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Abstract Non-communicable diseases (NCDs) are fatal for more than 38 million people each year and are thus the main
contributors to the global burden of disease accounting for 70% of mortality. The majority of these deaths are
caused by cardiovascular disease (CVD). The risk of NCDs is strongly associated with exposure to environmental
stressors such as pollutants in the air, noise exposure, artificial light at night, and climate change, including heat
extremes, desert storms, and wildfires. In addition to the traditional risk factors for CVD such as diabetes, arterial
hypertension, smoking, hypercholesterolaemia, and genetic predisposition, there is a growing body of evidence
showing that physicochemical factors in the environment contribute significantly to the high NCD numbers.
Furthermore, urbanization is associated with accumulation and intensification of these stressors. This comprehen-
sive expert review will summarize the epidemiology and pathophysiology of environmental stressors with a focus
on cardiovascular NCDs. We will also discuss solutions and mitigation measures to lower the impact of environ-
mental risk factors with focus on CVD.
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Heat • Air pollution • Light pollution

1. Introduction

Cardiovascular diseases (CVDs), besides chronic respiratory and meta-
bolic diseases, constitute a large part of non-communicable diseases
(NCDs), including acute and chronic coronary artery disease, heart fail-
ure and arrhythmia, stroke and arterial hypertension. Importantly, 70%
of annual global deaths (around 40 million people) can be attributed to
NCDs and this share will further increase by 10% according to the
World Health Organization (WHO) projections for the year 2030.1

NCDs account for 80.6% [95% confidence interval (CI) 78.2–82.5] of
age-standardized years lived with disability in 2016, as indicated by data
of the global burden of disease (GBD) study.2 CVDs are responsible for
the majority of deaths that are caused by NCDs.3 In the GBD study
(2019 update), the contribution of CVDs to overall global mortality con-
tinuously increased from 12.1 million in 1990 to 18.6 million in 2019.4

Interestingly, low- and middle-income countries have the highest share
(86%) of premature deaths triggered by NCDs.5,6 The economic burden
caused by NCDs are severe, and may amount to global economic costs
of $47 trillion within the coming 20 years.7 Risk factors for NCDs are
mostly originating from the environment, which is supported by obser-
vations that up to 25% of all ischaemic heart disease (IHD) are related to
an unhealthy environment, especially to air pollution.8 Nevertheless, the

environmental share to NCDs is notoriously ignored as reflected by the
failure to mention environmental risk factors in the 2013 WHO NCD
Global Action Plan.6 In addition research on, prevention of, and treat-
ment of environmentally triggered NCDs are severely underfunded, rel-
ative to their disease burden in the general population.9 This dramatic
gap is now paid more attention by the emerging ‘exposome’ research
field, investigating the life-long effects of all environmental exposures on
biochemical pathways and health effects (Figure 1)12,13 as well as ‘healthy
cities’ campaigns.14,15

The exposome concept comprises a multiexposure perspective.16

Besides external environmental risk factors (e.g. traffic noise and air pol-
lution), our lifestyle and environmental factors on the whole (e.g. socio-
economic status and climate) also characterize the exposome of an
individual,10,17 the assessment of which requires a multidisciplinary ap-
proach using smart sensor devices, multi-OMICs techniques, and big
data handling using bioinformatics and systems biology approaches.18 In
order to better address these multiexposure conditions, the refined
‘envirome’ concept was developed, which is defined by three consecu-
tively nested domains, consisting of natural, social, and personal environ-
ments that are monitored in parallel and connected to biochemical
changes and health effects using ‘enviromics’.19 Based on the increasing
awareness of the major impact of environmental risk factors, the term
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..was coined ‘Genetics load the gun, but the environment pulls the
trigger’.20

This comprehensive expert review will summarize the epidemiology
and pathophysiology of environmental stressors on NCDs, however
without considering the contribution of other important environmental
health risk factors, e.g. mental stress21 and ionizing radiation (either by
anticancer therapy22 or ionospheric and geomagnetic exposures23). We
will also discuss solutions and mitigation measures to lower the adverse
health effects by environmental stressors with focus on CVDs.

2. Noise and cardiovascular risk

2.1 Epidemiological evidence for adverse
effects of noise on our health
Noise pollution from traffic is an increasing public health problem. Road
traffic noise is the dominant source of transportation noise-associated
health effects, and mapping of the European Union (EU) in 2019 showed
that 113 million Europeans (20%) are subjected to a burden of road

traffic noise that exceeds the limit of 55 dB(A) (LDEN: day-evening-night
average) as suggested by the EU guideline.24 This estimate is most likely
underestimated, as the Environmental Noise Directive is not ubiqui-
tously applied in all urban areas and roads in entire Europe.24

In 2018, a WHO expert panel stated that there was high quality of evi-
dence to conclude that road noise was associated with IHD.25 Based on
a meta-analysis, the group of experts calculated that per 10 dB increase
in road noise the relative risk (RR) for IHD was 1.08 (95% CI 1.01–1.15),
starting at chronic exposure levels of 53 dB where significant health
effects were observed. For noise from trains and aircrafts in relation to
IHD, the expert panel ranked the quality of evidence as very low and
low, respectively, due to few high-quality studies. However, recent stud-
ies covering Switzerland, the Rhine-Main region, and the island of
Montreal have suggested that these noise sources may also be risk fac-
tors for myocardial infarction (MI), although results are not consistent
and more evidence is needed.26–28

For all other cardiovascular health effects excluding IHD, the WHO
group of experts found very low, low, or moderate evidence due to
lack of high-quality studies.25 However, high-quality studies have

Figure 1 The exposome concept. Exposure to environmental risk factors (=external exposome) leads to changes of central biochemical pathways with
associated health impact. The central biochemical pathways comprise changes in circadian clock genes leading to impaired rhythmicity and phase-shifts,
stress hormone release (cortisol and catecholamines), production of reactive oxygen species by mitochondria and NADPH oxidase in activated immune
cells, inflammation with tissue infiltration of activated immune cells, and oxidative damage in different organs. Because classical health risk factors share similar
pathomechanisms, people with existing classical health risk factors or disease (e.g. diabetes or hypertension) may experience additive adverse health effects
upon exposure to environmental risk factors. HPA, hypothalamic–pituitary–adrenal axis; NOX-2, phagocytic NADPH oxidase (isoform 2); ROS, reactive
oxygen species; SNS, sympathetic nervous system. Merged and redrawn from previous reports refs10,11 with permission; Copyright VC 2020, The authors;
Published by Elsevier B.V.
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subsequently emerged together with studies on new CVD outcomes
and risk factors that were not studied in a noise context in the past,
which we have summarized in the following Supplementary material
online, Table S1.

Numerous studies addressed whether traffic noise is a risk factor for
hypertension, but unfortunately using a cross-sectional design in most
cases.25 The WHO group of experts found >35 cross-sectional studies
on traffic noise and hypertension, with a joined RR for prevalent hyper-
tension of 1.05 (1.02–1.08) for road noise, but the quality level was
judged as ‘very low’ due to the inherent problem of the cross-sectional
design.25 Later studies on noise and hypertension incidence have
reported inconsistent results.29–31 However, there is a large variation be-
tween the different studies with regard to the way hypertension was de-
fined, which complicates reliable conclusions and warrants for more
studies.

The quality of evidence for stroke incidence was by the WHO judged
as moderate based on a single study that reported road noise to increase
risk of stroke.25 Subsequently, five studies on road traffic noise and inci-
dent stroke have been published: three large population-based studies
that cover an entire region or country (London, Frankfurt, and
Denmark) found road noise to aggravate stroke risk,32–34 whereas
smaller classical cohort studies from Sweden, Norway, and UK with a
limited number of cases (900–1900) found no association.35,36 Effects of
noise on incident heart failure were not evaluated by WHO, but the few
recent studies conducted have consistently showed transportation noise
to increase the risk.26,27,37–39 In contrast, the few studies investigating the
impact of noise on atrial fibrillation have reported inconsistent
results.38,40

Studies investigating transportation noise as a risk factor for cardiovas-
cular death have been summarized in a meta-analysis from 2021.41 This
study reported a pooled RR for road traffic noise per 10 dB of 1.02
(0.97–1.08) for IHD mortality and 1.06 (0.94–1.20) for stroke mortality
(based on cohort and case–control studies) suggesting that road noise is
associated with a slightly increased risk of cardiovascular mortality.
However, the quality level of evidence was judged as moderate and
more longitudinal high-quality studies are required. Importantly, a study
from 2021 investigating acute effects of aircraft noise led further support
to noise from all sources of transportation as a risk factor of cardiovascu-
lar mortality.42 The authors report that high aircraft noise exposure 2 h
preceding death was found to trigger nighttime cardiovascular deaths,
with an odds ratio of 1.44 (1.03–2.04) when comparing exposures
>50 dB with <20 dB. As the first of its kind, this novel study needs to be
reproduced.

