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Energy eiciency is an important criterion to judge the quality of mobile apps, but one third of our arbitrarily sampled

apps sufer from energy issues that can quickly drain battery power. To understand these issues, we conduct an empirical

study on 36 well-maintained apps such as Chrome and Firefox, whose issue tracking systems are publicly accessible. Our

study involves issue causes, manifestation, ixing eforts, detection techniques, reasons of no-ixes and debugging techniques.

Inspired by the empirical study, we propose a novel testing framework for detecting energy issues in real-world mobile

apps. Our framework examines apps with well-designed input sequences and runtime context. We develop leading edge

technologies, e.g. pre-designing input sequences with potential energy overuse and tuning tests on-the-ly, to achieve high

eicacy in detecting energy issues. A large-scale evaluation shows that 90.4% of the detected issues in our experiments were

previously unknown to developers. On average, these issues can double the energy consumption of the test cases where the

issues were detected. And our test achieves a low number of false positives. Finally, we show how our test reports can help

developers ix the issues.
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1 INTRODUCTION

Mobile devices have evolved into a wide ecosystem, providing millions of third-party apps to serve various user
needs. Energy eiciency is a desirable quality attribute of mobile apps. However, many real-world mobile apps
sufer from energy misuses. For example, Huang et al. [57] reported that most energy issues in mobile devices
are caused by apps (47.9%) rather than systems (22.2%). We also arbitrarily sampled 98 open-source Android apps
and found that 27 (30.3%) of them sufer from serious software energy issues.

Despite many pieces of existing work (e.g., [17, 54, 57, 64]), the characteristics and combatting-technology of
energy issues are still not very well studied. Due to this reason, there exist few efective techniques to address
serious energy issues. This motivates us to conduct an empirical study on 36 energy-ineicient Android apps.
Speciically, we follow a classic empirical study’s guideline [68] and design two sets of research questions. The
irst set attempts to study the characteristics of the energy issues:

• RQ1 (Issue Causes): What are the common root causes of energy issues?

• RQ2 (Issue Manifestation): How do energy issues manifest themselves in practice?

• RQ3 (Issue Fixing Eforts): Are energy issues more diicult to ix than non-energy issues?

The second set attempts to study the techniques in industry for detecting, diagnosing, and ixing energy issues:

• RQ4 (Detection Techniques):What information and tools are the most helpful for detecting energy issues?

• RQ5 (Reasons of No Fixes): How many reported energy issues were left unixed? Why could these energy
issues not be ixed?

• RQ6 (Debugging and Fixing Techniques):What information and tools are the most helpful for debugging
and ixing energy issues?

We analysed 200 energy issues from the 36 open-source projects. The indings will motivate multiple lines
of future research on combatting energy issues. Speciically, the following two indings inspired us to design a
novel issue-detection technology. For RQ1, we identiied four main root causes of energy issues: 1) unnecessary
workload, 2) excessively frequent operations, 3) wasted background processing, and 4) no-sleep (Finding 1). For RQ2,
we found that many energy issues require special inputs (64.6%) or special context (22.2%) to trigger and only
18.2% energy issues can manifest themselves with simple inputs (Finding 2).

We further studied the state-of-the-art testing technique for detecting energy issues [17], which was proposed
by Banerjee et al., and made two observations. First, as shown in Table 1, the existing technique is only capable
of exposing issues resulting from wasted background processing and no sleep. This is because the technique
diagnoses energy issues based on E/U ratio, i.e., the ratio of energy-consumption to hardware-utilization. If E/U
ratio is high, it means that energy consumption is high, while hardware utilization is low, implying that the app
under analysis is energy-ineicient. This point of view seems reasonable. For energy issues caused by wasted
background processing and no-sleep, the E/U ratio could be remarkably high. However, according to Finding 1,
many energy issues can also be caused by unnecessary workload and excessively frequent operations. These
issues cannot be detected via analyzing E/U ratio: they may enlarge E and U simultaneously, hence E/U ratio is
not a good indicator of the existence of such issues. Second, regarding Finding 2, the existing technique is capable
of generating simple and special inputs to trigger energy issues, but does not simulate special context (e.g., poor
network performance). Due to this limitation, it may miss many real energy issues (22.2% of our studied issues
can only be triggered under special context).
Based on these observations, we propose a novel testing framework for efectively detecting energy issues.

We also performed experiments to evaluate our framework. The results show that our testing framework can
uncover a large number of serious energy issues in high-quality apps, 90.4% of which have never been discovered
before. On average, these issues double the energy cost of the corresponding test cases. Manual veriication also
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Table 1 Comparison with the existing technology.

Root Cause Work [17] Thiswork

Unnecessary Workload ( 42.7%) ✗ ✓

Excessively Frequent Operations ( 18.2%) ✗ ✓

Wasted Background Processing ( 22.7%) ✓ ✓

No Sleep ( 33.6%) ✓ ✓

Manifestation Type Work [17] Thiswork

Simple Inputs ( 18.2%) ✓ ✓

Special Inputs ( 64.6%) ✓ ✓

Special Context ( 22.2%) ✗ ✓

shows that our framework only reports a low number of false positives. Finally, we demonstrate how our test
reports can facilitate developers in ixing the issues. The key contributions of this paper are as followed:

• To the best of our knowledge, we conducted the most comprehensive empirical study on developer-
reported energy issues in mobile apps. Our study involves issue causes, manifestation, ixing eforts,
detection techniques, reasons of no-ixes and debugging techniques. In contrast, the previous most relevant
work [54] only investigated issue cause and ixing eforts.

• Inspired by the indings, we designed and implemented an automated testing framework for detecting
energy issues. Our innovations include extracting battery-hungry input sequences from source code,
steering the test direction on-the-ly for high detection eicacy, and employing machine learning to classify
app workload.

• We empirically evaluated our framework and the results are promising: it detected 83 issues in 89 apps,
creating many opportunities for optimizing the energy eiciency of these apps. As far as we know, this
evaluation of a testing framework for energy issue detection is of the largest scale (the largest previous
evaluation [17]: 30 app subjects and detected 12 issues; this paper: 89 app subjects and detected 83 issues). Our
subjects are also of higher quality than previous work, which are selected considering metrics such as high
popularity and maintenance quality. In constrast, most subjects in previous work do not meet this standard.

And this paper is an extended work of [48]. The key changes are as below:

• In [48], we only presented two aspects (i.e. issue causes and issue manifestation) of our empirical study.
In this paper, we explore four more aspects to make more comprehensive and deeper understanding of
energy issues. These four new aspects respectively are issue ixing eforts, detection techniques, reasons of
no ixes, and debugging & ixing techniques. We will discuss about them individually in Section 3.3, 3.4, 3.5
and 3.6. These new indings will motivate multiple lines of future research on combatting energy issues.

• In Section 5.3.2, we explain in more detail about the determination of ϵ and MinPts. We present the key
algorithm for determining them. We also employ communication apps as examples to explain the process.

• In Section 5.4, we discuss more speciically about the manual veriication for the issue-candidates.

• In Section 6.2, we show how the parameters in our testing framework inluence the results of false positives
and false negatives.

• In Section 6.2 again, we conduct new experiments on a new device and new apps to evaluate the generality
of our testing framework. Meanwhile, we also experimentally justify the efectiveness of our steering
algorithm.

• We add a new section (Section 6.4) to show how our test reports can assist in ixing energy issues. We use
two concrete examples to illustrate the debugging procedures.

ACM Trans. Softw. Eng. Methodol.
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• In Section 6.4, we operate a user study on developers to evaluate the usefulness and usability of our testing
framework.

• In the beginning of Section 9 (related work), we add discussion about the relation between performance
issues and energy issues.

• In Section 3.3, we add the statistics of the issues from all app subjects, not limited to Chrome and Firefox.

• The dataset of issue reports for our empirical study is updated to June 2021, which guarantees the timeliness
of our study

In the remainder of this paper, we irst introduce the data source for empirical study in Section 2, and discuss
the indings in Section 3. We present our testing framework and technical details in Sections 4 and 5. Finally, we
present an evaluation of our framework and discuss the results in Section 6.

2 DATA SOURCE

Open-source projects typically have publicly accessible issue tracking systems and code repositories. In the
issue tracking systems, developers can post an issue report, which contains a title and a main body part, to
report the symptoms of their observed bug/issue 1 and the steps to reproduce the issue (optional). Following that,
developers can discuss the issue and comment on the report. Those developers who are assigned to ix the issue
can propose potential code revisions. Typically, after code review by other project members and further changes,
such revisions will be committed to the project’s code repository.
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Fig. 1 The 98 app subjects of diferent categories.

Our empirical study is conducted on well-maintained Android application projects from three popular open-
source software hosting platforms: GitHub2, Mozilla3, and Chromium4 repositories. The criteria for selecting
app subjects for our study are these: 1) a subject should have achieved at least 1,000 downloads on the market
(popularity), 2) it should have more than one hundred code revisions (maintainability), 3) its issue tracking system
and code repository should document the details of various issues such as what tools and information utilized to
diagnose the issues (informativeness). Following these criteria, we arbitrarily selected 98 app subjects from those
three software hosting platforms. These open-source applications are also indexed by the F-Droid database5.

1We use the terms of bugs and issues interchangeably in this paper.
2github.com
3dxr.mozilla.org bugzilla.mozilla.org/home
4www.chromium.org bugs.chromium.org/p/chromium/issues/list
5https://f-droid.org/
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Figure 1 presents the numbers of app subjects of diferent categories. They cover most application categories in
F-Droid and in total contain 2,935,090 issue reports, indicating that these subjects are quite large-scale.

To search for energy issues, we adopted a semi-automated approach as described below.
Explicitly-labeled energy issues. First, we studied the issue labels used in each project’s issue tracking systems.

Only two repos, Chrome and Firefox, have explicit labelled energy issues. In Chrome, 57 issues are labeled with
"Performance-Power" or "Performance-Battery". In Firefox, only three issues are labeled with "power". We irst
include these 60 issues in our dataset.
Energy issues without explicit labels. For other repos, where energy issues are not explicitly labeled (diferent

developer teams have diferent practices), we employed keyword searching in the issue reports’ title and body
to locate potential energy issues. Since developers may not carefully label each issue report, we also applied
keyword searching in Firefox’s and Chrome’s issue reports. The Cartesian product rules listed in Formula (1) and
(2) describe the keywords we used. According to the rules, for instance, "energy consumption", "power save" and
"battery hit" can be generated as the search keywords.

{enerдy, power } × {consumption, save, eicency,use, usaдe, draw } (1)

{battery} × {drain, drop, draw, use, usaдe, save, conserve, hit } (2)

While the general keyword searching can help retrieve most energy-related issue reports, it can also produce
false positive results when the issue reports accidentally contain any of our keywords. For example, Dash Clock
issue 593 reports that the device can not be charged when using the app6. The report body "using this app the
battery does not charge" contains keywords "battery" and "use". However, this report is not reporting an energy
issue in mobile apps. To ilter out such irrelevant issue reports, after keyword searching, we manually veriied
each returned issue report to make sure the issue concerned is indeed an energy issue. Note that, there also exist
duplicate issues in the issue tracking systems, and the issues are explicitly labelled by the developers. We thus
remove the duplicate issues based on such labels. In total, we checked 1352 retrieved issue reports and this helped
us locate 200 real energy issue reports from 36 apps.
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Fig. 2 The yearly number of reported energy issues.

