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Abstract: Representational competence in science is the ability to generate external
representations (e.g. equations, graphs) of real-world phenomena, transform between
these representations, and use them in an integrated fashion. Difficulties in
achieving representational competence are often considered central to difficulties in
learning science. Representational competence is indicative of domain expertise and is
characterised by distinct problem-solving strategies. Eye-tracking studies have
consistently demonstrated that experts employ unique perceptual attention (e.g. gaze-
fixation) patterns while solving problems that involve different external representations.
Here we present a different strand of evidence, indicating that
perceptual navigation patterns (eye-movements) mark representational competence in
science, in more specific ways than attention.
Gaze behaviours of chemistry professors (experts) and undergraduate students
(novices) were tracked as they individually performed a multi-representational
categorisation task and a chemical equation-balancing task. The following three-step
analysis was performed on these data: (i) First we independently calibrated the levels
of representational competence of our participants through their performance in the
categorisation task. (ii) Then, we compared these competence-levels with the
participants’ perceptual patterns (gaze behaviour) exhibited during the
categorisation task. (iii) Finally, we analysed whether the identified perceptual patterns
were specific to representational competence, or more general, through the results of
the equation-balancing task. Our analysis of perceptual navigation (eye movements)
provided further support to previous findings showing gaze behaviour differences
between experts and novices. Going further, our analysis indicated that experts deploy
distinct eye-movement patterns, but specifically during representational competence-
related problems. This suggests that representational competence is an embodied skill
that fundamentally changes the tuning of the perceptual system, as argued by recent
‘field’ theories of cognition.
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Expertise as Sensorimotor Tuning: Perceptual Navigation Patterns Mark 1 

Representational Competence in Science 2 

Abstract 3 

 Representational competence in science is the ability to generate external representations 4 

(e.g. equations, graphs) of real-world phenomena, transform between these representations, and 5 

use them in an integrated fashion. Difficulties in achieving representational competence are often 6 

considered central to difficulties in learning science. Representational competence is indicative 7 

of domain expertise and is characterised by distinct problem-solving strategies. Eye-tracking 8 

studies have consistently demonstrated that experts employ unique perceptual attention (e.g. 9 

gaze-fixation) patterns while solving problems that involve different external representations. 10 

Here we present a different strand of evidence, indicating that perceptual navigation patterns 11 

(eye-movements) mark representational competence in science, in more specific ways than 12 

attention. 13 

 Gaze behaviours of chemistry professors (experts) and undergraduate students (novices) 14 

were tracked as they individually performed a multi-representational categorisation task and a 15 

chemical equation-balancing task. The following three-step analysis was performed on these 16 

data: (i) First we independently calibrated the levels of representational competence of our 17 

participants through their performance in the categorisation task. (ii) Then, we compared these 18 

competence-levels with the participants’ perceptual patterns (gaze behaviour) exhibited during 19 

the categorisation task. (iii) Finally, we analysed whether the identified perceptual patterns were 20 

specific to representational competence, or more general, through the results of the equation-21 

balancing task. Our analysis of perceptual navigation (eye movements) provided further support 22 

to previous findings showing gaze behaviour differences between experts and novices. Going 23 
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further, our analysis indicated that experts deploy distinct eye-movement patterns, but 1 

specifically during representational competence-related problems. This suggests that 2 

representational competence is an embodied skill that fundamentally changes the tuning of the 3 

perceptual system, as argued by recent ‘field’ theories of cognition. 4 

Keywords: Representational competence; Multiple representations; Perceptual learning; 5 

Eye tracking; Embodied cognition; Sensorimotor. 6 

Introduction 7 

Learning and practising science involves studying complex systems, entities and 8 

phenomena that often cannot be directly perceived or interacted with (e.g. DNA, chemical 9 

reactions). External representations1 (e.g. diagrams, equations, simulated models; for better 10 

readability, simply referred to as ‘representations’ hereafter) help us access, interact with, 11 

imagine, and reason about these systems, at different spatio-temporal granularities. Gaining 12 

expertise over representations is thus critical to science education (Yore & Hand, 2010). The 13 

ability to generate and use representations in a domain in an integrated fashion, and perform 14 

transformations on the representations, is termed as representational competence (Kozma & 15 

Russell, 1997 & 2005). 16 

Representational competence is indicative of domain expertise. Many learning difficulties 17 

students face in science are attributable to problems in achieving representational competence 18 

