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Antimicrobial touch surfaces have been introduced in healthcare settings with the aim of sup-
porting existing hygiene procedures, and to help combat the increasing threat of antimicrobial
resistance.However, concernshavebeen raisedover thepotential selectionpressureexertedby
such surfaces,whichmaydrive the evolution and spreadof antimicrobial resistance. This review
highlights studies that indicate risks associated with resistance on antimicrobial surfaces by
different processes, including evolution by de-novo mutation and horizontal gene transfer, and
species sortingof inherently resistantbacteriadispersedontoantimicrobial surfaces.Thereview
focuses on antimicrobial surfaces made of copper, silver and antimicrobial peptides because of
the practical application of copper and silver, and the promising characteristics of antimicrobial
peptides. The available data point to a potential for resistance selection and a subsequent
increase in resistant strains via cross-resistance and co-resistance conferred by metal and
antibiotic resistance traits. However, translational studies describing the development of
resistance to antimicrobial touch surfaces in healthcare-related environments are rare, andwill
beneeded toassesswhether andhowantimicrobial surfaces lead to resistance selection in these
settings. Such studies will need to consider numerous variables, including the antimicrobial
concentrations present in coatings, the occurrence of biofilms on surfaces, and the humidity
relevant to dry-surface environments. On-site tests on the efficacy of antimicrobial coatings
should routinely evaluate the risk of selection associated with their use.
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Introduction

Infections caused by antibiotic-resistant bacteria are among
the most severe healthcare problems, and are associated with
a heavy economic burden. It has been estimated that anti-
microbial resistance (AMR) causes 33,000 deaths and costs 1.5
billion EUR per annum in Europe alone [1e3]. High-touch sur-
faces in near-patient areas are linked to healthcare-associated
infections (HAIs) [4] by acting as vectors for spreading infec-
tious agents [5], including AMR microbes. An increasingly
popular strategy to mitigate this problem is to coat these sur-
faces with antimicrobial compounds. In combination with tra-
ditional infection prevention and control procedures, such as
proper hand hygiene, efficient cleaning and disinfection, and
appropriate usage of antibiotics, antimicrobial coatings (AMCs)
have the potential to reduce the development and transmission
of AMR [6]. However, exposure to AMCs may also harbour the
potential to drive the selection and spread of AMR bacteria
[7,8].

The aim of this review is to explore studies that indicate
risks associated with evolution and dissemination of AMR due to
the use of AMCs, and the translation of such studies to
healthcare environments. First, the general mechanisms by
which AMR can evolve and spread are reviewed. Next, the
usage, mode of action, efficacy and possible resistance
mechanisms to antimicrobial substances used as AMCs are
evaluated, with an emphasis on copper, silver and anti-
microbial peptides (AMPs). While the efficacy of AMCs [9] and
the potential for selection of antibiotic resistance by metals
[10] has been covered previously in excellent reviews, the aim
of this review is to provide a link between these topics and its
relevance for healthcare settings. Finally, this review will
provide a preliminary risk evaluation, and highlight open
questions that need to be addressed to improve risk
assessment.
Methods

This review was initiated by the EU COST action CA15114
AMiCI ‘Anti-microbial coating innovations to prevent infectious
diseases’ where the safety analysis of application of AMCs on
frequently touched surfaces in healthcare settings was one of
the central tasks. One important safety aspect of AMCs is the
development of AMR that must be considered and evaluated for
a risk-benefit analysis of the use of these novel coatings
[7,8,11]. Initial analyses within the COST consortium showed
that silver- and copper-based coatings are most relevant to
current use and development [7,12]. Surfaces coated with
AMPs were also included as an example of an emergent tech-
nology. Next, a group of scientific experts who investigate
evolution and mechanisms of resistance to antimicrobials,
including biocides and surface coatings of silver, copper and
AMPs, was assembled. The most important general mechanisms
for resistance evolution and spread that may be underpinned
by AMCs were defined, namely de-novo evolution, horizontal
gene transfer and species sorting. To put resistance to the AMC
into a general context, information was included for each
active substance on use, efficacy, mode of action and resist-
ance by the three general mechanisms. Each expert performed
searches in electronic databases (PubMed or Web of Science)
using the terms ‘antimicrobial surface’, ‘resistance’ and
‘copper’, ‘silver’ or ‘antimicrobial peptides’. The abstracts
and results sections of the scientific publications were eval-
uated to identify those publications that provided evidence for
each aspect (use, efficacy, mode of action, resistance) of the
reviewed active substance. Publications that were known to
the authors as cornerstone studies in the field but were not
identified in the search were also included.
Results