Figure 2 shows the distribution of opening dates of these reports. There was a peak reporting period from 2014
to 2017. Only 26.5% (53 out of 200) reported issues were ixed. The main reasons for no ixes are these: 1) many
energy issues are irreproducible (55.7%), 2) the problematic code cannot be localized (7.8%), 3) energy-saving by

6łDash Clockž is the app name, ł593ž is the issue’s ID given by the corresponding issue tracking system.

ACM Trans. Softw. Eng. Methodol.



1:6 • Xueliang Li, Junyang Chen, Yepang Liu, Kaishun Wu, and John P. Gallagher

ixing the issues cannot be evaluated (7.8%), and 4) the ix causes other issues (7.8%). So in this paper, we will
present a cutting-edge technology for efectively pinpointing energy issues in the lab where testing condition is
precisely controlled, so the issues can be strictly reproduced and localized. Also, energy-saving can be accurately
evaluated.

3 EMPIRICAL STUDY

To answer our research questions, we carefully studied the 200 energy issue reports.
In empirical studies, usually, for classiication-like RQs (e.g. types and proportions of issue causes), we do not

explicitly propose hypothesis since there may exist ininite possibilities. Choosing any certain case as hypothesis
will probably result in a denial.

So no explicit hypothesis for classiication-like RQs is how the literature practises, as shown in [54, 56]. The
classiication and quantiication on their own are very informative and helpful for developers and researchers,
and are the relections to the RQs and the learned insights. Such style of empirical studies like [54, 56] already
proved its signiicant value for the industry and the academia.
But for if-or-not RQs (e.g. "RQ3: Are energy issues more diicult to ix than non-energy issues?"), proposing

hypothesis is a standard approach for empirical study. And we will apply this standard for the RQ3.

3.1 RQ1:What are the common root causes of energy issues?

Among the 200 reports, 110 explicitly show the information on root causes of the issues. We examined all of
them and observed the following six root causes. Some issues were caused by multiple reasons, hence, the sum of
the percentages below is over 100%.

Unnecessary workload (47/110=42.7%). Many applications perform certain computations that do not deliver
perceptible beneits to users. These computations incur unnecessary workload on hardware components including
CPU, GPU, GPS, network interface, and screen display. For example, in the reports of Chrome issue 662012 and
541612, the application produces frames constantly even when visually nothing is changed or repainted, which
causes huge workload on CPU and GPU. And the report of OpenGPSTracker issue 406 shows that the app keeps
recording users’ location even after not moving for minutes, barely exhausting battery.

Excessively frequent operations (20/110=18.2%). Performing certain operations too frequently can also
waste power. In comparison with unnecessary workload, when ixing energy ineiciencies caused by excessively
frequent operations, the developers do not completely remove the operations (because their functionality is
necessary), but reduce the frequency of operations. For example, in Firefox (issue 979121), whenever users type in
the URL bar and the text changes, the app will query the database (e.g. for auto-completion). Considering users
often visit the websites they visited before, developers suggested to store users’ browsing history in memory to
reduce database hits to save energy. Another example is Firefox issue 1057247, where developers think that the
frequency for retrying to fetch failed favicons is too high. Their patch to ix the issue lowered the frequency, as
shown in Program 1.

Program 1 Part of Java patch for Firefox issue 1057247.

- // Retry failed favicons after 20 minutes.

- public static final long FAILURE_RETRY_MILLISECONDS = 1000 * 60 * 20;

+ // Retry failed favicons after one hour.

+ public static final long FAILURE_RETRY_MILLISECONDS = 1000 * 60 * 60;

Wasted background processing (25/110=22.7%). As battery powered mobile devices are extremely sensitive
to energy dissipation, it is a good practice to make backgrounded applications as quiet as possible. Speciically, the

ACM Trans. Softw. Eng. Methodol.
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łbackgoundž here means that after the use of an application or łactivityž (a major type of application component
that represents a single screen with a user interface7), users press theHome button or switch to another application
or activity, so the previous application or activity goes to background. Typical examples are Chrome issue 781686
and Firefox issue 1022569: when users select a new tab (each tab is an activity), the invisible old tab would still
keep being reloaded, which wastes battery. But these issues do not have an easy solution since users may want
old tabs to be reloaded.

Program 2 JavaScript patch of Firefox issue 1026669.

case ''ssdp-service-found'':

- {

- this.serviceAdded(SimpleServiceDiscovery.findServiceForID(aData));

- break;

- }

+ this.serviceAdded(SimpleServiceDiscovery.findServiceForID(aData));

+ break;

case ''ssdp-service-lost'':

- {

- this.serviceLost(SimpleServiceDiscovery.findServiceForID(aData));

- break;

- }

+ this.serviceLost(SimpleServiceDiscovery.findServiceForID(aData));

+ break;

+ case ''application-background'':

+ // Turn off polling while in the background

+ this._interval = SimpleServiceDiscovery.search(0);

+ SimpleServiceDiscovery.stopSearch();

+ break;

+ case ''application-foreground'':

+ // Turn polling on when app comes back to foreground

+ SimpleServiceDiscovery.search(this._interval);

+ break;

No-sleep (37/110=33.6%). The no-sleep issue means that when the screen is of and device is supposed to
enter sleep mode, certain apps still keep the device awake, which usually results from misuse of asynchronous
mechanisms [59] like services, broadcast receivers, alarms and wake-locks. For example, Kontalk issue 143
unnecessarily holds a wake-lock, preventing the device from sleep. For another example, in Firefox (issue
1026669), the Simple Service Discovery Protocol (SSDP) activates the searching service every two minutes when
the screen is of, which not only incurs a large amount of workload but also prevents the device from entering the
sleep mode. Program 2 gives the JavaScript patch for ixing this issue. It added the cases to deal with łapplication-
backgroundž and łapplication-foregroundž for the SSDP service. Note that, the łapplication-backgroundž deined
by developers includes both screen-of time and the scenarios where users switch to another application. So this
issue belongs to two categories: no-sleep and wasted background processing.

Runtime exception (3/110=2.7%). In some cases, runtime exceptions may provoke abnormal behaviors of a
mobile application and cause energy waste. For instance, in AntennaPod (issue 1796), the łNullPointerExceptionž
makes the download process persist and consume power. In our study, such energy issues caused by runtime
exceptions are not common and we only observed three cases.

Spike workload (2/110=1.8%). A spike workload can cause lagging UI [56], degrade user experience and heat
up the device, inducing a huge energy waste. For instance, in RocketChat (issue 3321), when users send or receive
GIF animation pictures, CPU utilization quickly rises to 100% and heavily afects the battery.

7https://developer.android.com/guide/components/fundamentals.html
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The above analysis proves that unnecessary (the irst, second and ifth root causes) or unoptimized (the third,
fourth and sixth root causes) workloads are the major causes of energy issues. This observation enables us to
give a better deinition of energy issues:

Deinition 1: energy issues are the issues that incur unnecessary or unoptimized energy use, and noticeably harm
user experience.

3.2 RQ2: How do energy issues manifest themselves in practice?

Out of the 200 reports, 99 contain explicit information that shows how the issues manifest themselves. We studied
these 99 issues to answer RQ2. We observed three manifestation types: simple inputs, special inputs and special
context. It is worthwhile to notice that, simple inputs and special context may combine to incur issues, on the
other hand, special inputs and special context may also overlap.
Simple inputs (18/99=18.2%). Simple inputs mean one tap or swipe gesture in common interaction scenarios.

We found 18 issues are of this type of manifestation. For example, Andlytics issue 543 lets the app refresh itself
whenever the user opens the app. And VoiceAudioBookPlayer issue 299 makes the app unnecessarily scan folders
every time the user starts or leaves the app.

Special inputs (64/99=64.6%). The majority of the energy issues can only be triggered with certain speciic
inputs or a sequence of user interactions (e.g. text typing, taps, or swipes) under certain states of an application.
For instance, the c:geo (a geocaching app) issue 4704 requires three steps to reproduce: 1) open the app and make
sure GPS is inactive since the app starts, 2) change between cache details and other tabs of the same geocache, so
GPS is activated, 3) put the device in standby and let timeout to screen-of. After a while, users would ind GPS
stays active even when the screen is turned of. To avoid energy waste, users decide to quit using the app.

Special Context (22/99=22.2%). Special context includes environmental conditions (rather than user interac-
tions, e.g. taps) such as the accessibility of networks, location of the device, settings of the OS and applications.
In our dataset, 22 issues require such special context to trigger. For instance, MPDroid issue 3 appears when the
user is watching stream videos but the network is disconnected; the app then keeps trying to load the video and
consumes battery. AnkiDroid issue 2768 occurs when users lock the phone screen when the application is in
łreviewž mode and a notiication comes in afterwards, so the screen will hold on until the battery is dead.

3.3 RQ3: Are energy issues more dificult to fix than non-energy issues?

For this research question, we propose the hypothesis as below:
H: Energy issues are less or equally diicult compared with non-energy issues.
We raise such hypothesis because so far we have seen no evidence that energy issues would require more eforts

to ix. In this section, we will statistically compare the efort for ixing energy issues with that for non-energy
issues.

Table 2 Bug fixing efort

Criterion Min Median Max Mean

Open duration (#days) 1 42.5 1054 117.5

#Comments 0 6 144 12.0

Patch size (#changed lines) 2 88 3033 237.7

We use three metrics to assess the ixing efort of energy issues: (1) issue open duration (i.e. for how long the
correponding issue reports are open), (2) the number of comments (indicating how much developers discuss when
diagnosing the issues), and (3) the patch size (i.e. the lines of code developers write to ix the issues).

ACM Trans. Softw. Eng. Methodol.
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Fig. 3 Bug fixing eforts.
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Table 2 gives the min, median, max, and mean of these metric values. Table 2 is based on the 53 ixed energy
issues (see soon in Section 3.5). And 40 out of these 53 issues are from Firefox and Chrome. Even though the
number of ixed energy issues seems not large, these issues are all the ixed energy issues in the whole data
source of 2,935,090 issues. It is because energy issues are diicult to be detected and ixed.
On average, the open duration for energy issue reports is around four months, implying that after energy

issues are detected and reported to developers, it still requires much time to diagnose and ix the issues. The
average number of comments in energy issue reports is 12.0, which is not noticeably prominent. On the other
hand, the average lines of code to ix energy issues is as large as 237.7, indicating a non-trivial amount of eforts.
We further compared the ixing eforts of energy issues with those of non-energy issues. We made the

comparison on three energy-issue data sets: Firefox, Chrome and "Total". Firefox and Chrome represent strong
and experienced development teams with well-maintained issue-tracking systems. "Total" stands for an overall
development experience of developers. Speciically, 10% of the energy issues in Total are from Firefox and Chrome,
the other (90%) are from relatively small app projects held on GitHub.
And for the comparison, we randomly selected 100 non-energy issues from each data set. The used three

metrics are the same as above. Figures 3(a)ś3(c) presents the comparison results using box plots. As we can see,
on average, the open duration of energy issue reports is three to ten times longer than that of non-energy issues.
The numbers of comments for both types of issues are comparable at a similar level. The patches to ix energy
issues are much larger than those for ixing non-energy issues. From these observations, we can conclude that
ixing energy issues is generally more challenging than ixing non-energy issues. So the hypothesis H is denied.

And in the following we will explore and discuss about the reasons why energy issues are diicult to ix and
what techniques can help developers diagnose and ix energy issues in practice.