Epidemiological studies suggest associations of transportation noise,
mainly from road traffic, with several cardiovascular risk factors
(Supplementary material online, Table S2). One of these is disturbance of
sleep, which is hypothesized to be a key pathway through which noise is
thought to impair the cardiovascular system.43,44 A pooled analysis of
polysomnographic studies on the adverse health effects of acute noise,
found that the awakening probability was increased with greater expo-
sure to road, rail, and aircraft noise.45 The study also found an association
of nighttime noise with severe sleep disturbance (self-reported
questionnaires).

A cardiovascular risk factor consistently found associated with road
noise is metabolic disease. A 2019 meta-analysis found a RR of 1.11
(1.08–1.15) per 10 dB higher road noise for incident diabetes based on
five high-quality longitudinal studies.46 In support of noise as an impor-
tant metabolic risk factor, several studies have found road noise associ-
ated with adiposity markers and obesity.47–50 Of note, results

demonstrating that central obesity and waist circumference are associ-
ated with noise are more consistent than results on body mass index,
which perfectly agrees with the concept that noise increases cortisol
(stress hormone), which is known to cause mainly central obesity.

Some studies have reported on noise from all forms of transportation
as a risk factor for an unhealthy lifestyle. According to two studies road
noise exposure was associated with reduced physical activity, mainly
with any leisure time sport and not intensity, implying that noise may in-
fluence whether people exercise at all.51,52 Furthermore, a study sug-
gested that road noise may potentially be associated with alcohol
consumption and smoking.53 More studies investigating noise-induced
changes in health behaviour are important as these may represent an im-
portant link between noise and CVDs.

Lastly, studies have suggested that road noise may cause higher risk of
depression.26,54,55 However, a complicating factor in these studies is that
they use different definitions of depression, e.g. interviews, self-reports,
use of antidepressants, and hospital admissions, making between-study
comparisons difficult, and a 2020 review judged that the evidence for an
association may be insufficient for an overall conclusion.56

2.2 Mechanistic insights into noise-induced
pathophysiology by clinical studies
The cognition of noise and the resulting cortical and sympathetic activa-
tion causes the generation of stress hormones (e.g. cortisol and cate-
cholamines), with subsequent activation of the renin–angiotensin–
aldosterone system. If chronically present, this pathway may first lead to
development of cardiovascular risk factors (e.g. hyperglycaemia and
hypercholesterolaemia), blood clotting factor activation, and high blood
pressure, ultimately leading to MI, heart failure, arterial hypertension, ar-
rhythmia, and stroke (Figure 2A).62–64 Moreover, noise causes sleep dis-
turbance, interferes with activities, and impairs communication, all of
which can trigger annoyance and increased CVD risk. Recently, it was
established that the limbic system, more precise the amygdala nuclei,
becomes activated in response to transportation noise caused by cars
and aircraft.59 In this study, around 500 patients underwent a 18F-fluoro-
deoxyglucose positron emission tomography/computed tomography
imaging investigation and the authors demonstrated that noise ‘dose-de-
pendently’ increased amygdala activity, with coronary inflammation and
major adverse cardiovascular events (e.g. CVD death, MI, stroke and
coronary/peripheral revascularization) (Figure 2B).59 In a subsequent in-
vestigation, the authors found that more pronounced resilience to
chronic socioeconomic or environmental stressors such as transporta-
tion noise was clearly associated with lower risk for CVD events.65

Translational field studies found adverse effects of simulated noise
from aircrafts and trains on vascular function, stress hormone release,
sleeping quality, and inflammation markers in healthy subjects and coro-
nary artery disease patients.44,61,66 Furthermore, flow-mediated dilation
(FMD) was found impaired by noise in an exposure dose-dependent
manner, and the antioxidant vitamin C (2 g p.o.) significantly improved
FMD, pointing to an important role of reactive oxygen species in this
phenomenon (Figure 2C).44,61 Proteomic analysis of plasma proteins
revealed that redox, pro-thrombotic and pro-inflammatory pathways
were significantly affected in noise-exposed subjects as compared with
unexposed controls,61 The impairment of cardiac function seemed to be
aggravated by the number of noise events despite preserved average
sound pressure level,67 which may provide an explanation for the heart
failure risk by transportation noise.68
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Figure 2 Noise–stress concept and the adverse health consequences in humans. (A) Noise reaction model for the direct (auditory) and indirect (non-au-
ditory) effects of noise exposure. Adapted from ref.57 with permission; Copyright VC 2014, Oxford University Press. (B) Neuronal activation (arousals), e.g.
by noise exposure, causes signalling via the hypothalamic–pituitary–adrenocortical (HPA) axis and sympathetic nervous system (SNS) via corticotrophin-re-
leasing factor (CRF) in the pituitary gland and adrenocorticotropic hormone (ACTH) in the adrenal gland leading to activation of other neurohormones
(e.g. the renin–angiotensin–aldosterone system), inflammation and oxidative stress. The adverse effects of cortisol (or corticosterone) and catecholamines
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..It has been found that these noise-induced adverse health effects cor-
relate with higher circulating cortisol levels and more pronounced noise
sensitivity.69,70 A Swiss cohort study (SAPALDIA) demonstrated that
traffic noise and air pollution were associated with alterations of epige-
netic DNA changes priming the tissues for altered inflammatory cas-
cades and changes of immune responses.71 The SAPALDIA consortium
also found that intermittent nighttime railway and road noise may affect
arterial stiffness as shown by measurement of pulse wave velocity.72

These data were supported by results of a German cohort study, which
found an association between nighttime traffic noise and subclinical ath-
erosclerosis.73,74 Altogether these studies support the concept that psy-
chological stress in general and noise exposure in particular promotes
the release of stress hormones, the activation and recruitment of im-
mune cells and impairs cardiovascular function in men. This concept is
also in accordance with the observation that the severity of immunologi-
cal changes in response to psychological stressors correlates with the
number of cardiovascular events.75,76

2.3 Cardiovascular effects of transportation
noise exposure: mechanistic insights from
animal studies
Early animal studies demonstrated that chronic noise exposure
(85 dB(A) for 4 weeks to 9 months) caused a persistent increase in blood
pressure in monkeys77 or rats.78 When rats were exposed to white
noise (100 dB(A) for 1–4 weeks) an impaired endothelium-dependent
vasodilation of the thoracic aorta79 and the mesenteric artery80 could be
observed. These previous landmark studies are in accordance with
strong evidence suggesting that background noise levels >_42 dB(A) in an-
imal housing buildings may induce a significant pathophysiology based on
hypertension, impaired vascular function, endocrine stress responses,
but also modulation of the immune system, slower wound healing, im-
paired fertility, and reproduction.81 More animal studies on noise effects
(<_100 dB(A)) can be found in Supplementary material online, Table S3.

Mouse studies conducted by Münzel et al.82 showed dysregulation of
vascular gene networks by noise (revealed by RNAseq) and downstream
impairment of endothelial/vascular signalling. Their data also clearly
showed that noise exposure of sleeping mice but not during their activity
phase causes more pronounced cardiovascular complications via major
pathomechanisms comprising endothelial dysfunction, oxidative stress,
and inflammation in the vasculature as well as in the brain and by dysre-
gulated Foxo3/circadian clock signalling (identified by RNAseq).83 These
adverse effects of noise were mostly normalized by Nox2 knockout, sup-
porting a major role of phagocytic cells. They also reported normaliza-
tion of noise-induced microvascular dysfunction (in dorsal and cerebral
arterioles), proinflammatory changes of the plasma proteome, and endo-
thelial adhesion of leucocytes in Nox2 deficient mice.84 This proposed
concept was confirmed using a mouse model with lysozyme M (LysM)-

specific overexpression of an inducible diphtheria toxin receptor
(LysMiDTR mice) allowing specific removal of LysM-positive myelomono-
cytic cells by diphtheria toxin treatment.85 Detailed flow cytometric
analysis demonstrated that genetic ablation of LysM-positive monocytes/
macrophages prevented vascular inflammation and oxidative stress but
also impaired endothelium-dependent relaxation and increased blood
pressure in the peripheral circulation but failed to prevent neuroinflam-
mation and stress hormone release in the brain as activation of microglia
by noise was not suppressed in LysMiDTR mice. Aircraft noise also caused
lower expression and uncoupling of the neuronal nitric oxide synthase,
which may explain at least in part the impaired cognitive development of
noise-exposed children.83 Of note, noise-dependent development of in-
flammation and oxidative stress, impairment of endothelial function and
onset of hypertension were all improved by heme oxygenase-1 induc-
tion (using hemin) and NRF2 activation (using dimethyl fumarate).86

As the pathomechanisms of noise-induced cardiovascular damage
show large overlap with traditional risk factors for cardiovascular events,
such as diabetes,87 hypertension,88 and hypercholesterolaemia,89 it may
be speculated that noise exposure on top of an established CVD or risk
factor contributes to accelerated vascular/cerebral atherosclerosis and
neurodegenerative disease and adds to the severity of these disease in an
additive manner. In line with this concept noise exposure has been found
to aggravate arterial hypertension and all associated cardiovascular as
well as cerebral complications in a mouse model of angiotensin-II infu-
sion.90 A similar observation was made regarding the more pronounced
impairment of endothelial dysfunction by nighttime aircraft noise in cor-
onary artery disease patients in comparison with healthy controls.44,66