General mechanisms of AMR selection

There are three main mechanisms of resistance against
antimicrobial compounds: (i) reducing intracellular concen-
trations; (ii) target alteration, modification or protection; and
(iii) enzymatic transformation of the antimicrobial agent [13].
Resistance to antimicrobials can evolve and spread in a pop-
ulation by two principal mechanisms: de-novo mutation and
horizontal gene transfer (HGT). De-novo mutations occur ran-
domly, and a subset of these will improve the growth or survival
of these mutants in the presence of an antimicrobial com-
pound. This selective benefit of the mutant leads to a relative
increase of its progeny in the population, whereby the muta-
tions are transmitted vertically across generations. Alter-
natively, resistance can be acquired horizontally from resistant
cells by the processes of conjugation, transduction or trans-
formation. DNA, newly acquired through HGT, can sub-
sequently be transmitted vertically to the progeny. Lastly,
species sorting of inherently resistant populations is a poten-
tially important process for the transmission of AMR. The
chronic presence of an antimicrobial compound can affect
microbial community assembly, whereby populations with
inherent or acquired resistance that are dispersed into the
treated environment increase relative to non-resistant pop-
ulations without the need for genetic changes [14].

Two phenomena e cross-resistance and co-resistance e are
key to understanding the risk of AMCs in driving the emergence
and spread of AMR in healthcare settings. Cross-resistance
describes a phenomenon whereby a single molecular mecha-
nism is capable of mediating resistance to different toxic
substances [15e18]. If resistance evolves against an anti-
microbial used as an AMC, and the same resistance mechanism
decreases the sensitivity of bacteria to antibiotics, AMCs would
contribute to the problem of AMR through the selection of
cross-resistance. For example, cells that evolve decreased
porin expression in the presence of silver may also exhibit
decreased susceptibility to antibiotics [17]. Co-resistance is
observed if different resistance mechanisms are genetically
linked on the same genetic element. The selective pressure on
one mechanism is sufficient to ensure retention of all of these
within the population [16,18]. This type of co-selection is
commonly related to mobile genetic elements, such as plas-
mids, that harbour different resistance mechanisms which e
due to their physical association e are all maintained in the
presence of a single antimicrobial [16,19,20]; for example,
certain plasmids harbour genes conferring resistance to silver
and antibiotics [17,20,21]. The presence of silver-coated sur-
faces could potentially co-select for themaintenance or spread
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of AMR genes because the plasmid confers a fitness advantage
through carriage of silver resistance genes.

In addition, growth as surface-associated biofilms is known
to affect intrinsic susceptibility to killing by antimicrobials, as
well as increasing the appearance and transfer of genetically
determined AMR. This is relevant for the consideration of AMR
risks of AMCs because cells are surface-associated when in
contact with AMCs. Eradication of cells growing in a biofilm by
antimicrobials is hindered by the slow growth of cells embed-
ded in the biofilm compared with genetically identical plank-
tonic cells (a feature that makes them intrinsically far less
susceptible to bactericidal action), the active expression of
stress tolerance genes and the protective extracellular matrix
of the biofilm [22]. Moreover, several studies have demon-
strated that de-novo mutation and HGT in pathogenic bacteria
occur at greater frequency in biofilms. For example, the fre-
quency of conjugative transfer of plasmids increases 1000-fold
in Escherichia coli biofilms [23] and up to 16,000-fold in
Staphylococcus aureus biofilms [24]. In bacteria such as
Streptococcus pneumoniae that are capable of undergoing
transformation through uptake of naked DNA from their envi-
ronment, transformation is often only observed during biofilm
growth [25]. The biofilm is also associated with accelerated
evolution of AMR through de-novo mutation, as has been
described in diverse human pathogens including
S. pneumoniae, Pseudomonas aeruginosa and S. aureus
[26e28]. It should be noted that surface biofilms on dry AMCs in
healthcare settings are formed by deposition of bacteria (e.g.
from body fluids or contact transmission by touching). This
process likely differs considerably from the developmental
formation process of submersed biofilms that is more com-
monly studied. In the context of hospital surfaces, studies on
the characteristics of deposited, dry biofilms and how their
characteristics relate to AMCs are currently lacking.