3.4 RQ4:What information and tools are the most helpful for detecting energy issues?

When investigating this research question, we found that among the 200 issue reports we collected, 1) there are 188
issues with reports mentioning what information helped developers conirm the existence of the corresponding
issues and 2) there are 83 issue reports mentioning the tools developers used for detecting the corresponding
issues. Table 3 and Table 4 present these helpful information and tools, respectively.

Before discussing our indings, we irst clarify some details in Table 4: Percentage (Pct.) means the information
provided by the corresponding tool is presented to developers as a percentage and Number (No.) means the
information is presented as a number. Accumulative (Acm.) means the information is the accumulation of the
corresponding metric values, such as the total energy use for four hours. Instantaneous means the information is
the instantaneous value of the corresponding metrics, such as the energy use at a certain moment (i.e., power).

As we can see from Table 3, there are nine types of information that are helpful with energy issue detection.

• In most cases (for 98 issues), developers conirmed the existence of energy issue by checking the measured
or predicted energy use at several levels of granularity such as device, app, and process according to which
tool is employed. MBDA can only provide device-level energy information. On the other hand, Settings, ADB
and etc. can provide app-level information. Specially, the tool Telemetry used by Chrome developer can
run benchmarks of a set of representative web pages and measures the energy consumption of rendering
each page so that the energy uses of individual pages (scenarios) can be compared.

• There are 48 energy issues detected according to the developers’ and users’ knowledge or engineering
experience. For example, in Firefox issue 736602, the developers suspect that the frequency for updating
inactive tabs is too high and suggest reducing the frequency to save battery power. This type of energy issue
detection requires the developers to be knowledgeable of the application’s source code and the device’s
energy features.
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Table 3 Helpful information for issue detection

Category Granularity Use Rate

device 40/188 = 21.3%

app, process
Energy use

component
49/188 = 26.1% 52.1%

scenario 9/188 = 4.8%

Engineering

experience
48/188 = 25.5% 25.5%

Non-energy Info. 29/188 = 15.4% 15.4%

device 2/188 = 1.1%

app, process 13/188 = 6.9%CPU use

method 6/188 = 3.2%

11.2%

device 1/188 = 0.5%

Awake time app 5/188 = 2.7% 4.8%

thread 3/188 = 1.6%

Network use app 4/188 = 2.1% 2.1%

Debugging print 3/188 = 1.6% 1.6%

GPS use app 2/188 = 1.1% 1.1%

GPU use method 1/188 = 0.5% 0.5%

• 29 energy issues also incur non-energy information, such as the app’s abnormal behavior, when the
corresponding application is interacting with users. For instance, Firefox issue 732723 freezes the application
when users choose to print a web page into a PDF ile. MPDroid issue 3 occurs when the network is
reconnected after disconnection and the streaming is not correctly restarted, but the application keeps
running and draining battery.

• For 28 issues, developers detected them by checking the usage information of individual hardware compo-
nents including CPU, GPU, GPS, and network, which are good indicators of energy uses. For instance,
c:geo issue 3009 was exposed by inspecting the GPS usage of the application using the tool Settings,
which provides how long the application has been using GPS in the format of seconds. Another issue
(Chrome issue 462752) was revealed by using the Linux Top tool, which shows the instantaneous CPU
utilization of the application in the format of percentages.

• For detecting nine no-sleep issues, developers used tools such as Settings, ADB and BBS, to generate app-
level awake time information, and BMW to check coarse-grained device-level awake time. Some developers
also used the tool WLD for detecting no-sleep issues. The diference between WLD and the former four tools
is the following. First, WLD can provide thread-level awake time information, the others can only produce
app-level or device-level information. Second, the other four tools can provide the information on CPU
usage, GPS status, network packages in addition to awake time information, but WLD only has awake time
information.
• There are three issues detected by investigating the debugging print. For example, AntennaPod issue
1796 is noticed because the message łprocessing downloadsž persists in the debugging print, and hence
developers realized there are some unnecessary processing in the background.

3.5 RQ5: How many reported energy issues were let unfixed? Why these energy issues could not be

fixed?

Among our collected 200 issues, only 53 (26.5%) are ixed, and 147 (73.5%) are unixed. For 115 of the 147 unixed
issues, we igured out the major reasons why they are not ixed by inspecting the issue reports. Speciically, we
leverage natural language understanding (NLU) to help automatically label the issue reports. We irst manually
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label each issue report with a certain category (e.g. "irreproducible"). Then we feed NLU model with the reports
and the corresponding labels to train the model. Lastly, we use the model to label new issue reports. Finally, we
conduct a brief manual check for all the automatically-labelled reports.

We discuss our indings in the following.
Irreproducible (64/115 = 55.7%). The most prevailing reason is that the developers can not reproduce the

issue even though the issue appeared once and was noticed by developers. It is due to lack of information to
duplicate the issue manifestation process. For instance, K-9 Mail issue 1290 can not be reproduced since no
Android version is speciied. And Firefox issue 732723 is irreproducible as a result of missing device model
information.

ACM Trans. Softw. Eng. Methodol.
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Table 4 Helpful tools for issue detection and localization

Energy CPU GPS Network
Tools

details GL7 details GL details GL details GL
Awake Trace UseRate

Settings1 Pct.4Acm.5 app No.16Acm. app No.Acm. app No.Acm. app app battery level 56.6%

Telemetry [9] No.6Acm. scenario 13.2%

Top2 Pct. Inst.8 app 8.4%

TV [10] Pct.Acm. method 4.8%

WLD [11] thread 3.6%

BBS [3] Pct.Acm. app app 3.6%

Proc3 No.Acm. app 2.4%

ADB [1] Pct.Acm. app No.Acm. app No.Acm. app No.Acm. app app hardware usage 1.2%

BMW [2] Pct.Acm. app No.Acm. app No.Acm. device No.Acm. device device battery level 1.2%

GDB [4] method 1.2%

ZDBox [12] Pct.Acm. app 1.2%

MBDA [7] Pct.Inst. device drain rate 1.2%

Perfetto [8] No.Acm. app app 1.2%

1. Battery usage, Android Settings 2. Linux łtopž Command 3. Linux "/proc/<PID>/stat" iles
4. "Pct." means "Percentage" 5. žAcm.ž means łAccumulativež 6. žNo.ž means łNumberž
7. žGLž means łGranularity Levelž 8. žInst.ž means łInstantaneousž
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The above-mentioned information is static. There are many cases where reproducing an energy issue requires
much more complicated contextual information. This is because mobile applications run in environments, which
are far more dynamic and complex than application running on laptops and PCs. To reproduce issues in mobile
applications, developers need information about hardware and OS activities, as well as information from external
and dynamic sources, such as user inputs, signal strength and GPS status. There has been comprehensive study on
this problem. Tools such as [14, 39, 49] can capture useful information from single source for issue reproducing.
Furthermore, [13] proposes an approach which can eiciently obtain multiple-source information to facilitate
developers to reproduce and diagnose the issues.

Unable to localize problematic code (9/115 = 7.8%). Even though some issues could be reproduced and
the energy waste symptoms can be observed, there is still a challenge to pinpoint the root cause. In our dataset,
we found nine issues that are detected and reproduced by developers, but were not ixed due to the reason that
developers were unable to locate the problematic code. Take Firefox issue 1217871 as an example. It was detected
with the information of device-level energy use (the battery drains from 89% to 50% in 1.5 hours); however,
developers cannot ind the exact code region that caused the energy waste. Later in Section 3.6, we will further
analyze what information is helpful for localizing the issue root causes.

Unable to evaluate energy-saving (9/115 = 7.8%). As shown in nine issue reports, the developers did not
ix the issue because they cannot assess whether the energy-saving is worthwhile for their eforts. In the report
of Firefox issue 823582, developers cannot decide whether to store the data into iles or databases because they
are not aware which way is more energy-eicient. In another report of c:geo issue 3009, the developers did not
trust the precision of energy proiles provided by Settings because such information is estimated purely relying
on several simple system readings such as CPU and GPS utilization and screen-on time. On the other hand, they
had no access to physical devices that can precisely evaluate whether their code changes would lead to energy
saving. Therefore, in the end, they gave up the code optimization and left the issue unixed.

Causing other issues (9/115 = 7.8%). Nine issues were left unixed because developers’ patches would cause
łother issuesž include regression in the application’s performance, maintainability and etc. For instance, one patch
to ix Firefox issue 751681 makes the startup time of the application much longer. The ix of c:geo issue 1557 is
too complicated and results in reforming the structure of software, making the project harder to maintain. And
Luis Cruz et al. [24] is dedicated to investigating this problem.

Negligible energy-saving (2/115 = 1.7%). In two issue reports, the developers mentioned that the energy
saved by their code refactoring is too insigniicant, and hence it is pointless to allocate efort. For example, in the
report of Firefox issue 899424, one developer notices that 0.3% CPU time is spent on executing an uninteresting
function, which results in energy waste. However, as the beneit of code optimization is negligible, other members
of the project were not convinced to focus efort on it.

Others (25/115 = 21.7%). There are 25 issues that have not been ixed for other non-technical reasons. For
example, some issues were reported not long ago and the diagnosis is still in process, as shown in Signal issue
11067. For another example, the project was already dead before Vanilla Music issue 121 was reported. There
are also cases where developers decided to ix the issues in the future releases of their applications and thus
suspended the debugging process (e.g. Signal issue 4437, 3641 are to be ixed in the next release).

3.6 RQ6:What information and tools are most helpful for debugging and fixing the issue?

Apart from the issues detected via developers’ engineering experience and non-energy information, the rest are
detected by tools as listed in Table 4. And Table 5 presents the ixing rates of energy issues when provided with
diferent information from these tools. Generally, iner-grained information produces better ixing rates. For the
energy and hardware-component usage information, the granularity of device-level and app-level can only result
in a ixing rate below 25.0%. But method-level can efectively pinpoint the issues, and has helped developers
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Table 5 Helpful information for fixing issues

Category Level #ixed1 #total2 Rate3

device 5 40 12.5%

Energy use app 7 45 15.6%

scenario 0 9 0%

device 0 2 0%

app 3 12 25.0%CPU use

method 5 6 83.3%

Network use app 0 4 0%

GPS use app 0 2 0%

device 0 1 0%

Awake time app 2 5 40.0%

thread 2 3 66.7%

Debugging

print
2 3 66.7%

1. #f ixed is the number of issues ixed using this info

2. #total is the number of issues detected and diagnosed using this info

3. Rate = #f ixed/#total

resolve 83.3% of the detected issues. For awake time information, thread-level is very supportive (66.7%) in ixing
issues. It is worth mentioning that the tools that generate method-level proiles are ’DB (for execution trace)
and TV (for CPU use, now TV is deprecated, developers can use CPU Proiler8 instead). The tool that provides
thread-level awake time is WLD.
Table 5 also demonstrates the comparison between RQ4 and RQ6. In the table, #total is the number of issues

detected and diagnosed using the tools that can provide the corresponding information (w.r.t. RQ4). #ixed is the
number of issues ixed using the information (w.r.t. RQ6). The results in Table 5 indicate that even though many
energy issues can be detected using certain tools, it is still a big challenge to ix them. More importantly, Table 5
also tells that more ine-grained information is more helpful for ixing issues. For example, method-level CPU
information helps ix 83.3% of detected issues, but device-level helps no ix.
In addition, we can also observe that only three energy issues are diagnosed using traditional debugging

information, i.e. debugging print, as shown in the last row of Table 5. This indicates the cumbersomeness of
such traditional debugging information in detecting energy issues. But once the issues are captured by using this
information, they can be ixed in most cases (66.7%).

