean heat content, specific humidity,
Northern hemisphere snow cover, and glacier mass balance. The different
coloured lines represent different data-sets. Note that most variables are
given in anomalies relative to a baseline rather than absolute values. The
figure is taken from (Hartmann et al., 2013) [p. 199]
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From the definition above we can also understand that an essential fea-
ture of attribution is that an observed change does not only have to be
shown to be consistent with a certain causal factor, it has to be shown to
be inconsistent with an alternate explanation that lacks this causal factor.
In practice, this usually means that the observations should be shown to be
consistent with results from a process-based model that includes the spe-
cific causal factor, and inconsistent with another, otherwise identical model
excluding this factor. This means that when climate scientists say that the
temperature rise can be attributed to anthropogenic forcings, they are not
only saying that the observations are consistent with model results imply-
ing this, but that the observations are completely inconsistent with a model
that excludes anthropogenic factors.10

Let us return to an example, and see what such an attribution process
can look like. In figure 4 we can see the attribution of the rise in GMST
to anthropogenic forcings. As we can see in part (a) of this figure, there is
seemingly a detection of a rising GMST, as also discussed in the previous
section. However, to attribute this change to specific causal factors requires
providing a counterfactual image, an estimate of the climate system with-
out the causal factor of interest; namely the anthropogenic forcing. This
is what we see represented by the blue line in figure 4 (a): a simulation of
the warming of the GMST in a climate system without the anthropogenic
(greenhouse gases and aerosols) forcing, i.e. with natural (solar and vol-
canic) forcings only. The orange line then, is the how this same evolution
would look like in a climate system with anthropogenic forcings only. These
estimates are obtained from the mean of the CMIP3 and CMIP5 ensembles
modelling these counterfactual scenarios.

Ergo, the detected temperature change from our example is demon-
strated to be completely inconsistent with natural forcings only, and thus it
is attributed to anthropogenic forcings, finalizing one instance of a detection
and attribution cycle. (Bindoff et al., 2013)

3.2 Projections

So detection and attribution deal with identifying climatic changes and their
causes. However, perhaps the most important and pressing task for climate

10It might be of interest, although a total digression, to note that this is consistent
with how science and technology theorists such as Bruno Latour describes objectivity in
modern science, namely that the property of objectivity is about being able to defend a
hypothesis against any objection, and furthermore, that this is what establishes it as a
fact. (Latour, 2017)

42



Figure 4: The simplified steps in a detection and attribution study. The
coloured dots in part (a) are the observed global mean temperatures rel-
ative to 1880-1920, the black line is the best-fit linear combination of the
observations, the orange line is the CMIP3/CMIP5 modelled mean temper-
atures with anthropogenic forcings, and the blue with natural forcings only.
Part (b) depicts the same, but with all data plotted against model-simulated
anthropogenic warming in stead of time. Part (c) shows the observed tem-
peratures versus model-simulated anthropogenic and natural temperature
changes, with best-fit plane shown by coloured mesh. Part (d) depicts the
gradient of the best-fit plane in (c), or scaling on model-simulated responses
required to fit observations (red diamond). Obviously, there is no overlap
between the observations and model runs without anthropogenic forcings!
Figures are taken from box 10.1 in (Bindoff et al., 2013) [p. 876])
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models is to predict future climatic changes. Specifically, how the climate
will respond to certain emission scenarios, i.e. different radiative forcings,
is interesting in order to inform decisions about mitigation and adaption.
This is what “projections” aim to do.

The IPCC defines a climate projection as

“a climate simulation that extends into the future based on a
scenario of future external forcing.” (Kirtman et al., 2013)[p.
960]

I will address and explain what is meant by “scenarios” and “future forc-
ings” shortly. However, firstly it is important to note that a “projection” is
a technical term, and should not be confused with a “prediction”. A weather
prediction for example, begins with some specific initial conditions, namely
the present weather conditions, and the simulation is run from these and a
few days into the future. After that the weather prediction will start to be
very uncertain because of the chaotic nature of the atmosphere. Further-
more, there are things which are not that important for weather prediction
simulations, such as the conservation of mass and energy. This might sound
counter-intuitive, but it is because whenever a new weather simulation is
run, its initial conditions are manually updated to match observations of
the current state of the atmosphere. This means that the continuation be-
tween a previous weather prediction and the current one is unimportant,
making it irrelevant whether such quantities are conserved over time. Thus,
the weather predictions are fully determined by the initial conditions we
force them with.

So whilst weather predictions are based on initial conditions, climate
projections try to eliminate any dependency on such initial conditions. This
is partly because we do not want our climate models to be dependent on
the specific details of the constituents of the climate system at the time the
simulation happen to start. There is no guarantee that the specific time that
is chosen is representative of the year or even period it is from. However,
there is also a deeper reason for why it is undesirable to have a projection
dependent on initial conditions. As mentioned before, it is impossible for a
weather prediction to be accurate beyond a certain amount of days. This
is because it is a chaotic system, and is consequently highly dependent on
initial conditions. A small change in the initial conditions could result in a
dramatically different prediction. (Dragutin, 2020)

Instead, the simulation is usually equilibrated for a certain amount of
time, and then the starting point is set to be after the equilibration, and not
from the point of the initial condition. Another method used to eliminate the
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dependence on the initial conditions is to manually or probabilistically vary
the initial conditions within a model ensemble, so that the model ensemble
as a whole is free from specific initial conditions.

So a projection aims to be independent of any particular initial condi-
tions. Instead, it is dependent on certain boundary conditions, specifically
on a particular “scenario of future external forcing”. These scenarios of fu-
ture external forcings entail specific scenarios of the amount of radiatively
active species (i.e. greenhouse gases or aerosols) that is emitted into the
atmosphere. Firstly, a possible emission scenario is estimated, and then bio-
geochemical models are used to calculate the corresponding concentrations of
constituents in the atmosphere. Then, using various radiation schemes and
parametrizations, these concentrations are converted into radiative forcing.
The response of the different climate system components is then calculated
in a comprehensive climate model, such as an GCM or ESM, resulting in
the climate projection. (Meehl et al., 2007) From this, the possible future
values for specific variables in a certain emission scenario can be extracted.

The scenarios operated with by the IPCC have changed over the years.
Perhaps the most well-known ones are the so-called “Representative Concen-
tration Pathway” (RCP) scenarios that were developed for and extensively
used in AR5. (Kirtman et al., 2013; M. Collins et al., 2013) These consist of
four different 21st century pathways of greenhouse gas emissions, air pollu-
tant emissions and land use. They are then named after the overall radiative
forcing they would result in at the end of the century. So for the scenario
RCP2.6, this would entail a radiative forcing of 2.6 W m2, and similarly
for RCP4.5. RCP6.0 and RCP8.5. Although these scenarios are still used
in AR6, there are now used together with RCP1.9 (which corresponds to
the aspirational goal of the Paris Agreement), RCP3.4 and RCP7, as well
as the Shared Socioeconomic Pathways (SSPs), that also try to take vari-
ous political and social factors into the development of the scenario. (Chen
et al., 2021) Although the details of each of these are interesting, what is
important to note is that all of them somehow represent a specific future
emission scenario.

So instead of delving further into these details, let us turn to an example
of a projection. In figure 5 we can see the projected global relative tem-
perature change up until year 2100. In this figure we can see many of the
components mentioned so far. SSP scenarios and their corresponding ra-
diative forcings are shown, and the different projected temperature changes
correspond to different scenarios. The number of models that have gone
into making each projection is shown next to the scenario name. The rea-
son why some scenarios consists of a lot more models is mainly because of

45



Figure 5: Temperature as an indicator of global climate change up until
year 2100. The different scenarios are marked by the different colours that
can be read in the top left corner. The two different vertical axes represents
the temperature change relative to two different baselines, namely relative
to 1995-2014 and 1850-1900 respectively. It is assumes that by 1995 some
warming due to anthropogenic emissions had already occurred, and the rel-
ative change is therefore smaller. Figure is taken from figure 4.2 in (Forster
et al., 2021)[p. 571]

which scenarios have traditionally been prioritised and developed, whereas
for example SSP1-1.9 is new for AR6. The shaded area around the overall
projections represent the range of the single model outputs, and as men-
tioned before, this is taken to be an estimate of the uncertainty of the
projection.

Figure 5 also highlight an essential feature of how the IPCC use models,
namely that the output is not based simply on one model, but the overall
output of a so-called “multi-model ensemble”(MME). It was briefly men-
tioned before that the ARs are tied together with a corresponding cycle of
CMIPs, and we could also see the individual model outputs of the GMST
in figure 2. However, this aspect become even more apparent looking at the
ranges of the projections in figure 4, as well as seeing the number of models
going into the different projections. And indeed, it is such a defining feature
of IPPC’s practice that it is worth elaborating on. Empirically, it has been
shown the result of such an MME overall performs better than individual
models, even if the confidence in a certain model is high. (M. Collins et al.,
2013) This can be explained by the fact that no model is completely “cor-
rect”, and it is not so straightforward to tell just exactly which one performs
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better in a given area and why. The average of the models therefore seems
to balance out the model biases of the different models, giving an overall
more plausible result. The range of the different model projections then
provides a basis for quantifying uncertainty in the projections. This agree-
ment or “robustness” between different climate models is therefore taken as
a confirmatory virtue, and exactly this will be the topic of chapter 4 and 5.

