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a b s t r a c t

Localizing critical points of the vorticity of saddle and center type along with vorticity contours through
saddle points provide a way to systematically investigate vorticity dynamics in two-dimensional
viscous flow. Following this approach we investigate vortex interaction and merging using extremal
points of the vorticity as a vortex identifier. Three Gaussian vortices with same strength are initially
placed equidistantly and the vorticity contours of the flow is assessed as time progresses. Two
transitions in the flow are observed for Re ≤ 400 - a triangle bifurcation and three simultaneous cusp
bifurcations. The core-growth model is shown to approximate well the vorticity transport equation
in this case, providing quantitative and qualitative insights in the merging process, allowing for an
analytical expression of the position of critical points of vorticity and a simple analytical expression
for the triangle bifurcation observed in the flow.

© 2022 The Authors. Published by ElsevierMasson SAS. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
|

1. Introduction

Interaction and merging of vortices play a central role in fluid
ynamics. Merging of two vortices has been studied with an
xperimental approach as well as based on simulation of Navier–
tokes equation or simplified models such as two-dimensional
nviscid vortex patch dynamics using contour methods, see the
eview by Leweke et al. [1]. Understanding the dynamics of few
nteracting vortices is instructive for investigating more com-
licated flows. Merging of three vortices is less frequent and
elatively unexplored compared to merging of two vortices. We
nvestigate the merging process of three vortices in unbounded
wo-dimensional viscous flow governed by the vorticity transport
quation

tω = −u · ∇ω + ν∆ω , (1)

where ω is the vorticity, u = (u1, u2) is the fluid velocity and ν is
the kinematic viscosity of the fluid.

Describing vortex creation, interactions and merging hinge on
an unambiguous definition of a vortex and plenty of definitions
have been proposed [2]. In viscous flow, a natural generalization
of a point vortex is an extremal point of the vorticity, leading to
investigation of critical points of the vorticity satisfying

∂xω = ∂yω = 0 . (2)

To classify a critical point of the vorticity the second order deriva-
tives are useful, conveniently collected in the Hessian matrix, H .
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E-mail address: moan@ruc.dk (M. Andersen).
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With the determinant of the Hessian, |H|, being

H| = (∂xxω)
(
∂yyω

)
− (∂xyω)2, (3)

the critical point is a saddle if |H| < 0 and an extremum if |H| > 0
(maximum if ∂xxω < 0). We identify a vortex as being an extremum
of vorticity. Carefully tracking critical points of the vorticity when
varying system parameters provide a systematic way to inves-
tigate vortex formation, interaction and destruction during flow
progression. To assess the qualitative change of the vorticity
contours (i.e. level sets of the vorticity), the contours connected
to the saddle points are essential. We apply this method as a
post processing algorithm after numerically integrating Eq. (1)
and compare to analytical predictions from a low dimensional
model, the core-growth model, described below. With three equal,
thin Gaussian vortices placed equidistantly initially, a vorticity
minimum appears in the center of the vortex triangle i.e. a fourth
counter rotating vortex. Hence, the current study could also be
described as merging of four vortices.

Low dimensional models of vortex motion may provide an-
alytical insight in fluid motion by applying methodology from
various mathematical disciplines [3]. Point vortex motion applies
to the early stage of vortex motion with concentrated vorticity
as initial condition. The study of inviscid point vortex dynamics
dates back to Helmholtz [4]. The motion of two point vortices
is simple, the distance between them is preserved regardless
of vortex strengths. Three point vortices show more compli-
cated dynamics though it can still be analyzed in detail and
is integrable [5]. Viscous effects are not included in the point

vortex model. With a single point vortex as initial condition, the

ess article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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amb–Oseen vortex is an exact solution to the vorticity transport
quation and the velocity field is given by

dz
dt

=
Γ

2π i
1
z

(
1 − exp

(
−

|z|2

4νt

))
, (4)

where ν is the viscosity, Γ is the vortex strength, z = x + iy and
z is the complex conjugate of z. The corresponding vorticity, ω, is
iven by

=
Γ

4πνt
exp

(
−

|z|2

4νt

)
. (5)

All integrable non zero initial vorticity evolved by the Navier–
Stokes equation on the unbounded plane leads to a single, Gaus-
sian vortex for long times [6] which shows the inadequacy of
the point vortex model for long times where viscous effects
matter. The studied initial condition here is a superposition of
three concentrated Lamb–Oseen vortices with identical strengths,
initially located equidistantly i.e. at the corners of an equilateral
triangle.