4 OVERVIEW OF TESTING FRAMEWORK

The indings of our empirical study will beneit many aspects of research on addressing energy issues. And the
following two indings motivated us to design a novel testing framework for efectively detecting energy issues
in real apps:

• From Finding 1, we address previously unaddressed energy issues caused by unnecessary workload and
excessively frequent operations.

• From Finding 2, we found that 24.2% of energy issues can only be manifested under special context such
as poor network performance. However, such factors were neglected.

According to the irst observation, as we discussed in Section 1, evaluating the necessity of app workload is
crucial for identifying these issues. We will use machine learning to cluster workloads, and further assess their
necessity, as shown later in Section 5.3. According to the second observation, we will devise two types of most

8https://developer.android.com/studio/proile/cpu-proiler
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common special context for efectively revealing these issues, as shown in Section 5.1.2. Developers also can
duplicate our experiment for detecting these hidden issues. Importantly, we also make practical designs and
implementations to enhance the eicacy of our testing framework.

Start a test case, clear all unrelated threads and data, 
launch the app from root screen

Identify energy issues from power trace

Run app with the Input Sequence and Runtime Context 
on device, and meanwhile measure power consumption

Energy 
issue 

exists?

Add the issue to database and update steering 
parameters to guide the test direction

Yes 

Time 
expires?

End testing and generate test reports

Yes 

Preparation before testing

Select Input Sequence and Runtime Context 

No 

No 

Fig. 4 The flow chart for our testing framework.

Figure 4 shows the framework overview. The framework irst makes sophisticated preparation before testing.
For example, it inspects the source code and collects the candidate input-sequences that are most suspected
of energy overuse. A set of candidate runtime contexts (containing the above mentioned two types of special
contexts) are also carefully designed to increase the chance of provoking energy issues. Later, these candidate
inputs and contexts will be explored under an efective and systematic scheme.

To start a test case, the framework at irst clears unrelated threads and data to minimize the interference from
other applications and previous test cases. Then, it will select one input sequence and one runtime context from
the candidates, then run the app with them. During the entire test, the power consumption of device is traced
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with a power monitor. Our framework will look into the power trace and decide whether an energy issue exists.
If one does exist, the issue information will be added into database. The entire test is limited with a time budget.
If the time budget runs out, the test will quit and test reports will be generated for developers to help ix the
issues. Otherwise, our framework will start a new test case.
As mentioned above, our framework explores the inputs and contexts under a systematic scheme, where the

exploring direction is tuned on-the-ly. The rationale of our scheme is that if an energy issue occurs, it implies
that the type of the input sequence and runtime context incurring this issue may be more likely to uncover
energy issues than average case, since it did cause an energy issue to show up; we thus increase the chance of
this type of inputs and context to be tested. Concretely, we utilize a set of parameters and iteratively update them
to guide the test direction, as shown later in Section 5.2.

The large-scale evaluation (Section 6) shows that, exploiting these practical and targeted tests, our framework
largely outperforms the state of the art on the eicacy in detecting all kinds of energy issues.

5 DETAILED TECHNOLOGY

This section introduces detailed implementations of our testing framework. It involves how to design candidate
input sequences and runtime contexts, how to steer the test direction at runtime, and how to identify energy
issues from the power traces, etc. The overall objective is to efectively and accurately pinpoint energy issues.

5.1 Preparation before testing

As shown in Section 4, our test case is driven by the input sequence and runtime context. Our candidate input
sequences are designed for high utilization of the main hardware components, such as CPU, screen display and
network interface, since they are usually the culprits of energy waste, as shown in the literature [75]. Meanwhile,
according to Finding 2, we will carefully devise a set of artiicial runtime contexts for efectively detecting those
energy issues.

5.1.1 Design of candidate input sequences. We design two types of candidate input sequences. One is weighted

input sequences, the other is random input sequences. The former helps our framework detect issues in a
guided manner, the latter will cover more paths that are hard to predict in the apps.

Weighted input sequences are generated referring to the Event-Flow Graph (EFG) [60]. Each node in an
EFG is a User Interface (UI) component, such as a button or a list item. If a user interaction on a UI component,
say node1, can immediately bring out another UI component, say node2, then the EFG has a directed edge from
node1 to node2. Technically, we utilize Layout Inspector

9 to construct the EFG of an app. An arbitrary path in EFG
could be a candidate input sequence for our testing framework. In practice, our test cases always start from the root
node (i.e. the initial UI component of the app). The lengths of paths are constrained with a limit. Note that, even
though Layout Inspector can construct the EFG, it does not have a capacity to run apps with the paths. So in our
test, we use Dynodroid10 to feed the paths to apps. Detailed implementation is shown in [17]. Importantly, all
input sequences generated from EFG are assigned a weight. The weight indicates potential of a sequence to cause
energy waste; an input sequence with a larger weight has a higher priority to be tested. We use Equation (3)
to calculate the weight for each input sequence. S is the number of a certain set of system APIs invoked by the
input sequence. C is the number of function invocations and block transitions incurred by the input sequence. α
and β are used for adjusting inluences of S and C on the weight; α > 0, β > 0,α + β = 1. In practice, we set α at
0.6 and β at 0.4.

weiдht = α ∗ S + β ∗C (3)

9https://developer.android.com/studio/debug/layout-inspector
10https://dynodroid.github.io
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The reason why we resort to S and C to indicate the potential of excessive energy use is this: as shown in [75],
the main energy-consuming components are CPU, screen display, network interface (cellular and WiFi), as well
as GPS and various sensors. Except for CPU, all other components can only be controlled by a set of system
APIs, as listed in [17]. The more this set of system APIs an input sequence accesses, the larger are the chances it
causes energy waste. The CPU executes basic operations that constitute the source code of apps, for example,
arithmetic operations like additions and multiplications, and control-low operations mainly including function
invocations and block transitions. Recent research [43, 47] has shown that control-low operations are the actual
main energy-consumers for Android app source code. We therefore use the total number of the main control-low
operations (i.e. function invocations and block transitions) to indicate the potential CPU overload of an input
sequence.

Note again that, we calculate S and C before testing. We irst instrument the app source code, and run the app
with the input sequences in the emulator on a powerful PC, and then record their S and C values individually.

Apart from weighted input sequences, we also designed random input sequences to cover exceptional
cases we might not envisage. We use the Monkey tool11 to generate random input sequences, such as taps and
swipes. łRandomž here means the position of the inputs on screen are randomly set.

5.1.2 Design of candidate runtime contexts. The entire experiment is set in a signal shielding room, enabling us
to manipulate the contextual factors, such as the strength of WiFi (in our test, we employ WiFi as the connection
to Internet) and GPS signal. We designed three types of runtime contexts, namely, Normal, Network Fail and
Flight Mode. In Normal, the WiFi and GPS work normally (package delivery delay is 36 ms and bandwidth is
3.2 Mb/s). In Network Fail, the signal is seriously weak (package or message delivery delay lengthens to 451
ms, bandwidth drops to 12.0 Kb/s). In Flight Mode, WiFi is closed at software level by the OS, and GPS works
normally.
The reason for choosing Network Fail and Flight Mode as representatives for special contexts is that our

empirical study shows they are the two major types of special contexts. The former accounts for 31.8% (7 out of
22), the latter accounts for 13.6% (3 out of 22) of issues manifested under special context.
We also designed a special type of runtime context, Non-background. We designed this context because in

our experiment we observed that it can provoke more no-sleep issues. In Non-background, the network and
GPS work ordinarily, however, we do not input a press of Home button to the device after EXECUTION stage (the
stage-division for test cases will soon be explained in Section 5.3). That is, the test case does not have BACK’ROUND
stage, and straight goes to SCREEN-OFF.

5.2 Steer the Test Direction On-the-fly

Our framework steers test direction dynamically based on test history. Algorithm 1 shows details of our steering
scheme. The rationale behind it is this: when an energy issue is detected, it implies that this type of input sequence
and runtime context may have a greater opportunity than usual to provoke energy issues since it did trigger an
energy issue. Hence, our framework will generate slightly more of this type of test cases for larger chance of
confronting energy issues.

Data for the algorithm. The candidate input sequences and runtime contexts are designed based on the ap-
proachwe demonstrated in Section 5.1.1 and 5.1.2.We present them in the data structures ofWeiдhtedInputSequences ,

Random InputSequences and Runtime Contexts. N is the number of candidate runtime contexts. In our test, we de-
vised 4 runtime contexts (including Non-background), so N = 4. pwдt and Pctx are the steering parameters for
concretely guiding the test. pwдt is the probability of choosing a weighted input sequence for the upcoming
test case. In practice, we initialize it as 50%, so the irst test case has a chance of 50% to run with a weighted

11https://developer.android.com/studio/test/monkey.html.
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Algorithm 1: Steer the test direction on-the-ly

Data:

WeiдhtedInputSequences = {(sequencei , weiдhti ) };

RandomInputSequences = {sequencej };

RuntimeContexts[N ] = {contextk };

0 < pwдt < 1, Pctx [N ] = {0 < pk < 1};

∆wдt , ∆cxt ;

1 Preparation before testing;

2 Start a test case, clear unrelated threads and data, launch app from root screen;

3 #---------------------Select Input Sequence and Runtime Context---------------------#

4 Determine the type of input sequence, and the type of łweightedž has a probability of pwдt to be chosen;

5 if the determined type is łweightedž then

6 Select an unexplored sequence with highest weiдht inWeiдhtedInputSequences ;

7 else

8 Randomly select one sequence from RandomInputSequences ;

9 end

10 Select one context from RuntimeContexts with its corresponding probability;

11 #-----------------------------------------------------------------------------------#

12 Run app with the selected input sequence and runtime context on device, and meanwhile measure power consumption;

13 Identify energy issues from power trace;

14 if there exists an energy issue then

15 Add the energy issue to database;

16 #---------------------------Update steering parameters--------------------------#

17 if the issue is incurred by a łweightedž sequence then

18 if pwдt ≤ wдt_up_threshold − ∆wдt then pwдt := pwдt + ∆wдt ;

19 else

20 if pwдt ≥ wдt_down_threshold + ∆wдt then pwдt := pwдt − ∆wдt ;

21 end

22 switch which context triggers the energy issue do

23 case e.g. contextk
24 if pk ≤ cxt_up_threshold − ∆cxt and there are n elements (except pk ) in Pctx that are greater than or equal to

cxt_down_threshold + ∆cxt and n > 0 then

25 pk := pk + ∆cxt ;

26 Decrease those n elements individually by ∆cxt /n;

27 end

28 end

29 endsw

30 #------------------------------------------------------------------------------#

31 end

32 if time expires then End Testing and generate test reports;

33 Go back to line 2

input sequence, and we will update and reine pwдt dynamically during the entire testing. On the other hand, one
element pk in Pctx represents the probability of choosing contextk in RuntimeContexts. We will also update Pctx
at runtime. The summation of elements in Pctx is bound to 1.

∆wдt is the increment used to increase or decrease pwдt to renew pwдt . ∆cxt plays the same role for Pctx . The
larger ∆wдt and ∆ctx are, the more aggressively we tune the test direction.

Details of the algorithm. We irst prepare data and initialize parameters (pwдt , Pctx , ∆wдt and ∆cxt ). We
then start a test case, clear unrelated threads and data, and launch the app from root screen. Next, we decide the
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type of input sequence; weighted input sequences have a probability of pwдt to be chosen. If the chosen type is
łweightedž, we then select an unexplored sequence with the highestweiдht inWeiдhtedInputSequences. Otherwise,
we randomly select a sequence from RandomInputSequences. Likewise, for runtime context, we select one from
RuntimeContexts with its corresponding probability.
We then feed the app with the selected input sequence and runtime context, and measure the device power.