However, before examining this further, let us look at the apparent dis-
crepancy between the IPCC’s very confident statements about the climate
system and its behaviour on one hand, and the many uncertainties and lacks
of the models used to support these hypotheses on the other hand.11 This
will naturally lead us to the topic of model agreement and its epistemic
power in chapter 4.

3.3 Uncertainties and Confidence Levels

“It is virtually certain that, in the long term, global precipitation
will increase with increased global mean surface temperature.”
(M. Collins et al., 2013)[p. 1032]

“There is very high confidence that globally averaged changes
over land will exceed changes over the ocean at the end of the
21st century by a factor that is likely in the range 1.4 to 1.7.
(M. Collins et al., 2013)[p. 1031]

“It is very likely that the Atlantic Meridional Overturning Circu-
lation (AMOC) will weaken over the 21st century but it is very
unlikely that the AMOC will undergo an abrupt transition or
collapse in the 21st century.” (M. Collins et al., 2013)[p. 1033]

These are statements that can be read in the IPCC’s AR5, based on the
scientists’ confidence in projected climate changes. As we can see, they are
assertive statements expressing strong claims about the likelihood of future
climate changes. However, on the other side, it is possible to read in AR5
that

11It is important to highlight that this does not mean that I think it is problematic
that the IPCC bases hypotheses by the help of these models. I simply want to point
to the perhaps counter-intuitive idea that the climate scientists are able to put forward
hypotheses of high confidence in spite of these complications. One such mechanism is the
agreement between different models in MMEs, and as we will see in the chapter 5, this is
an epistemologically sound method.
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“Projections of climate change are uncertain, first because they
are dependent primarily on scenarios of future anthropogenic and
natural forcings that are uncertain, second because of incomplete
understanding and imprecise models of the climate system and
finally because of the existence of internal climate variability.”
(M. Collins et al., 2013) [p. 1034]

The fact that the projections are uncertain because they are dependent
on scenarios of future forcings is perhaps the most obvious uncertainty. We
simply do not know exactly what anthropogenic emissions will look like in
the future, and that is why the IPCC looks at different possible emissions
scenarios, to account for different possible futures. In addition to this comes
the uncertainty regarding natural forcings in the future. We do not know
when there could be a possible volcanic eruption or how much aerosols it will
release into the atmosphere. And although we have extensive knowledge of
past solar cycles and sun spots, we cannot know the precise future activity
from the sun either. So in summary, although no matter how many factors
that are accounted for, it is simply impossible to know the exact future
radiative forcing, both because it depends on decisions that are not yet
made, and because it involves potential unpredictable natural forcings.

The second factor mentioned in the quote above, namely the “incomplete
understanding and imprecise models” is a complex category involving many
different aspects, and applies to detection and attribution studies as well as
projections. Firstly, from chapter 2 we know that there are many ways to
construct a climate model. For the case of GCMs, we saw that although
they are based on the same fluid dynamical equations, there are numerous
ways to realise the simulations. Firstly, how the Earth is to be spatially
discretized needs to be addressed; we saw two main methods for doing this,
namely finite-grid methods, which entails even further choices about the
shape of the cell, and the spectral methods. It is also necessary to define
how data is stored within a grid-cell, the size of the cell, as well as to define
an appropriate time-step. This means that there is no “best” method, no
completely accurate way to make the simulations of the models, leading to
inaccuracies in the projections as well.12

12Note that there is a difference between saying the models outputs are uncertain and
that the models themselves are uncertain. I am refraining from labelling the models as
“uncertain”, although this is often how their impreciseness is defined. Strictly speaking,
the models are not “uncertain”. Given the same conditions, it is perfectly possible to
recreate and predict what the model output will be (unless of course, there are stochastic
variables involved. Still, with the same randomly generated numbers, the model output
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Another major factor contributing to the impreciseness of the climate
models is parameterizations. Recall from section 2.3.2 that some processes
cannot be resolved at the grid-level, and therefore need to be parameter-
ized. Processes such as these can either simply be removed, be empirically
estimated, or be based on physical equations. The need for parameteriza-
tions can be a result of either the resolution of the model, or of a lack of
understanding about certain processes in the climate system. The param-
eterizations vary greatly between models, and are therefore a major source
of uncertainty and differences between models.

A lack of understanding of the climate system also include limited knowl-
edge about what the IPCC calls the “response of the climate system”. The
fact that the climate system is nonlinear, and that we do not exactly un-
derstand how all the feedback mechanisms work, means that there will be
uncertainties regarding how the climate system will behave in the future.
Even though there are data and reconstructed data-sets of the climate sys-
tem in the past, under different forcing conditions, the concentrations of
greenhouse emissions we are headed towards simply are unprecedented, and
it is therefore not possible to straightforwardly use information of past cli-
mate to simulate the future. Note that this is related to the uncertainties
regarding parameterizations, because parameterizations are often based on
past data and therefore will not change accordingly with unknown radiative
forcings. There is also of course the possibility that there are elements that
are currently not accounted for in the models at all, but that will be of
importance in the future.

The last category of uncertainties listed above is those that arise with
respect to internal variability of the climate system. The internal variability
is a natural consequence of the chaotic nature of the system, and is difficult to
completely get rid of. The internal variability can be sampled and estimated
explicitly by running ensembles of simulations with slightly different initial
conditions, or can be estimated on the basis of long control runs where
external forcings are held constant. Nevertheless, even in these cases internal
variability is always an estimate based on model simulations, and is therefore
subject to the same uncertainties mentioned above.

However, despite these uncertainties, the IPCC makes strong claims
about future conditions like the ones we saw above. The IPCC operates
with a framework for assessing uncertainties, which appeals to two mea-

will also be the same). Hence, there are no uncertainties involved in the model and
its simulation. However, the models are inaccurate and imprecise representations of the
climate system, meaning that projections of future climate change, and attribution and
detection studies, have some uncertainties in them.
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sures for communicating uncertainty. The first is a qualitative “confidence”
scale, which depends on both the type of evidence and the degree of agree-
ment. The second measure is a quantitative scale for representing statistical
likelihoods for relevant climatic variables. It is an interesting question in
itself how exactly this evaluation framework works, and how a qualitative
measure of “confidence” is translated into a quantitative measure of “likeli-
hood”. There are some interesting discussions inherent in the construction
and application of this framework, and a critical analysis of it can be found
in for example (Wüthrich, 2017). However, this is not the question of this
thesis, so we will forget this framework and instead focus on the general
question of how confidence in climate hypotheses can be achieved.

What I have tried to show so far is that climate models are complex and
incomplete and their simulations inherently imprecise in many ways. Despite
their many problems, the output of MMEs are used to make strong claims
about the behaviour of the climate system and future climatic changes.
So what exactly is it that gives the scientists the confidence in hypotheses
supported by these modelling outputs? And in hypotheses about the climate
in general? In the next chapter I want to focus on one important virtue that
does this, namely robustness.
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4 Robustness Analysis

For very complex systems, such as the climate system, it is not possible
to confirm theories and models merely by traditional methods of validation
and verification. It is certainly possible to test a model’s performance com-
pared to observational data, but even this is not always so straightforward
either, since the models often are tuned with the very same data they are
compared to. Not to mention that data often is lacking over long periods
and sparse in many areas. Furthermore, for future scenarios data are obvi-
ously not existent at all, and we are already seeing unprecedented levels of
greenhouse gases, that likely will continue into the future. The behaviour of
the climate system might therefore not be so easily comparable to past data,
and therefore hard to predict given our lack of complete understanding of
many processes in the climate system. Robustness analysis provides such
an alternative method.

We have already seen in chapter 3 how the output of multi-model ensem-
bles is used in detection and attribution and projection studies. In general,
it seems like there is more confidence in a result if more models agree on
it. Pirtle, Meyer, Hamilton found 118 articles in climate science where the
authors refer to agreement between a variety of climate models to encourage
confidence in the results of the models. (Pirtle et al., 2010) This idea is also
formalised by the IPCC, which state that confidence depends on

“the type, amount, quality and consistency of evidence (e.g.
mechanistic understanding, theory, data, models, expert judg-
ment) and the degree of agreement” (Mastrandrea et al., 2010,
p.1)

Some pressing questions that follow from this practice of establishing confi-
dence based on the agreement between models, namely whether this robust-
ness by itself really can carry the epistemological weight ascribed to it, and
whether model agreement by itself really can serve to increase the confidence
in a hypothesis?

Although it might seem like an intuitive idea, why exactly do we have
more confidence in a result when there is such agreement? And what exactly
counts as more evidence? These might sound like trivial questions, but let
us consider an example to shed some light on the questions that arise from
this.