3. Air pollution

3.1 Air pollution components
Air pollutants have been known since antiquity but their sources and
composition have largely evolved with industrialization and urbanization
and the generation of anthropogenic (combustion-derived) air pollutants
that are now a major public health concern.91 Air pollution is the result
of complex chemical reactions of components from various emissions
requiring new classification criteria of fine particles that are not solely
based on size or mass of these particles but on the surface reactivity,
loading with toxic contaminants such as transition metals or bacterial/
fungal pyrogens.92 Over 90% of the urban pollutant mass comes from
gases or vapour-phase compounds such as O3,

•NO2, volatile organic
compounds (e.g. benzene), CO, and SO2. Combustion emissions that
contain ultrafine particles (UFPs) or PM0.1 (PM < 0.1 lm in diameter) dis-
play the most potent toxic cardiovascular capacity due to the high parti-
cle number, reactive surface (e.g. pro-oxidative) and high surface/mass
ratio that together with high solubility and charge, facilitate the alveolar
penetration, systemic circulation, and damage of various end organs by

Figure 2 Continued
on cardiovascular function and molecular targets are well characterized. Adapted from ref.58 with permission; Copyright VC 2013, Campos-
Rodrı́guez et al.; Creative Commons Attribution License (CC BY). (C) Neuronal activation (arousals) and subsequent atherosclerosis with a higher
cardiovascular risk by noise exposure was proven in subjects by 18F-PET scans indicating an association of amygdala activation, coronary inflamma-
tion, and increased incidence of major adverse cardiovascular events (MACE). Adapted from refs59,60 with permission; Copyright VC 2019, Oxford
University Press. (D) Flow-mediated dilation (FMD) is measured by high-resolution B-mode ultrasound. Schematic presentation of adverse effects
of simulated nighttime aircraft or train noise (either 30 or 60 events for one night) vs. unexposed control group (CTR) on FMD of the brachial ar-
tery in response to post-ischaemic hyperaemia and the beneficial acute effects of the antioxidant vitamin C. Results of own studies refs.44,61
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these UFPs.92 Importantly, CO is toxic at excessive levels that normally
do not occur in ambient air. Its toxicity differs from that of other air pol-
lutants, which e.g. exert oxidative stress. CO displaces O2 in haemoglo-
bin, depriving organs from oxygen. Additive effects of CO with •NO2,
O3, and PM2.5 are not expected. This may be different for oxidants such
as •NO2, O3, and PM2.5 components that generate reactive oxygen spe-
cies. There is a need to address this issue through toxicological, model-
ling and epidemiological studies.93–95 Importantly, the degree of air
pollution is significantly modified by climate changes (highly reactive pol-
lutants are formed by hot weather and high UV radiation)96 but vice
versa may contribute to global warming that may adversely affect cardio-
vascular health.97

3.2 Air pollution, global burden of disease,
and mortality models
Air pollution is a main health hazard contributing to morbidity and ex-
cess mortality.4,8,98 The WHO has identified gaseous and particulate pol-
lutants as significant risk factors of infections of the respiratory tract,
chronic obstructive pulmonary disease (COPD), lung cancer, and CVDs,
leading to heart attacks and strokes. Of specific interest is the contribu-
tion of chronic exposure to low level air pollution to NCDs such as
COPD that is currently studied within the ELAPSE project in pooled
European cohorts99 or all-cause mortality that is currently studied within
the MAPLE project in pooled Canadian cohorts.100 Of note, positive
associations were also found at PM concentrations lower than the cur-
rent European recommendations for the limits of annual PM2.5 and PM10

exposure.101 Worldwide, diseases due to air pollution cause greater loss
of life than HIV/AIDS, tuberculosis, and malaria together and are respon-
sible for trillions of US dollars in welfare losses each year.8 Of note,
higher air pollution concentrations and specific characteristics of par-
ticles or gases (e.g. diesel exhaust) were found to be associated with
higher COVID-19 prevalence and fatality rates.102 In contrast, COVID-
19 pandemic induced lockdown decreased the air pollution and thereby
cardiovascular events.103

We have to consider, however, that the drop in hospital admissions
with respect to acute coronary syndromes (ACS), acute heart failure
with decompensation, and arrhythmias, may have been not only due to
the improved air quality during COVID-19-mediated lockdown but also
due to the fear of the CVD patients to become infected.104 This in turn
caused more acute cardiovascular deaths, with almost 50% in the com-
munity that were not related to manifest COVID-19 infection, all of
which points to the anxiety of patients to visit the hospital during the
pandemic or to a high share of undiagnosed COVID-19.105

Long-term exposure to PM2.5 can cause a chronic oxidant/antioxidant
imbalance in the respiratory system, with inflammatory responses, and
implications for the aetiology of respiratory and CVDs106,107 (see also
Section 3.3). Oxidative stress can occur directly by the inhalation of reac-
tive oxygen species in PM2.5, or indirectly from their catalytic generation
within the epithelial lining fluid upon inhalation of toxic aerosol com-
pounds, e.g. co-emitted by combustion sources.17,93 The long-term in-
flammatory impacts within the respiratory tract can have local
consequences, e.g. asthma and emphysema, as well as chronic outcomes
such as circulatory and cardiovascular disorders.92,108 Furthermore,
ozone (O3) is a strong oxidant that leads to respiratory and circulatory
diseases through oxidative stress, likewise with immune-inflammatory
responses within and beyond the lungs.109,110

Exposure of the global population to PM2.5 and O3 can be estimated
with satellite and ground-based measurements and data-informed

modelling.4,111 To assess health outcomes, the Global Excess Mortality
Model (GEMM) was developed, which utilizes hazard ratio functions
based on 41 cohort studies performed in 16 countries.112 Results include
excess mortality rates and years of life lost from five disease categories:
lower respiratory tract infections, COPD, IHD, cerebrovascular diseases
(strokes), and lung cancer; and one general category that accounts for all
NCDs, from which impacts by ‘other’ diseases are estimated through
subtraction. The latter include neurological disorders, hypertension, and
diabetes, for example.113 Figure 3A shows percentages of excess mortal-
ity from exposure to PM2.5 and O3 by different disease categories. In
middle- and high-income countries CVDs are predominant (IHD,
strokes), while in low-income countries lower respiratory infections, in
particular under children, are significant. In Africa, many children die
from pneumonia, whereas in Europe, this is a minor cause of mortality.
Globally, air pollution-induced CVDs contribute 45–50% to excess
deaths. Because the ‘other’ category includes hypertension and diabetes,
which contribute to cardiovascular disorders, it follows that these dis-
eases make up the leading health outcome of air pollution. In the
European Union (EU-27), PM2.5 and O3 together cause about 592 000
(483 000–701 000) excess deaths per year.113 About 247 000 (206 000–
285 000) per year are directly attributed to IHDs and strokes.

It was estimated that global excess mortality from the chronic impacts
of PM2.5 and O3 amounts to 8.8 (7.11–10.3) million per year,111 in accor-
dance with Burnett et al.,112 but significantly higher than estimated by the
GBD,4 which accounts for PM2.5, not O3, and selected disease catego-
ries, not including the ‘other’ NCDs. However, it is lower than the re-
cent global estimate by Vohra et al.,114 which exceeds 10 million per
year for the part of PM2.5 from fossil fuels only. Global excess mortality
estimates range from about 4.5 to more than 10 million per year,
depending on the pollutant compounds, disease categories and expo-
sure–response functions considered.4,98,111,112,114

The loss of life expectancy attributed to air pollution has been evalu-
ated against other health risk factors (Figure 3B). Because about two-
thirds of worldwide air pollution are anthropogenic and can be pre-
vented, it follows that the global mean life expectancy loss from smoking
and avoidable air pollution are similar. Figure 3B also shows the global life
expectancy loss from all forms of violence, which is nearly an order of
magnitude less than from air pollution. In Europe, the life expectancy
loss by air pollution is about 2.2 years, of which 1.7 years count as avoid-
able if the emissions would be controlled. Therefore, the mitigation of
air pollution is an effective health promotion intervention, like the ban-
ning of smoking115 and can make a major contribution to the prevention
of CVDs.

3.3 Epidemiology: air pollution and CVDs
Increased levels of air pollution, mainly PM10 and/or PM2.5 show an asso-
ciation with higher risk of ACS, chronic coronary and peripheral artery
disease, heart failure, and arrhythmia (reviewed in refs107,108,116). The
classification of air pollution particles and the WHO interim target
threshold concentrations for PM2.5 are shown in (Figure 4A). Clinical/epi-
demiological studies on association of air pollution with cardiovascular
outcomes can be found in Supplementary material online, Table S4.
Associations of air pollution with cardiovascular risk factors can be found
in Supplementary material online, Table S2.

