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Abstract

Sound analyses of the nonlinear relationship between wind speed and power generation are crucial for the advancement of
ind energy optimization. As an emerging artificial intelligence technology, deep learning has received growing attention from

nergy researchers for its outstanding ability to provide complex mappings. However, deep neural networks involve complex
onfigurations, making it challenging to utilize them in practice. This paper assesses and presents a number of model-control
echniques, categorized as model-oriented and data-oriented, to achieve more robust and efficacious deep neural networks for
pplications in the nonlinear modeling of wind power with wind speed. These carefully refined models are also compared with
olynomials, simple neural networks, and not optimized deep networks with annual data of an Arctic wind farm. The results
how that deep networks with sufficient parameter tunings, training optimizations, and modeling exhibit superior performance
nd generalization, thus possessing considerable advantages in wind energy engineering.
2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

http://creativecommons.org/licenses/by-nc-nd/4.0/).

eer-review under responsibility of the scientific committee of the 2021 8th International Conference on Power and Energy Systems Engineering,
PESE, 2021.

eywords: Arctic; Deep learning; Modeling control; Neural networks; Nonlinear model; Wind energy

1. Introduction

Wind power is characterized by volatility, randomness, and intermittency. The large-scale grid connection of wind
ower, therefore, poses certain challenges for the safe and stable operation of the power grid. For grid planning
nd dispatching, improving the modeling accuracy of wind power can protect the economic scheduling and power
alance and can reduce the allocation of energy storage equipment capacity [1]. For wind power parks, accurate
odels can provide a reliable reference for power generation plans and thus improve production efficiency [2,3].

n particular, short-term prediction of wind power with a forecast horizon from 0 to 24 h is vital in determining
he daily operation plan of the grid, and can be produced with numerical weather prediction model data, measured

eteorological wind, and observed power as the main inputs.
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Abbreviations

PR Polynomial Regression
NN three-layer Neural Network
DN Deep Network with three hidden layers
MDN Model-oriented Deep Network
DDN Data-oriented Deep Network
ODN Overall optimized Deep Network
RRSE Root Relative Squared Error
R2 Coefficient of determination
QR Qualification Rate
QR75 Qualification Rate of predictive accuracy over 75% to the total test samples
QR90 Qualification Rate of predictive accuracy over 90% to the total test samples

Since wind speed and wind power inherently constitute time series, classical time-series forecasting models
ave been widely used in wind power modeling. However, newer machine learning algorithms have proven to be
ffective methods given the nonlinear relations between wind power and wind speed, direction, and other predictors
sed in wind power planning. In 2006, Hinton and Salakhutdinov successfully trained multilayer neural networks
more than two hidden layers) for the first time as the convolutional network and achieved excellent results on
everal datasets [4], which also signified the birth of deep learning. Mishra and colleagues compared five common
eep learning models, viz. Deep Feed Forward (DFF), Deep Convolutional Network (DCN), Recurrent Neural
etwork (RNN), Attention mechanism (Attention), and Long Short-Term Memory Networks (LSTM) in modeling
onthly wind power and found the DCN and Attention performed best [5]. Zhu and colleagues used a temporal

onvolutional network to forecast wind power with datasets from the renewable energy laboratory of the United
tates and demonstrated its edge over traditional learning methods [6].

Although deep learning received considerable attention from researchers in wind power modeling [7], there are
till the following issues to be addressed. Firstly, deep learning is a complex neural network model, and the modeling
rocess requires precise skills and parameter tuning, which is harder for energy researchers to consistently deliver.
econdly, deep learning performs poorly in univariate autoregression and sometimes even inferiorly to benchmark
tatistics. Finally, deep learning requires substantial computational resources and is time-consuming, so currently,
t is not very widespread in wind power operations.