Let us imagine you’re a bird enthusiast. You read about the sighting of
a particularly rare bird in your area in the newspaper. However, with your
knowledge of birds, you know it is very unlikely to be seen in your area.
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Therefore, you want to increase your belief in the sighting, but what exactly
then would count as “more” evidence? Just counting the pieces of evidence
is not enough, consider simply if you had 13 copies of the same newspaper
writing about it, this will obviously not increase your belief accordingly.
However, if you read about it in a second newspaper, this might increase
your belief that it is true, and that it was not just a glitch caused by the
first newspaper. You then go on to read about it in more newspapers,
but after reading about it in the fourth, fifth or even ninth newspaper this
again might cease to count as “more evidence” of the sighting. However, if
your local ornithological community writes about it in their newsletter, this
might increase your confidence as they are less likely to have confused the
specific bird in writing with another, more common species. However, you
still might have doubts, but hearing your like-minded bird enthusiast friend
seeing it for herself, hearing a zoologist describing it, or perhaps seeing one
of its characteristic feathers at the location of the sighting, will certainly
count as more pieces of evidence that will increase the credibility of the rare
bird actually being in your area.

These might seem like mundane observations of what counts as more
evidence, and it seems obvious that reading about the bird sighting in the
ornithologist newsletter, or hearing a friend observing it, gives us more con-
fidence in the sighting than what 13 copies of the same newspaper would. It
is not merely the quantity of the pieces of evidence, but, perhaps more so,
the quality. So what if an ensemble of climate models tells us that we should
expect the ice sheets of Greenland to melt at a certain rate? Is this more
like reading 13 copies of the same newspaper, or is it more like spotting the
feather? The challenge is that climate models are often very similar, sharing
assumptions, calibration methods, and even code, and therefore not inde-
pendent the same way as your friend’s observation and the feather might be
said to be. So can they then count as individual pieces of evidence? And
perhaps more fundamentally, do we really need the pieces of evidence to be
completely independent for them to increase our confidence in the result? If
not, what condition will?

Robustness analysis then, is the attempt giving a systematic account
to answer questions like these, and exactly pin down how this consilience
of evidence should work to increase our confidence. When exactly, and
under what conditions, do more pieces of evidence contribute to give us
more confidence in a hypothesis? And what is the relation between the
pieces of evidence that contribute to such a robustness? So in order to
understand how and more importantly, if multiple models in an ensemble
can contribute to give us confidence in climate hypotheses, let us look at
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some different accounts of robustness analysis (RA).

4.1 Robustness Analysis

So robustness analysis is an area of the philosophy of science examining and
assessing if and how the robustness across various means of detection can be
confirmatory. Although robustness and model agreement is widely referred
to in climate science, and consequently is also a topic debated by philoso-
phers focusing on this science,13, robustness analysis is not a concept exclu-
sive to climate science and modelling. It has also been extensively applied
to for example biological models (Kim et al., 2006), cosmology (Gueguen,
2020) and economics (Kuorikoski et al., 2010). A shared feature among
many notions of robustness analysis has been the idea of independence be-
tween the models or other means of detection as a necessary condition to
explicate confirmation for a hypothesis. In this section we will, closely fol-
lowing Jonah Shupbach’s criticisms (2018), see how such an independence
account is unfeasible. We will then review Shupbach’s alternative frame-
work, namely Explanatory Robustness Analysis, and preliminary discuss its
potential application in climate modelling and Winsberg’s interpretation of
this.

4.1.1 Probabilistic independence accounts of RA

Biologist Richard Levins (1966) was the first to introduce the concept of
robustness analysis into the philosophical debate. Biological models can be
very complex, and because of this many biological models rest on heavy
simplifications and idealisations, just like climate models. Levins was con-
cerned with when we could know whether detected results derived from such
models depended on essential causal features of the model, or on the details
of these assumptions. He argued that it is possible to figure this out if

“...we attempt to treat the same problem with several alterna-
tive models each with different simplifications but with a com-
mon biological assumption. Then, if these models, despite their
different assumptions, lead to similar results, we have what we
call a robust theorem which is relatively free of the details of

13See for example a variety of articles put forward by Elizabeth Lloyd and Wendy
Parker, who have been particularly active in this discussion and in some ways can be said
to represent opposite views, Lloyd arguing that robustness analysis can be confirmatory
in the context of climate science (Lloyd, 2015) and Parker arguing that it cannot. (Parker,
2011)
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the model. Hence our truth is the intersection of independent
lies.”(Levins, 1966) [p. 423]

So Levins argues that by considering various models of a common causal
core but of varying assumptions, a common prediction among these models
would qualify as robust, and we could have confidence in the commonly
detected result.

It is worth to note that although Levins’ description was aimed specif-
ically at models, other means of detection can also easily be included, like
Shupbach did in his paper “Robustness Analysis as Explanatory Reason-
ing” (2016). Here he develops an account of robustness analysis applicable
to both experimental results and model results, using the examples of the
experimental detection of Brownian motion, and the Volterra principle as
detected by multiple predator-prey models. Furthermore, he claims that
his notion of RA can be further extended to any type of detected results,
including “observations, measurements, predictions, theorems, and so on”.
(ibid)[p.2] Shupbach’s line of argument will be followed closely in this sec-
tion, and although a digression from Levins, the examples found in Shupbach
will be explained now as they effectively illustrate the concept of robustness
analysis, and also will be invaluable to see why Levins’ account falls short.

The experimental detection of Brownian motion refers to a set of ex-
periments conducted to observe Brownian motion, firstly carried out by
botanist Robert Brown, and later other scientists, before finally arriving
at Einstein’s hypothesis that Brownian motion was caused by molecular
interactions. (Perrin, 1913) When Brown first observed the motion, he hy-
pothesized that it was characteristic to the specific type of pollen, which
had a particular shape. However, when detecting the motion in other pollen
particles as well, this proved not to be the case. He then hypothesized that
it was caused by the vital forces in pollen, however, when detecting the mo-
tion in inorganic material as well, this could similarly no longer be a likely
hypothesis. The motion was later observed in different environmental con-
ditions, in different types of containers and with different equipment. The
Brownian motion was robust across the various changes to the experimental
set-up, including the size of the particle, the medium, the container, etc.,
whilst it was sensitive to others, including the size of the particle and the
temperature. Performing a robustness analysis of this therefore allowed the
scientists to infer that it was molecular and thermodynamic properties that
could explain the phenomenon. (Shupbach, 2018)[pp.1-2]

The Volterra principle is an example of model-based RA previously also
cited in for example (Weisberg and Reisman, 2008). In line with Shupbach’s
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conviction, Weisberg argues that this principle, arising from the Lotka-
Volterra predator-prey model, is a prime example of robustness analysis.
This model is a mathematical biology model representing the population of
predators and preys by a set of differential equations. The Volterra principle
then, states that if a constant proportion of both the predator and the prey
populations are continuously removed, for by biocides, the average number
of predators will decrease relative to the average number of prey. This prin-
ciple emerges in a range of predator-prey models with varying assumptions
and idealisations. This principle is therefore detected by various means of
detection (the means being the models themselves) and is therefore a ro-
bust result. As Weisberg argues then, this shows that the Volterra principle
is robust and should give us confidence that it describes a real ecological
phenomenon. (ibid)

In addition to this, let us throughout this section keep a climate hypoth-
esis described by Winsberg (2018) that will be of great importance in section
4.2 as well as in chapter 5, namely that the Equilibrium Climate Sensitivity
(ECS) lies between 2.1◦C and 4.7◦C. If hypotheses based on a commonly
detected results between such climate models can be given confidence based
on robustness analysis, we would want our conception of robustness analysis
to be able to account for this example too.

However, back to Levins, we can see that the intuition underlying his
description of RA is the same intuition we arrived at above: that we can get
confirmation through a diverse set of means of detection agreeing on some
detection. This is also something we can infer from Shupbach’s examples
of experimental and model-based RA from the history of science. However,
the question still remains; what should the relation be between such means
of detection making a robust detection? Although Levins did not explicitly
define this relation himself, a key word in his account of RA is the word
“independence”. Perhaps because of this, the discussion that followed Levins
focused on probabilistically independent means of detection as a criterion for
how different the models in a robust collection have to be. After Shupbach
(2018) can call this measure “RA-diversity”, describing the relation between
models/other means of detection required in order to be able to provide
confirmation for a detection.

Firstly, let us take Levins’ notion of “independence” literally, like Orzack
and Sober (1993) did in their critique of his account. In this account, uncon-
ditional probabilistic independence is required as a criterion for RA-diversity.
Let R be the detection that has been robustly detected by various means.
Then let the proposition that this result is detected using the k’th means
of detection as Rk. Then, two means of detection are RA-diverse if the fact
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that R is detected by means i should have no influence on the probability
that R will be detected using means j, i.e.

Pr(RiRj) = Pr(Ri)× Pr(Rj) (17)

assuming that the probabilities Pr(Ri) and Pr(Rj) are both greater than
zero. Furthermore, this implies that

Pr(Ri) = Pr(Ri | Rj) (18)

and vice versa that

Pr(Rj) = Pr(Rj | Ri) (19)

Orzack and Sober then, argued against such an unconditionally proba-
bilistic account. They argue that requiring the models to share a “common
biological assumption”, like Levins did, in effect guarantees that the models
are not independent. More specifically, when one model in an RA ensemble
implies a particular result, it is natural to assume, again like Levins did,
that the result is driven by the causal common core of the model. However,
detecting such a result will then effectively raise the probability of detecting
the same result with another model, also sharing this causal core. (Orzack
and Sober, 1993) Adapting this to our previous terminology, the detection
of R by a model i will increase the probability of detecting R by model j
sharing the same causal core, i.e.