3.3.1 Ischaemic heart disease
In general, there is a higher incidence of fatal or non-fatal coronary artery
disease in response to air pollution. The Women’s Health Initiative
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Figure 3 Global burden of disease of air pollution. (A) Disease categories that contribute to excess mortality from the long-term exposure to ambient
PM2.5 and O3. COPD, chronic obstructive pulmonary disease; IHD, ischaemic heart diseases; LRI, lower respiratory infections. (B) Mean global and country-
level loss of life expectancy from air pollution, tobacco smoking (active and passive), parasitic and vector-borne diseases (e.g. malaria), and all forms of vio-
lence (interpersonal, collective conflict, and armed intervention). Adapted from ref.111 with permission; Copyright VC 2020, Oxford University Press.
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..Study revealed a 21% (95% CI 4–42%) higher incidence of (non-)fatal
coronary heart disease (CHD) with increment of 10mg/m3 in long-term
PM2.5 in 65 000 women studied.121 The European Study of Cohorts for
Air Pollution Effects (ESCAPE) trial (100 000 participants, 11 EU
cohorts) established a 12% higher risk with increment of 10mg/m3 in
long-term PM10 and a 13% higher incidence of coronary events with in-
crement of 5mg/m3 in long-term PM2.5.

101 A meta-analysis addressing
the effects of short-term air pollution exposures and incident ACS
revealed that PM2.5, along with nitrogen dioxide (NO2), and sulfur diox-
ide and carbon monoxide were linked to a higher incidence of MI.122

Importantly, patients with already established diagnosis of coronary ar-
tery disease are at higher risk than healthy individuals for developing an
acute coronary syndrome upon short-term exposure to PM2.5. In coro-
nary artery disease patients (N = 16 314, diagnosed by angiography),
odds ratios of 1.06 (95% CI 1.02–1.11) for ACS, 1.15 (95% CI 1.03–1.29)
for ST-elevation MI, 1.02 (95% CI 0.97–1.08) for non-ST-elevation MI,
1.09 (95% CI 1.02–1.17) for unstable angina, and 1.05 (95% CI 1.00–
1.10) for incident non-ST-segment elevation ACS were found with incre-
ment of 10 lg/m3 in short-term PM2.5 (on the same day, exceeding
25lg/m3).123 Of note, higher odds ratios by air pollution were only ob-
served in patients with coronary artery disease that was diagnosed by an-
giography.123 Also prognosis after an acute coronary syndrome is worse
in response to chronic PM2.5 exposure.124,125 It should be noted that an
appreciable part of the cited literature deals with acute effects of air pol-
lution on IHD as the evidence for these short-term effects are really

substantial. In contrast, chronic effects of air pollution on MI incidence
may be less conclusive as reported by a meta-analysis.126

In general, it is believed that long-term PM2.5 exposure enhances car-
diovascular risk through a continuous plaque progression, whereas
short-term PM2.5 seems to acutely trigger plaque rupture, and short-
and long-term exposure in concert increases the risk for cardiovascular
events (Figure 4B) (reviewed in ref.118).

Overall, the higher burden of IHD by air pollutants is also paralleled
by higher plaque vulnerability at PM2.5 >20mg/m3 indicating that even
short-term high concentrations of PM2.5 mg/m3 may cause acute plaque
rupture and that the European threshold (PM2.5 <_ 25mg/m3) is clearly
too high (Figure 4B and C) to protect exposed people from acute and
chronic cardiovascular adverse events.119,120

3.3.2 Heart failure
Heart failure is an established major and escalating health problem in the
population of Western societies with ageing populations and heart fail-
ure has a very high prevalence (64 million individuals at the global
level).127 Many cardiac diseases lead to heart failure as a final outcome,
leading to high hospitalization numbers (3–5% of all affected patients)
and high mortality numbers (30% within 1 year after diagnosis).127

(Re)hospitalization of the elderly (age above 65 years) is most often due
to heart failure (5% of all-cause hospitalization).127 The sources of acute
decompensated heart are therefore a major concern of public health
systems. A cohort study from UK revealed that chronic exposure to PM

Figure 4 Air pollution thresholds and guidelines as well as health effects. (A) Data for air pollution obtained from WHO air quality guidelines for particu-
late matter, ozone, nitrogen dioxide, and sulphur dioxide (update 2005 and summary of risk assessment) (http://apps.who.int/iris/bitstream/10665/69477/1/
WHO_SDE_PHE_OEH_06.02_eng.pdf). Comparison of particle size with biochemical and biological entities. Reused from ref.117 with permission;
Copyright VC 2017, Oxford University Press. (B) PM2.5 exposure acutely triggers plaque rupture. Adopted from ref.118 (C) Effects of different legal thresh-
olds for ambient particulate matter (PM2.5) concentrations in USA and Europe on cardiovascular health risk by development of high-risk plaques depicted as
exponential fit for original data (left) and zoomed exponential fit with legal thresholds (right). Reused from ref.119 with permission; Copyright VC 2019,
Oxford University Press; generated from original data in ref.120
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and NO2 was linked to a higher incidence of heart failure.128 A meta-
analysis of 35 studies, reported an association of short-term increase in
reactive gases and PM10 as well as PM2.5 with higher incidence of heart
failure hospitalization or death.129 As also described in subjects with pre-
existing coronary artery disease, heart failure, hypertension, and arrhyth-
mia are the major cardiovascular risk factors for air pollution associated
major cardiovascular events. According to the Air Quality Health Index,
an increase of 10mg/m3 in PM2.5 caused a higher hospitalization rate and
higher number of deaths from heart failure with an increase in RR of
2.1% (95% CI 1.014–1.028).130 A Chinese study in 26 cities with highly
polluted air, higher long-term PM2.5 exposure caused a 1.3% higher inci-
dence of hospitalization for heart failure.131 However, high-quality stud-
ies on the effects of chronic air pollution exposure on the risk of chronic
heart failure are highly needed. Recent large population data show that
risk for incident heart failure is increased by chronic exposure to PM at
different sizes in an additive manner.132

3.3.3 Heart rhythm disturbances
Controlled exposure studies in general (healthy) populations failed to
provide convincing evidence that air pollution directly affects arrhyth-
mias or the frequency of ventricular ectopic beats,133 which is also sup-
ported by studies in subjects with high cardiovascular risk as indicated by
an implanted defibrillator.134 On the other hand, it was found that out-
of-hospital cardiac arrest is associated with short-term air pollution such
as ozone135 and particulate matter (especially PM2.5).

136

3.3.4 Cerebrovascular disease
Korean studies showed that long-term air pollution is associated with
stroke mortality.137 In support of this, large scale studies showed an as-
sociation of hospital admissions for stroke with PM in the USA (interme-
diate to long-term effects)138 and Denmark (short-term effects).139

According to the Women’s Health Initiative study, the risk of stroke and
death from cerebrovascular disease was 35% higher and the risk of death
from cerebrovascular disease was 83% higher with increment of 10mg/
m3 in chronic PM2.5 exposure.121 In line with this, additive effect of PM10

and NO2 exposure for 12 years contributed to higher cerebrovascular
mortality in China.140 The ESCAPE study reported a 19% (95% CI 12–
62%) higher risk of stroke with increment of 5mg/m3 in long-term PM2.5

(almost 100 000 participants, 11 EU cohorts).141 An increased risk was
observed specifically in the elderly (>60 years) and the non-smoking
population and effects were already observed at low PM2.5 concentra-
tions (<25mg/m3).141 A meta-analysis (94 studies from 28 countries), an
increment of 10mg/m3 in short-term PM2.5 and PM10 was linked to a 1%
higher risk of hospitalization for stroke and stroke mortality.142 The
proximity of the home address to main roads and low socioeconomic
status showed an association with ischaemic stroke and stroke sever-
ity.143,144 Two independent meta-analysis have shown that long-term ex-
posure to air pollution in the form of PM2.5 or PM10 were associated
with a higher risk for incident stroke by 13%126 or 6.4%, respectively.145

In summary, a systematic study and analysis of the impact of air pollution
on cerebrovascular disease is urgently required.