In the present study, we have distilled and categorized some techniques, divided by model- and data-oriented, that
ake deep learning more effective, rapid, and stable, and applied them to wind power modeling. The performance

f the boosted models was also compared statistically with the benchmark polynomial fitting, shallow neural
etworks, and deep networks. This study can assist researchers in the energy field to bypass the tedious and complex
athematical concepts underlying deep learning so that they can quickly acquire the relevant skills and apply them

o energy research.

. Wind data description

Theoretically, the output power of a single wind turbine is given by:

Pw = CP AρV 3/2 (1)

here Pw is the output power (kW), Cp is the rotor coefficient of performance, ρ is the air mass density (kg/m3),
is the swept blade area (m2), and V is the wind speed (m/s). It can be seen that the power generated by wind

urbines is proportional to wind speed with a cubic relationship, and wind direction mainly affects A. In a shorter
ime period, air density does not vary much and serves as a secondary factor.

Inspired by Eq. (1), the power of the entire wind park can be regarded as a function of the third polynomial of
ind speed, and if considering wind direction, the power P is expressed by:

2 2 3 3
P = f (u, v, u , v , u , v ) (2)
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where f is a nonlinear function, u is defined as horizontal wind speed u=V×sin θ , and v is as vertical wind speed
v=V×cos θ , V is the observed wind speed of the site, and θ is its direction angle. The core of this article lies in
he proper non-explicit representation of the function f (.) by deep learning approaches.

In this research, a wind power park in Northern Norway, inside the Arctic Circle, is the target. The wind speed
and direction data are measured by the site wind mast, and the power data are from the Norwegian Water Resources
and Energy Directorate (NVE). The two sets are both with hourly temporal resolution and from 0:00 1st January
2017 to 23:00 31st December 2017.

3. Methodology

As a highly representative part of machine learning, especially neural networks, deep learning has achieved
unprecedented breakthroughs in many applications with originality and great success.

Compared with shallow neural networks, the advantages of deep learning are: 1. Better approximation of complex
nonlinear functions through more layers with nonlinear structure; 2. The use of layer-by-layer learning and fine-
tuning can extract and express high-level abstract concepts while avoiding being trapped in a local optimum; 3. The
network architecture is flexible and suitable for various learning tasks [8].

Generally, neural networks perform learning with the stochastic gradient descent algorithm. The loss function
of the training data is firstly estimated, and its derivative is calculated and propagated to update the weights of the
network with the back-propagation algorithm.

While deep learning has a solid mathematical foundation for modeling, training, optimization, prediction, etc.,
(these mathematical foundations can be found in deep learning by I Goodfellow et al. [9] due to space constraints
of this paper), deep learning engineering is typically hands-on. That is, the configuration of deep learning models is
often associated with trial-and-error and heuristic approaches. The reason is the lack of accurate and fast rules for
configuring a network for a given problem, and also the high-dimensionality of the space of hyperparameters that
must be tuned [10]. On the basis of know-how and practical experience in modeling, we divide the techniques for
constructing wind power models with more robust and efficacious deep learning into two categories: model-oriented
and result-oriented.

For model-oriented techniques, they mainly include: 1. Taxonomy of deep networks; 2. Networks topology; 3.
Art of renunciation; 4. Model ensemble; 5. Multiple models ensemble.

For data-oriented techniques, they primarily cover: 1. Input preprocessing; 2. Training parameters; 3. Weights
adjustment; 4. Gradient control; 5. Adding noise.

A brief description of these techniques is described as follows.

3.1. Model-oriented techniques

Taxonomy of deep networks: according to tasks of learning and networks structure, deep learning can be
categorized into: Deep Multilayer Perceptrons (DMLPs) for various types of nonlinear mappings; Convolutional
Neural Networks (CNNs) mainly for image recognitions; Recurrent Neural Networks (RNNs) for sequential
problems; Generative Adversarial Networks (GANs) for generating data; and various network transformations [9].