Copper

Copper is the most common metal used as an AMC, with
well-established efficacy and broad application in healthcare
settings [29]. Copper has been incorporated in the form of pure
copper, copper alloys, copper composites or nanoparticles in
hard non-porous products (e.g. door handles, handrails) as well
as in porous products (e.g. textiles) [30,31].

Bacterial killing rates on copper surfaces can reach 7e8 logs
per hour in laboratory settings, with no microbes recoverable
from the surface after longer incubation times [32]. Copper
surfaces were the first to be approved as AMCs by the US
Environmental Protection Agency (EPA) in 2008. According to
EPA guidelines [33,34], such surfaces can be registered as
antibacterial if they reduce bacterial counts by 99.9% in 2 h.
Based on this criterion, EPA-registered copper alloys with at
least 62% copper content have been shown to be effective
against a range of pathogens including S. aureus [including
meticillin-resistant S. aureus (MRSA)], vancomycin-resistant
enterococci, E. coli O157: H7, P. aeruginosa and Enter-
obacter aerogenes [33]. Moreover, studies using a more strin-
gent activity threshold (i.e. 99.99% kill) showed that copper
materials with �62% copper content kill S. aureus cells within
10 min [35], Acinetobacter spp. within 240 min [36] and E. coli
O157 within 350 min [37]. Generally, laboratory studies report
higher antimicrobial efficacy with increasing copper content.
However, copper content alone is not sufficient to explain the
antimicrobial efficacy of the studied surfaces [32,38]. Copper-
containing surfaces generally exhibit more rapid bacterial
killing (measured in seconds to a few minutes) in dry conditions
than when wet, where exposure of minutes to a few hours is
needed to achieve a biocidal effect for most microbes [32].
This property is in strong contrast to most other AMCs, and is
beneficial, given that most real-life scenarios for AMCs involve
prolonged dry periods. Additionally, surfaces that are made
entirely of copper are, in principle, able to elaborate anti-
microbial ions continuously, while microbicide-releasing coat-
ings that are intended to leach an antimicrobial agent must be
considered to be non-permanent [6].

In hospital settings, pure copper or copper alloy items have
been tested in multiple touch surface types in patient rooms
(i.e. furniture and other permanent indoor interior designs). A
reduction in total bacterial counts of 63e100% compared with
control surfaces has been observed in different studies over
periods of 10 weeks to 9 months [39e44]. Copper surfaces,
compared with control surfaces, also delayed repopulation
with bacteria [44], and decreased the number of bacterial
spores [45,46], which are otherwise difficult to eradicate.
Copper surfaces have also been shown to affect biofilm for-
mation under submersed conditions, although these studies
were conducted outside the healthcare environment. Com-
pared with no copper surfaces and surfaces with low amounts
(0.1 mol%) of copper, 5 mol% copper surfaces inhibited marine
biofilm formation significantly [47]. Similarly, the formation of
Acinetobacter calcoaceticus and Stenotrophomonas malto-
philia biofilms over 24 h and 48 h was inhibited by copper alloys
that contained 57e96% of copper [48]. The antimicrobial effect
of copper surfaces appears to translate into a reduced preva-
lence of HAIs in patient rooms with copper-containing hard-
touch surfaces [43,49] or copper-containing linens [30,50e53].
However, assessing the impact of such interventions on the
rates of HAIs is challenging [49], and despite the modest
microbial reduction confirmed in a systematic review [9],
uncertainties about the efficacy of copper surfaces for the
prevention of HAIs still remain.

The antimicrobial mode of action of copper is attributed to
its redox properties and the tendency to transition between
cuprous [Cu(I)] and cupric [Cu(II)] oxidation states (Figure 1A)
[54]. Cu(I) ions are believed to trigger the production of
hydrogen peroxide and further hydroxyl radicals, which, in
turn, cause damage to various cellular structures [32]. Copper
ions also compete with iron in FeeS clusters, as well as with
zinc in the active sites of proteins [32]. Thus, the overall effect
of copper surfaces on bacteria is a combination of the damage
inferred by Cu(I) ions and reactive oxygen species (ROS),
leading to lipid peroxidation, loss of membrane integrity and
cell death [32,55]. Furthermore, induction of oxidative DNA
damage has been observed [32], although this is unlikely to
represent a primary cause of copper-mediated surface killing
[38,55].