(Johnstone, 1991 & 2000; Stieff et al., 2015). Domain experts in science significantly differ from 19 

novices in their abilities to understand individual representations and integrate different 20 

representations, and the capacity to use and generate different representations for conceptual 21 

                                                 

1For better readability, we use the term ‘representation’ instead of ‘external 

representation’ hereafter. Our usage of this term is restricted to mean external representation 

(emphasising its physically external relationship to the neural mind), unless stated otherwise. 
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understanding, discovery and problem solving (various sub-skills involved in representational 1 

competence; Chi et al., 1981; Kohl & Finkelstein, 2008). 2 

Behavioural evidence, especially on visual attention and perception with respect to 2- and 3 

3-dimensional representations, demonstrates how experts differ from novices while solving 4 

problems related to representational competence. For instance, while observing animations of 5 

molecular mechanics during problem solving, novices tend to fixate their vision more on (i.e. 6 

attend more to) familiar visuospatial representations (e.g. molecular models), compared to less-7 

known symbolic representations such as equations (Stieff et al., 2011). Novices also spend more 8 

time attending to parts of a diagram where problem-relevant information is scarce or absent, as 9 

compared to experts who tend to fixate longer on the ‘perceptually salient’, relevant, and 10 

information-rich areas in diagrams (Madsen et al., 2012). 11 

A wider meta-analysis across multiple domains, including the natural sciences, medicine, 12 

computer science, and chess, has shown that experts visit task-relevant areas in and across 13 

representations more frequently than novices, and spend more time there than on task-redundant 14 

areas (NRC, 2000). In addition, experts also exhibit longer saccades (rapid involuntary eye-15 

movements between successive fixations) and shorter times to first fixation, on relevant 16 

information in representations (Gegenfurtner et al., 2011). Further, the distribution of fixation-17 

duration (i.e. time spent looking) across different representations, and different areas in a 18 

representation, have been considered good predictors of problem-solving performance (e.g. Chen 19 

et al., 2014). 20 

Experts and novices also differ in the way they navigate (i.e. move their eyes over) 21 

representations – usually measured in terms of gaze transitions (eye-movements between two 22 

different representations, or two areas within the same representation). For instance, students 23 
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with low prior knowledge (novices) are known to make more gaze transitions on average than 1 

expert students (Cook et al., 2008; Kohl and Finkelstein, 2008), because novices need to make 2 

more attempts to map the different features between several representations, as they are less 3 

aware of the ‘subtleties of representations and the conventions for interpreting them’. 4 

Classical information processing theories of the mind account for these differences as 5 

'visual/perceptual strategies’ that help experts reduce cognitive load when extracting, storing and 6 

processing, and mapping task-relevant information from different features of representations 7 

(Chi et al., 1981; Cook et al., 2008; Johnstone, 1982 & 1991; Ozogul et al., 2012; Schnotz, 2002). 8 

However, expertise or representational competence is characterised by not only the 9 

efficiency in seeing the different features of representations or mapping between them, but also 10 

the merging of perception of representations with an imagination of the dynamics of the 11 

represented phenomenon (e.g. motion; Schnepp & Nemirovsky, 2001), and building dynamic 12 

mental models of that phenomena through an integration of the representations (Gilbert, 2005; 13 

Kozma & Russell, 2005; Levy & Wilensky, 2009). 14 

Recent research has suggested strong links between perceptual and cognitive processes, 15 

and perception and mental models of abstract concepts (Bottini & Doeller, 2020; Landy et al., 16 

2014; Markauskaite, Kelly & Jacobson, 2020; Rau, 2015). It is conjectured that the so-called 17 

‘visual strategies’ experts ‘use’ to simulate and imagine the individual and collective behaviours 18 

of components of the phenomena, and the effects of various parameter changes on such 19 

behaviours (Hegarty, 2004; Levy & Wilensky, 2009; Schnotz & Bannert, 2003), could stem from 20 

their detailed mental models. Such detailed mental models are considered to ‘run’ on perception 21 

and action systems indicating that the difference in the perceptual behaviours between experts 22 
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and novices is sensorimotor in nature (Chandrasekharan, 2014; Nersessian, 2008), and cannot be 1 

considered simply as cognitive strategies. 2 

Research on perceptual learning provides empirical support for this conjecture, primarily 3 

in the context of mathematics. Perceptual learning is characterised by changes in the process of 4 

information pick-up, and changes in the perceptual-cognitive system (as well as mental models) 5 

of a learner as a result of visuospatial routines (perceptual manipulations theory; Landy et al., 6 