Networks topology: the basic networks consist of input, hidden, and output layers. Deep networks are all about
building more complex, diverse networks based on these three layers. Designing network structures in accordance
with tasks is one of the key missions of deep learning. Luckily, emerging APIs for deep learning offer a convenient
and efficient way to configure a deep network with few lines of code. Some of the most popular APIs are Theano,
Tensorflow, Keras, Pytorch, MXNet, and PaddlePaddle.

Art of renunciation: Deep neural networks have strong nonlinear learning capabilities, but the trained model
is likely to behave poorly on a test set unless the problem of overfitting to the training dataset and insufficient
generalization is properly addressed. In practice, convenient measures to avoid overfitting are dropout and early
stopping. The former implies stochastically excluding a subset of nodes and their connections from the network
during epochs of training [11]. This action makes network behavior less dependent on specific neurons, less prone
to adapting to the particularities of the training samples, and makes the model more robust and general. Early
stopping means to halt the training process when performance on the test dataset has reached its maximum and
starts to decrease, which is determined by monitoring the loss functions computed separately on the training set

and the test set during training epochs.
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Deep learning is a flexible and nonlinear technology, meaning that the results of each training vary with the
nitial weights and noise in the data (i.e., the results are with high variance). Ensemble learning can reduce this
ariance.

Model ensemble: it is defined as using a statistical method to reach the ensemble effects inside one model.
t includes resampling input data and so-called snapshot ensembles that cleverly obtain multiple trained models
y dynamically cycling the learning rate in one training [12]. The former is an ensemble learning on the multiple
ubsets, made by resampling techniques like k-fold cross-validation and bootstrap aggregation of the training set. The
atter is designed for coping with huge computational costs in a single training by systematically and aggressively
hanging the learning rate with the stochastic gradient descent algorithm in training to establish different networks
ith varying weights. Each time the model converges, the weights and their related networks are saved in the

napshot ensemble, and the current local minimum escapes by initiating bigger learning rates.
Multiple models ensemble: the method harnesses various combination approaches to ensemble sub-learners. It

equires each learner to have contributions to the final model and reduces its variance, which means their prediction
rrors have small correlations. The combination strategies include simple averaging, dynamic weightings, stacking,
nd more complicated and intelligent strategies.

.2. Data-oriented techniques

Inputs preprocessing: this technique refers to the treatment of missing and outlier values of the input data and
caling of variables with different scales, including normalization and standardization. The data scaling leads to
ore stable and faster learning since it helps balance out the updating of weights, without which exploding gradients
ight happen.
Training parameters: there are several tuning parameters in configuring the deep networks, such as loss function,

earning rate, batch size, and activation function, etc. First, the loss function is the target of a stochastic gradient
escent algorithm by which networks are learned. For regression problems, Mean Squared Error (MSE) is a
tatistically preferred loss function under maximum likelihood inference, assuming that the output is normally
istributed [13]. Alternatively, the Mean Absolute Error (MAE), more stable with big outliers, can also be used in
egression. Usually, an extra term called regularization is added to the loss function to escape overfitting. Second, the
earning rate is a small positive value, usually between 0.0 and 1.0, in determining the size of the learning or updating
eights step. If it is very small, the slow reduction in error will lead to long-time training. On the contrary, the big
ne makes the loss function miss the minimum values. Luckily, due to the introduction of momentum and adaptation
n the learning rate, Adaptive Moment Estimation (Adam) and Root Mean Square Propagation (RMSprop) increasing
raining option with rapid speed and sound convergence [10]. Third, batch size, a crucial learning dynamic, is the
umber of examples used in each error gradient estimation. It directly influences learning speed and stability. Smaller
atch sizes are noisy and generalized. In contrast, larger batch sizes reduce computational time but might skip the
inima. Fourth, the activation function, typically chosen as nonlinear, activates the weighted input of the node and

utputs it. It allows nodes to learn sophisticated data information. Specifically, the hyperbolic tangent activation
unction is usually better than the logistic sigmoid [9]. However, in deep networks, these functions make errors
ecrease sharply with their propagation through the network as the number of layers increases. The solution is to
se the rectified linear activation function, ReLU for short, which exhibits several desirable properties.