Pr(Ri) < Pr(Ri | Rj) (20)

Orzack and Sober argue that this can be true in cases where models are
considered RA-diverse, also exemplified by Shupbach’s examples. To un-
derstand this, let us take a closer look at Shupbach’s example of Brownian
motion. In this example, it is simply not true that the diverse means of
detection are probabilistically independent. If we take any two of the ex-
periments detecting Brownian motion, such as the experiment suspending
dust particles in water and that of suspending them in ethanol. Shupbach
then argues that detecting Brownian motion in one of these experiments will
also affect the probability of detecting it in the other experiment. This is a
result of the fact that there are many different factors that can contribute to
any of these detections, such as the type and size of particle, the suspension
of the particle, and other environmental conditions. Shupbach argues that
this is true in any case where the experiments are allowed to potentially be
influenced by factors other than the one in which the experiments differ.
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In light of this, it is easy to see that unconditional probabilistic indepen-
dence cannot be a necessary condition for RA-diversity, at least not if we
want it to describe these paradigmatic examples of RA in science.

Revisiting our climate science example, it is also easy to understand that
any hypothesis supported by multi-model ensembles, such as that about the
ECS, cannot live up to this condition of independence. Seeing the many
similarities shared by the models, it is trivial that a detection made by one
model will influence a second, similar model’s detection of this result too.
This means that such an independence account cannot help us explain why
model agreement is given such epistemic power either.

Abandoning the idea that the means of detection must be completely
probabilistically independent of each other, Wimsatt (1994) proposes that
instead “the probability of failure of the different means of access should
be independent”. By abandoning the condition that the results of various
means of detection must be completely probabilistically irrelevant of each
other, this account escapes the specific problems mentioned above. Instead,
the probability of the various means of detection to detect a wrong result
must be independent. This means that if two given models in an RA en-
semble detect the wrong result, they should do so for two different reasons.
And moreover, if we learn that one model has given us the wrong result, this
should not affect the probability that another also will do so. The reliability
of each model is independent, and this account can therefore be called the
reliability independence account.

As Shupbach notes, this account elegantly emphasizes the epistemic ap-
peal of RA-diversity: “whereas a linear chain of justification can be no
stronger than its weakest link, a web of independent lines of justification is
no weaker than its strongest member”. (Shupbach, 2018)[p. 6] This epis-
temic advantage can be shown by considering an ensemble of n means that
detect a common result, and these means are reliability independent. For
simplicity we assume that the probability of each means of detection detect-
ing the wrong result to be p0. If we have a result that the means have all
commonly detected, and this result turns out to be wrong, that means that
all of the means have failed independently. Therefore, the probability of
this happening is pp = pn0 , and if we assume that p0 < 1, we have for n > 1
that pp < p0. So the probability of a single means of detection detecting the
wrong result is always greater than the probability of a collection of robust
means detecting the wrong result, and the more means in the ensemble the
smaller the probability becomes (given reliability independence).

Despite of this, as Shupbach argues, reliability independence cannot
serve as a necessary condition for RA-diversity either. It is perfectly pos-
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sible to imagine RA-diverse means of detection that are not reliability in-
dependent. Returning to the example of experimentally detected Brownian
motion, there are many features common to all the means of detection that
could lead us astray: the specific experimental set-up, the environmental
conditions surrounding the apparatus, the medium used in the experiment.
This means that learning that one means of detection is detecting the wrong
result could affect the probability of another being wrong too; their reliabil-
ity is in effect not probabilistically independent. This means that if we, like
above, still want to stick to the case of Brownian motion as a paradigmatic
example of RA, reliability independence cannot be necessary to explicate
RA-diversity either.

The shortcomings of reliability independence is just as easily demonstra-
ble with examples from modelling. As Shupbach points out when it comes
to the Volterra principle, some models share similar assumption, e.g. the
unrealistic assumption that prey cannot take cover or learn. But then dis-
covering that one of the models is unreliable should often greatly increase
our confidence that the other is too. In general, fully RA-diverse means of
detection can nonetheless be susceptible to many of the same potential de-
fects. In such cases, learning that one of our means of detection is unreliable
will often greatly increase the likeliness that more of the means of detection
are similarly unreliable.

Furthermore, revisiting our ECS hypothesis supported by the multi-
model ensemble, it is also easy to understand that the models that sup-
port this hypothesis are not reliability independent either. It suffices to say
that many of the models of the models share common assumptions, such as
how to parameterize certain physical processes for example, and that learn-
ing that one of these models is unreliable can increase the confidence that
another model sharing similar assumptions is unreliable as well.

4.1.2 Explanatory Robustness Analysis

It seems like the accounts above cannot give a satisfactory notion of RA-
diversity. So what can? As Shupbach notes, “it seems [...] that philosophers
working on RA have been lured away from the concept of RA-diversity by
probabilistic independence”. (Shupbach, 2018)[p. 10] It is worth to mention
that Shupbach does not deny that the notions of RA mentioned above will in
fact provide the conditions required to gain confidence in a detected result.
In fact, he notes that such independence-accounts “imply interesting senses
in which diverse bodies of evidence may be specifically confirmatory.” [p. 5]
However, he does not want to accept the restrictions constrained by them as
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necessary to achieve the required diversity, as they fail to describe essential
examples of RA in science. I share Shupbach’s conviction that probabilistic
independence is too strong and perhaps the wrong thing to pursue in the
first place when looking for confirmation of common results detected by
various means. Let us therefore take a closer look at the account Shupbach
offers instead; namely Explanatory Robustness Analysis (ERA).

Instead of the top-down approach taken by many of his predecessors,
where the starting point is a notion of RA-diversity which is then applied to
examples of RA, Shupbach starts in the opposite end. By looking at his two
examples of RA he attempts to identify what defines and unifies them, and
from this he builds his conception of RA-diversity. Shupbach then, claims
that what really differentiates one means of detection from the next is that
it is capable of ruling out another class of competing potential explanations.
When Brownian motion was detected in various types of pollen for example,
the possibility that it was a phenomenon caused by the pollen itself was
ruled out, and similarly, when detecting the result in inorganic materials,
the possibility that it was caused by the vital force of organic materials
was also ruled out. Each detection therefore had the potential of ruling out
some explanation, until the only explanation that seemed likely was the final
hypothesis that Brownian motion is due to internal, invisible movements
in the medium. Shupbach argues that the same tendency is true for the
Volterra principle: the different models rule out competing explanations
of the principle being detected as the result of specific assumptions in the
models. Shupbach sees these notions of explanation and elimination as the
essential components of RA.

Shupbach then defines RA-diversity in the following way:

“Means of detecting R are RA-diverse with respect to potential
explanation (target hypothesis) H and its competitors to the
extent that their detections (R1, R2, ..., Rn) can be put into a
sequence for which any member is explanatorily discriminating
between H and some competing explanation(s) not yet ruled out
by the prior members of that sequence.” (Shupbach, 2018)[p.
11]

Ergo, RA-diverse means of detection are defined by being able to explana-
torily discriminate between pieces of evidence, and are able to successively
eliminate alternative hypotheses. The definition above sheds some light
on what Shupbach’s account consists of, but is still informal and lacking
in terms of describing its central terms, such as what it means to be “ex-
planatorily discriminating”, or what “competing explanation(s)” really are.
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However, closely following the above definition, Shupbach begins defining
the “logic of robustness analysis” and provides the following formal account
of a successful increment of RA:

1. Past detections: We have a result R that we have detected using
n− 1 different means. We let E = R1&R2&...&Rn−1.

2. Success: The target hypothesis H explains the detections in the con-
junction E, but so does an alternative hypothesis H ′. Formally we
have that ϵ(E,H), ϵ(E,H ′), where ϵ is defined as the explanatory
power that a particular explanans (the explanatory account) (h) has
over explanandum (the fact to be explained) (e).

3. Competition: H and H ′ epistemically compete with each other with
respect to E. Formally, we have that i) Pr(H&H ′) = 0 or ii) ϵ(E,H |
H ′) ≤ 0 (i.e. the probability of both H and H ′ being true is zero, or
less strongly, given H ′, H no longer holds any explanatory power over
E).

4. Discrimination: There is an additional nth means of detecting R for
which H would strongly explain the detection of R by the nth means,
Rn, and H ′ would strongly explain not detecting R by this means,
¬Rn. Formally, ϵ(Rn, H | E) ≈ 1, ϵ(¬Rn, H

′ | E) ≈ 1.