Bacteria have evolved mechanisms to protect themselves
from the toxic effects of copper, including extracellular
sequestration of copper ions, low permeability of outer and
inner membranes of copper ions, active efflux of copper ions
from the cell, and the presence of copper-scavenging proteins
(Figure 1A) [32,55]. An important example of efflux-mediated
resistance is the Cus system present in E. coli, which actively
pumps out copper ions (Figure 1A). Analogous mechanisms are
described for most other Gram-negative bacteria [32,55e57].



SEQUESTRATION

SEQUESTRATION

SEQUESTRATION REDUCED ADHESION

EFFLUX
(Sil,Cus)

SEQUESTRATION

EFFLUX (Cus)

EFFLUX (Cop)

REDUCED PORIN
EXPRESSION

MODIFICATION
OF LIPID A (mcr)

EFFLUX

ROS

ROS

Protein damage

Protein damage

Membrane
damage

Membrane
damage

Membrane
damage

Cell wall
synthesis

Inhibition of
respiration

DNA binding

Protein misfolding

Aminoglycoside
modifying enzymes

EFFLU
X

EFFLU
X

EFFLU
X

Flip flop

model

EFFLU
X

EFFLU
X

OXIDASE

PO
R

IN
?

PO
R

IN

ELECTRO
N

TRA
N

SPO
RT

C
H

A
IN

SH
AG-S

Fe-S

Antimicrobial
peptide

Degrading enzyme

Protein

AMP binding
protein

Plasmid location →
co-resistance

Ag(I)

Protein

Plasmid location →
co-resistance
Cross-resistance

Cu(I)
Cu(II)

Exo-polysaccharides

Protein

Plasmid lacation→
co-resistance

Cross-resistance

A

B

C

F. Pietsch et al. / Journal of Hospital Infection 106 (2020) 115e125118



F. Pietsch et al. / Journal of Hospital Infection 106 (2020) 115e125 119
While there is ample knowledge on native cellular systems that
mediate copper resistance, the authors are not aware of
studies that have successfully evolved copper resistance by
de-novo mutation in the laboratory. For P. aeruginosa, it has
been shown that copper exposure can trigger an upregulation
of copper efflux systems, and simultaneously mediate cross-
resistance to the carbapenem drug imipenem via down-
regulation of a porin that allows uptake of carbapenems
[58,59]. Moreover, copper ions can interfere directly with
antibiotics, and either diminish (e.g. by binding to the anti-
biotic molecule and decreasing its potency) or enhance (due to
synergistic effects between the metal ion and the antibiotic)
their single effect [60e62]. Thus, interactions between the
metal and the antibiotic drug may also play a role in the
selection of resistance.

Copper resistance can spread via HGT. A number of con-
jugative plasmids harbouring copper resistance genes have
been described [20,21,63], which poses the risk of co-selecting
antibiotic resistance genes upon copper usage. Initial evidence
for potential co-resistance has been provided by Yang et al.
[20], who reported that multi-drug-resistant Enterobacterales
(see https://jb.asm.org/content/jb/55/3/287.full.pdf) car-
ried copper (and other metal) resistance genes up to seven
times more frequently than antibiotic-sensitive strains. More-
over, horizontal transfer of copper resistance genes along with
various antibiotic resistance genes has been observed in MRSA
[64], Salmonella typhimurium [65] and enterococci [66e68].
Touati et al. (2010) detected copper resistance in all 16
extended-spectrum beta-lactamase-producing Enter-
obacterales strains (N¼62) isolated from hospital surface
environments [69]. Furthermore, clinical isolates of Klebsiella
pneumoniae harbouring large multi-drug-resistant plasmids
with both copper and antibiotic resistance genes have been
described [21,62]. Recent but not yet peer-reviewed research
suggests that copper stress can increase plasmid uptake [70],
which may therefore also increase the potential for spread of
antibiotic resistance genes and co-selection.