3.3.5 Cardiovascular mortality
An appreciable number of single-city and multicentre studies as well as
meta-analyses demonstrated a higher mortality rate in relation to short-
term exposure to PM, NO2, and ozone (reviewed in ref.108). For a
short-term exposure scenario pooled RRs of 1.0060 (95% CI 1.0044–
1.0077) for PM10 and 1.0092 (95% CI 1.0061–1.0123) for PM2.5 were

reported for the cardiovascular mortality by a recent meta-analysis.146

Another meta-analysis reported that increment of 10lg/m3 in NO2 con-
centration on the previous day was linked to 0.37% (95% CI 0.22–0.51%)
higher numbers of cardiovascular mortality.147 A position paper by the
American Heart Association reported a higher all-cause mortality rate in
association with chronic as compared with acute PM2.5 exposure.148 A
11% (95% CI 6–16%) higher cardiovascular mortality rate with incre-
ment of 10mg/m3 in PM2.5 was demonstrated.149 The pooled hazard ra-
tio for cardiovascular mortality per 10 ppb NO2 increase was 1.11 (95%
CI 1.07–1.16).150 However, in the ESCAPE study (22 EU cohort,
>300 000 subjects), no statistically significant association of long-term
PM2.5 exposure with the number of cardiovascular deaths was found.151

In contrast, the effect of PM2.5 on all-cause mortality is well accepted and
population-based studies estimate a gain of life expectancy (>22 months
at age 30) when strictly following the recommended WHO threshold
for PM2.5 of a mean exposure of 10mg/m3 per year.151,152

3.4 Pathophysiology of air pollution
induced CVDs
Animal studies show appreciable variation of results, which is mainly due
to the exposure duration, strain/susceptibility of animals, and the particle
characteristics (mostly size and chemical composition). Air pollution-
induced oxidative stress mechanisms are responsible for cardiovascular
and cerebral damage, also triggering subsequent inflammation and gene
activation, which is largely consistent over a wide range of different par-
ticles (and reactive gases) such as diesel exhaust, wood smoke, PM2.5, or
UFPs (Figure 5).154–157 Inflammatory responses to PM exposure are re-
peatedly demonstrated in experimental animal models starting with ad-
hesion and infiltration of Ly6Chigh immune cells via CCR2/VCAM
interaction, TLR/CD36-mediated activation of NFkB, NLRP3, IL1b,
which is associated with foam cell formation and plaque instability due to
MMP-2/9 up-regulation.158–160 A direct activation of the lung-neural re-
flex arcs facilitates systemic inflammation as well as neuronal activation/
neuroinflammation linking pulmonary exposures to cerebral as well as
systemic health effects of air pollution.161–163 The activation of central
sympathetic mechanisms is also leading to arterial hypertension.164

Importantly, also other environmental pollutants such as traffic noise and
artificial light at night share an appreciable part of these pathomechan-
isms that likely curdle at the level of oxidative stress and inflammation
(Figure 5).10,15,165

Nanoscale (ultrafine) particles and toxic contaminations on the parti-
cle surface (e.g. heavy metals, polycyclic aromatic hydrocarbons or fungal
pyrogens/bacterial endotoxins) can directly penetrate the lung tissue
into the systemic circulation and lead to additional activation of immune
cells or inflict direct (oxidative) damage to endothelial cells.159,166,167

Other toxic mediators originate from air pollution and inflammation in-
duced formation of oxidized biomolecules such as 7-ketocholesterol (7-
KC) or oxidized phospholipid derivatives of 1-palmitoyl-2-arachidonyl-
sn-glycero-3-phosphorylcholine (oxPAPC) that have their own bio-
chemical toxicity (Figure 5)168,169 promoting the infiltration of bone-
marrow derived CD11bþLy6Chigh cells into atherosclerotic plaques.170

PM2.5, UFPs and in particular diesel exhaust can cause endothelial dys-
function due to diminished vascular nitric oxide availability in response
to augmented production of reactive oxygen species as a consequence
of a higher vascular and/or phagocytic NADPH oxidase activity and/or
endothelial nitric oxide synthase uncoupling.171–174 In animals, PM2.5 acti-
vates pathways that are analogous to those of angiotensin II such as
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..induction of Rho/ROCK signalling and more pronounced calcium
sensitivity.174,175

A more recent identified pathomechanism of air pollution-mediated
cardiovascular damage and disease is the dysregulation of the circadian
clock, which is also the major pathophysiological target of nocturnal light
or noise at night (Figure 5).165 It was shown that PM2.5 exposure also
impairs circadian rhythms as observed by phase shift and altered ampli-
tudes of circadian gene expression including BMAL1, CLOCK, periods,
and cryptochromes that was quite similar to circadian dysregulation ob-
served in response to light at night.176 PM2.5 exposure impairs

oscillations of circadian genes and thereby alters the lipid metabolism in
white and brown adipose tissues providing a direct link to PM2.5-induced
obesity and diabetes.177 Importantly, impaired circadian rhythm (e.g. as
observed in shift workers or people with chronic sleep fragmentation/
deprivation) is acknowledged as a potent trigger of CVDs.11,178

Of note, the results established in animal studies have mostly been
translated to the human setting. PM2.5 and transportation-based pollu-
tants such as diesel exhaust cause acute peripheral endothelial dysfunc-
tion, ischaemia and prothrombotic changes of the vasculature of humans
within a few hours after exposure.155,179–182 Diesel exhaust acutely

Figure 5 Proposed pathophysiological mechanisms of cardiovascular disease induced by environmental air, light, and noise pollution. Major pathomechan-
isms comprise neuronal activation and stress response, disruption of circadian rhythms, all of which initiates cerebral and systemic inflammation as well as
oxidative stress leading to endothelial dysfunction, atherothrombotic changes, dysregulated metabolism, and manifest cardiometabolic diseases. Modified
from ref.153 with permission; Copyright VC 2016, Oxford University Press.
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impairs resistance vessel responses to endothelium dependent dilators
such as acetylcholine and bradykinin and the direct NO-donor sodium
nitroprusside coupled with increase in vasoconstrictor potency of ET-1
in mice but also humans.179–181,183 Short-term exposure to diesel causes
ischaemia in patients with already established coronary artery disease.182

Diastolic dysfunction and impaired contractile reserve may be explained
by PM2.5-induced up-regulation of the b-myosin heavy chain and lower
expression levels of SERCA2a, indicating abnormal calcium signalling.184

PM also impairs the anti-inflammatory and antioxidant properties of
HDL, and thereby promotes the adverse health effects of upregulated
LDL.185 More animal studies on air pollution-mediated cardiovascular
damage can be found in Supplementary material online, Table S5.

The above described pathomechanisms may explain at least in part
the accelerated development of atherosclerosis and inflammatory pro-
cesses in the plaques observed in response to exposure of animals to
PM2.5, diesel exhaust, reactive gases, and UFPs.186–188 Diesel exhaust
particles were demonstrated to cause activation of platelets in murine
models of arterial thrombosis.189 These animal data were in accordance
with enhanced fibrinolytic function in healthy individuals and in CHD
patients in response to exposure to diesel exhaust particles.180,182

Previous reviews provided an excellent summary of the experimental
evidence and pathomechanisms, underlying the contribution of air pollu-
tion to cardiometabolic disease such as diabetes.161,162 Also the mecha-
nisms leading to a higher risk of CVD by air pollution, as indicated by
enhanced carotid intima media thickness and impaired ankle brachial in-
dices, was reviewed in the past.108 This also includes PM2.5 triggered
mechanisms of inflammation and impairment of insulin response path-
ways, induction of brown adipose tissue dysfunction, and adverse central
nervous system activation involved in glycaemic control, regulation of sa-
tiation, and metabolic pathways.92

4. Outdoor light pollution and
cardiovascular disease
(epidemiology and
pathophysiology)

A rather novel environmental risk factor of concern is light pollution and
its potential large impact on NCDs.190 Anthropogenic sources of natural
nighttime sky brightness represent a major challenge in huge cities and
metropolitan areas but can additionally cause effects in distant rural pla-
ces such as national parks.191,192 Up to 83% of the population on earth
and >99% of the people in the USA and EU may live under light-polluted
skies (>14 mcd/m2 artificial nighttime sky illumination).191 This unfortu-
nate situation was nicely summarized with the title of the review article
‘Missing the Dark—Health Effects of Light Pollution’, where satellite
images document the progression of artificial light at night in the USA
over a period of seven decades.190 Light pollution induces premature
mortality and loss of biodiversity of insects, animals, and birds by impair-
ment of their circadian rhythm.190 In humans, the dysregulation of circa-
dian genes is a major contributor to NCDs, also due to the circadian
control of inflammatory and metabolic pathways (Figure 5).178,193

Mutations and expression changes of key circadian genes can contribute
to obesity and hyperglycaemia194–196 and the ‘chronotype’ (morningness
or eveningness person) has a significant health impact in humans, specifi-
cally with respect to metabolic diseases197,198 and is based on genetic
profiles as revealed by genome-wide association studies.199,200

In elderly subjects, blood pressure was increased by 3–4 mmHg per
5 lux (=1 lumen/m2) increase in outdoor nighttime light pollution.201 In
addition, artificial light at night is associated with a higher risk of CHD
and mortality in the older population.202 An increment of hazard ratios
for CHD hospitalizations of 1.11 (95% CI 1.03–1.18) and for CHD mor-
tality of 1.10 (95% CI 1.00–1.22) was reported per change of 60 Units of
radiance (nW/cm2/steridian). Of note, there was an additive increase of
hazard ratio for CHD mortality in the upper light pollution quintiles in
combination with highly polluted air based on the measured PM2.5 con-
centrations (1.32 and 1.39, respectively),202 which goes hand in hand
with data on combined PM2.5 and light at night exposure-induced circa-
dian phase shifts and reduced amplitudes that, however, induced distinct
epigenetic changes along with a specific pattern of circadian gene disrup-
tion.176 As all of these studies were conducted in East-Asia and often in
aged participants, replications of these studies in a wider context (e.g. dif-
ferent age groups and geographical locations) are urgently needed.