2014), training and experience (Goldstone, 1998; Kellman & Garrigan, 2009). For instance, 7 

Kellman and colleagues (2010) studied perceptual learning in terms of how transforming the 8 

structure of an algebraic equation affects the difficulty level as well as response times to solve 9 

that equation. They showed that people with diverse experiences with different forms of 10 

equations find some forms of equations more relevant than others. Moreover, this relevance is 11 

established almost instantly after perceiving the problem. Qualitative differences between 12 

experts and novices, in their experiences with symbolic structures involved in a problem, are 13 

known to cause qualitatively different perceptual behaviour (Braithwaite et al., 2016; Kellman et 14 

al., 2010; Landy & Goldstone, 2007; Matuk & Uttal, 2020; Rivera & Garrigan, 2016). 15 

Theoretical background and motivation 16 

Extended and embodied cognition models of the mind (e.g. Clark & Chalmers, 1998; 17 

Glenberg et al., 2011; Hutchins, 2014; Körner, Topolinsky & Strack, 2015) have suggested that 18 

scientific reasoning (in the context of discovery; Chandrasekharan, 2014) and imagination (in the 19 

context of learning; Authors, 2017), emerge from an action-based incorporation and 20 

sensorimotor simulation of external structures (such as representations) by the brain. For instance, 21 

brain imaging studies of arithmetic operations done mentally, across people who learned to do 22 

difficult arithmetic sums using the abacus, and a control group who learned arithmetic using 23 
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paper/pencil, show that the action and visual areas are activated more for the abacus group. This 1 

result indicates that participants in the abacus group have internalised a ‘mental abacus’. The 2 

abacus case demonstrates that the brain ‘incorporates’ the representation with which ‘it’ interacts 3 

(e.g. abacus, paper/pencil) into the action schema of arithmetic (Author, 2020). Extending this 4 

finding, even highly abstract symbolic external structures (e.g. algebraic expressions) and an 5 

agent’s sensorimotor interactions with them (e.g. arithmetic operations) have been shown to 6 

constitute their understanding of, and reasoning with, concepts related to those structures 7 

(Rahaman et al., 2017). Further, empirical work, specifically in the context of scientific 8 

representations, has suggested that the mind, during representational integration, is thought to 9 

constantly engage in: unfreezing – which involves simulating dynamic states of a representation 10 

in relation to the represented phenomena (Hegarty, 2004), and freezing – which involves 11 

isolating and imagining ‘static’ states of the representation(s) and represented phenomena 12 

(Authors, 2017). These unfreezing and freezing processes are facilitated by similar sensorimotor 13 

mechanisms that help us simulate (a sense of) movement from sketches and drawings, and infer 14 

complex physical relationships (e.g. velocity, momentum) from traces of past movements (e.g. 15 

tyre marks; Bub & Mason, 2012; Chandrasekharan, 2014). 16 

In summary, while information processing views assume that a learner’s actions (e.g. 17 

eye-movements) merely facilitate information extraction from representations, so that 18 

information-based mental models could be formed, ‘field theories’ (extended and embodied 19 

cognition) argue that mental models are constituted by interactive behaviours (e.g. eye-20 

movements exhibited on the representations) as well as internal copies of the actions on the 21 

representations themselves (Landy et al., 2014). Sensorimotor mechanisms are thus critical to the 22 

fundamental cognitive processes (e.g. mental models) underlying representational integration 23 
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(e.g. incorporation of representations, constitution). This theoretical position suggests that the 1 

development of representational integration ability could result in a fundamental reorganisation 2 

of the sensorimotor system, thus changing how learners access representations (e.g. perceptually) 3 

over time. In other words, distinct sensorimotor-level behavioural patterns (e.g. gaze) would 4 

mark representational competence and expertise (Author, 2020). 5 

Our cross-sectional study (Salkind, 2006; Vandenbos, 2015) is theoretically motivated by 6 

this cognitive science perspective (Authors, 2017; Hutchins, 2014). The broad goal of this study 7 

was to examine whether possible links existed, between changes in the perceptual-sensorimotor 8 

system, and development of expertise in science (for a detailed account of the emergence of this 9 

conjecture, see Author, 2020). Our results present indicative evidence that there exists distinct 10 

eye-movement behaviour related to expertise. Though similar findings are reported in the 11 

existing literature on representational competence, the above theoretical framing of our study 12 

provides an integrated understanding of representational competence, as (sensorimotor-level) 13 

changes in experts’ perception and action systems, emerging from their interaction with 14 

representations. 15 

To operationalise the question of whether sensorimotor changes emerge from extensive 16 

interaction with representations, we: 17 

 documented gaze-related perceptual2 markers of representational competence in science, 18 

and 19 

 examined whether these markers are activated and exhibited among experts only during 20 

representational competence-related problems. 21 

                                                 