The core-growth model (see [7]) constituted by equations ((6),
(7), (8)) below describes how each Gaussian vortex is being pulled
around in the plane by the remaining Gaussian vortices, and
simultaneously each Gaussian vortex core is spreading out due
to viscosity. Each vortex is affected by the velocity field of the
other N − 1 vortices and thus the velocity of Gaussian vortex j
ocated at position zj is given by

dzj
dt

=

N∑
k̸=j

Γk

2π i
1

zj(t) − zk(t)

(
1 − exp

(
−

|zj(t) − zk(t)|2

4νt

))
, (6)

where Γk is the vortex strength of vortex k. The velocity field
at any point in the plane is the sum of contributions from each
Gaussian vortex

dz
dt

=

N∑
k=1

Γk

2π i
1

z − zk(t)

(
1 − exp

(
−

|z − zk(t)|2

4νt

))
. (7)

The corresponding vorticity in the core-growth model is

ω =

N∑
k=1

Γk

4πνt
exp

(
−

|z − zk(t)|2

4νt

)
, (8)

with initial conditions being N point vortices

ω(z, 0) =

N∑
k=1

Γkδ(z − zk(0)). (9)

We will use the notation that the Gaussian vortices are centered
at zk. We obtain analytical insight in the merging process from
the core-growth model which is shown to approximate well
the vorticity transport equation for moderate Reynolds number.
Note, the core-growth model will not in general provide an exact
solution to the Navier–Stokes equation, yet provides accurate
predictions and is useful in understanding vortex dynamics.

If one neglected the exponential term in Eq. (6) we would
arrive at the well known point vortex equations and since these
have been subject to much study a few remarks are in place.
First, the core-growth model is non autonomous in contrast to the
point vortex equations. Second, steady state solutions of the point
vortex equations are equivalent to the roots of a polynomial, for
the core-growth model exponential terms are also present. Third,
for the core-growth model, the vorticity is not just a sum of Dirac
delta distributions, in fact even for fixed Gaussian vortex positions
the topology of the vorticity may show interesting dynamics
owing to the explicit time dependence. Hence, the core-growth
model is more complicated to analyze which is the price for the
18
inclusion of viscous effects which are non existing in the point
vortex model.

Few previous studies have addressed the core-growth model.
Three, initially aligned Gaussian vortices are investigated by Jing
et al. [7]. Due to the selected initial vortex positions and vortex
strengths, the Gaussian vortices remain aligned but rotate accord-
ing to the core-growth model which is verified from simulating
the vorticity transport equation. Evolving the configuration using
the point vortex equation, the configuration is stationary, hence
the rotation in the core-growth model is viscously induced. Jing
et al. [8] investigate two core-growth vortices, one symmetric
and one asymmetric case providing insight in the passive tracer
evolution during merging. Kim & Sohn [9] analyze the core-
growth model with three vortices focusing on self similar motion
and show that the Gaussian vortex centers cannot collapse in
finite time contrary to the point vortex model [10]. Andersen
et al. [11] investigate the topology of the vorticity based on the
core-growth model for two vortices with arbitrary strengths. The
merging time predicted in the core-growth model is shown to
match numerical solutions of the Navier–Stokes equation at low
Reynolds numbers. The intermediate topologies of the vorticity
in the merging process, as well as the transitions (bifurcations)
leading to merging, are identified from the core-growth model
and found to match those from the vorticity transport equation.
Nielsen et al. [12] rely on the Q -criterion as vortex identifier
and investigate the core-growth model with two vortices. Ex-
periments show that initiating two vortices by rotating plates
in a fluid leads to an initial Gaussian profile for each vortex,
hence advocates for the use the core-growth model also for non
vanishing initial core size [13].