Species sorting of AMR microbes by copper has been
observed in soils [71e74], aquaculture [74], wastewater envi-
ronments [75] and drinking water networks [76]. Moreover, the
use of copper in animal feed has led to increased levels of
antibiotic-resistant Salmonella spp. and enterococci in swine
[18,77]. Despite these known correlations between copper and
antibiotic resistance in environments with constant high cop-
per ion exposure, a causal relationship between copper-
containing AMCs and selection of AMR in real-life conditions
Figure 1. Antibacterial modes of action of, and bacterial resistance to
action of, and resistance to, copper. Copper can mediate both indire
reactive oxygen species (ROS) or by direct binding to proteins. Resista
of copper in the periplasm or extracellularly, or export through transm
silver. Similarly to copper, silver causes indirect and direct cellular d
sequence of this damage is loss of integrity and function of the cytoplas
on electron transport chain proteins, this effect may also be anticipat
direct interactions. Resistance to silver (light blue) predominantly r
through the outer membrane or sequestration in the periplasm. (C) A
bacterial resistance mechanisms. The naturally occurring short (12e5
dues) sequences interact and destabilize negatively charged bacterial
inhibition of cell wall synthesis, binding to nucleic acids, protein m
mechanisms (light blue) cover changes in bacterial surface charge, in
sequestration by secreted protein binders.
has yet to be proven [57]. However, it can be speculated that
species sorting could be an important mechanism for AMR
selection in this context because copper-sensitive strains
landing on a copper surface will have only limited chance to
become resistant by de-novo mutations or HGT before they are
killed. In contrast, intrinsically resistant strains will become
enriched on a selective AMC because the resistance mechanism
(potentially conferring co- or cross-resistance to antibiotics)
provides a benefit over the sensitive population. The resulting
shift in microbial community composition will be of clinical
relevance if the resistant strains are pathogens, have means to
transfer resistance genes to pathogens, are co- or cross-
resistant to antibiotics, or can protect pathogens by secreting
factors that diminish the toxicity of AMCs.
Silver

The principal use of silver in healthcare settings is in the
prevention of bacterial infections in wounds and burns,
although it is also used to coat medical devices (e.g. catheters)
to reduce device-associated infections [78]. Use of silver as a
dry AMC is less common than for copper, and when employed in
this context, it is typically used in combination with other
biocidal substances (see below) [79e81]. Nevertheless, silver is
increasingly marketed as an AMC for dry surfaces including
panels, paints and textiles [82].

Although evaluated extensively as an AMC in the context of
medical devices, the utility of silver as an AMC for healthcare
settings is less well studied. The standard tests for assessing
the antimicrobial properties of hard, non-porous surfaces
in vitro are the efficacy testing methods JIS Z 2801 and ISO
22196. These protocols specify a relative humidity of >90%
over the period in which bacteria are in contact with the test
surface. Under such conditions, surfaces containing silver
exhibit comparable antibacterial potency to those of copper
[83]. However, the antibacterial efficacy of silver-containing
surfaces appears to be critically dependent on high levels of
hydration [83], and this assay therefore fails to reflect the low
moisture levels that many surfaces in healthcare settings
experience in use. Studies conducted at relative humidity
representative of indoor environments (<20%) suggest that
surfaces containing silver are devoid of antibacterial activity
[83,84]. This reflects the fact that silver metal is, under
ambient conditions, less susceptible than copper to the surface
oxidation required to produce the ionic species responsible for
the antibacterial effect. Common coating materials include
wards, copper, silver and antimicrobial peptides. (A) Antimicrobial
ct and direct damage (dark red arrows and text), mainly through
nce to copper (light blue) includes modification and sequestration
embrane proteins. (B) Antimicrobial action of, and resistance to,
amage (dark red arrows and text). An important and early con-
mic membrane. While silver has been shown to have direct effects
ed for copper, but the authors are not aware of evidence for such
esults from efflux, either in combination with decreased influx
ntibacterial mode of action of antimicrobial peptides (AMPs) and
0 residues), cationic (þ2e8) and hydrophobic (w50% of the resi-
membranes (red). The intracellular presence of AMPs may lead to
isfolding and regulation of transcription/translation. Resistance
creased efflux activity, degradation by secreted proteases and/or

https://jb.asm.org/content/jb/55/3/287.full.pdf
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silver salts (frequently, silver oxide) or silver nanoparticles.
Whilst the latter are comprised of the elemental metal, their
large surface-to-bulk ratio means that they contain consid-
erable quantities of silver oxide that provide a source of silver
ions [85]. Nanoparticulate silver often exhibits greater anti-
bacterial potency in vitro than an equivalent concentration of
silver salts, an effect that is likely the result of increasing silver
availability rather than because of any ‘particle-specific’ toxic
effects [86]. It has been reported that coatings containing sil-
ver can reduce microbial contamination of surfaces in health-
care settings; however, in most cases, the coatings evaluated
also contained other antimicrobial agents (e.g. quaternary
ammonium compounds or zinc pyrithione) in addition to silver,
thereby preventing an assessment of the contribution made by
silver [79e81]. In one case where the coating apparently con-
tained silver ions as the sole antibacterial compound, a 10-fold
reduction in colony-forming units was reported across different
treated vs untreated surfaces [87]. Further studies are there-
fore required to establish whether silver represents a useful
AMC in healthcare settings.