Weights adjustment: deep networks learn a group of weights that can provide the best map inputs to outputs.
network with big weights might signal an unstable network (small changes may lead to big changes), likely

earned noises in the inputs, which is a sign of overfitting. The networks that maintain small weights, called weight
egularization, are an ideal choice for improving generalization. Practically, a weight constraint, set with a predefined
hreshold or minimum and maximum range, is used in checking the magnitude of the weights.

Gradient control: The weights can be updated very significantly or very slightly during the training procedure,
hich affects the efficiency and effectiveness of the training. The weights can be updated very significantly or very

lightly, which affects the efficiency and effectiveness of the training network. A frequent solution is to alter error
erivatives, namely gradients, and there are two main methods, which are gradient cropping and scaling. The former
s cropping to restrict gradient values to a specific range when the gradient exits the expected scope. The latter is
normalization of the gradient vector so that the scalar value equals a defined value.
Adding noise: Training deep networks on a relatively small dataset may result in memorizing all the data, which
auses overfitting. The addition of noise to the learning process is actually a regulation, improving the robustness
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and generalization of networks. Noise can be added to the input, weights, gradients, batch size, and almost any other
learning parameter. The most popular noise type is white noise, generated with a pseudo-random number generator,
with a mean of zero and a standard deviation of one. In particular, according to a study [14], training with weights
adding noise requires pairing with early stopping to avoid overfitting.

4. Modeling procedure

To leverage these deep learning tricks in wind power modeling, we build five individual models, three baseline
odels: polynomial regression (PR), a three-layer neural network (NN), and a deep network with three hidden

ayers (DN). Three optimized models with the same topology of DN: model-oriented deep network (MDN), data-
riented deep network (DDN), and overall optimized deep network (ODN). The MDN is reinforced with dropout,
arly stopping, 10-fold cross-validation, and snapshot ensemble. The DDN is enhanced with RMSprop and dynamic
atch size scheme, ReLU in the second hidden layer, weight regularization, gradient scaling, and adding tiny noise
n weights. The ODN is strengthened with all tricks in MDN and DDN, and the final model is reached by sub-model
verage ensembles.

Given that modeling wind power with wind speed is essentially a regression problem in which MSE is the loss
unction, Root Mean Square Error (RMSE) is naturally chosen as a metric to evaluate model performance. To
ercentage this metric, Root Relative Squared Error (RRSE), as an extension of RMSE, is used as our evaluation
etric. The coefficient of determination (R2) is also popular for accessing regression performance. The Qualification
ate (QR) examines the proportion of predictive accuracy over 75% to the total test samples. Since only RMSE

s negative-oriented, which means a smaller value is related to better performance. So, practically, we alternatively
se (1-RMSE). The three metrics are expressed in (3), (4), and (5).

R RSE =

√ n∑
i=1

(Pmi − Pi )2/

√ n∑
i=1

(Pi − Pi,average)2 (3)

R2
= 1 −

SSres

SStot
(4)

Q R =
1
n

n∑
i=1

⎧⎨⎩1,
(

1 −
|Pmi −Pi |

Cap

)
⩾ Q

0,
(

1 −
|Pmi −Pi |

Cap

)
< Q

(5)

here Pmi is modeled power, Pi is observed power, Pi,average is the average of Pi , Cap is the designed capacity
f the site. Q is the quantile percentage; we choose 75% and 90% and represent them with QR75 and QR90,
espectively. While SSres is the sum of squares of regression residuals and SStot is the total sum of squares.

The whole year’s wind park data are divided into a training set (70%) and a testing set (30%). Using the
bove-mentioned model to learn on the training set and calculate the metrics on the testing set, and then analyzing
ifferences in the results.