Considering time and Reynolds number as bifurcation param-
eters we investigate the vorticity topologies with three Gaus-
sian vortices with equal strength placed equidistantly as initial
conditions. We examine the evolving vorticity topologies from
simulation of the vorticity transport equation and analytically
using the core-growth model.

2. Analysis of the core-growth model

We consider three, equidistant, point vortices with same
strengths, Γ , as initial condition, (Eq. (9)), i.e.

1(0) = r0 , z2(0) = r0 exp
(
2π
3

i
)
, z3(0) = r0 exp

(
4π
3

i
)
.

(10)

volving according to the core-growth model Eq. (6), the Gaussian
ortices remain on an equilateral triangle for all future time, in
articular

k(t) = zk(0) exp (iφ(t)) , (11)

with

φ(t) =
Γ

2πr20

(
t −

∫ t

0
exp

(
−

3r20
4ν t̃

)
dt̃
)
, (12)

here the integral can be computed numerically to machine
recision in e.g. Matlab using the exponential integral function.
he validity of Eq. (11) and Eq. (12) is easily seen by inserting in
q. (6) to see it satisfied. Thus, the Gaussian vortex centers rotate
round the origin with decaying speed. Substituting Eqs. (11) and
12) in (8), the vorticity is

(z) =
Γ

4πνt

3∑
k=1

exp

(
−

|z − zk(0)eiφ(t)|
2

4νt

)
. (13)

Consider rotating coordinates zr defined by

z (t) = ze−iφ(t), (14)
r
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hen Eq. (13) simplifies to

(zr ) =
Γ

4πνt

3∑
k=1

exp
(

−
|zr − zk(0)|2

4νt

)
. (15)

n the co-rotating coordinate system, the Gaussian vortex centers
re fixed at their initial positions given by Eq. (10).
The rotation angle φ(t) (Eq. (12)) and the vorticity (Eq. (15))

ncrease linearly with Γ . A linear scaling of the vorticity has no
mpact vorticity contour topology i.e. the location of the critical
oints of vorticity. The effect of increasing viscosity is a slowdown
f the rotation φ(t). For the vorticity, ν and t only enters as the
roduct νt . Therefore, an increasing ν impacts like an increase
n time. As we will investigate the vorticity contours for all
> 0, then for increasing ν no new vorticity contour patterns
ill emerge, only the transition between different patterns will
appen faster.
The number of free parameters in the model is reduced by

ntroducing the dimensionless time τ = r−2
0 4νt , the dimen-

ionless vorticity ω̃ = Γ −1πr20ω and the dimensionless position
˜ = r−1

0 zr . For convenience the tilde is then skipped such that z̃
s renamed to z etc. In these units the vorticity simplifies to

(z) =
1
τ

3∑
k=1

exp

⎛⎝−
|z − e

2kπ
3 i

|
2

τ

⎞⎠ . (16)

he study of critical points (recall Eq. (2)) of Eq. (16) with τ as
ifurcation parameter is the focus in the remaining section. The
otation rate of the three Gaussian vortices is proportional to Γ .
ence, for the core-growth model, increasing Γ increases the
peed of rotation but does not alter the patterns of the vorticity.
otational symmetry of 2

3π rotation around the origin is ensured

if ω(z) = ω

(
e

2π i
3 z
)
. By direct computation this property is

erified(
e

2π i
3 z
)

=
1
τ

3∑
k=1

exp

⎛⎝−
|e

2π i
3 z − e

2π i
3 k

|
2

τ

⎞⎠
=

1
τ

3∑
k=1

exp

⎛⎝−
|z − e

2π i
3 (k−1)

|
2

τ

⎞⎠ = ω(z) . (17)

otational symmetry with any integer times 2
3π follows similarly.

eflection symmetry around y = 0 is guaranteed if ω(z̄) = ω(z)
hich is easily verified using |z|2 = |z̄|2 for any complex number,
.