The antibacterial effect of silver ions derives, in part, from
their ability to bind FeeS clusters in iron-containing enzymes,
thereby inhibiting crucial cellular functions including the
electron transport chain, and, in turn, driving the formation of
ROS, predominantly via the Fenton reaction [88e90]. In addi-
tion, binding of silver ions to thiol groups inhibits disulphide
bond formation in proteins, preventing correct folding and
inducing aggregation [89]. When these latter effects impact
membrane proteins, this results in destabilization and loss of
membrane integrity [89,91].

To date, silver resistance has not been detected amongst
important Gram-positive pathogens such as staphylococci [91].
In contrast, several mechanisms of silver resistance have been
detected in laboratory studies with medically relevant Gram-
negative bacteria [17,19,92e94]. The extent to which these
occur in the healthcare setting, and whether they allow their
bacterial hosts to effectively overcome the antibacterial
properties of silver-coated surfaces, is, for the most part,
unknown. The resistance mechanism most likely to be relevant
in this context is the Sil system, which is prevalent amongst
clinically important Enterobacterales including Enterobacter
spp., E. coli, Salmonella enterica and Klebsiella spp.
[65,95,96]. The Sil operon often resides on plasmids and can be
acquired horizontally [17,19,21,65,97,98]. As these plasmids
frequently also encode resistance to multiple, clinically
important classes of antibiotics, selection for Silþ strains will
also co-select for antibiotic resistance [17,21,65]. Sil acts to
detoxify silver ions through a combination of sequestration in
the periplasm (mediated by the SilE protein) and active efflux
(via the SilABC transporter), thereby restricting silver ingress
into the cell and providing a profound reduction in silver sus-
ceptibility over wild-type strains [17,97]. Although Sil is named
to reflect its ability to mediate silver resistance, several lines
of evidence suggest that its original evolved role is copper
transport [17]. Indeed, this system has been shown to be
capable of mediating reduced susceptibility to copper ions
under anaerobic conditions [65]. Thus, the presence of Sil in a
bacterium has the potential to attenuate the antibacterial
efficacy of both silver and copper surfaces concurrently. Fur-
thermore, this ability to mediate cross-resistance to silver and
copper implies that either type of metal surface could, in
principle, select for bacteria carrying Sil, thereby enriching
healthcare settings for micro-organisms that are better able to
resist the antimicrobial effect of silver in currently deployed
wound dressings and medical devices. Similar effects could
potentially also occur via the Cus system, which can actively
efflux both copper and silver from the cell [17,92], and upre-
gulation of which is central to the resistance phenotype in
laboratory-evolved, silver-resistant E. coli. However, there is
no evidence, at present, that upregulation of the Cus system
plays a role in silver resistance outside the laboratory. A gen-
eral overview of the resistance mechanisms is given in
Figure 1B.

Few studies have investigated the effect of silver on the
selection of bacteria inherently resistant to antibiotics by
species sorting [99]. Silver nanoparticles have been shown to
affect community composition in soil [100]. While studies in
wastewater and soil report the tendency for the selection of
some antibiotic resistance genes in silver-amended environ-
ments [99,101], a study in estuarine sediments did not find an
effect [102]. As these studies have been performed in soils,
sediments and wastewater, it is not known whether silver-
coated surfaces in healthcare settings will affect species
sorting of bacteria resistant to antibiotics.

Antimicrobial peptides

AMPs are small, naturally occurring peptides with anti-
microbial properties which are considered as promising future
AMCs. Due to the lack of experimental evidence, this section
serves as an outlook rather than an evaluation of the present-
day scenario. In laboratory settings, several materials have
been functionalized with AMPs, including titanium [103e105],
catheters [103e108] and contact lenses [109]. Diverse linker
strategies are utilized [103,104,110e117], also contributing
anti-adhesive properties [118] and supporting dip coating
[113]. Different coatings have demonstrated stability towards
ethylene oxide sterilization [119] and repeated washing with
hydrochloric acid, sodium hydroxide and ethanol [120], making
them attractive for healthcare settings.