2In the context of this paper, we use the term ‘perceptual’ in a limited sense to refer only to 

visual perception. 
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To do this, we tracked the gaze behaviour of chemistry professors (experts) and 1 

undergraduate students (novices) as they individually performed a representational-2 

categorisation task (Kozma & Russell, 1997) and a chemical equation-balancing task (Yarroch, 3 

1985). The obtained data were then analysed in three steps: 4 

1. calibrating participants’ representational competence-levels through the categorisation 5 

task; 6 

2. correlating participants’ behavioural patterns (e.g. visual attention, navigation) during the 7 

categorisation task in relation to their representational competence; 8 

3. confirming if the identified patterns are specific to the context of representational 9 

competence, through the equation-balancing task. 10 

The categorisation task confirmed that our experts were representationally more 11 

competent than the novices. Although the two groups did not differ in terms of attention patterns 12 

while observing representations during the categorisation task, their navigation (i.e. eye-13 

movement) patterns were considerably different from each other. Further, no such differences 14 

were observed during the equation-balancing task, indicating that navigation, and not attention 15 

patterns, are the perceptual markers of representational competence. 16 

The Study 17 

 We first sought to answer the following two questions to identify perceptual markers of 18 

representational competence: 19 

 Question 1: How do participants with different levels of education in chemistry differ in 20 

representational competence? (Establishing representational competence-levels/expertise) 21 
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 Question 2: What are the behavioural, specifically gaze-related patterns associated with 1 

representational competence? (Correlating representational competence with perceptual-2 

sensorimotor markers) 3 

 To answer both questions, we adapted Kozma and Russell’s (1997) categorisation task 4 

(Appendix 1). In their task, Kozma and Russell asked experts (chemists, doctoral students and a 5 

community college teacher) and novices (undergraduate students) to sort various representations 6 

(equations, dynamic graphs, molecular animations, and laboratory experiment videos; presented 7 

as physical cards and computer displays) belonging to different chemical phenomena (Kozma & 8 

Russell, 1997; pp. 952-955). Kozma & Russell determined participants’ level of representational 9 

competence (our Question 1), based on the quality of categories of representations they 10 

generated (e.g. extent of application of chemical principles). 11 

Importantly, as this task requires participants to perceptually process and physically interact with 12 

representations (Kozma & Russell, 1997; pp. 953), its adaptation provided us the opportunity to 13 

observe our participants’ perceptual-sensorimotor behaviour (Question 2). 14 

 Secondly, we considered the alternate explanation that any behavioural differences seen 15 

during categorisation are always present, and are not necessarily markers of representational 16 

competence. To test this possibility, we analysed participants’ behaviour during an equation-17 

balancing task, that involves stimuli (representations such as equations) structurally (i.e. 18 

perceptually) similar to those used in categorisation, but does not necessarily require 19 

representational competence (e.g. imagining chemical dynamics) for successful completion 20 

(Krajcik, 1991; Yarroch, 1985). In other words, balancing chemical equations is largely based on 21 

algorithms. 22 
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 Question 3: Are the identified markers always present, or triggered and exhibited only 1 

while solving representational competence-related tasks? (Are the identified behavioural 2 

patterns representational competence-specific markers?) 3 

Previous studies primarily used this task to probe student conceptual understanding about 4 

chemical phenomena in relation to the submicroscopic, particulate and symbolic representations 5 

(e.g. by asking high-school students to balance simple unbalanced chemical equations and draw 6 

particulate diagrams of the represented chemical reactions; Ben-Zvi, Eylon & Silberstein, 1987; 7 