5. Climate change, increases in
temperature, desert storms, and
wildfires

A growing body of evidence also supports an association of particles
from natural sources (e.g. desert dust, wildfires, and volcano eruptions)
with adverse effects on public health. Based on estimations an annual
number of 400 000–500 000 global deaths from cardiopulmonary causes
(approximately 18% of all premature deaths), can be attributed to air
pollution.203 In line with this, Asian desert dust was found to potentially
contribute to the risk of CVD hospital admissions,204 also supported by
a significant association of Asian dust storms up to 4 days before hospital-
ization and the risk of incident acute MI.205 Also a recent meta-analysis
reported higher mortality rates and more hospital admissions for major
adverse events of cardiopulmonary origin in association with desert
dust.206 Forest fires in Southeast Asia create extremely high levels of
PM10 that are linked to higher all-cause mortality and hospitalization for
IHD in Malaysia.207 Also the generation of PM2.5 and other air pollutants
from wildfires in California,208 Brazil,209 Australia,210 Southern
Europe,211 and at a global scale212 was reported to affect respiratory and
cardiovascular health, whereas forest fires in Siberia were so far rather
mentioned in the context of global warming. Although it is unclear to
what extent wildfires and dust events are anthropogenic, the rapidly
growing populations in Africa and Southeast Asia foster projections that
more and more people will suffer from mixed exposure to natural and
human-made air pollution in the future, including the exacerbated num-
ber of wildfires in California and Southern Europe with high population
density. This warrants more clinical studies on the potential health harms
of natural air pollution sources.

In addition, with increases in wildfire frequency, volcano eruptions,
and desert storms, there will be also a substantial increase in the temper-
ature further aggravating the heat wave in a positive feedback fashion
(global warming by greenhouse gases). Wildfires release smoke that
mainly consists of particulate matter. Importantly, PM from wildfires
causes more pronounced effects on mortality than urban PM, which is
mostly due to smaller particle size213,214 and contamination with oxida-
tive and proinflammatory compounds213 causing an amplification of the
adverse health effects of the increasing global warming215 and O3.

216

The healthcare industry is a huge and socioeconomically powerful
branch of trade, and by itself contributes significantly to global CO2
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..emissions. Interestingly, healthcare in world’s largest economies account
for around 5% of all CO2 emissions making this sector comparable to
the importance of the food sector.217 Importantly, the Lancet
Commission on Health and Climate Change recommended that green-
house gases emissions from the healthcare sector should be also consid-
ered as an indicator in evaluations of health and climate.218

Concerning the influence of climate change, changes in temperature
and specifically subsequent CVDs such as acute coronary syndrome, epi-
demiological studies have postulated that high (‘heat waves’ and ‘heat
islands’) but also low (‘cold effect’) temperatures may cause an increase
in cardiovascular mortality and morbidity.219–221

There is evidence for an association between air temperature and
acute MI. Many studies established a significant cold effect on MI occur-
rence,222–224 while other studies suggested a higher risk of MI as a conse-
quence of heat exposure.225 Chen et al.226 reported in a study over
28 years, which was based on a registry with time-stratification and
cross-over design, that the risk of MI in relation to higher temperature in-
creased over time, when comparing the period from 2001 to 2014 with
the one from 1987 to 2000. Importantly, the risk of MI in relation to cold
decreased during the study. In the late study period, the authors estab-
lished that heat-induced MI was more pronounced in rural populations.

Associations between (climate change-related) high temperatures and
cardiovascular events may occur through several direct and indirect
mechanisms:

(1) Higher surface blood circulation and sweating is associated with high
temperature, all of which contributes to higher cardiac strain, blood vis-
cosity, plasma cholesterol, and interleukin-6 levels.227

(2) Warmer temperature causes sleep disturbance228 such as too short
sleep (<6 h) or fragmentation of sleep, which conversely increases the
risk of CVD.229

(3) Very high temperature reduces physical activity,230 which is conversely
associated with higher cardiovascular risk.231 Vice versa, physical activ-
ity at very high temperature may represent a risk factor of its own.

In summary, there is emerging evidence that the rising temperature in
part triggered by wildfires and substantial greenhouse gas emissions due
to biomass burning may in addition to inner cities heat islands (see below
heart healthy cities) increase the susceptibility to heat related-MIs, which
is further exacerbated by co-exposure to high PM2.5 concentrations.221

This indicates that, similar to air pollution exposure, heat exposure
should be considered as an acute environmental stimulus of acute coro-
nary syndrome especially in light of global warming.

6. Gaps in knowledge

There are only few high-quality animal or human studies that consider
potential additive effects of combined noise, air, and light pollution.
Although it is known that also air pollution from natural sources are as-
sociated with higher morbidity and death rates there are numerous gaps
in knowledge with respect to their adverse health effect.

Mechanistic studies in animals may help to provide a direction for fu-
ture human studies. The questions that should be answered comprise:
(i) the of the additive effects and time-dependent biological/functional
responses of different co-exposures; (ii) are the induced effects revers-
ible; (iii) impact on circadian rhythm; and (iv) the effect of lifestyle
modifications (e.g. diet, stress, and exercise). Finally, the development of
novel technologies that enable personal measures of health together
with public data on environmental pollutants would foster an advanced

understanding of the interactions between environmental and non-
environmental risk factors.

7. Mitigation measures

7.1 Societal/political noise exposure
mitigation strategies
People in industrialized and urbanized societies are largely exposed to
traffic noise, as reflected by >30% of the people in Europe being exposed
to residential noise levels above 55 dB(A) Lden.

232 As this contributes to
a higher incidence and mortality of major CVDs,232 the implementation
of new and effective mitigation measures is urgently required. Several
noise interventional approaches are already in use, as propagated by the
European Commission (Table 1).233

Buildings can be insulated against noise, which efficiently reduces ex-
posure to all outdoor noise sources. However, this intervention has a
low cost-effectiveness ratio due to the very high costs, especially when
retrofit is required. Novel technologies and advances such as less noisy
engines and tires for vehicles as well as silent brake blocks for trains are
key to reduction of noise levels from all traffic-related sources.

Traffic noise pollution is significantly determined by road noise, which
can be effectively mitigated by lower speed limits, silent road surfaces,
and construction of noise barriers at main streets. However, in light of
the continuously increasing traffic volume and accordingly constantly ris-
ing noise exposure levels, superior traffic management and regulation
may represent key concepts for the future (see Table 1).

Aircraft noise exposure levels continuously increased over the last
years, which has led to the ban of nocturnal air traffic at many airports
because noise during nighttime is associated with the most pronounced
adverse health effects.66,73,234 However, noise exposure, in particular
during the night has severe adverse effects on health,235 which may be
prevented by new engine technologies (fleet evolution), lower noise
thresholds, longer night bans, and better air traffic management. Further
measures include zoning, which means the restricted land-uses in areas
of highest noise sensitivity, e.g. when housing complexes, schools, hospi-
tals are in close proximity to airports or flight paths. Other mitigation
measures also include facade insulation of residential buildings, tax incen-
tives and fines for noise initiators (polluter liability), movement

......................................................................................................

Table 1 Noise-abatement approaches

Abatement procedures Reduction in

noise (dB)

Cost-effectiveness

score (1–5)a

Noise barriers 3–20 2

Brake blocks for trains 8–10 4

Building insulation 5–10 1

Building design 2–15 3

Changing driving styles 5–7 3

Quiet road surfaces 3–7 5

Low-noise tires 3–4 3

Land-use planning and design Unknown 4

Electric cars 1 1

Traffic management 3 3

dB, decibel.
aEvaluated by the European Commission in ‘10 ways to combat noise pollution’
231 lowest score = 1; highest score = 5.
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limitations, and noise quotas. Also new air traffic protocols such as the
continuous descending approach that is based on high altitude of the air-
craft until shortly before landing or GPS-assisted starting/landing proce-
dures, which both may significantly reduce the noise exposure levels of
residents nearby airports.164

In summary, new noise reducing technological advances and legislative
mitigation approaches are important to protect the general population
from adverse effects of noise on health. These preventive measures are
urgently needed in light of a growing global traffic load.