(z) =
1
τ

3∑
k=1

exp

⎛⎝−
|z̄ − e−

2π i
3 k

|
2

τ

⎞⎠
=

1
τ

3∑
k=1

exp

⎛⎝−
|z̄ − e

2π i
3 k

|
2

τ

⎞⎠ = ω(z̄) (18)

The reflection symmetry around the remaining two axis of
ymmetry are ensured by a combination of the rotation symmetry
nd the reflection symmetry around y = 0.
We proceed using Cartesian coordinates. Explicitly, x1 = x2 =

−
1
2 , x3 = 1, and y1 = −y2 =

√
3
2 , y3 = 0.

ω =
1
τ

3∑
k=1

exp
(

−
(x − xk)2 + (y − yk)2

τ

)
(19)

he first derivatives of the vorticity is given by

xω = −
2
τ 2

3∑
(x − xk) exp

(
−

(x − xk)2 + (y − yk)2

τ

)
(20)
k=1

19
and

∂yω = −
2
τ 2

3∑
k=1

(y − yk) exp
(

−
(x − xk)2 + (y − yk)2

τ

)
. (21)

or x ≤ −
1
2 the terms in Eq. (20) are non-negative and one is

strictly positive hence ∂xω > 0. From symmetry we can conclude
that all critical points of the vorticity are within the triangle
spanned by the three Gaussian vortices. To proceed we start by
investigating (0, 0) as the exponential terms here are all equal.
It is easily seen that ∂xω(0, 0) = ∂yω(0, 0) = 0 i.e. the origin
is a critical point of the vorticity for any positive τ . The second
derivatives of the vorticity are needed to calculate |H| (recall
q. (3))

xxω = −
2
τ 2

3∑
k=1

(
1 −

2
τ
(x − xk)2

)
exp

(
−

(x − xk)2 + (y − yk)2

τ

)
,

(22)

yyω = −
2
τ 2

3∑
k=1

(
1 −

2
τ
(y − yk)2

)
exp

(
−

(x − xk)2 + (y − yk)2

τ

)
,

(23)

nd

xyω =
4
τ 3

3∑
k=1

(x−xk)(y−yk) exp
(

−
(x − xk)2 + (y − yk)2

τ

)
. (24)

he mixed derivative vanish at the origin, ∂xyω(0, 0) = 0, and

∂xxω(0, 0) = ∂yyω(0, 0) = 6τ−3 exp
(
−τ−1) (1 − τ) . (25)

|H| is the square of the right hand side of this equation. This
implies that for any positive τ with τ ̸= 1, there is a vortex
at the origin. For 0 < τ < 1 this vortex is a minimum of
the vorticity, and for τ > 1 the vortex is a maximum of the
vorticity. To characterize this transition, the third order Taylor
polynomial, pτ (x, y), of the vorticity around (0, 0) for any τ > 0 is
useful. Systematic use of Taylor expansions to locally characterize
flow patterns is well established [14,15]. The difference between
ω(x, y) and pτ (x, y) depends on fourth order terms, hence pτ (x, y)
is a good approximation for ω(x, y) near (0, 0).

pτ (x, y) = e−
1
τ τ−4 (3τ 3 − 3 (τ − 1) τx2 − 3 (τ − 1) τy2 + x3 − 3xy2

)
,

(26)

which for τ = 1 reduce to

p1(x, y) = e−1 (3 + x3 − 3xy2
)
. (27)

For τ = 1 level curves trough the origin must satisfy p1(x, y) =

3e−1 so x = 0 or y = ±

√
3
3 x. Hence, for τ = 1 the origin is a

degenerate saddle having six branches with any two neighboring
branches being separated by an angle of π3 .