Salta & Tzougraki, 2011; Yarroch, 1985). In the present study, we asked each participant to 8 

mentally (i.e. without using pen/paper) balance the given unbalanced chemical equations as we 9 

recorded their (gaze) behaviour (Appendix 2). 10 

 Our adaptation of the balancing task broadly exploits a well-established experimental 11 

paradigm in cognitive psychology – interference (e.g. Stroop, 1935). If the perceptual- 12 

sensorimotor changes (e.g. distinct gaze patterns captured during categorisation) among experts 13 

were task-general (i.e. not specific to representational competence), they would also be exhibited 14 

(i.e. interfere) during a different task involving perceptually similar stimuli (e.g. chemical 15 

equations), regardless of whether that task demanded representational competence. If this 16 

happens, it will show that simply displaying a representation in a non-representational 17 

competence-context would automatically trigger among participants, particularly experts, a 18 

mental simulation of the represented chemical process. 19 

 Two chemistry experts and one learning sciences expert collectively discussed the 20 

usability and validity of the representations used in both tasks, for content, conceptual and 21 

representational appropriateness. Their comments and suggestions were incorporated in the final 22 

stimulus designs. 23 
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Sample 1 

We had the following two broad screening criteria when inviting potential participants for the 2 

study: (i) All experts should have some research and teaching experience, and (ii) all novices 3 

should be studying chemistry at intermediate level (i.e. neither beginners nor advanced). These 4 

were devised to increase the likelihood of obtaining distinct representational competence (and 5 

hence, perceptual patterns, if any), and to ensure that all participants were familiar with general 6 

chemistry representations. 7 

8 chemistry professors (expert group, 4 females; mean-age = 39.4 years) and 7 undergraduate 8 

students (novice group, 4 females; mean-age = 19.5 years) from a leading university in south 9 

Asia volunteered to participate in the study. Each expert had at least 5 years of post-PhD 10 

teaching and research experience in (general as well as specialised areas of) chemistry. All 11 

novices were in the 4th semester of their 6-semester bachelor’s diploma in chemistry.  12 

Informed consent, regarding eye-tracking, video recording, and overall participation in the study, 13 

was obtained from all the participants. 14 

Procedure 15 

 Participants performed the tasks individually. Each participant, on arrival in the lab, sat in 16 

front of a laptop screen at 50-70 cm. The laptop was equipped with a Tobii X2-60 portable eye-17 

tracker (Tobii Technology, Sweden). The researcher sat next to the participant and controlled the 18 

stimulus presentation using a mouse. Eye-tracker calibration was performed before proceeding to 19 

the tasks. 20 

 Each participant completed the balancing task first, followed by categorisation, to avoid 21 

possible priming effects arising out of exposure to chemistry representations, and/or the act of 22 

performing categorisation. 23 
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 Figure 1 provides schematics of the experiment procedure. 1 

--Figure 1-- 2 

 First, six unbalanced equations were presented to the participant, one-by-one in a 3 

predetermined randomised sequence. The participant was asked to balance each equation 4 

mentally. There was no time limit (Appendix 3). 5 

 Next, the researcher introduced the participant to the categorisation task. Each participant 6 

first viewed nineteen representations (images and movies) on the laptop screen, presented one at 7 

a time in a predetermined randomised sequence. On viewing each representation, the participant 8 

was given a physical card with a still image of that representation. Once the participant had 9 

viewed all the nineteen representations, they were asked to group the corresponding cards into 10 

chemically meaningful categories and justify the categorisation scheme. In the original task, 11 

Kozma and Russell had allowed participants to go back and forth while viewing the computer 12 

displays. To avoid cluttering of the eye-tracking data, we did not allow the participants to shuffle 13 

between the displays. Our participants could, however, shuffle between the cards given to them. 14 

The participant then performed a second categorisation round/trial using a different grouping 15 

scheme. This was to facilitate non-spontaneous, well-thought or alternative schemes, if any 16 

(Kozma & Russell, 1997). 17 

During both tasks, a Tobii X2-60 eye-tracker captured fine-grained data on participant's gaze 18 

behaviour, and their on-screen activity. The entire experiment was video recorded using a Sony 19 

camcorder to capture verbal and gesture data. 20 
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Main forms of data were: (a) researcher's notes (e.g. balancing task responses), participants’ 1 

categories of the representations, (b) video recordings, and (c) gaze-behaviour recordings (e.g. 2 

fixation and eye-movement). 3 

 In the analysis below, we present frequentist statistics, even though the number of 4 

participants in the study is small. Note that this use is descriptive, i.e. to capture the overall 5 

structure and pattern of the data. We do not claim statistical significance, although, several 6 

results show significant between-group differences. 7 

Performance analysis 8 

Categorisation task. The video recordings and researcher’s notes were transcribed, 9 

annotated and coded by the first author to analyse the nature of categories generated by 10 

participants. Our qualitative coding scheme was informed by Kozma and Russell's (1997) 11 

theoretical structures (e.g. phase-based, chemical reaction-based, or media-based sorting; 12 