5. Success: We learn that Rn, i.e. the nth means also detects R. (Shup-
bach, 2018)[pp. 12-15]

Note that Shupbach defines the explanatory power ϵ as

ϵ(e, h) =
Pr(h | e)− Pr(h | ¬e)
Pr(h | e) + Pr(h | ¬e)

(21)

This means that the explanatory power is a function with range [−1, 1],
where the closer to 1 it takes, the more powerful potential explanation of e
is offered by h.14 Conversely, the closer to −1 the function takes, the less
powerful is the potential explanation e of h. And if ϵ(e, h) = 0, then h is
explanatorily irrelevant to e. Details of this measure of explanatory power
can be found in (Shupbach and Sprenger, 2011). In their paper, Shupbach

14Depending on the reader’s background, it may or may not be useful to point out here
that these equations are not necessarily meant to be calculated as equations, giving a nu-
merical value. Rather, they are formal logical relationships used to prove that Shupbach’s
account satisfies Bayesian epistemology.
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and Sprenger develop this functional relationship from a few adequacy con-
ditions for explanatory power. However, these details are not important for
our purpose. What is important to note, is that the measure of explanatory
power has to do with a hypothesis’ ability to decrease the degree to which
we find the fact that is to be explained surprising.

In addition to defining some of the steps described above in much more
detail, Shupbach goes on to show how the successful completion of these
steps also necessarily leads to incremental confirmation, according to Bayesian
principles. I will not spend any time outlining the steps of this proof, but
simply say that I think Shupbach’s argument holds, and point any interested
reader to see the details in (Shupbach, 2018)[pp. 13-18].

In my opinion, Shupbach successfully identifies the way in which means of
detection must be relevantly different. And because he does so, it is no longer
necessary to have such a strong criterion of probabilistic independence, a
criterion that perhaps does entail RA diversity, but in an excessively strong
way. In this process he manages to perfectly describe the normative power of
ERA, by showing that whenever various means of detections are able to rule
out competitor hypotheses, we get incremental confirmation of a hypothesis.
This means that if we are able to align the models of MMEs with Shupbach’s
ERA, we have justified exactly why the agreement of multiple models has
epistemic power, thus finally confirming the intuition we have had all along,
but have not been able to formally account for.

It is important to note that there are a few fundamental differences be-
tween Shupbach’s account and the ones we have looked at above. First of
all, the accounts above have focused on the criteria necessary for a detected
result to be accepted, pace Levins’ notion of “truth at the intersection of in-
dependent lies”. Shupbach is shifting this focus to accumulating incremental
confirmation, and what conditions are necessary to increase our confidence
in a hypothesis. Furthermore, Shupbach’s account is altogether hypothesis-
based; rather than increasing the confirmation for a result, it is the detected
result which increases the confirmation for a hypothesis. Secondly, it is not
so relevant anymore whether means of detection are strongly diverse or in-
dependent in some absolute sense. What matters for RA-diversity is that
the means (which may actually be quite similar in most respects) are differ-
ent in exactly the sense required to rule out the competitors of the target
hypothesis. These two differences make Shupbach’s account very promising
for multi-model ensembles.
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4.2 Winsberg’s Application of ERA to Climate Science

We have now seen some of the arguments provided by Shupbach for why
probabilistic independent accounts of RA are insufficient. We have also seen
how models in MMEs are not probabilistically independent, and therefore
such RA accounts cannot explain why the agreement of models in MMEs
should lead to increased confidence. However, we have also seen how Shup-
bach’s ERA provides a promising way to relate different means of detection
so that incremental confirmation follows. The exciting question is then
whether it is possible to extend Shupbach’s notion of ERA to climate sci-
ence.

Shupbach’s ERA has been the source of much discussion after the publi-
cation of the article in 2016, and this discussion has also reached its way into
the debate of model robustness in climate science. One particular philoso-
pher that has endorsed the notion of ERA and tried to establish its poten-
tial in confirmation of climate scientific hypotheses is Eric Winsberg. Let us
therefore review Winsberg’s application of Shupbach’s framework to climate
science.

One of the interesting features of Winsberg’s application, is the fact that
he takes Shupbach’s claim that ERA can be applied to both experimental
and model-based results. In fact, Winsberg argues that this lack of sepa-
ration between model- and experimental evidence means that both results
detected by models and experiments can be taken into the same robustness
analysis. He states that “[r]ather than trying to show how RA is part of a
complex epistemic landscape in which other sources of evidence also play a
role, our aim will be to show how RA can offer a comprehensive picture of
that complex landscape - of how all these sources of evidence work together.”
(2018, p.184) Winsberg thus endorses Shupbach’s account, and further pro-
motes it as a holistic approach to describe the overall confirmation process
in climate science - not restricting it to climate models.

However, before applying this unified approach, Winsberg does attempt
to look at ERA strictly in the context of climate models. (Winsberg,
2018)[section 12.3]. He considers specifically the climate hypothesis we have
considered previously in this chapter, namely that of Equilibrium Climate
Sensitivity (ECS) lying in the range between 2.1◦C and 4.7◦C, as found in
IPCC’s AR5, supported by the outputs of the CMIP5 multi-model ensemble.
(M. Collins et al., 2013) Winsberg then argues that there are two alterna-
tive explanations for why the models agree on this. Firstly, that the ECS
actually falls within the detected range. Secondly, that the ECS does not
fall within this range, and that the detected range is a result of a common
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failure among the models, with an especially likely candidate of this failure
being how the models treat cloud feedbacks.

In Shupbach’s terminology then, Winsberg is putting these two hypothe-
ses forward as epistemic competitors. However, he further argues that even
if our models agree with past observations, it is difficult to conclude whether
the ECS does fall in the projected range, or whether the models are getting
the right results for the wrong reasons. Because the models do not isolate
specific causal processes, the outputs agreeing with the data could be be-
cause of compensating errors, rather than their ability to correctly predict
the behaviour of the climate system. These compensating errors could be
cancelling each other out in this specific case, but will not continue to do so
when we get to regimes for which we do not yet have data. Consequently,
neither the target hypothesis nor the alternative hypothesis seems like a
more plausible explanation. We can say that in Winsberg’s view, it is not
possible to use the ouput of our current models to discriminate between the
two competitor hypotheses, and therefore it is also impossible to successfully
perform ERA based purely on model results in this context.

Because of this, Winsberg quickly moves on to considering the cases
where model agreement could be enough to explicate confirmation of a hy-
pothesis. He convincingly argues that this is a complicated process, and
points to the process of finding “Emergent Constraints” in climate science
as a particularly powerful method of RA that has the potential of com-
pletely ruling out competitor hypotheses based purely on results detected
by models. As mentioned above, he also points to the inclusion of experi-
mental results can help in cases, such as with ECS, where this elimination
of competitor hypothesis is problematic solely based on model agreement.

However, although I do not necessarily disagree with Winsberg’s points,
I think he too eagerly gives up the model-based ERA for the MME in his
example. I think he is right to argue that ERA cannot be used to completely
confirm our target hypothesis in the example of ECS. However, remember
that on of the most significant consequences of ERA is exactly that it does
not rely on complete confirmation, but can serve to increase our confidence
in any case where it can be applied. By phrasing his competitor hypotheses
in terms of correct vs. wrong, Winsberg effectively retracts to the question
of full acceptance, because to eliminate the competitor hypothesis in this
case, it would essentially be necessary to prove that the model output is
correct. This, in turn, greatly limits the potential of ERA. Ironically, I will
use Winsberg’s own insight to reformulate the approach of ERA applied to
MMEs, namely when he says that it is possible to make such an ensemble
of models RA-diverse “without altering the ensemble by adjusting your hy-
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pothesis.” (Winsberg, 2018)[p. 202] In the next chapter we will see exactly
what difference such a reformulation can make.
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5 Towards a Full Unification of ERA and Climate
Science

In the last chapter, we saw that whilst independence-based accounts of ro-
bustness analysis fail to describe the multi-model ensembles in climate sci-
ence, Shupbach’s framework of Explanatory Robustness Analysis seemingly
escapes some of the problems associated with this. We also saw how Wins-
berg argues how this framework can be applied, but in the case of the ECS
hypothesis only by also considering experimental evidence. I do not disagree
with Winsberg in thinking that the inclusion of experimental evidence can
make the robustness even better. As Shupbach demonstrated, the inclusion
of more means of detection with the capacity of eliminating competitor hy-
potheses will increase our confidence in a hypothesis correspondingly. How-
ever, I argue that this is in fact not necessary. I will demonstrate that ERA
can be applied to show how model agreement by itself can serve to increase
our confidence in the very same climate scientific hypothesis put forward by
Winsberg. I will also discuss how ERA can potentially be used as a guiding
principle to contruct better MMEs, and furthermore, how it can be applied
to means of detection beyond models.

5.1 Revising Winsberg’s application

In order to illustrate exactly where and why I part ways with Winsberg, I
will step-by-step go through Shupbach’s formal account of the application of
ERA. This will also lay the groundwork for later placing specific models into
it, ultimately showing exactly how it can be applied to real-world models
(section 5.2) Let us therefore revisit Winsberg’s hypotheses in light of the
formal steps provided by Shupbach to initiate this discussion.