As expected, the symmetry of ω is also present in the third
order approximation, i.e. reflection symmetry and rotations with
multiples of 2π

3 . There are three critical points of Eq. (26), located
at (X1,Y1) = 2τ (τ − 1) (1, 0) and by symmetry (X2,Y2) =

2τ (τ − 1)
(
−

1
2 ,

√
3
2

)
, (X3,Y3) = 2τ (τ − 1)

(
−

1
2 ,−

√
3
2

)
. The

critical points are located at the lines of reflection symmetry and
cross the origin at τ = 1. The Hessian at any of the critical points
of Eq. (26) is −108 · e−

2
τ τ−6 (τ − 1)2 which guarantees that the

ritical points away from the origin are saddles for τ ̸= 1. As pτ
has the same value at the three saddles, they are expected to be
heteroclinically connected. We now investigate this conjecture.
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Fig. 1. The vorticity topologies of the core-growth model with three, equidistant point vortices as initial condition shown in the corotating frame where the Gaussian
vortices have fixed positions. The organizing vorticity level curve through the saddle points is included when it exists (four first panels). Red dots are saddle points,
green dots are vortices (maxima), blue dots are vortices (minima), gray dots are the Gaussian vortices, placed equidistantly on the unit circle. From left to right τ
values are 0.49, 1.00, 1.05, 1.09, 1.70. Bottom row, the triangle bifurcation: The first three panels show pτ (x, y) at τ values 0.95, 1, 1.05. The last panel shows the
critical points of vorticity for y = 0.
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First, notice that pτ (x, y) = pτ (X1,Y1) may be solved for y2 as

2(x) =
4τ 3 (τ − 1)3 − 3τ (τ − 1) x2 + x3

3τ (τ − 1)+ 3x
, (28)

hich is valid for x ̸= −τ (τ − 1) and simplifies to a straight line
ince the denominator divides the numerator

±(x) = ±

√
3
3
(x − 2τ (τ − 1)) . (29)

or x tending to −τ (τ − 1), y+(x) tend to Y2 and as pτ (X1,Y1) =

τ (X2,Y2), y+ is a continuous level curve of the vorticity joining
he two saddle points (X1,Y1) and (X2,Y2).

Similarly (X1,Y1) and (X3,Y3) are on the same level curve,
and by symmetry (X2,Y3) and (X3,Y3) are joined by a vorticity
contour being a straight line given by (−τ (τ − 1), y). Hence,
for τ ̸= 1, there is a vortex at (0, 0) surrounded by a vorticity
contour formed as an equilateral triangle, with saddle points at
the corners. At τ = 1 the triangle is collapsed, and for τ > 1,
the vortex at the origin is again surrounded by an equilateral
triangular vorticity contour with saddle points at the corners, only
the shape has been reflected in the y - axis compared to τ smaller
than 1. We coin this a triangle bifurcation which is illustrated in
Fig. 1. Restricting the attention to lowest order nontrivial terms in
the Taylor approximation, here of order three, is justified by the
bifurcation being local — for τ sufficiently close to 1, the critical
points of vorticity are close to (0,0) and hence we may skip higher
order terms. The corners of the triangle i.e. the saddle points of
the vorticity are characterized by identical values of vorticity due
to rotation symmetry in the core-growth model as well as in
the vorticity transport equation. Therefore, it is not a peculiar-
ity of the third order approximation that the saddle points are
connected by a vorticity contour. The main consequence of the
third order approximation is that these contours are straight line
segments and not bending.

The investigation of critical points of the vorticity is extended
to the line y = 0 not necessarily close to the origin. As ∂yω(x, 0) =

0 a detailed analysis is possible, keeping in mind that we only
20
need to investigate −
1
2 < x < 1, x ̸= 0. Requiring ∂xω(x, 0) = 0

llows for isolating τ in Eq. (20)

=
3x

log
( 2x+1

1−x

) . (30)

The above formula is convenient for numerically computing crit-
ical points of vorticity, see Fig. 1, though a formula isolating for x
instead of τ would be desirable for analytical investigation.