Appendix 4 provides more details and examples of our scheme in comparison to Kozma & 13 

Russell). Each category of representations was assigned to one of the following five qualitatively 14 

different category-types: 15 

i. Inappropriate or incorrect 16 

ii. Media-based (categorisation based on the medium of representations, e.g. animation, 17 

video) 18 

iii. Feature-based (categorisation based on similarities in visual features of representations) 19 

iv. Mixed (categories with correct or plausible combinations of representations, where some 20 

associations and/or representations are explained through chemical principles while 21 

others through visual features) 22 
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v. Conceptual or chemically meaningful (combinations of representations based on 1 

chemical principles and supplemented with correct conceptual description) 2 

 The first author and an independent blind coder participated in the reliability test. A 3 

Cohen’s kappa analysis of the two raters’ independent ratings involved the above-mentioned 4 

category-types and the categorisation data of 3 experts and 3 novices. On analysis, both coders 5 

were found to have 100% agreement (k = 1). 6 

The following data were tabulated for each participant per categorisation trial: Total cards used, 7 

total categories generated, and number of categories of each type. For each participant, the ‘best 8 

of two’ trials (as indicated by the mean number of conceptual and mixed categories, in contrast 9 

to media-based or feature-based categories) was considered for group level analysis. 10 

 In addition, participants’ gestures and actions during the task (e.g. through video 11 

transcripts) were analysed for potential qualitative between-group differences. Screen recordings 12 

also provided viewing duration for each representation. 13 

Balancing task. Accuracy/performance results were ignored as this was a confirmation 14 

task examining only gaze patterns. 15 

Gaze-data analysis 16 

 We were interested in two important types of potential perceptual markers of 17 

representational competence: (a) attention-related, and (b) navigation-related (Cook et al., 2008; 18 

Gegenfurtner et al., 2011; Kohl & Finkelstein, 2008; Stieff et al., 2011). However, unlike 19 

previous eye-tracking studies, we will interpret gaze behavioural results through an action-based 20 

(extended and embodied) lens as elaborated in the theoretical background. 21 
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Categorisation task. Tobii Studio 3.2 (Tobii Technology, 2014) was used to analyse 1 

gaze data. Participants’ viewing duration and saccade frequency were determined for each 2 

representation. 3 

 Different non-overlapping Areas of Interest (AOIs) were then defined for each 4 

representation. Here, we report data related to graphs and equations (static representations) only. 5 

Gaze-data analysis for animations and demonstration videos (i.e. dynamic representations) was 6 

excluded to avoid complexity arising as a result of constantly changing stimulus frames and 7 

consequent gaze behaviour. Further, equation-related gaze data had a special value (as a point of 8 

comparison with data from the equation-balancing task) in confirming the representational 9 

competence-related specificity of sensorimotor behaviour (Question 3). 10 

Figure 2 indicates the AOIs generated for graphs (2a) and equations (2b). 11 

--Figure 2-- 12 

 The following metrics were calculated per AOI per set of representations (i.e. set of all 13 

equations, set of all animations, and so on), for each participant: Viewing duration, fixation count, 14 

and fixation duration (Appendix 5). These attention-related data were then subjected to 15 

descriptive statistical analysis. 16 

 Further, to examine how the two groups visually navigated each set of static 17 

representations, gaze-transitions between the AOIs were generated for each participant. Gaze 18 

transition is an eye-movement between any two successive eye-fixations that occur in two 19 

different AOIs. Note that gaze transitions are not the same as saccades; non-AOI fixations are 20 

ignored while calculating transitions (Appendix 5). 21 

 For graphs, we discuss these AOI-based data using transition diagrams. 22 
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 Unlike some of the previous eye-tracking studies (e.g. Cook et al., 2008; Kohl & 1 