The power trace will be analysed to conirm whether an energy issue occurs. If there exists an energy issue, it
implies that this type of input sequence and runtime context may be proitable for provoking more energy issues,
our testing framework then steers lightly in this direction. Speciically, if it is triggered with a weighted input
sequence, we increase pwдt by ∆wдt . And after being increased, pwдt should not exceedwдt_up _threshold . If it
is a random input sequence, we decrease pwдt by ∆wдt . Also, we keep pwдt ≥ wдt_down _threshold .
An analogous approach is applied to reining Pctx . We check under which runtime context (e.g. contextk )

the issue occurs, then increase its testing probability (e.g. pk ). However, the precondition is that there should
be at least one element (except pk itself) in Pctx that are no less than cxt_down _threshold + ∆cxt , because on
one hand, we intend to rebalance the probabilities, and on the other, we should let all contexts have at least a
possibility of cxt_down_threshold to be tested.

5.3 Identify Energy Issues from Power Trace
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Turn on the 
screen

Open the 
application

Press  
Home button

P
O

W
E

R
 T

R
A

C
E

 Screen automatically 
turned off

TIME

Without Energy Issue

With Execution Issue

With Background Issue

With No-Sleep Issue

Fig. 5 An illustration of power traces with energy issues.
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We divide the power trace into ive stages, i.e. PRE-OFF, IDLE, EXECUTION, BACK’ROUND and SCREEN-OFF. This
division can help us identify three types of energy issues: execution issues (including issues caused by unnecessary
workload and excessively frequent operations), background issues (i.e. wasted background processing) and no-
sleep issues. Figure 5 shows an illustration of power traces with these three types of energy issues.

And it is worthy to mention the detail that, the sampling rate of our measurement is 100 Hz. Thus the granularity
of time of the power trace is one-hundredth of a second.

PRE-OFF stage is the beginning stage where the device is powered but the screen is of. Then, the test case will
be transferred to IDLE stage by turning on the screen. To enter EXECUTION stage, the subject application will be
opened and run with a certain input sequence and runtime context, which are selected as shown in Section 5.2.
After EXECUTION stage, the application will be fed with a press of Home button to enter BACK’ROUND stage. The
inal stage is SCREEN-OFF stage, which begins when screen is supposed to be turned of automatically, however,
part of energy issues keep the screen on even at SCREEN-OFF stage, eating battery power badly.

5.3.1 Identifying Execution Issues. For execution issues, as we discussed in Section 1, evaluating the necessity
of app workload is crucial for identifying them. Speciically, we employ the Dbscan clustering algorithm [27]
(Density based spatial clustering of applications with noise) to fulil this purpose. The objective of Dbscan is to
classify multidimensional data points into three groups, namely, core points, border points and outlier points.
After clustering, the data points should have the following properties: 1) For a core point, the number of its
neighbours (the points within a range of ε from it) is no less than a certain value,MinPts . Generally speaking,
the core points are łquite close and gatheredž. 2) For a border point, its neighbours are less thanMinPts , but it is
a neighbour of at least one core point or another border point. 3) For an outlier point, its neighbours are less than
MinPts , and it does not have either a core or a border neighbour.

We treat each test case as a data point, and treat test cases in the same app category as a data set for clustering.
The dimensions of each data point we employed for clustering are lchpp , nchpp , µchpp , µexe , which are all extracted
from power trace of EXECUTION stage of each test case. lchpp is the total length of continuous-high-power periods.
Continuous-high-power period is when power continuously exceeds a certain threshold longer than a certain
length. In practice, we deine the "high-power" threshold as the value ofmean(all ) + std (all ). all is the set of all
power samples collected for this app category so far. And the time length is set at one second.
nchpp is the number of these periods. µchpp is average power of these periods. µexe is average power of the

entire EXECUTION stage.
Dbscan then classiies the test cases into those three groups. We label test cases in core and border groups as

łnormalž, and the ones in outlier group as suspects for sufering from execution issues.
The motivation of this approach to probing for execution issues is this: usually łnormalž energy use is suicient

to guarantee quality of user experience (QoE) of apps, outlier-level energy use is suspiciously problematic and
unnecessary. And diferent app categories usually have distinct łnormalž energy use (e.g. games vs. productivity
apps). So we handle diferent app categories separately as shown above.
As shown above, we use app category as a heuristic to determine the necessity of workload. Our evaluation

(in Section 6) demonstrates the high eicacy of this heuristic. Finer-grained and better categorization of apps
may further enhance the eicacy. Here is an application scenario of our framework: the testers can treat the
app under test and its competing apps on the market as a comparison group; Outlier-level energy use in such a
setting likely indicates energy issues that are worth further investigation and ixing.

Note that, the ultimate clustering model is available only when all test traces are collected. So at the beginning
of testing, such a model is inaccessible since we have no power traces to build it. That is, we have no clustering
model for identifying execution issues at the beginning of testing. So, we need to decide, from which point during
testing, we should start building a model for temporary use.
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To make our design reasonable, we did a pilot study by running 100 randomly-chosen test cases. We extracted
the key features from the power traces and visualized the features. We found two łobviousž outliers using Dbscan.
With further manual veriication, both outliers were conirmed to be real issues.

As a density-based clustering algorithm, Dbscan may generate biased-models when outliers are of signiicant
proportion in the dataset. In our problem domain, the number of outliers (abnormally high energy use) is naturally
low, as shown in our pilot study and in our inal evaluation (Section 6). Hence, in our experiment, we at irst
collected 50 power traces to bootstrap the model building process and then iteratively added new power traces to
the dataset. As the dataset grows, the model becomes more accurate and powerful for identifying outliers. At last,
we use the inal model to recheck all power traces for issue detection.

Algorithm 2: Find the appropriate ϵ (based on [26])

1 # Input

2 data set of size n

3 window =wd

4 # Output

5 ϵ for the Dbscan algorithm

6 ### Find distances to the nearest k neighbours for each points

7 for i = 1 to n do

8 for j = 1 to n do

9 d (i, j ) = ind distance (pointi ,pointj );

10 ind distances to the nearest k neighbours;

11 end

12 end

13 sort the k ∗ n distances in an ascending order and plot them out as a curve;

14 ### Find the critical change in the curve, and ϵ corresponds to it

15 for i = 2 ∗wd to k ∗ n do

16 compare the previous two windows of distances by rank-sum test;

17 if the two windows are unequal then
18 the mean value of the distances in the two windows is the proper ϵ ;

19 break;

20 end

21 end

Later, our evaluation on 89 apps (involving 35600 test cases) shows that only 1.1% test cases are outliers. Our
framework detected 47 candidate execution issues from those 1.1% test cases. Only three (out of the 47) are false
positives, indicating the high reliability of this approach. In contrast, current technology [17] detected 3 candidate
execution issues from 30 apps, and still one of them is a false positive.

5.3.2 The determination of ϵ and MinPts . For easy explanation, the above discussion did not mention the
determination of ϵ andMinPts . Here we explain it in more details.
MinPts is not diicult to evaluate. The previous section shows that in the domain of energy issue detection

the number of outliers is naturally low (usually below 10% of all data points). We thus setMinPts at 10% of the
number of all data points, to avoid classifying small groups of outliers as normal points. During our testing, ϵ
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Fig. 6 The example of finding ϵ for the app category of communication.

is dynamically adapted to the current data set. ϵ varies according to the diferent app categories, and changes
iteratively with the enlarging dataset.

So given an already-collected dataset of a certain app category, we employ Algorithm 2 to automatically ind
the suitable ϵ .
The basic idea of the algorithm is to ind the value of ϵ that can generally indicate the density of the data

points. Concretely, the algorithm irst calculates the distances to the nearest k neighbours for each point, then
sorts all of these distances in an ascending order, and further plots them out as a curve. Finally, the critical change
in the curve is the proper ϵ .
We set k value at 10 in practice since larger k does not change the proper ϵ dramatically.
Figure 6 shows an example of the critical change in the curve. We go through curve from left to right, and

compare two sequential windows of distances in the curve. If the two windows of distances are diferent, then
here (the two windows) is the location of the critical change, and we use the mean value of the distances in the
two windows as the proper ϵ . Otherwise, we continue searching for it. And we employ rank-sum test [81] to
conduct a statistical comparison between the two windows. Rank-sum test is dedicated to evaluating the equality
of two sets of values. In practice, we deine the size of the window as 3.

Applying the above approach, we also ind the ϵ for other app categories, as presented in Figure 7. And Figure
8 demonstrates the clustering result for communication apps based on the corresponding ϵ .

5.3.3 Identifying background and no-sleep issues. If the app is free from background issues, the power trace in
BACK’ROUND stage is supposed to be similar to that in IDLE stage. We thus compute the dissimilarity value of the
two traces. If the value is above a certain threshold (40% in our experiment), we label this test case as a candidate
for a background issue.
We identify the no-sleep issues in the same way. We compare PRE-OFF with SCREEN-OFF. If the dissimilarity

outstrips a certain threshold (50% in our experiment), we speculate this test case is sufering from a candidate
no-sleep issue.
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Fig. 7 The ϵ for diferent app categories.

5.3.4 The length of test cases. Our testing framework does not require the same length of the power traces,
because our employed features (e.g., lchpp ) can help energy issues manifest themselves no matter in a long test
case or a short test case. For example, in a short test case, the energy issue may cause less nchpp but higher µexe .
On the other hand, in a long test case, the energy issue may cause lower µexe but more nchpp . We set a time
threshold for each test case at 3 mins. But the test case could be terminated when it reaches the end of EFG or the
app crashes.

5.4 Manual verification

After the candidate issues are found, we manually verify whether they are actual energy issues. We adopt three
criteria for distinguishing a real issue from a false positive. First, the energy cost is not from the OS. Second, the
energy cost is larger than normal cases by at least 10%. These two criteria are basic, we further apply the third
criterion to better ilter out the false positives.

The third criterion is that, user experience can be improved after removing the workloads. Figure 9 shows how
we apply such criterion in practice. We irst conjecture the outcome of the complete removal of the workloads. If
the removal will beneit UX, then the workloads are an energy issue. Otherwise, we further check whether it
is possible to minimize the workloads without harming the functionality. If it is possible, then the candidate is
determined as an energy issue, because we can use less energy to realize the same functionality. If it is impossible,
then there is no issue. If it is not sure, we then conservatively consider it as a false positive as well.

We take two examples to illustrate the above procedures.
For example, an app is downloading large iles for functional purposes, such as maps in games, which causes

abnormally high energy cost. In this case, there is no easy solution to save battery power since users may accept
the expensive downloading process (removing it will afect app functionality). We then identify it as a false
positive (Output#3).

For another example, for the issue in Leisure (as shown later in Figure 17), GIF animations are played when they
are invisible. The animations in such cases do not generate user-observable beneits. But completely removing
them will threaten UX. So we analyze the source code and attempt to freeze the animations when they are out of
screen, to minimize the workloads. We then measure the energy consumption of the test case w/ and w/o our
code refactoring under the same runtime context. The result shows that our solution saves 25.9% of the energy
consumption without changing any functionality. So such issue is identiied as a real energy issue (Output#2).
Besides, it is also worthy to notice that, our testing framework already has the capacity of manifesting

and detecting the issues caused by the system and coniguration changes. It is because our well-designed,

ACM Trans. Softw. Eng. Methodol.