By numerically solving dτ
dx = 0 to find x = 0.37720, and

ubstitute this value in Eq. (30) we can compute the merging
ime, τm, to be 1.09. Critical points of the vorticity are located at
he origin and two branches approaching 1 and −

1
2 for τ tending

o zero, and the two branches are merging at τ = τm leaving
nly the vortex at the origin. The second order derivatives of the
orticity are used to classify the critical points via the |H| - value
t these points to obtain: The merging time is τ = 1.09, where the
hree saddles and vortices at the lines of symmetry merge a distance
.38 from the origin leaving only the vortex at (0, 0). In the last
anel of Fig. 1 this is the cusp bifurcation with upper branch being
he green curve and lower branch being the red curve.

It is left to consider potential critical points of vorticity off
he lines of symmetry. Consider polar coordinates (r, θ ) and let
1 = 0, φ2 =

2π
3 , and φ3 =

4π
3 , then

∂θω = −2
r
τ
exp

(
−

1 + r2

τ

) 3∑
k=1

sin(θ − φk) exp
(
2
r
τ
cos(θ − φk)

)
.

(31)

We want to solve ∂θω = 0 for all r > 0 and τ > 0 which is
facilitated by r and τ only occur in the fraction r

τ
. Numerically

solving Eq. (31) for the two variables θ and r
τ

only allows so-
lutions corresponding to the three axes of reflection i.e θ = φk
.e. there are no critical points of vorticity off the symmetry lines.
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Fig. 2. Simulation of the vorticity transport equation at Re = 10. The top row shows the five distinct vorticity contour patterns, corresponding to τ being
0.49, 1.00, 1.05, 1.09, 1.70. The lower figure shows location and type of the critical points of vorticity for the core-growth model (color) and the vorticity transport
equation (triangles are maxima, circles are minima and squares are saddles) with excellent agreement. Red dots are saddle points, green dots are vortices (maxima),
blue dots are vortices (minima).
In summary, the core-growth model has three distinct topolo-
gies as time evolves, and two transitions (bifurcations), indepen-
dent of Γ . At τ = 1 the vortex at the origin transforms from

vortex minimum to a vortex maximum trough a transition
hich we denote a triangle bifurcation. At τ = 1.09 the three
uter vortices at the lines of symmetry disappear through cusp
ifurcations leaving a single vortex at the origin.

. Numerical solution of the vorticity transport equation

To examine the validity of the core-growth model the un-
erlying fluid dynamics equations are solved. This involves si-
ultaneously solving the vorticity transport equation, Eq. (1),

he Poisson equation for the stream function, ∆ψ = −ω, and
∂xψ = −u2, ∂yψ = u1. We use a Runge–Kutta fourth order
scheme with adaptive time step for the solution of the vorticity
transport equation, along with a spectral method using the fast
Fourier transform for the solution of Poisson’s equation for the
stream function. The Runge–Kutta implementation is based on
the algorithm presented in [16] with standard spatial finite differ-
ence schemes. The individual time derivatives are approximated
by forward differences and the spatial derivatives are approxi-
mated by second order central differences. The simulations are
done with periodic boundary conditions showing no measurable
boundary effect when the length of computational domain is
doubled.

The error, used for the adaptive time step algorithm, is esti-
mated by comparing the Runge–Kutta fourth order scheme with a
2-step Runge–Kutta fourth order scheme with half the time step.
The error estimator is

err =
max{|ω1−step − ω2−step|}

max{ω1−step}
, (32)

here the maxima are taken over the entire simulation domain.
e have chosen the simulation domain to be [0, 12] × [0, 12]

with a grid size of 512 points in each dimension. This means the
21
grid spacing is ∆x ≈ 0.023. The maximal error per time step is
set to 0.01%. For the initial condition, the Gaussian vortices are
placed equally spaced on a circle with center (6, 6). The initial
condition is given by Eq. (8). To minimize the numerical errors
we do not initialize the vorticity from a Dirac delta, but from a
diffused system corresponding to t0 =

(∆x)2
4ν . Applying this initial

condition results in a relative difference of less than 0.1% between
the analytical Lamb–Oseen vortex dynamics and the numerics;
the error estimator is the same maximum error as Eq. (32).