AMPs can exhibit antimicrobial activity against planktonic
and biofilm bacteria [121e126], viruses [127] and parasites
[128]. AMP tethering to surfaces retains the antimicrobial
effect in laboratory experiments and in in-vivo models,
resulting in a 5 log reduction of colony-forming units when
exposing the functionalized surface to 5�105 bacteria/mL over
4 h [103,104]; as discussed above, test conditions are in liquid
or under high moisture, thus not reflecting the dry conditions in
healthcare settings. The antimicrobial effect of AMPs is usually
based on their electrostatic interactions with bacterial mem-
branes [129]. Furthermore, antibiofilm effects of peptide
functionalized stainless steel [130,131] or titanium [103] have
demonstrated a positive impact on the inhibition of biofilm
formation. However, it should be noted that all of these
experiments monitored the formation of biofilms in liquid
media.

Bacteria have multiple mechanisms that confer resistance
against AMPs [132], including degradation by extracellular
proteases [133], extracellular sequestration (e.g. by exopol-
ymers [134]), cell surface modifications (e.g. changing the net
negative surface charge of bacteria in the direction of more
positive values [135,136] or membrane rigidity), cytoplasmic
membrane alteration and increased efflux pump activity
(Figure 1c) [137]. Studies on the evolution of AMP resistance
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have shown that evolution by de-novo mutations is possible in
laboratory evolution experiments [138]. High-level AMP
resistance in this study depended on strong epistatic inter-
actions between multiple mutations, including those in tran-
scriptional regulators, restricting the evolutionary pathways to
resistance. In addition, resistance evolution against AMPs is
restricted by their pharmacodynamic properties (i.e. their
narrow mutant selection window characterized by a steep
dose-response curve [139]). Cross-resistance between AMPs
and antibiotics seems likely because increased efflux pump
activity has been shown to confer AMP resistance [137]. Con-
trary to this hypothesis, a large comparative study has dem-
onstrated that cross-resistance is rare while collateral
sensitivity is widespread [140]. AMPs are part of the immune
system of humans, and several studies have demonstrated that
resistance that selects against one type of AMP often results in
cross-resistance to other AMPs. Therefore, routine use of AMPs
as antibiotics as well as AMCs may potentially select for
pathogens capable of better evading the immune system [141].

Co-resistance of AMP and antibiotic resistance genes is
possible in principle but may be restricted in practice. HGT of
resistance to the AMP colistin by the plasmid-associated mcr-1
gene has been linked with other antibiotic resistance genes
[142]. However, studying horizontal transfer of AMP resistance
in the human gut microbiome suggested that phylogenetic
barriers limit the transfer of single AMP resistance genes [143].
This is in agreement with evolution studies suggesting that
multiple mutations need to act in concert to mediate AMP
resistance [138].
Discussion

Evaluation of AMR selection risk

Studies on the development of resistance to AMCs such as
silver- or copper-coated door handles, sinks and hand railings
are rare. Specifically evolution-based AMR studies conducted
on such surfaces are not available, but environmental studies
have shown that copper-based AMCs can co-select for AMR
under submerged conditions [144]. Thus, important data to
perform a detailed risk assessment for AMR selection on AMCs
in healthcare settings are missing. Although AMCs are meant to
act under dry conditions, most experiments have been carried
out in solution, and consequently can only suggest the
‘potential’ of the surfaces for AMR selection and spread. Sev-
eral cases of reduced susceptibility to antibiotics due to
exposure to selective concentrations of metals have been
reported [18,63,145]. Environmental copper resistance studies
have shown strong evidence for selection of antibiotic resist-
ance due to exposure to subinhibitory copper concentrations
[16,73]. As hypothesized by Pal et al. [10], the dominant
mechanism driving this effect is cross-resistance, often con-
ferred by efflux systems [144]. Important in this context is the
example of cross-resistance between copper and silver.
Selection for silver resistance can occur via overexpression of
components of the Cus system, which is commonly linked to
increased copper efflux [17,92]. In addition, expression of the
Sil operon will lead to transport of both copper and silver
[17,146]. Thus, resistance to one of the metals may also confer
resistance to the other via a shared efflux mechanism. In
addition, several environmental studies suggest that cross-
resistance between antibiotics and metals can facilitate a
shift in the community structure towards naturally resistant
organisms in high-metal environments, and that metal resist-
ance genes are physically linked with antibiotic resistance
genes on plasmids [147]. Therefore, the use of metal surfaces
may, instead of eliminating antibiotic-resistant bacteria, con-
stitute a recalcitrant selective environment that potentially
contributes to the spread of AMR in healthcare settings via
cross-resistance and co-resistance [16,62].