Combating Energy Issues for Mobile Applications • 1:25

0 20 40 60 80

l
chpp

 (s)

0

5

10

15

n
c
h
p
p

Outlier points

Normal points

(a) nchpp and lchpp

0 5 10 15

n
chpp

1.6

1.8

2

2.2

2.4

2.6

2.8

e
x
e
 (

w
)

Outlier points

Normal points

(b) nchpp and µexe

0 20 40 60 80

l
chpp

 (s)

2.5

3

3.5

4

4.5

5

c
h

p
p
 (

w
)

Outlier points

Normal points

(c) µchpp and lchpp

0 5 10 15

n
chpp

2.5

3

3.5

4

4.5

5

c
h
p
p
 (

w
)

Outlier points

Normal points

(d) µchpp and nchpp

0 20 40 60 80

l
chpp

 (s)

1.6

1.8

2

2.2

2.4

2.6

2.8

e
x
e
 (

w
)

Outlier points

Normal points

(e) µexe and lchpp

2.5 3 3.5 4 4.5 5

chpp
 (w)

1.6

1.8

2

2.2

2.4

2.6

2.8

e
x
e
 (

w
)

Outlier points

Normal points

(f) µexe and µchpp

Fig. 8 The clustering result for Communication apps, which is presented according to diferent pairs of the four features for

a full picture. Each point is a test case.
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diversiied and efective input sequences and runtime contexts are suicient to pinpoint issues caused by OS and
misconigurations.

Recall that, when we manually verify the candidate energy issues, we irst check whether the issue is caused
by OS. If it is, we label it as "no issue". That is, we ilter out the system issues. It is because the market object of
our testing framework is app developers, who form a huge potential market (Google Play: 600,000 apps; App
Store: 650,000 apps [57]).

But this does not mean our framework cannot detect issues caused by the system and the coniguration changes.
Actually, among the eight false positives detected by our test (see Section 6.2), there are ive caused by the system
and coniguration changes.

Note that, the ive "false positives" mean that they are energy issues but not APP energy issues. It is also worthy
to mention that, we detect 83 app energy issues. Hence, there are naturally more app energy issues, justiied by
[57] and our work.
Our testing framework is able to serve OS developers in the same way as how it serves app developers, as

shown in Section 6.4. Our testing framework even does not need to be extended to fulil this purpose. And we
will enable system-issue-detection for OS developers to help combat system energy issues.

6 EXPERIMENTAL EVALUATION

In this section, we irst introduce our experimental setup. Then we evaluate our testing framework on various
aspects, such as its eicacy in detecting energy issues, its comparison with the state-of-the-art, etc. The result
shows that our testing framework largely outperforms current technology, showing the beneits both of our
sound empirical study and our dynamic targeting techniques.

6.1 Experimental setup

We employ the Odroid-XU4 development board12, whose processor has four big cores with a frequency of 2 GHz
and four small cores with a frequency of 1.3 GHz. The board possesses a powerful 3D accelerator, Mali-T628 MP6
GPU. The high capacity of Odroid-XU4 board guarantees its performance for most applications on the market.
It is also equipped with a power monitor, Smartpower213, to measure the real-time power consumption. The

12https://wiki.odroid.com/odroid-xu4/odroid-xu4
13https://www.odroid.co.uk/odroid-smart-power-2
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Table 6 Examples of detected energy issues.

Hit Context or Energy Reported
Application Category Issue Type Activity or Symptom

Rate1 Non-background Waste before?

Leisure News Execution 3 GIFs playing on one page 1.0% Normal 25.9% No

GPS Status Travel Execution Not obvious 47.0% Normal 15.3% No

BatteryDog Tools Execution Editing lengthy text 1.0% Normal 30.8% No

Rocket Chat Comm. Execution Connect to server 1.0% Normal 12.8% No

Chess Clock Tools Background Device heated up 100.0% WiFi Fail 59.2% No

Vanilla Multimedia No Sleep Enqueue many tracks 59.0% WiFi Fail 242.8% No

cgeo Travel No Sleep App get stuck 2.0% Flight Mode 179.4% Yes

AntennaPod Multimedia No Sleep Keep popping up messages 1.0% Non-background 184.4% Yes

1. Hit rate here is the percentage of test cases detected having the energy issue in that app.

sampling rate is 100 Hz. To assess its measurement variability, we randomly choose 20 test cases and run each for
10 times. We thus collect 10 records of average power consumption for each test case. We employ coeicient of
variation (Cv ) to indicate the variability. Speciically,Cv =

σ
µ
, where σ and µ are the standard deviation and mean

of the 10 records for each test case. At last, the mean of the 20 Cv s is about 0.8%, meaning a low measurement
variability. Due to these rich and solid features, the Odroid board is widely employed in the ield of energy
optimization for mobile devices [67, 84, 90].
We use Android 4.4 KitKat as our target OS. Android is open-sourced and it captures around 71.83%14 of the

worldwide mobile OS market by Mar 2021. We evaluate our framework on 89 app subjects, which are arbitrarily
selected from the 98 app subjects in our empirical study. 27 ones (of the 89) have energy issue reports, 62 do no, as
we introduced in Section 2. The considerations of employing these 89 apps for the evaluation are these: 1) Our
framework is inspired by issue reports from the 27 apps, so it may be inapplicable to new apps, we thus employ
the 62 subjects without issue reports as new apps to evaluate the generality of our framework. 2) Referring to
the issue reports, we also can check whether our framework is capable of detecting unreported issues. 3) These
apps are popular, well-maintained and of much higher quality than the apps adopted by previous research.

Our total testing time for the 89 app subjects is 2373.3 hours, i.e. 98.9 days, which were evenly spent on each
app. (i.e. 1.11 days for one app). Note that, the time of preparing weighted input sequences is also included, which
takes 18.8% of the entire testing time.

6.2 The eficacy of our testing framework

6.2.1 The accuracy and efectiveness. The experimental result shows that our test detected 91 candidate energy
issues, among which we manually conirmed 83 real energy issues. 22.9% (19 out of 83) of these issues are from
the 27 old apps, 77.1% (64 out of 83) are from the 62 new apps. It is worthy to mention that 14 out of the 19 issues
were unknown previously. After manual veriication, we found 8 false positives. Table 6 shows 8 examples
of the detected energy issues. For instance, in Leisure, three animated GIFs are loaded and are played at the
bottom of a certain page even though they are invisible to users most of the time. This execution issue wastes
25.9% energy use. It can be ixed by freezing the animation when the GIF pictures are not shown on the screen.
For another example, when Chess Clock is not in use and backgrounded, the device will heat up from 41.2◦C to
60.9◦C due to the ineicient and long utilization of CPU. The average power of this issue is 59.2% higher than
that of the IDLE stage.

Figure 10 shows the energy waste of detected energy issues. Energy waste is calculated using Equation (4).

14http://gs.statcounter.com/os-market-share/mobile/worldwide
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Fig. 10 The energy waste of detected issues of diferent types

w = (
ex

en
− 1) × 100% (4)

w is the energy waste of the issue, ex is average power of the corresponding stage in the test case with the
corresponding issue (EXECUTION stage for execution issues, BACK’ROUND stage for background issues, SCREEN-OFF
stage for no-sleep issues). en is łnormalž energy cost. We deine łnormalž energy cost individually for diferent
issues. For background and no-sleep issues, we adopt average power at IDLE and PRE-OFF stage as normal cost,
respectively. For execution issues, we use mean value of average powers of EXECUTION stage in test cases in the
same app category, as normal cost.

The experimental result shows that the energy waste of execution issues is 25.0% on average and up to 137.6%;
the energy waste of background issues is 88.9% on average and at maximum 196.2%; the values for no-sleep issues
are 200.0% and 663.3%, respectively. Overall, the average energy waste of all the issues is 101.7%.

90.4% (75 out of 83) detected energy issues in our test are newly-reported. Without our tests, these serious
energy issues might have never been detected even though they cause serious battery drain.

Speciically, the detected issue that shares the following criteria with any one of the 189 issue reports, is deemed
as a previously-known issue.

• They have the same input sequence.
• They have the same runtime context.
• They have the same symptoms diagnosed by the same tool.
• They have similar energy wastes.

For example, we treat AntennaPod issue 1110 and one of our detected issues as the same issue because of the
below.

First, they have the same input sequence: 1, open the app, 2, listen to a video podcast, 3, switch AntennaPod to
background, 4, use other apps or leave the phone to screen-of automatically.

Second, they are both under light mode.
Third, the same tool of Wake Lock Detector [11] shows that the app is active all the time.
Fourth, the battery drops quickly. The user reported that the battery dropped from 80% to 10% in a few hours.

Our test shows that the average power of the app is 2.24 watts, twice as high as the normal power consumption,
which can drain battery in a few hours.

On the other hand, 95.8% (181 out of 189) energy issues in our empirical study are not listed in the issues
detected by our test. The major reasons are as follows: Firstly, our standard of determining energy issues is much

ACM Trans. Softw. Eng. Methodol.



Combating Energy Issues for Mobile Applications • 1:29

higher than that of developers. The issues detected in our test have outlier-level impacts on energy use; the
energy wastage is usually above 10.0%. However, many issues detected by developers only cause small transient
workloads, energy overuse can hardly reach 10.0%. For instance, Firefox issue 1057247 lets app re-fetch the failed
favicon every 20 min, which is believed costly. So developers reduce the re-fetching frequency to conserve energy.
For another example, VoiceAudioBookPlayer issue 299 makes the app scan material iles everytime the user starts
and leaves app. Developers then designed a smarter scanner to lessen the number of scans. However, these issues
can not be noticed by our framework because they have very marginal inluence on the metrics (i.e. lchpp , nchpp ,
µchpp and µexe ) we chose to identify execution issues. Secondly, a number (34.3%, 62 out of 181) of the issues
are not reproducible, our test cannot trigger them either. Thirdly, the variety of input sequences and runtime
contexts in our test is not large enough to cover all of them due to the time limit.
The irst and third reasons also shed light on false negatives of our test. The irst reason implies that the

issues that draw developers’ attention but consume non-signiicant power (compared with our detected issues)
can be missed by our test. It is because only outlier-level energy cost is deemed as an energy issue in our test.
Loosening this strict criterion can help signiicantly reduce false negatives but may lead to false positives. The
dilemma is caused by the diiculty of objectively and automatically judging the necessity of workloads. There is
no general solution for this problem yet. Nevertheless, our framework can be lexibly conigured to detect more
energy issues if users are willing to tolerate some false positives. W.r.t. the third reason, since we were testing 89
apps, one day’s test for one app results in three months’ test for all apps. Developers can test their own app more
comprehensively to realize larger coverage.

6.2.2 The influence of the key parameter of ϵ . We further investigate how the key parameter of ϵ inluences the
false positives and false negatives of our testing framework.

We scale the ϵ from 0.1 to 1 of the optimal ϵ . And the optimal ϵ is identiied using Algorithm 2.
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Fig. 11 The influence of ϵ on false positives and false negatives.

The results are shown in Figure 11.
Speciically, to evaluate ϵ’s inluence on false positives, for each ϵ value we randomly sample 100 issue-

sufering test cases detected according to the ϵ value and manually verify the false positives. We then calculate
the percentage of the false positives in the 100 test cases.

ACM Trans. Softw. Eng. Methodol.