The Reynolds number is defined as Re = Γ /ν. When simulat-
ing at different Reynolds numbers, we keep the vortex strengths
Γ fixed and change the viscosity ν. To test for finite size effects,
we ran two simulations with three identical vortices at Re = 10:
One with a simulation domain as above and one with a simulation
domain of [0, 24] × [0, 24] with the same grid spacing. We then
ran post-processing to determine the trajectories of the critical
points on the x-axis in both cases. Within uncertainties of the
post-processing method we see no difference in the trajectories
between the two cases and thus conclude that the simulation
domain is large enough to ignore finite size effects.

4. Numerical results and discussion

Fig. 2 shows simulation of the vorticity transport equation
for Re = 10. For τ < 1 there are seven critical points all
located on the axes of symmetry: One minimum at the center of
vorticity, three maxima close to the core-growth vortex centers
and three saddle points in between the maxima. At τ = 1
the saddle points bifurcate at the center of vorticity, which for
τ > 1 is a maximum. The saddle points pass through the center
of vorticity and bifurcate with the maxima for τ = 1.09, after
which only the maximum at the center of vorticity remains. The
simulations are in good agreement with the core-growth model
as the same vorticity patterns occur and the transitions between
the vorticity patterns occur at the same time as in the core-
growth model. In particular, the triangle bifurcation at the origin
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Fig. 3. Vorticity topologies at Re = 500 for τ being 0.26, 0.34, 0.37 reveal a topology not included in the core-growth model (middle panel). Three outer vortices are
created simultaneously through a cusp bifurcation with saddles being on the same vorticity contour. The outer vortices disappear again through a cusp bifurcation.
For later times the topologies are the same as shown in Fig. 2.
is observed for the vorticity transport equation as well as in
the core-growth model. The small deviations between the core-
growth model and the vorticity transport equations for τ near
1 and 1.09 are due to post-processing difficulties of locating the
critical points when they are very close to a bifurcation point. For
increasing Re the vortex merging time of the vorticity transport
equation decreases with the vorticity patterns and transitions
being unaltered i.e. identical to the core-growth model. At Re
between 400 and 450 a new pattern emerges, three new vortices
are created through cusp bifurcations outside the existing vortex
structures, preserving rotational symmetry by 2π

3 , see Fig. 3. The
ew vortices arise as a shear layer is formed. The new vortices
anish soon after creation through a cusp bifurcation. Closer to
he center of vorticity, the vorticity transport equation and the
ore-growth model have matching topologies, and the transi-
ions in the core-growth model are also present in the vorticity
ransport equation for Re > 400.

At large Reynolds number, instabilities lead to nonlinear con-
vective merging [17]. Meunier et al. [18] describe the merging
via different stages where convective merging is critical as the
vortex cores exceed a threshold value. For the lower Reynolds
numbers and the special initial positions investigated here, this
effect is less prominent which is essential for the applicability
of the core-growth model, since the conserved distance between
the Gaussian vortex positions imply the merging is driven by
diffusion of vorticity rather than convective merging. From the
merging time τm = 1.09 and the definition of τ we obtain the
elation in unscaled time as

m = 1.09
r20
4Γ

Re , (33)

.e. a linear relation between merging time and Re underpin-
ing viscous merging. The merging of two symmetric vortices
s simpler than merging of three vortices as it is characterized
y a pitchfork bifurcation where two vortices and a saddle point
ollapse at the merging time, after which only a single vortex is
eft at the center of vorticity [11]. In this study a relation similar
o Eq. (33) was derived and verified for low Re.

Studying the patterns and transitions of the vorticity contours
elies on locating the critical points of vorticity, both extrema and
addle points, which may be applied as a post processing algo-
ithm of numerical solutions to the vorticity transport equation.
or some cases, analytical insight may be gained via the core-
rowth model to obtain a complete description of the vorticity
attern and transitions which seem to hold for moderate Re. We
xpect the core-growth model to be useful for studying vortex
nteractions and merging for other flows with few vortices with
arious strengths and initial positions.
22
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