Further studies and the development of standardized labo-
ratory tests are needed to investigate whether the observa-
tions made can be transferred to the selection of resistance on
copper- or silver-coated surfaces. These studies need to con-
sider that the biofilm mode of growth of bacteria affects sen-
sitivity to antimicrobials and the evolutionary processes by
which resistance emerges. In addition, these studies should
consider that concentrations employed for antimicrobial cop-
per coatings are usually above the minimum inhibitory con-
centration, and therefore higher than the selective
concentrations present in the above-mentioned studies, and
that elemental silver coatings seem to be inert on dry-touch
surfaces. Furthermore, these studies should be conducted at
relative humidity relevant to a dry-surface environment
because different resistance mechanisms may be involved
depending on the humidity during selection. Finally, it is
important that future clinical trials on the efficacy of AMCs
incorporate an evaluation of the risk of resistance selection. To
this end, the frequency of strains resistant to the coating and to
antibiotics, which were isolated from the AMC compared with
control surfaces, should be determined.

In conclusion, considering the rapid increase in mortality
caused by infections of antibiotic-resistant bacteria and the
resulting urgent need for strict hygiene in clinics, AMCs may be
valuable in healthcare settings. It is critically important to
demonstrate the efficacy of AMCs under relevant environmental
conditions, first in the laboratory and then on site. Copper, silver
and AMPs can show strong antibacterial effects in vitro. How-
ever, only copper has been shown to lead to a moderate
reduction in bacterial contamination during on-site tests, and
the effect on HAIs is not established solidly. Moreover, mounting
evidence suggests that the substances used as AMCs have the
potential to promote the selection and spread of antibiotic-
resistant bacteria and plasmids via cross-resistance and co-
resistance. However, most of the evidence originates from
studies in solution or high-moisture environments, which are
very different from the environmental conditions found on
surfaces in healthcare settings. Thus, the magnitude of the
AMR selection risk imposed by AMCs on dry surfaces in
healthcare settings cannot be assessed accurately at the present
time. Taken together, the benefits of AMCs in healthcare settings
may outweigh the risk of selecting AMR. However, further on-site
research into the efficacy of AMCs and their potential for AMR
selection will be required to provide a clearer answer.
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Inactivation of the dlt operon in Staphylococcus aureus confers
sensitivity to defensins, protegrins, and other antimicrobial
peptides. J Biol Chem 1999;274:8405e10.

[136] Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR,
et al. A crucial role for exopolysaccharide modification in bac-
terial biofilm formation, immune evasion, and virulence. J Biol
Chem 2004;279:54881e6.

[137] Bengoechea JA, Skurnik M. Temperature-regulated efflux
pump/potassium antiporter system mediates resistance to
cationic antimicrobial peptides in yersinia. Mol Microbiol
2000;37:67e80.

[138] Jochumsen N, Marvig RL, Damkiaer S, Jensen RL, Paulander W,
Molin S, et al. The evolution of antimicrobial peptide resistance
in Pseudomonas aeruginosa is shaped by strong epistatic inter-
actions. Nat Commun 2016;7:13002.

[139] Yu G, Baeder DY, Regoes RR, Rolff J. Predicting drug resistance
evolution: insights from antimicrobial peptides and antibiotics.
Proc Biol Sci 2018;285:1e9.

[140] Lazar V, Martins A, Spohn R, Daruka L, Grezal G, Fekete G, et al.
Antibiotic-resistant bacteria show widespread collateral sensi-
tivity to antimicrobial peptides. Nat Microbiol 2018;3:718e31.

[141] Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and
consequences of bacterial resistance to antimicrobial peptides.
Drug Resist Updat 2016;26:43e57.

[142] Malhotra-Kumar S, Xavier BB, Das AJ, Lammens C, Butaye P,
Goossens H. Colistin resistance gene mcr-1 harboured on a
multidrug resistant plasmid. Lancet Infect Dis 2016;16:283e4.
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