Remember, the first step of a successful increment of ERA was

1. Past detections: We have a result R that we have detected using
n− 1 different means. We let E = R1&R2&...&Rn−1.

It is easy to understand how this step works with an ensemble of models
detecting a result supporting the hypothesis of a certain ECS. An ensemble
starts with one model, and adds more and more models detecting a result
within the range supporting the hypothesis. The result R is thus the pro-
jected range, and the conjunction E is the combined output of all models.
Following this, we have the step of

2. Success: The target hypothesis H explains the detections in the con-
junction E, but so does an alternative hypothesis H ′.
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It is also easy to see how Winsberg is defining the hypothesis of ECS
falling within the projected range as the target hypothesis H, and the hy-
pothesis that ECS does not fall within that range but that the detected
result is an artifact of a systematic failure in cloud feedback as the alterna-
tive hypothesis H ′. We then get to the step of

3. Competition: H and H ′ epistemically compete with each other with
respect to E. Formally, we have that i) Pr(H&H ′) = 0 or ii) ϵ(E,H |
H ′) ≤ 0 (i.e. the probability of both H and H ′ being true is zero, or
less strongly, given H ′, H no longer holds any explanatory power over
E).

This is where I will begin to part ways with Winsberg. Winsberg has
formulated his hypotheses in such a way that the condition P (H&H ′) = 0 is
true. Either the detected range of ECS is correct, or it is not correct and a
consequence of systematic failure of the models. The next step should then
be that of

4. Discrimination: There is an additional nth means of detecting R for
which H would strongly explain the detection of R by the nth means,
Rn, and H ′ would strongly explain not detecting R by this means,
¬Rn. Formally, ϵ(Rn, H | E) ≈ 1, ϵ(¬Rn, H

′ | E) ≈ 1.

which leads to problems for Winsberg’s hypotheses. It requires that a
new means of detection somehow can better be explained by one hypothesis
over the other. However, as Winsberg notes, it is not possible with our cur-
rent models to decide whether the ECS is actually correct or if it is wrong
and there is a systematic failure of the models’ ability to model feedback
mechanisms. Adding another model to our ensemble that detect the result
R can therefore not help us discriminate between the two alternative hy-
potheses. This is where Winsberg turns away from pure model-based ERA
to experimental and observational evidence to help this process. However,
this is where I instead will reformulate the hypotheses.

Winsberg formulated his hypotheses about ECS as follows:

1. ECS actually falls in that range.

2. ECS does not fall in that range and the value predicted by
the ensemble is an artifact of the systematic failure of all
the models to accurately capture all of the feedbacks - with
cloud feedbacks being an especially likely candidate.
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where the first one is the target hypothesisH, and the second the competitor
hypothesisH ′. Because we cannot effectively eliminateH ′ (at least given our
current (lack of) knowledge of feedback mechanisms), then we also cannot
use ERA to confirm H. However, I propose to reformulate these hypotheses
into

1. Models detect range of ECS because it is correct.

2. Models detect range of ECS as a result of the specific feed-
back parameters.

where the first one is my target hypothesisH, and the second the competitor
hypothesis H ′. My target hypothesis H is very similar to Winsberg’s, but is
just reformulated for ease of comparison with my competitor hypothesis H ′.
My competitor hypothesis on the other hand, significantly differs fromWins-
berg’s competitor hypothesis, and is weakened in two distinct ways. Firstly,
it no longer says anything about the detected ECS being wrong. Secondly,
it is now referring to “specific feedback parameters” instead of “systematic
failure of all the models to accurately capture all of the feedbacks”.

With these changes, it is easy to see that the two hypotheses are not
necessarily inconsistent in the strong sense of Pr(H&H ′) = 0. It could be
true that the detected range of ECS is correct and that it is detecting the
range because of the specific feedback parameters. In other words, the two
hypotheses are not ruling each other out by default. Instead, the second
condition for epistemic competition given by Shupbach holds, namely that
two hypotheses epistemically compete when only one of them is needed to
explain the detected result.

It is worth to further elaborate exactly what it means for hypotheses
to epistemically compete in this way, to understand how it works in our
case. As Shupbach writes, “[p]otential explanations of some explanandum
E often compete, despite being consistent, when any one of these suffices
to do the explanatory work of the others. Once we have accepted one, the
explanatory work in accounting for E is done and hence there is no remaining
explanatory reason from E to accept the others.” (Shupbach, 2018)[p. 14]
He further elaborates using the example of Brownian motion. In this case,
the potential explanations for Brownian motion competed with each other
like this. If we are inclined to accept the molecular explanation of Brownian
motion, then it seems futile to aditionally accept the vital force hypothesis as
another explanation; it no longer holds any explanatory power over E. And
similarly, upon accepting our hypothesis H that the models are detecting
the range because it is correct, this means that it is no longer necessary to
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consider hypothesis H ′. It is important to note that this does not oblige
us to accept the target hypothesis in any increment of ERA, only that this
is what it can look like for two alternative hypotheses to be epistemically
competing.

So by reformulating the hypotheses about detected ECS into two com-
peting hypotheses that are not mutually exclusive, I believe I have provided
a more feasible framework for performing model-based ERA with climate
models. Let us now proceed to the next steps of Shupbach’s account to see
if these can now be completed.

After identifying two suitable epistemically competing hypotheses, the
next step is discrimination, which I argued was not possible in the case of
Winsberg’s hypotheses. The detection of R by another model cannot tell us
whether the ECS is right, or if it is wrong and an artefact of the systematic
failure of the models to capture the feedback mechanisms. However, adding
another model detecting R can help us discriminate between my revised
hypotheses. If a new model with different feedback parameters detects R,
the fact that it is a result of the specific feedback parameters of the models
in the ensemble so far can no longer explain the detection. However, if the
new model does not detect R, this would be explained by H ′. The step of
discrimination is therefore fulfilled, which then brings us to the last step of

5. Success: We learn that Rn, i.e. the nth means also detects R.

This means that if the new model is shown to detect R, this has success-
fully increased our confidence in H.

I have therefore shown that unlike what Winsberg seems to argue, model-
based ERA can increase our confidence in a target hypothesis in cases where
its epistemic competitor is not necessarily completely inconsistent with it.
The weakening of this condition allows us, like I have done, to phrase the
competitor hypothesis in such a way that it can be explained or not explained
by adding an additional means of detection, i.e. model, to the collection of
models. This turned out to be seemingly fruitful for a successful application
of ERA to MMEs.

The discussion so far has worked as a proof-of-concept of the successful
application of ERA to a potential MME detecting ECS, with realistic com-
petitor hypotheses and realistic ways the models can differ. However, albeit
realistic, we still have not applied this to real models. Let us therefore now
take our discussion out of this theoretical vacuum and bring it back to the
ESMs actually used by the IPCC.
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5.2 Re-visiting model-detected ECS

In order to apply ERA to real models used by the IPPC, let us turn to
the very same example used by Winsberg, namely that of the detection of
ECS in IPCC’s AR5. As mentioned above, the output of the CMIP5 models
detected the ECS to lie between 2.1 degreees ◦C and 4.7◦C, and the hypoth-
esis is that ECS actually lies within this range with high confidence. (Flato
et al., 2013) The ensemble used for this detection consists of 30 models,
and therefore it might not be surprising that each one of them will not be
considered. Since we are looking at the hypothesis that the models could
detect the wrong result because of how the feedback mechanisms are mod-
elled, I will only focus on the models that have explicitly defined feedback
parameters, and that have quite different treatment of these. A complete
overview of the models and their feedback parameters can be found in table
9.5 (Flato et al., 2013)[p. 818].

For the reasons just stated, the models BNU-ESM, CCSM4 and MIROC5
were selected. In table 1 we can see an overview of the value of ECS detected
by these models, and the values of the different feedback parameters fed into
the model. Let us now attempt to apply Shupbach’s formalism based on this
information.

To prove the application of ERA to the ensemble of models detecting
ECS it is possible to start from any conjunction of models in the ensemble.
However, to work more elegantly with the description of Shupbach’s steps
given above, let us assume our starting point is the CMIP5 models listen
in table 9.5 (Flato et al., 2013)[p. 818], minus the three models from table
1. That means that the ECS is already detected to be within the range of
2.1 and and 4.7 ◦C. This then, fulfills the first step of ERA, namely that we
have a result R detected by n− 1 different means.

Model
Equilibrium

Climate
Sensitivity

Planck
Feedback

Water
Vapour
Feedback

Lapse Rate
Feedback

Surface
Albedo

Feedback

Cloud
Feedback

BNU-ESM 4.1 -3.1 1.4 -0.2 0.4 0.1
MIROC5 2.7 -3.2 1.7 -0.6 0.3 0.1
CCSM4 2.9 -3.2 1.5 -0.4 0.4 -0.4

Table 1: The equilibrium climate sensitivity (ECS) given in ◦C for the
CMIP5 models BNU-ESM, MIROC5 and CCSM4. The corresponding val-
ues for the feedback parameters are also listed, all given in W m−2◦C−1.
The values are all taken from table 9.5 (Flato et al., 2013)[p. 818].
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We can then move on to the second and third step of Shupbach’s frame-
work, which concern the target hypothesis and an alternative hypothesis that
both potentially explain the detections, and that these hypotheses epistem-
ically compete. Like before, we will define our target hypothesis H as the
hypothesis that models detect the result because ECS actually lies within
this range, and similarly we will again define the alternative hypothesis as
the models detecting this result because of the specific treatment of feed-
back mechanisms. The hypotheses epistemically compete not in the sense
of Pr(H&H ′) = 0, but in the sense that given H, H ′ no longer holds any
explanatory power over R. If the models detect R because R is correct, then
H is doing the explanatory work of H ′, upon accepting H it is no longer
necessary to look for alternative hypotheses.