Finkelstein, 2008), we were also interested in the quality of transitions and not merely in their 2 

frequency. For chemical equations, we will identify two (qualitatively different) types of 3 

transitions: long and short transitions (figure 3) The words ‘short’ and ‘long’ refer more to the 4 

conceptual relation between the AOIs (than a spatial one). 5 

--Figure 3-- 6 

 Transition data were used to calculate the following two unique indicators of overall gaze 7 

activity per representation: 8 

    number of transitions made to the same AOI 9 

 Inertia =      _______________________________ 10 

total number of transitions 11 

 Volatility = 1 – inertia 12 

 Inertia indicates how flexible a participant is in exploring novel relationships between 13 

AOIs. Volatility indicates how fixated a participant is over one or few AOIs. 14 

 Between-group differences in transition frequency and volatility were analysed, and the 15 

nature of transitions was interpreted through graphical visualisation. These would be the 16 

navigation-related markers of representational competence. 17 

 Balancing task. The gaze data analysis was similar to that used for the categorisation 18 

task data. 19 
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Desired results 1 

1. Experts will have higher representational competence than novices (Question 1): We 2 

anticipated our experts to make more chemically meaningful (i.e. either conceptual or 3 

mixed) categories as compared to novices (Chi et al., 1981; Kozma & Russell, 1997). 4 

Further, following from the perceptual learning theory, we expected lower viewing 5 

duration for each representation for experts than novices. 6 

2. Experts’ will exhibit distinct attention patterns from novices (Question 2): We anticipated 7 

the experts to exhibit lower fixation counts, and fixation duration across the different 8 

AOIs of each representation than the novices, as a result of experts’ longer experience 9 

with the representations as well as represented phenomena (Chen et al., 2014). 10 

3. Experts will show distinct navigation patterns from novices (Question 2): We anticipated 11 

(a) novices to exhibit either lower or higher saccade frequency while navigating each 12 

representation than experts (Gegenfurtner et al., 2011). Lower, because novices may 13 

make more attempts to understand components (AOIs) of a representation than to figure 14 

out the relationships between them. In contrast, higher frequency of saccades would 15 

indicate novices’ increased attempts to find relationships between those components. (b) 16 

Similar patterns to (a) for transitions, and transition type (e.g. short and long). (c) Similar 17 

patterns to (a) and (b) for volatility values; lower volatility among novices would indicate 18 

that the novices may ‘see’ only limited relations between representations and their 19 

components, while higher values would mean that they are desperately looking for 20 

relations all over the representation (Cook, 2006). 21 
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4. The identified perceptual-sensorimotor (i.e. attention and navigation-related) patterns are 1 

specific to representational competence and expertise (Question 3): We anticipated the 2 

two groups to exhibit similar gaze-behaviour patterns (e.g. transitions, volatility) in the 3 

balancing task. 4 

Results similar to these expectations would provide evidence in favour of our broader 5 

theoretical conjecture – experts’ perceptual-sensorimotor system is tuned over the years during 6 

the development of representational competence, as a result of their interaction with 7 

representations. 8 

Results 9 

Establishing differences in representational competence-levels (Question 1; desired result 10 

1) 11 

 Table 1 shows the category distribution for experts and novices across the pre-defined 12 

five types of categories (best of two trials). 13 

--Table 1-- 14 

Experts clearly made more conceptual and mixed categories than novices. They also relied less 15 

on visual features of the representations than novices, who made comparatively more feature-16 

based categories. The two groups did not differ in the number of media-based categories; both 17 

made very few of these on average. Every novice made nearly one incorrect or inappropriate 18 

combination of representations per trial on average, while none of the experts provided any 19 

inappropriate or incorrect justifications. 20 

Consistent with results from previous studies (e.g. Kohl & Finkelstein, 2008), novices viewed 21 

each representation for longer than experts on average (table 2). 22 

--Table 2-- 23 
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 Two experts began categorisation by first arranging the representations medium-wise, 1 

and then proceeded to relate them more conceptually; figure 4 shows such an instance. 2 

--Figure 4-- 3 

 A few other experts found it useful to initially spread the representations on the table, to 4 

obtain an overview. None of the novices performed any such action to gain an overview of the 5 

representations. All the novices either held all the representations together in their hands, or put 6 

stacks of them on the table, only to view/handle one or a pair of representations at a time. 7 

 Overall, results from the categorisation task confirmed that our experts were 8 

representationally more competent than novices across the reported quantitative and qualitative 9 

measures. 10 

Perceptual markers of expertise (Question 2) 11 

 Having established the expert-novice status (i.e. representational competence), we now 12 

discuss representational competence-related gaze patterns across several parameters. 13 