1:30 • Xueliang Li, Junyang Chen, Yepang Liu, Kaishun Wu, and John P. Gallagher

6.7%

33.3%

49.4%
43.8%

Execution

issues

BG & NS

issues

E
ff

ic
a

cy
 r

a
ti

o

Present

Ours

Fig. 12 Comparison on issue-detection eficacy (rds ) with the present technology.

To evaluate ϵ’s impact on false negatives, we irst prepare ten veriied false negatives as ground-truth, and
then for the each ϵ value we calculate the percentage of the undetected false negatives out of the ten as the result
to assess the inluence.
So the results indicate that, increasing ϵ will increase false negatives and decrease false positives. We cannot

keep them both low. The fundamental reason is that, it is very diicult to judge the necessity of the "small"
workload. But our approach does well in judging outlier-level energy issues.

In our practice, we choose to tolerate a high rate of false negatives and beneit a low rate of false positives.

6.2.3 Comparison with the literature, and the evaluation on a new device. We now compare the eicacy of our
testing framework with current technology [17]. We use the eicacy ratio (rds ), i.e. the ratio of the number of
detected issues to the number of subject apps, to indicate the eicacy of a framework. As shown in Figure 12,
for execution issues, their rds is 6.7% (2 issues out of 30 apps), ours is rds is 49.4% (44 out of 89); for background

(BG) and no-sleep (NS) issues together, their rds is 33.3% (10 out of 30), while ours is 43.8% (39 out of 89). We
combine background and no-sleep issues since the work [17] did not distinguish them. The result conirms
that our framework can detect a much larger number of more serious energy issues in higher-quality apps in
comparison with the state-of-the-art. This is due to the fact that our work is based on the insightful empirical
indings, rather than ungrounded assumptions.
We use Monsoon [6] power monitor to trace the realtime power consumption. As shown in Figure 13, we

reconigure the battery of the phone: we bypass the battery and use the power monitor to power up the phone
and gauge the voltage, current and thus power of the phone.
We have two sets of app subjects. The irst set contains the 14 old communication apps in the previous

experiment. The second set has 10 new communication apps. We run our testing framework on the two app sets
separately. We also run the testing under two schemes individually. The irst scheme is testing with the steering
algorithm (i.e., Algorithm 1), the other is without it. For both schemes, we set the time budgets at 50 hours.

So this experiment, on one hand, evaluates our framework’s eicacy on a new device and new&old apps. On
the other hand, it also assesses the efectiveness of our steering algorithm.

As displayed in Figure 14, for old apps on Samsung S20 our framework achieves a rds of 78.6% with the steering

algorithm, nearly three times higher than that without steering. For new apps, rds of testing with steering is six
times higher than testing without steering.
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Fig. 13 The implementation of power measurement for Samsung S20.
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Fig. 14 Evaluation on a new smartphone, Samsung S20.

The results also present that the overall rds for the new device (i.e., Samsung S20) is 70.8%. The rds on the old
device (i.e., Odroid development board) is 93.2% (49.4%+43.8%). Considering the testing time on the new device is
much less than that on the old device, our testing framework still demonstrates satisfying rds .

6.3 Issue Cause and Manifestation

Figure 15 demonstrates breakdown of energy issues of diferent causes in empirical study and experiment. łExp.ž is
experiment, łEmp.ž is empirical study. Our experiment is conducted on both new and old apps, we thus plot them
with diferent colours and patterns. łUWž is unnecessary workload, łEFOž is excessively frequent operations,
łBGž is wasted background processing, łNSž is no-sleep, łSWž is spike workload, łREž is runtime exception. As
shown in Section 6.2, the issues detected in experiment are much more costly than those in empirical study. So
this result indicates that, no matter for łbigž or łsmallž issues, UW and EFO are always the very signiicant root
causes, which justiies our Finding 1. And these issues are exactly the issues that current technology can hardly
address.
Figure 16 demonstrates the number of energy issues triggered under diferent contexts in our experiment,

which captures more detailed manifestation characteristics of energy issues. łNormž is Normal, łFailž is Network
Fail, łFlightž is Flight Mode, łNon-bgž is Non-background. We can see that most execution issues (unnecessary
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Fig. 16 Energy issues manifested under diferent contexts.

workload and excessively frequent operations) are manifested in the Normal context because many scenarios
where issues occur require normal network and GPS context. For example, as we discussed above, the issue
in Leisure showed up only when those three GIF pictures were downloaded and showing on the page. We
only have six (6/83 = 7.2%) background issues, which indicates that OS is competent in clearing potential bad
inluence of backgrounded apps at BACK’ROUND stage. However, backgrounded apps may still sufer from no-sleep
issues: Normal, Network Fail and Flight Mode provoke 6, 17, 13 no-sleep issues respectively. Furthermore,
even though Non-background and Normal run in the same context, the former tends to provoke more no-sleep
issues. In our test, it induces 17 issues. This result implies that special contexts (and Non-background) tend to
incur anomalous behaviours of apps, such as bad use of wake-lock, and thus cause more no-sleep issues.
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Figure 16 also shows that 37.3% (31 out of 83) energy issues can only be triggered under Network Fail and
Flight Mode. This conirms Finding 2: special contexts, such as network fail, hide a signiicant number of serious
energy issues.
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Fig. 17 Before and ater fixing the energy issue in Leisure.
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Fig. 18 Before and ater fixing the energy issue in Vanilla.

6.4 How our framework benefits developers?

After issue detection, our framework generates a test report to help ix the issue. The report includes:

• The information on input sequence and runtime context, and screen-casting video recording the test case.
Using these, developers can analyse issue manifestation and symptoms.

• The visualized power trace of test case. With this, developers will have an intuitive view on power
consumption of the issue.
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• The method-level execution trace provided by CPU Proiler. The issue reports in the empirical study showed
that this information can mostly (83.3%) help ind the faulty code.

• The rationale behind testing framework. Developers will understand how the testing framework works.

We conduct a case study, showing how to utilize test reports to diagnose and ix energy issues. We take the
execution issue in Leisure and the no-sleep issue in Vanilla (as we listed in Table 6) as two examples. We reproduce
the issues, observe the symptoms, check the power traces (the red dash lines in Figure 17 and 18). We then analyse
the frequently-called methods to ind faulty code, and refactor the code to remove the unnecessary workload and
release the wake-lock after use. As we can see, power traces (black full lines in Figure 17 and 18) after ixing are
much latter or lower than those before ixing.

Test controller

(Laptop)

Experimental device

(Smartphone)

Execute

test cases

Generate

test cases

During

testing
Record the

screen

MonitorControl

Display

power trace

Replay the

screencast

After

testing

Control

Power Monitor

Record

power traces

Fig. 19 The hardware and functional structure of our testing framework.

To better illustrate how our testing framework functions, we use Figure 19 to present the hardware and
functional structure of our testing framework.
So, during testing, the test controller generates and feeds the test cases to the experimental device based on

Algorithm 1. Then, the experimental device executes the test cases. Meanwhile, the screen is recorded.
After testing, when the developer wants to analyse a test case that has energy issues, the test controller displays

the power trace of the test case, and the smartphone also replays this test case on the screen for diagnosis.
We also organize a user study to evaluate the usefulness and usability of our testing framework. The usefulness

means whether our technology is useful to developers, and whether the developers do need our technology. The
usability demonstrates whether our testing is efective and eicient in uncovering energy issues, and helping
developers ix the issues.

UX community [5] suggests that a proper number of participants for evaluating usefulness and usability of a
product is ive. It is because a larger number of participants does not mean better, considering return (e.g., the
number of uncovered drawbacks) on investment (e.g., time and money).
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We recruit ive developers with varied levels of development experience: one with 0.5 to 1 year experience, two
with 1 to 2 years, two with 2 to 5 years. We let them run our testing framework and randomly choose two issue
reports to reproduce the issues and diagnose the symptoms and try to ix the issues. Afterwards, we ask them to
evaluate their individual user experience on our framework and give UX scores of the usefulness and usability.
The score ranges from 1 to 5. 1 is "very bad", 2 is "bad", 3 is "acceptable", 4 is "satisied", 5 is "very satisied".
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Fig. 20 User study on usefulness and usability of our testing framework.

As presented in Figure 20, our technology provides above-3 usefulness and usability, which is capable of
satisfying developers.

We also ask developers about their speciic comments on the strengths andweaknesses of our testing framework.
The major strengths are the following.
First, in many cases, the developers are surprised by the high energy-consumption of the detected issues. For

example, they did not believe that the GIF animation out of screen is that costly. This tells us that energy use
of the apps is the key criteria to judge whether the apps have energy issues. Even though it looks so obvious,
our work is the irst one to achieve this. Before, researchers either use indirect information (e.g., hardware or
resource utilization [54, 56]) to identify energy issues, or use inaccurate information (e.g., E/U ratio [17]) to do it.

Second, reproducing energy issues is very helpful. Again, it looks too evident, but reproducing energy issues is
very challenging because of the dynamic and complex runtime context of mobile systems. In contrast, our testing
is conducted under strictly-controlled runtime context, the test cases can be reproduced in exactly the same way
as it ist time occurred.

The major weaknesses are as below.
First, there is no automatic ix to the detected energy issues. But we discussed in Section 3.3, ixing energy

issues is not easy, always requires non-negligible human eforts, more importantly, human intelligence.
Second, the data visualization of CPU proiler is not very easy to read. CPU proiler is a third-party tool, which

is provided by Android Studio. We suggest developers using it for localizing the energy issues (see Section 6.4)
since this tool can mostly (83.3%) help ind the problematic code. But surely, it requires some extent of familiarity
with the tool.
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7 THREATS TO VALIDITY

There may exist threats to the validity of the empirical study and the experimental evaluation for our testing
framework.

For the empirical study, one threat is the representativeness of our app subjects and energy-issue reports. But
our empirical study is the largest-scale in the literature w.r.t. both the app number and issue-report number. The
most relevant work [54] involves 36 app subjects, but they only investigate 66 issue reports, and we have 36 apps
as well, but 200 issue reports. Note that, the selection standards of our app subjects are also much higher than
theirs in terms of popularity, maintainability and informativeness.

For the experimental evaluation of our testing framework, the validity may also be subject to the representative
of app subjects. But we use the same set of app subjects in our empirical study, which are of higher quality than
the most relevant work [17] for the energy issue detection. Note that, the scale of our evaluation is still the largest,
containing 89 app subjects. In contrast, [17] only evaluates 30 apps.
The not-large diversity of our experimental devices may also threat the validity of our study. However, our

study is conducted both on development board (i.e. Odroid) and the latest commercial smartphone (i.e., Samsung
S20). In contrast, [17]’s experiments are purely based on a dated phone (LG Optimus L3, released in 2012).

8 CLARIFICATION

The paper style of "an empirical study + a novel technology". The "an empirical study + a novel technology"
researches seem straightforward and heuristic. But they are fundamental, useful and interesting.
We take the work of [56] as an example. In its empirical study, the researchers learn several common issue

patterns of performance issues. The two most common patterns are: lengthy operations in main threads (11/52 =
21.2%) and wasted computation for invisible GUI (6/52 = 11.5%).
Hence, their proposed issue-detection technology is "simply" searching for these two patterns in the source

code. And the resulting technology achieves a high eicacy in detecting performance issues.
The above issue-detection technology seems simple and heuristic, but it is the empirical study makes it looking

simple. The empirical study helps researchers ind the "straightforword" direction of the technical research.
Without empirical study, researchers even do not have a direction to work on.

Similar to our work, the empirical study makes our technology look straightforward and heuristic. Without
empirical study, we even cannot deine energy issues (The former research [17] used E/U ratio to deine energy
issues, which was proved inaccurate and even wrong).