So we have a n−1 past detections detecting the result R that ECS within
the range 2.1 and and 4.7 ◦C. The conjunction E denotes R1&R2&...&Rn−1,
which we will define to be the results detected by all models in the ensem-
ble not stated here plus the first model in table 1, the BNU-ESM model.
We have two hypotheses that can both potentially explain E, and these
hypotheses epistemically compete. The next step in Shupbach’s framework
is discrimination, where an n’th means potentially detecting R would be
strongly explained by H but not H ′. Let us say that this n’th means of
detection is the MIROC5 model. We can easily see that this model differs
from the previous means of detection, the BNU-ESM model, in its treatment
of lapse rate and water vapour feedback. Similarly, it differs from the other
models in the ensemble, as can be seen in table 9.5 (Flato et al., 2013)[p.
818]. Detecting R by this n’th means of detection would then strongly sug-
gest that E is not a result of the specific feedback parameters, and that
instead, the target hypothesis is correct.

As we can see in the table 1 the MIROC5 model detected an ECS within
the range of the conjunction E, meaning that we can add the successful
detection Rn to the conjunction, and that this then, completes an increment
of ERA, meaning our confidence in H is increased.

Now let us repeat the process for the CCSM4 model. For consistency, let
us stick to the same alternative hypotheses as in the last increment, although
if we look to table 1, we can see that it could be possible to formulate
a more specific alternative hypothesis with respect to cloud feedback, as
this is the main difference between the models. Also for consistency, let us
call the CCSM4 model the n’th+1 means of detection, that can be used
to discriminate between our two hypotheses. Just like before, detecting R
by the CCSM4 model would strongly suggest that E is not the result of
the specific feedback parameters, and strongly explain our target hypothesis
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H. Once again, from table 1 we can see that CCSM4 detects an ECS
within our hypothesis range, meaning that another increment of ERA is
successfully completed, and that our confidence in H should be increased
correspondingly.

I will argue that my choice of models for this proof-of-concept was ar-
bitrary, and that it is not difficult to imagine that the pattern I have just
described can be extended to the other models in this particular ensemble. I
will therefore not repeat this process for more models, but simply claim that
with a suitable formulation of alternative hypotheses, adding new models to
any MME can increase our confidence in a hypothesis based on detections
from previous models.

Lastly, it is worth to once again point to the importance I have placed
on rephrasing the hypotheses to make it possible to discriminate between
them using the models of the MMEs. Like Winsberg points out, because of
our current lack of knowledge about the feedback systems, it is impossible to
completely rule out the hypothesis that the models are wrongly representing
these. However, as I have shown, by weakening Winsberg’s hypothesis, it is
possible to apply Shupbach’s framework to step-by-step, model-by-model,
show how specific conditions in the models cannot explain the detected re-
sults, consequently increasing our confidence in the target hypothesis. This
can be likened to Shupbach’s example of detecting Brownian motion. Here
the scientists systematically changed the experimental set-up to find that
the detected result did not in fact depend on specific conditions. This is
exactly what the climate scientists are doing by using MMEs. They cannot
prove that their causal processes are modelled “correctly”, however, they
can systematically increase our confidence in the target hypothesis by vary-
ing their “experimental” set-up. In the example of Brownian motion the
scientists could not initially pin down a single explanation, but they could
systematically rule out variables the phenomenon was dependent upon, each
time an alternative hypothesis was ruled out. This is analogous to the way
climate scientists use MMEs to rule out similar hypotheses about the results
detected from the models.

From this we finally have an answer to the questions we started out
with: Why should model agreement give us more confidence in a hypothesis
about the climate? And under what conditions can it do so? Model agree-
ment is an epistemologically sound method to increase our confidence in a
hypothesis because it eliminates alternative hypotheses, which as Shupbach
shows should incrementally increase our confidence in the target hypothesis.
Furthermore, it will be so in any case where two epistemically competing
hypotheses can be differed between by another means of detection, in our
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case climate models.

5.3 A Contemplation On the Potential of ERA Applied to
MMEs

I want to stop and contemplate on the application of ERA to MMEs, and
once again try to make us feel the full force of what I believe is its potential.
We started out with some vague idea that more pieces of evidence leads to
increased confidence, and a very complex scientific discipline where models
are added to big ensembles, and scientists trying to justify this process as a
way of increasing confidence. But why should it do exactly this? The models
are often similar, meaning they do not add independent bits of information,
they are inconsistent in their assumptions, the MMEs consists of a somewhat
random collection of models. It is therefore not evident, why this model
agreement should have such a heavy epistemological weight in the climate
scientific practice. Well, it should because the MMEs are able to, model-
by-model, rule out alternative explanations of the hypothesis supported by
their commonly detected result. In this chapter, I have showed that this is
true formally. Ergo, ERA is able to explain and justify the use of model
agreement in MMEs to support hypotheses about the climate.

This means that the process of “model agreement” in order to increase
confirmation for hypotheses about the climate is epistemologically sound,
and can be applied in any case where the models can be defined as epis-
temic competitors, no matter how similar or how different the models are. I
think this is a massively significant result, one that I think Winsberg touched
upon, but did not elaborate enough. However, it still leaves us with a major
challenge. When does this incremental confirmation lead to full confirma-
tion of a hypothesis? By shifting the focus from obtaining full confirmation
to incrementally increasing confidence, it seems like we were able to delay
this question for a while, all whilst building a normative epistemological
framework for model agreement. However, the question still remains, can
model-based ERA ever lead to full confirmation of a hypothesis? And, per-
haps more interestingly, can our current MMEs provide such confirmation?

As Winsberg pointed out with the ECS hypothesis, the current multi-
model ensembles supporting it are not able to completely rule out competing
explanations. And if it is not possible to rule out competing explanations,
one might think that we are better equipped at supporting our hypotheses
than we were in the beginning (despite of establishing the epistemic power
of robustness). At first glance then, it might seem that we have done a lot
of work just to arrive at similar problems to the ones we out started with.
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However, we are now in a completely different situation to answering them.
Realising exactly what can increase our confidence in a hypothesis, and
exactly how the models can work together to differ between hypotheses, we
are also in a situation where we can use this knowledge to make our MMEs
as effective as possible.

Constructing more efficient MMEs is a matter Reto Knutti, a climate
scientist with a keen interest in the philosophy of science, and that has co-
authored several of the IPCC ARs cited in this thesis, has advocated for.
(Knutti, 2010; Knutti, 2018) He argues that the selection of models that
go into an MME is neither random nor systematic. Instead, the modelling
groups contribute with their “best” model, which in many cases can mean
the models that give a similar output to those of other modelling groups.
As Knutti notes, “it is easier to be in the middle of the crowd than far
outside” (Knutti, 2010)[p. 397], meaning that no modelling group will try
to push their model into extreme behaviour. Effectively, one can say that the
modelling groups focus solely on the performance of their own model, rather
than how it will work together with the others in the ensemble. Furthermore,
Knutti argues that because of this in many respects similar behaviour of the
models, the current MMEs effectively contain too many models without
much added value. This is perhaps not a problem by itself, but in light
of the limited amount of resources we have for running these immensely
complex models, it certainly is. The question is then how many and which
models to include in an MME?

As Knutti also points out, it is not necessarily so easy to understand
what exactly is the “best” model. As emphasized elsewhere in this thesis,
it is problematic to compare models directly with data, as data is lacking
both for the future climate, and to some extent also the past. Moreover,
it is difficult to establish appropriate performance metrics, because metrics
applicable to one specific purpose might not be so relevant in others. Not to
mention that a good fit with existent data not necessarily equates to a high-
quality model. (Knutti, 2018) Rather, it could suggest an over-dependence
on tuning, i.e. calibrating the model to fit with certain data, or, as discussed
before, compensating errors in the model giving output consistent with data
by “accident”.

Perhaps then, ERA can act as a guiding principle for the selection of
models that go into an MME. If adding a model to an ensemble provides the
scientists with a way to eliminate an alternative hypothesis, then it should
be included in the ensemble. However, if on the other side, a model cannot
provide this potential elimination, or if it can only eliminate a hypothesis
already discarded or thought to be unlikely by the scientists, then one might
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think twice about including it. This adds value to constructing a model that
might not produce such similar outputs to the ones of the other modelling
groups, as pointed out as a systematic weakness by Knutti above. Effectively
it shifts the focus from producing the “best” model, which is problematic,
to producing the best model ensemble.

It is important to note the specification that a model which cannot be
used to eliminate a competitor hypothesis, or “can only eliminate a hy-
pothesis discarded or though to be unlikely by the scientists” above. This
specification is necessary because my application of ERA to multi-model
ensembles potentially opens up for the possibility that any model that can
potentially eliminate any competitor hypothesis will increase confidence in
our target hypothesis. However, it is of course unfeasible and inefficient to
make an ensemble that eliminates all potential competitor hypothesis, even
if we had the computational power we might not want to do this. As Lloyd
points out, parameterizations and simplifications of the models in an MME
are based on different lines of evidence, including experimental and obser-
vational evidence. (Lloyd, 2015) And they should be. Of course not every
competitor hypothesis is likely, and should be selected based on physically
realistic explanations based on the scientific knowledge we already have.