7.2 Air pollution
7.2.1 Personal exposure mitigation strategies
It is important to note that so far no personalized intervention for reduc-
tion of air pollution exposure has been demonstrated to improve life ex-
pectancy or to reduce cardiovascular events. Recently, the topic of
personal exposure mitigation strategies has been extensively summa-
rized (Figure 6). Here are some important notices. Portable air cleaners
are inexpensive and can be employed in nearly all homes and apartments
in locations with electricity. High Efficiency Home Air Filtration Systems:
Central HVAC units with inbuilt filters can be an effective means for par-
ticle removal in residential indoor environments. There are, however,
currently no clear studies demonstrating health benefits of filters in
forced air systems in residences. Fisk and Chan237 have estimated their

potential benefits during wildfires in a modelling analysis and found that
they are likely to be less effective than using other methods such as por-
table air cleaners. Personal air purifying respirators is a personal protec-
tive device that covers the nose and mouth and is used to reduce
inhalation of PM2.5 and other particles depending on their rating effi-
ciency (removal of >95% or 99% of inhaled particles at 0.3mm in size by
N95 or N99). Some studies suggest that at least under conditions of high
ambient exposures, there could be meaningful reductions in blood pres-
sure in response to an N95 respirator intervention.238 Some concerns
over potential adverse cardio-pulmonary stress induced by wearing a
respirator thereby mitigating health benefits, have been raised. However,
there is no evidence that the short-term use of a respirator adversely
affects health parameters such as blood pressure, heart rate, or aortic
haemodynamics.239

Face masks (typically made of gauze, cotton, or cloth) and surgical
masks are commercially available, but show large differences in filtering
PM2.5. FFP2 face masks provide a certain protection from solid air pollu-
tion components. While not directly relevant here, it was shown that
face masks (all types and especially FFP2) effectively prevent SARS-CoV-
2 infections through the spreading of droplets and aerosols.240

In summary, the current level of evidence demonstrates that wearing
validated N95 respirators over a few hours to days in supervised experi-
ments may improve surrogate markers of cardiovascular risk in

Figure 6 Personal mitigation manoeuvres and air pollution (significantly modified from ref.236)
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.
environments with high PM2.5 levels, although the data are inconsistent
across studies and no evidence exists regarding their impact on cardio-
vascular events. Nonetheless, their brief use during extremely poor
PM2.5 air quality events might be beneficial. It is logical to question if the
use of surgical masks should be advocated if N95 respirators are not
available. On the one hand, some degree of protection against PM2.5 ex-
posure, even if only incomplete (e.g. 25–75%), among many millions of
people facing high levels of exposure might translate into significant pub-
lic health benefits considering the well described linear dose-risk re-
sponse. Unlike a viral contagion in which an unknown threshold of
exposure reduction is required to prevent the spread of infection to an
individual, any decrease in exposure to air pollution should reduce health
risks in a population. Conversely, arguments have been made that these
masks might engender a false sense of security, thereby worsening over-
all exposure. While they can reduce the inhalation of PM2.5 by a variable
degree, any health benefits of wearing less cumbersome facemasks (e.g.
surgical style) have yet to be shown. At this point, there is insufficient evi-
dence to support or proscribe against the use of simple face masks.

Automobile air filters and air-conditioning are approaches to reduce
PM2.5 and UFPs exposure during travel that may be of use for highly sus-
ceptible individuals, but also for those staying for significant parts of their
daily life in transportation microenvironments.

Simple strategies implemented into one’s lifestyle can help to reduce
air pollution exposure. Some of these practical strategies are general and
may not necessarily reduce exposures to PM2.5, which is considered a re-
gional pollutant. However, they may exert health benefits through their
impact on UFPs and/or gaseous co-pollutants (in particular ozone),
which have also been associated with health risk.

Other more simple recommendations include air pollution avoidance,
staying indoors, and closing windows. An important question is at which
level of air pollution (PM2.5), exercise may be allowed without adverse
health effects.

7.2.2 Personal mitigation strategies by physical activity
There is an ongoing discussion on the health benefits of physical exercise
and the potential adverse health effects of higher exposure to air pollu-
tion during outdoor physical activity. In order to answer this question,
Kim et al.241 conducted a nationwide cohort study (1 469 972 young
adults with an age of 20–39 years). Air pollution exposure was calculated
by the average cumulative level of PM2.5 and PM10 per year at the resi-
dential addresses and physical exercise was determined by the minutes
of metabolic equivalent tasks per week (MET-min/week) for each partici-
pant for the years 2009 to 2012. As a major outcome of the study, there
was a clear benefit of outdoor physical activity, even when exposed to
low or moderate PM concentrations. Those participants with a seden-
tary lifestyle had a clearly increased cardiovascular risk. Of note, ex-
tremely high levels of outdoor physical exercise (>_1000 MET-min/week)
in highly polluted air also caused a higher cardiovascular risk. These
observations are also in accordance with the reported ‘break-even point’
for lowering of air pollution-associated RR of all-cause mortality by phys-
ical activity, which was calculated by the authors at 100mg/m3 of PM2.5

making 1.5 h cycling or 10 h walking per day in more polluted air
detrimental.242

7.2.3 Societal/political exposure mitigation strategies by

improved air quality
The most promising manoeuvres to protect people from air pollution in-
duced CVDs is the lowering of the allowed emission levels. Since 2015,

the EU recommends an annual mean air quality limit of 25mg/m3 for
PM2.5, which is 2.5-fold higher than the WHO recommendation of
10mg/m3. Even at PM concentrations of 10mg/m3, hazard ratios are
greater than 1.0 as based on calculation using the GEMM or the GBD
model from the year 2015. A hazard ratio of approximately 1.5 for the
risk of IHD was found at PM levels of 25mg/m3, which clearly indicates
that the EU-28 air quality standard is not effective. This becomes even
clearer, when comparing the annual mean limits in the USA of currently
12mg/m3 (since 2012), and in Canada of 10mg/m3 since 2015, with a fur-
ther intended reduction to 8.8mg/m3. The Australian annual PM2.5 limit is
8mg/m3 with another intended reduction to 7mg/m3 within the next
years. The EU had the intention to reduce PM exposure limits until 2020
to a target concentration for PM2.5 of 20mg/m3. However, even the cur-
rent recommended PM2.5 limit is exceeded in several European coun-
tries113 and the targets for 2020 have not yet been ratified by the EU
member states and it seems that this will not happen soon. Therefore,
additional efforts are urgently warranted to improve air quality in
Europe.

7.3 Mitigation strategies for light pollution
exposure and of adverse health effects
The easiest mitigation approach to decrease light pollution is to switch-
off lights, especially when light is not absolutely necessary.190,191 Also
technical advances may help to reduce light pollution: light shielding
helps to send light rather to the base than to the sky, energy-efficient
lights emit yellow light within a nanometer range where the human eye
is most sensitive and smart city techniques control light dimming when
nobody is around or when the weather/time of the day allows light re-
duction.190,243 Reduction in ‘blue’ light emissions (LEDs display peak light
spectrum at 400–490 nm) is highly effective as this kind of light is most
detrimental for dysregulation of circadian rhythms.243 An impaired circa-
dian clock can also be ‘reset’ by chronotherapy (e.g. melatonin), which
can especially help to prevent sleep disorders,11 not only for those
caused by light pollution but also ones triggered by nocturnal traffic
noise235 and air pollution.244,245 Circadian dysregulation by these envi-
ronmental factors resembles the desynchronized profile observed in
shift workers who have an increased risk for CVD and events.246,247

7.4 Strategies for mitigation of climate
change including greenhouse gas emission,
temperature, desert storms, and wildfires
Human use of resources and energy generation has caused a 1.0�C
global warming above preindustrial level, which will probably reach 2.0–
2.5 or even higher in 2030–2052 if the emissions are not dramatically re-
duced. The natural disasters in 2018 were mainly climate related and in-
volved almost 70 million people with wild fires, storms, extreme
temperature, flooding, and landslides.248 With respect to economic
losses this summed up to 131.7 billion dollars. The economic loss by
wildfires in 2018 reached almost the similar amount as all losses from
wildfires during the last decade combined.249

Conventional mitigation strategies may focus on the reduction of
CO2 emissions from fossil sources. Negative emission technologies have
the capacity to trap and bind atmospheric carbon to reduce CO2 con-
centrations. Geoengineering techniques of radiative forcing may posi-
tively affect the radiative energy budget of our planet to stabilize or even
decrease the global temperature. In light of global warming and climate
disaster respective mitigation measures are urgently needed. Carbon
emission fines that foster carbon removal should be introduced now.250
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What can a cardiologist do to reduce greenhouse gases emissions?
Should it be important also in decision-making of clinicians in cardiology?
More recent studies compared the environmental impact (with respect
to emissions and energy consumption) of magnetic resonance imaging
(MRI), single photon emission tomography and cardiac ultrasound
(echo) that are used for the diagnosis of cardiovascular complications.
The data indicate that ultrasound is the most eco-friendly method and
only caused 1–20% of the effects on human health, ecosystem effects,
and resource use compared to MRI and tomography.251

7.5 Heart healthy city design: mitigation of
the cardiovascular risk
Urban environments are still hotspots of all environmental stressors to-
gether including climate change, air pollution, noise and light and heat in
form from heat island effects.252 Further risk exposures that may affect
the risk of NCD’s include safety from crime, social isolation, prolonged
sitting, sedentary lifestyle, and unhealthy nutrition with, just concerning
physical inactivity, disabilities life years lost up to 70 million DALYS in-
cluding 3.2 million deaths annually.252 More recently, compacts cities are
being promoted as they are considered more sustainable and health-
ier.252,253 Compact cities are cities with higher density, shorter travel dis-
tances, and higher diversity that are healthier because of increased land
use mix and the healthier mobility opportunities, all of which leads to
lower CO2 emissions.254

Boston and Melbourne are low-density sprawling communities with a
high share of 80.1% and 85.1% attributable to transportation by cars and
the health of these cities could be significantly improved by altered land
use and transport mode.254 However, compact cities are not without
their problems if the existing (public) space is not used well. Many com-
pact cites like Barcelona or Paris still suffer considerable adverse health
impacts due to their air pollution levels and other exposures related to
urban and transport planning.255,256 Therefore, we need a better use of
the new and existing public spaces.