Our empirical study is the largest scale of its kind.We have 200 issue reports. [54] has 66 issue reports.
[56] has 70 issue reports.

The number of our app subjects is 36. [54] is 36. [56] is 29. So ours is still the largest.
In addition, we have six RQs. [54] has three RQs. [56] has four. And their RQs are relatively "simple" to analyse,

such as manifestations and ixing eforts. In contrast, our RQs not only contain their RQs, but also hard-to-analyse
ones, such as the reasons of no ixes.

So, we summarize two core points:

• The number of app subjects in our study is at the same scale with the relevant studies [54, 56]. The number
of our issue reports, i.e. the scale of our empirical study, is two to three times as large as the relevant
studies. More issue reports will reveal more information and insights of the characteristics of energy issues.
Also, note that, the quality of our issue reports is much higher than theirs.
• Considering the number of issue reports and the number of RQs, our study requires at least 6.06 times as
heavy as the human eforts of the relevant study [54], and 4.29 times as heavy as the other one [56]. Please
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note again that, our RQs are also more diicult to analyse.

The importance and relevance of RQ3-RQ6. The following points back up the relevance of RQ3-RQ6 to
our paper, as well as the importance to the literature.

• RQ3-RQ6 are well it to the topic of "Combatting Energy Issues for Mobile Applications" of our paper.
• "An empirical study + a novel technology", "the technology is motivated by Part of the empirical study"
and "the empirical study and the technology have their own contributions individually": such style of paper
organization is highly recognized in the literature, such as [54, 56]. We take [56] as an example. [56] studies
four RQs: issue types, issue manifestations, issue-ixing eforts and issue patterns. But their technology for
performance-bug-detection is only related to the last RQ (issue patterns).
• RQ3-RQ6 hold their research importance on their own, which is supported by the following facts:
ś In the dimensions of either the app number or the report number, our empirical study is the largest-scale.
Also note that, the quality and informativeness of our issue reports are higher than the previous works
[54, 56].

ś Regarding the depth of our empirical study, we can compare our study with [56]. [56] studies four RQs:
issue types, issue manifestations, issue-ixing eforts and issue patterns. For example, [56]’s answer to
RQ1 (issue types) is GUI lagging, energy leak and memory bloat. The proportions of each of them are
also given. The authors also explain the types with vivid examples. And the answers to the other RQs are
exactly similar. Our research approach Strictly follows [56]. Moreover, we emphasize that we have six
RQs, which will reveal more helpful and in-depth information.

Hence, the scale of our empirical study and the informative and high-quality answers to the RQs strongly
ensure the contribution and depth of our empirical study.

9 RELATED WORK

Our work is related to many aspects of research work. We irst explain the relation between energy issues and
other issues. We then discuss about energy issues on three aspects: understanding energy issues; detecting and
diagnosing energy issues; ixing energy issues and optimizing software.

9.1 Energy issues vs. other issues

We use Figure 21 to clarify the relation between energy issues and other issues (including performance issues). So
actually, energy issues could overlap with many types of issues. For example, a malfunction (a functional issue)
in the software could unnecessarily consume a large amount of energy, and cause an energy issue.

So functional issues (including bugs), usability issues (including bugs) and performance issues (including bugs)
could all relate to energy issues.
We agree that performance-energy-overlapping issues are an important part of energy issues. And there

was previous study [56] involving such issues. But the study only works on characterizing performance issues.
And the study labels energy issues as one type of performance issues. It does not go further to analyse the
characteristics of such energy issues.

And other researches on energy issues usually focus on very speciic examples of energy issues. They do not
have a full picture of energy issues. For example, Pathak et al. [66] mainly study the detection of no-sleep energy
issues. Liu et al. [55] attempt to develop the technology for detecting wake lock misuses. Xu et al. [83] and Zhang
et al. [88] try to detect the overuse of sensors on smartphones.

That is to say, the literature lacks a comprehensive study purely on energy issues, which are a

signiicant type of issues on their own.
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Fig. 21 The relation between energy issues and other issues.

So, our work conducts the most comprehensive empirical study on purely characterizing energy issues. We
paint a full picture of the characteristics of energy issues. We analyze energy issues caused by most kinds of
hardware components (e.g., screen, CPU, sensors and etc.) and software mechanisms (services, broadcast receivers,
alarms, wake-locks and etc.), not constrained to a certain narrow scope of energy issues.

9.2 Understanding Energy Issues

The style of empirical study that mines the data in repositories has been widely applied. For example, to
characterize performance issues, a large body of research has been done for PC and server side software
[37, 62, 87]. The irst empirical study on characteristics of energy issues in the system of mobile device was
done by Pathak et al. [64]. They mined over 39,000 posts from four online mobile user forums and mobile OS
bug repositories, and studied the categorization and manifestation of energy issues. Xiao et al. [57] conducted a
similar survey on three Android forums. The above studies involve issues in multiple layers across the system
stack of mobile devices, from hardware, OS to applications. And the issue reports adopted in above studies were
mostly proposed by end-users and random developers, who can hardly contribute very insightful understanding
of the issues (e.g. root causes). Liu et al. [56] investigated performance issues (including energy issues, as how
they treated) reported in issue-tracking systems maintained by the developers who developed the apps. However,
the number (i.e., 10) of the studied energy issues is very small compared with our study. The most related study
is conducted by Liu et al. [54], however, their work only studies issue cause and ixing eforts. By contrast, we
conducted much more comprehensive and insightful empirical study involving issue causes, manifestation, ixing
eforts, detection techniques, reasons of no-ixes and debugging techniques.

9.3 Detecting and Diagnosing Energy Issues

Non-energy issues (e.g. security [70], compatibility [45] and performance [63] issues) can be detected plainly
by analysing program artefacts. In contrast, to detect energy issues, researchers have to irst learn the energy
characteristics of mobile devices and apps. Hence, researchers use OS, hardware and even battery features as
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Table 7 Technique package. The bold items are our original techniques, the italic are inspired by [17].

Preparation before testing Steer test direction

• Candidate input sequences

◦Weighted input sequences • Balance weighted and

- System APIs (I/O components) random input sequences

- Control-low operations (CPU) • Balance diferent runtime

◦ Random input sequences contexts

• Candidate runtime contexts • Improve eicacy of

◦ Normal ◦ Non-background issue-detection

◦ Flight Mode ◦ Network fail

Identify energy issues from power trace

• Identify execution issues • Identify background

◦ Select dimensions and no-sleep issues

◦ Cluster ◦ Label outliers ◦ Dissimilarity analysis

predictors to infer energy information at device, component, virtual machine or application level [21, 38, 40, 42,
65, 71, 82, 86]. Shuai et al. [30] and Ding et al. [44] propose approaches to obtaining energy information at source
line level. The former requires the speciic energy proile of the target systems. The latter utilizes advanced
measurement techniques to obtain source line energy cost. Exceptionally, another line of research (e.g. [57], [53],
[54] and [79]) attempts to detect energy issues relying on non-energy information. For example, Xiao et al. [57]
analyse abnormal time-varying behaviours of apps to identify energy issues. But their works are not based-on
the ground-truth of power measurement, thus the eicacy of their approach is unclear when applied in the wild.

Two pieces of work [35, 36] from Jabbarvand et al. are close to our work. Our work difers from theirs in three
main aspects. First, their works mainly address the challenges of issue manifestation (how to trigger the issues),
while our work addresses the challenges of both issue manifestation and detection (how to identify the real
existence of the triggered issues). That is to say, their envisaged issues may not turn out to cause energy overuse.
Second, they assume that the over-use of certain APIs is the main source of energy issues, which is also assumed
by [17]. However, APIs cannot cover all usage of CPU, i.e. the main energy consumer [29] on smartphones. So
their test cannot provoke most CPU-speciic energy issues, a signiicant part of all energy issues. In contrast,
our work assesses the CPU usage by tracing control-low operations at code level. Third, their evaluations show
the eicacy of their techniques for triggering previously-reported energy issues, but the eicacy for triggering
previously-unknown issues is not justiied due to the lack of issue-detection mechanisms.

It is worthy to notice that, the work of [35] also deals with special runtime context. But as we discussed above,
their approach only involves how to trigger the issues hidden by special runtime context. They have no issue
detection technology. So they use the previously-reported issues as subjects to evaluate the eicacy of their
technique. Therefore, the eicacy for manifesting new issues are unevaluated. Furthermore, their work cannot
handle CPU-speciic energy issues, which accounts for 90.9% of all the issues caused by special runtime context,
as seen in our experiment.
The work of Banerjee et al. [17] is the most relevant to ours. Table 7 lists the diferences: 1) For preparation

before testing, since their work [17] only takes I/O components into account, their technology is impracticable
for the important CPU-bound apps (e.g. games) and CPU-related energy issues. They also neglected the special
runtime contexts which can trigger 24.2% of energy issues. 2) W.r.t steering test direction, their work does not
have this feature because they only consider two dimensions of testing space, i.e. I/O-related input sequences
and Normal context, whereas our framework additionally tests ive more dimensions including CPU-related
and random input sequences, and three more runtime contexts. So our searching space for energy issues is
exponentially enlarged; we thus designed practical online steering strategy to balance diferent kinds of inputs
and contexts, and improve the issue-detection eicacy. 3) For identifying energy issues from power trace, as
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we mentioned in Section 1, E/U theory [17] can hardly address execution issues (63.7% of all energy issues), by
comparison, our framework employs advanced machine learning algorithm to analyse the energy use of apps
and ilter out these issues.

9.4 Fixing Energy Issues and Optimizing Sotware

A large amount of research efort on energy-saving for mobile devices has been focused on the main hardware
components, such as the CPU, display and network interface. The CPU-related techniques involve dynamic voltage
and frequency scaling [25, 73, 74], heterogeneous architecture [28, 46, 50] and computation oloading [41, 77].
Techniques targeting the display include dynamic frame rate tuning [33], dynamic resolution tuning [31, 51] and
tone-mapping based back-light scaling [15, 34]. Network-related techniques try to exploit idle and deep sleep
opportunities [52, 76], shape the traic patterns [23, 69], trade-of energy against other design-criteria [20, 72, 85],
and streaming with power-awareness [22, 32, 61]. Such work attempts to reduce energy costs by optimizing the
hardware usage; there are also several pieces of work aiming at designing new hardware and devices [78, 80, 89].
Besides, another line of research work is dedicated to solving background and no-sleep issues [16, 18, 21, 55, 59].
Two pieces of work [19, 58] provide systematic approaches to optimizing software source code for energy-

eiciency. In the former, Boddy et al. attempted to decrease the energy consumption of software by handling
code as if it were genetic material so as to evolve to be more energy-eicient. In the latter, Irene et al. proposed a
framework to optimize Java applications by iteratively searching for more energy-saving implementations in the
design space.

10 CONCLUSION

In this paper, we conducted an empirical study on software energy issues in 27 well-maintained open-source
mobile apps. Inspired by this study, we fully implemented a novel testing framework for detecting energy issues.
It irst statically analyses the source code of app subjects and then extracts the candidate input-sequences with
large probability of causing energy issues. We also devised several artiicial runtime contexts that can expose
deeply-hidden energy issues. Our framework efectively examines apps with the inputs and contexts under a
systematic scheme, and then automatically identiies energy issues from power traces. A large-scale experimental
evaluation showed that our framework is capable of detecting a large number of energy issues, most of which
existing techniques cannot handle. Finally, we showed how developers can utilize our test reports to ix the issues.
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