. Results and discussions

Firstly, the fitting curve of PR on the training set is explicit as follows Eq. (6) and Fig. 1:

P = −.00003u3
+ .2168u2

+ .0234u − .00003v3
+ .2237v2

− .008v + 1.6672 (6)

It is intuitively seen that although the cubic item appears in Eq. (1), the quadratic terms of the horizontal and
ertical wind speeds mainly contribute to the linear polynomial fit for wind power with u and v. The power is
athematically approximated as a 3D paraboloid with respect to u and v.
Secondly, for clarity, we pick 100 consecutive samples in the testing set and plot the observed power and the

owers modeled with PR, NN, DN, ODN algorithms in Fig. 2, respectively. It is obvious that except for PR (which
ives too large projections near the power peaks), the other neural network-based algorithms closely follow trends in
he observed power and provide simulated results that are closer to the measured values. Ultimately, Table 1 shows
he performance of the six models. Analogously, the last five approaches provide reasonably satisfactory modeling

2
esults except for PR, which delivers worse 1-RRSE and R , but its QRs are close to the other baseline models.
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Fig. 1. The polynomial fitting 3D curve of wind power.

Fig. 2. The comparison of observed and modeled wind power with 100 samples.

Table 1. The performance of six wind power models.

Metrics PR NN DN MDN DDN ODN

1-RRSE 0.3785 0.5556 0.5335 0.5971 0.5976 0.6074
R2 0.6230 0.8041 0.7941 0.8385 0.8391 0.8458
QR75 0.9136 0.9387 0.9471 0.9513 0.9505 0.9716
QR90 0.6880 0.7420 0.6492 0.7519 0.7576 0.7736

The deep network DN without optimization performs slightly worse than the NN, but the former does significantly
worse on projected QRs, especially the one with the higher quantile. The MDN, DDN, and ODN with optimization
improve more significantly in all metrics, especially QR90 and except QR75, than all benchmark models. And very
similar performance is observed concerning MDN and DDN.

Furthermore, to further investigate the superiority of ODN combining both MDN and DDN, the performance
mprovements of ODN in comparison with other models are displayed in Table 2. ODN outperforms the first five

odels in all metrics. Among them, the largest improvements are 1-RRSE and QR90. In particular, the 1-RRSE
nd QR90 of the ODN are increased by nearly 14% and 19%, respectively, compared to the unoptimized DN. An
xception to R2, ODN also achieves around 2% metric improvement over MDN and DNN.

6. Conclusions

This study elaborates on the techniques of deep neural networks and demonstrated their robustness and
ffectiveness in wind power modeling by examining an Arctic wind farm as a case study. As per the results of

he study, the following conclusions can be drawn:
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Table 2. The performance improvement of ODN compared with others.

Metrics ODN v. PR ODN v. NN ODN v. DN ODN v. MDN ODN v. DDN

1-RRSE 60.4593% 9.3208% 13.8616% 1.7216% 1.6409%
R2 35.7714% 5.1957% 6.5220% 0.8756% 0.8095%
QR75 6.3426% 3.4976% 2.5828% 2.1314% 2.2132%
QR90 12.4455% 4.2571% 19.1685% 2.8853% 2.1102%

1. Modeling the power of a whole wind farm with wind speed is a complex nonlinear problem, and the use of
the linear regression-based polynomial fit does not provide satisfactory results.

2. Simple three-layer neural networks and deep multilayer networks can assist in basic simulations of the
nonlinear relationship between wind speed and power. However, there is still a potential for enhancing
unoptimized networks.

3. Both model-oriented and data-oriented deep learning tricks increase the network’s ability and generalization,
which leads to more precise and robust predictions.

4. Adequate deployment of deep learning techniques cannot only train the networks more effectively, allowing
the loss function to find more suitable minima but also provides predictions that are very close to the
observations considered valuable for practical wind engineering applications.
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