It is therefore contended that a selection of models for MMEs based on
their potential to eliminate possible explanations constrained by the physi-
cally viable options, could be an appropriate and effective way to construct
MMEs. However, exploring this possibility and the details of it further is
beyond the current scope.

5.4 Going Beyond Model-Based ERA in Climate Science:
Revisiting Detection and Attribution Studies

So far, I have focused only on model-based ERA. This has allowed us to pin
down exactly why, and in what situations, model agreement should increase
our confidence in a hypothesis about the climate. However, as Winsberg
argues, Shupbach’s breaking down of the boundaries between model-based
and experimental-based robustness analysis allows us to include both model
results and experimental evidence in the same robustness analysis. In this
section I will point to some examples of this in climate science, and argue
that this is a particularly characteristic type of reasoning, which, once again,
Shupbach’s framework can help us understand.

Firstly, let us revisit the example of detection and attribution studies
that were discussed in section 3.1. This is perhaps a particularly obvious
example of ERA. Recall that detection and attribution studies consists of
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two separate stages, the first one detecting a climatic change, and the second
one attributing this to certain causal factors. As I will argue, there are clear
examples of ERA happening on many levels in a process of detection and
attribution.

Firstly, as discussed in section 3.1, the process of detection involves de-
tecting a change, and making sure it is not only a result of internal variability.
This is because a possible explanation for any detected change is that it is
a result of the variability of the climate system. It is easy to understand
how this can be phrased in terms of Shupbach’s framework, by defining the
hypothesis that the change is a result of factors external to the variability of
the system, and its epistemic competitor hypothesis as the hypothesis that
it is a result of the natural variability. As mentioned before, usually model
simulations with external conditions held constant are used to simulate nat-
ural variability, and rule out the possibility that the climatic change is a
result of this until the “likelihood of occurrence by chance due to internal
variability alone is determined to be small”. So once again we see an exam-
ple of ERA with models being used to distinguish between the alternative
hypotheses.

However, detecting a change in a climatic variable and using models to
rule out the possibility of it being a result of internal variability does not
exhaust the process of detection. As illustrated in figure 3 various means
of detection are used to establish the temperature rise of the past centuries.
Because even if the detected temperature rise of one observable is established
as significant, there is still the possibility that the data set of the most
immediate measure of temperature, i.e. surface temperature, is faulty or
biased in some way. In order to eliminate this possibility, the scientists
compare with observations of another climatic variable, for example the
ocean heat content, which measures the heat contained in the oceans. If the
temperature really is rising, then we should expect this to rise as well. As
we can see in figure 3, this is in fact the case, which increases our confidence
in the target hypothesis. However, scientists are skeptical creatures, and
in the figure we can see how more and more means of detection are added
to eliminate the possibility of alternative explanations such as systematic
failures, biased data sets, and missing causal connections. Every separate
data set detecting rising temperature increases the confidence in the detected
change being actual. Again, this well described by Shupbach’s framework,
meaning Shupbach’s framework can be used to explain why this type of
reasoning is epistemologically sound.

Attribution starts where the process of detection ends, and aims to map
the causes of the climatic change. For the detected temperature change over
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the last centuries, climate scientists put forward two possible explanations,
the first one that the temperature rise is a result of natural forcings; the
second one that is a result of anthropogenic forcings. These can be said to
be yet another school-book example of Shupbach’s epistemically competing
hypotheses. Either the detected temperature rise can be explained mostly
by natural factors, or by anthropogenic influence. As mentioned in section
3.1 the observed detection has to be shown to be inconsistent with the
alternative explanation, meaning that the competitor hypothesis has to be
fully eliminated. Attribution studies then consists of different ways to try
to eliminate one of these competitor hypotheses.

The main way in which these competitor hypotheses are distinguished
between is to model the climate for the past centuries including anthro-
pogenic forcings, and including natural forcings only, and then comparing
them to the observations of the detected changes.

Ergo, attribution and detection studies then are a prime example of how
climate scientists use a process of distinction and elimination of alterna-
tive hypotheses to increase our confidence in hypotheses about the climate
system, and consequently fit into Shupbach’s framework nicely. They also
illustrate how diverse ERA in climate science can be, varying between mod-
els and experimental evidence to perform this elimination. Furthermore, we
can see how this process appear in a rather nested fashion, where multiple
layers of ERA can appear in the process of increasing confidence in a single
hypothesis. We can then understand better what Winsberg meant when
he said that “[r]ather than trying to show how RA is part of a complex
epistemic landscape in which other sources of evidence also play a role, our
aim will be to show how RA can offer a comprehensive picture of that com-
plex landscape - of how all these sources of evidence work together.” The
detection and attribution studies in this section shows us exactly what this
complex epistemic landscape can look like.

Recall that the IPCC relies on “type, amount, quality and consistency
of evidence (e.g. mechanistic understanding, theory, data, models, expert
judgment) (Mastrandrea et al., 2010) [p.1], and the degree of agreement”
to support confidence in a hypothesis about the climate. I have so far
discussed the significance of model agreement, and also touched upon how
data is also used to support hypotheses. It would be interesting to try to
understand further how this epistemic landscape works, and how these other
types of evidence work together. From the work done in this thesis is seems
plausible that this too can be placed within Shupbach’s framework as a
way to understand its epistemic significance. However, this is again beyond
the scope of this thesis, but could be an interesting angle to pursue in the
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future.
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6 Conclusions

In this thesis, I have looked at the construction, use, and epistemological role
of climate models in the climate scientific practice. This was done by looking
at climate models, their application in the climate scientific practice, and
how the practice of model agreement can be justified by using the framework
of ERA.

Chapter 2 was dedicated to developing an understanding of the compo-
nents of the climate system, and the methods for modelling these. It became
evident that the climate system is a complex system, and that consequently,
the models representing this system are also complex. Due to our inabil-
ity to perfectly represent this system, idealisations and simplifications are
necessary, and there are therefore uncertainties related to how well these
models can represent the climate system.

The focus of chapter 3 was how the main scientific body for climate
science, namely the IPCC, uses models in establishing hypotheses about the
climate. I pointed to two main uses of climate models, namely detection
and attribution studies and projections about the future climate. From this
it became apparent that models are heavily used to form hypotheses and to
build confidence in these hypotheses. However, some obvious epistemological
questions also arose from this. If there are so many inaccuracies related
to the models, exactly how do they give us such high confidence in their
outputs? The IPPC’s use of multi-model ensembles also became apparent,
with hypotheses relying on the common output of multiple models. This led
us to two questions: How and if this model agreement should be given such
a significant epistemological weight; and exactly how they work together to
increase our confidence in hypotheses about the climate.

In chapter 4, robustness analysis was highlighted as a way to answer
questions such as these. Robustness analysis aims to describe how pieces
of evidence can work together to give certain knowledge in cases where the
individual pieces might have intrinsic shortcomings. I argued that the more
traditional notion of robustness analysis that is based on independence be-
tween these pieces of evidence is not feasible. Instead, I looked at Shupbach’s
explanatory robustness analysis as an alternative to this, where increased
confidence is achieved in any case where the pieces of evidence, be it models
or experimental evidence, work together in a way that allows us to eliminate
alternative explanations to the detected phenomenon.

The final chapter was dedicated to revising Winsberg’s application by
rephrasing the hypotheses about Equilibrium Climate Sensitivity. It was
then shown that, unlike what Winsberg argues, ERA is able to show how
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model agreement in this case is confirmatory. Shupbach’s framework was
also applied, step-by-step, to three example models from the CMIP5 that
are used to support the ECS hypothesis. This establishes the practice of
robustness among models in an MME as epistemologically sound. After
focusing solely on ERA in terms of model agreement, detection and attribu-
tion studies were once again revisited. From this we could spot the nested
way in which multiple layers of elimination and discrimination can work
with means of detection that consist of both models and observations. This
shows that Shupbach’s type of reasoning can be said to be highly charac-
teristic for the climate scientific practice, and also how it is able to account
for the various types of evidence involved in making hypotheses about the
climate.

I believe my application of Shupbach’s framework to the climate scientific
practice is valuable for two main reasons. Firstly, because it allows us to
delegate a normative epistemological power to the so-far ambiguous practice
of “model agreement”. For many reasons, confirming hypotheses about the
climate system is a complicated process, a highly contextual process, and
a process that might be very difficult to understand for anyone outside the
discipline. However, I believe that it is still possible to highlight and describe
the mechanisms at play in this process, and therefore to understand why such
confidence should be given to the knowledge produced. I further believe that
this is not only interesting, but indispensable for a science such as climate
science, which is so highly politicised and its knowledge so defining for the
future of us all.

Secondly, I believe this description and application of ERA is valuable
because by exactly defining the factors at play, it is also possible to start
optimizing the process. Like some climate scientists have pointed out, multi-
model ensembles are sometimes constructed somewhat randomly, meaning
that their potential is not fulfilled. I believe that the framework of ERA can
be one such method that could help maximising the use of MMEs, and this
possibility was briefly discussed. Because in the end, a more directed use
of the incredible climate models we have at our disposal could only serve to
further improve our knowledge and understanding of the climate system.
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