Several novel urban concepts are currently implemented in various
cities that partly solved these problems, such as the Superblocks, the
low traffic neighbourhood, 15-min city (Figure 7), car free city, or mixed
models. All of these models are aiming at reduction of private car use
and promoting public and active transportation (walking and cycling) as
well as reducing CO2 emissions. The benefits are clear and comprise re-
duction of air pollution, noise, and heat island effects, whereas physical
activity is increased, all of which has beneficial health effects.253 Cars use
a lot of public space (road) network and parking, which could be used
much better for the creation of green spaces and infrastructure.
Barcelona uses 60% of public space for cars, while their share in overall
transportation is only 25%.253

The construction of over 500 superblocks are intended in Barcelona,
which will decrease motorized traffic in a part of the roads of a block
providing more room for people, active travel, and green space. The aim
is to generate a healthy, greener, fairer and safer public environment pro-
moting social relations and local economy. Air pollution lowering and
noise mitigation, heat island prevention and better green space imple-
mentation for physical activity are the other beneficial side effects of this
renewing city design, which can easily prevent up to 700 annual prema-
ture deaths in Barcelona (effects on premature deaths are by air quality
> noise > heat island > green space).260

Similar concepts provide the basis of low traffic neighbourhoods that
can be implemented by cheap and quick streetscape changes.261,262

These measures are implemented by some governments already to

create safer walking and cycling environments (lower COVID-19 and
traffic injury risk).262

Paris will implement the 15-min city, where work, school, shops, en-
tertainment, culture, leisure, and other social activities can be reached
within a 15-min walk or bicycle ride from the residence.263,264 The 15-
min city comprises formation of a city of villages and retro city design.
Ecology (green space), proximity, solidarity among citizens, and partici-
pation of citizens are some of the key aspects.265 The envisaged new
trees and cycle ways, community facilities and social housing, homes and
workplaces all go hand-in-hand with a new vision for urban planning, and
will result in better health.

Even further go car free cities. For example, Hamburg intends to be-
come a car-free city by 2034, mostly in response to the climate crisis.
Car free cities or neighbourhoods decrease private motorized traffic and
promote active and public transportation. A successful example is
Vauban and to a lesser extent Rieselfeld in Freiburg, Germany, that are
neighbourhoods without cars and with housing with higher sustainabil-
ity.266 Pontevedra is a small car-free city in Spain. Cars are prohibited in
Pontevedra’s city centre, representing an excellent example of a
pedestrian-friendly living with low CO2 emissions.267 The transition to a

Figure 7 The present figure depicts the 15-min city, the brain child of
Carlos Moreno, where work, school, entertainment, and other activi-
ties are reachable within a 15-min walk of the home.257,258 The 15-min
city involves the creation of a city of villages and a return to more tradi-
tional city design. The 15-min city will encourage more physical activity
through more active transport, and is likely to reduce urban inequalities
and health inequities.259 Critically, it will also reduce the need for long
distance travel and thereby reduce CO2 emissions, and air pollution
and noise levels (for review see ref.15) Translation of French words:
apprendre = to learn; travailler = to work; partager et réemployer = to
share and reuse; s’approvisionner = to supply oneself; s’aérer = to get
some fresh air; se cultiver, s’engager = to subdue, to be committed; se
soigner = to nurse oneself; circuler = to be on the move; se dépenser =
to wear oneself out; bien manger = to eat well; chez moi = at home.
Reused from ref.257 with permission of the copyright owner Micael
queiroz, www.micaeldessin.com.
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.
city without cars will result in a significant improvement of the livability
of neighbourhoods also preventing disproportional burdens of pollution,
social disadvantage, crashes, and public transport disinvestment. Car free
cities or neighbourhoods will reduce air and noise pollution, promote
physical activity, and foster generation of green space, and thereby
reduce heat island effects and improve public health.268

Some of these changes take longer to implement, while we need
to have faster action. New and easier to implement policies such as in-
troducing 30 km/h speed limits on all roads in urban areas could have a
significant impact on accidents and health. Further temporary tactical ur-
banism could help transform public urban space fairly quickly. Tactical
urbanism refers to low-cost, temporary, and scalable interventions and
policies intended to improve urban environments.269 Although these
tactical urbanism interventions are designed to be implemented in a tem-
porary and low-cost approach, these interventions can be considered as
pilot programs that could involve the community in selecting future
permanent infrastructure. Except for the compact city concept,254 these
new urban models have not specifically evaluated CVD effects, but there
are likely beneficial effects on the heart as an increase in active transpor-
tation and green space and a reduction in air pollution, noise and heat
island effects have all been associated with better cardiovascular
health.14,15

8. Major conclusion and resulting
political/societal needs for action

The exposure to almost all environmental risk factors triggers a specific
set of pathophysiological mechanisms that are centred on stress hor-
mone signalling, oxidative stress, and inflammation.10,16,17,107 As a result,
exposome studies will face the problem of identifying specific biochemi-
cal signatures (footprints) of different environmental risk factors.270 In
addition, oxidative stress and inflammation also represent major patho-
mechanisms of cardiovascular, neurodegenerative, and metabolic dis-
eases, which further complicates exposome research. Considering that
environmental stressors, unhealthy behaviour (e.g. smoking, sedentary
lifestyle), and classical risk factors (e.g. hypertension, diabetes, obesity) all
trigger similar pathomechanisms, additive/synergistic effects should be
present, leading to more pronounced development and faster progres-
sion of NCDs (Figure 1).10,17 Smart city planning may be a key mitigation
strategy of unhealthy environmental exposures because environmental
stressors such as noise, air pollution or heat islands show an accumula-
tion in big cities and large urbanized areas and their combination aggra-
vates health problems and disease burden that may exceed even the
most pessimistic projections.16

Concerning all environmental stressors societal action is highly
needed. Without fast actions to decrease the environmental stressors at
all levels (chemical, physical, and mental sources), the sum of all ‘pollu-
tion’ and climate change will likely form a reinforcing feedback loop.
Currently, around 96% of public health funding is spent for treatment
and only 4% for prevention.271 Additionally, the funding for prevention is
mostly spent at the individual level with only limited effort or money
dedicated to the collective social and physical environment for preven-
tion of environmental exposures. What we need are intersectoral
actions for better city design, which has to be done by urban, transport
and health planners, all of which has the largest impact on health.
Unfortunately, these experts often do not realize the impact of their
work on human health and how they can improve health.

We as health professionals have to play a leading role in addressing
and in acknowledging environmental stressors such as noise and air pol-
lution as cardiovascular risk factors that are as important as e.g. smoking,
diabetes and hypercholesterolaemia. We also have to take care that en-
vironmental researchers are getting integrated into these guidelines writ-
ing teams to ensure that in the very near future environmental stressors
(e.g. climate change, air pollution) rather than classical risk factors (e.g.
high cholesterol or diabetes) are defined as the cardiovascular risk fac-
tors of the future. Funding for environmental research, teaching and edu-
cation of the consequences of climate change has to be intensified
dramatically, especially medical/health care field, in order to protect the
health of our current and future generations.

Supplementary material

Supplementary material is available at Cardiovascular Research online.
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Wunderli J, Röösli M, Probst-Hensch N. Exposure to road, railway, and aircraft
noise and arterial stiffness in the SAPALDIA study: annual average noise levels and
temporal noise characteristics. Environ Health Perspect 2017;125:097004.

73. Kalsch H, Hennig F, Moebus S, Mohlenkamp S, Dragano N, Jakobs H,
Memmesheimer M, Erbel R, Jockel KH, Hoffmann B; Heinz Nixdorf Recall Study
Investigative Group. Are air pollution and traffic noise independently associated
with atherosclerosis: the Heinz Nixdorf Recall Study. Eur Heart J 2014;35:853–860.

74. Hennig F, Moebus S, Reinsch N, Budde T, Erbel R, Jockel KH, Lehmann N,
Hoffmann B, Kalsch H; Heinz Nixdorf Recall Study Investigative Group.
Investigation of air pollution and noise on progression of thoracic aortic calcifica-
tion: results of the Heinz Nixdorf Recall Study. Eur J Prev Cardiol 2020;27:965–974.

75. Atanackovic D, Atanackovic D, Brunner-Weinzierl MC, Kröger H, Serke S, Deter
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