Attention patterns (desired result 2). Table 3 presents the distribution of fixation count 14 

and duration across the different AOIs in equations and graphs. The quantities have been 15 

normalised3 for viewing duration for respective representation for each participant; remember 16 

that experts and novices exhibited different viewing durations. 17 

--Table 3--  18 

 Overall, the two groups did not differ from each other in gaze-spread over the different 19 

elements in equations and graphs. Unlike our expectation, we found no indicative between-group 20 

                                                 

3For the purpose of our analysis, we present certain frequencies per 10 seconds relative to 

the (viewing duration), instead of per second, as the latter values appeared to be too small in their 

magnitude to discuss meaningfully. 
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differences in attention patterns – experts’ familiarity with the representations thus had no effect 1 

on their attention behaviour. 2 

Navigation patterns (desired results 3a, 3b & 3c). Because of their longer viewing 3 

duration, novices recorded more saccades for each representation than experts. However, in 4 

contrast to our expectation in 3a, the two groups did not differ from each other in saccade 5 

frequency per unit viewing duration (table 4). 6 

--Table 4-- 7 

 From the transition data, we found that our experts and novices did not differ in total 8 

between-AOI transitions across graphs (experts = 662, novices = 541), or equations (experts = 9 

323, novices = 258). However, the two groups differed in transition frequency per unit viewing 10 

duration both on graphs (experts = 10.01 transitions/10seconds, SD = 2.92; novices = 11 

5.76/10seconds, SD = 2.72; p = .05), and equations (experts = 11.61/10seconds, SD = 5.34; 12 

novices = 5.63/10seconds, SD = 4.55; p = .02). This result matches our expectation 3b. 13 

 We will now discuss an AOI-specific analysis of the quality of transitions for graphical 14 

representations. Later, we will discuss the same for equation representations. 15 

 Figure 5 shows a normalised distribution of transitions for experts and novices between 16 

the different AOIs for all the graphs combined. 17 

--Figure 5-- 18 

 As anticipated in 3b, experts transited more frequently between curve and Y-axis 19 

(44.78% transitions) by a considerable margin as compared to between curve and X-axis (31%). 20 

Novices showed a nearly opposite pattern (35.45% and 44.26% respectively). Coincidentally, X-21 

axis in each graph showed the independent variable, whereas Y-axis depicted the dependent 22 
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variable. Given that the dependent variable indicates properties of a reaction system, we 1 

speculate that our experts were interested in deriving meaning from how the dependent variable 2 

is responding to the independent variable (process dynamics), while the novices may have been 3 

trying to figure out what would the response (value) be. However, none of the experts’ 4 

transcripts corroborated this speculation. 5 

 Experts’ gaze-transitions had a balanced mix of long and short transitions, but 6 

considerably larger proportion of long transitions (experts-mean = 48.92%, SD = 4.23) than 7 

novices (novices-mean = 30.62%, SD = 2.58) at p < .01. Inversely, they performed very few 8 

short transitions as compared to the novices. 9 

In terms of volatility (indicator of how flexible a participant is in moving their eyes), the two 10 

groups did not differ across graphs much (experts-mean = 0.38, SD = 0.05; novices-mean = 0.33, 11 

SD = 0.06). However, across equations, novices showed lower mean volatility index of 0.25 (SD 12 

= 0.09) than experts (mean = 0.33, SD = 0.05) at p < .05. Experts thus were almost 1.5 times 13 

more flexible in exploring the different AOIs in equations (expectation 3c). 14 

Overall, the obtained results matched our expectations (except 3a). 15 

Confirming gaze-behaviour specificity (Question 3, desired result 4) 16 

 Having found no between-group differences across fixation parameters in the 17 

categorisation task (i.e. representational competence-related task), we do not discuss results for 18 

those parameters in relation to the balancing task, as our aim is to confirm the specificity of 19 

perceptual patterns identified thus far to representational competence. For similar reasons, 20 

between-task differences are reported elsewhere (Author, 2018). 21 
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 As expected, the two groups did not differ in any of the navigation-related parameters: 1 

Saccade frequency/10seconds (experts-mean = 48.57, SD = 8.91; novices-mean = 44.30, SD = 2 

13.89); total transition frequency (experts-mean = 316.06, SD = 311.17; novices-mean = 440.88, 3 

SD = 392.84); transitions/10seconds (experts-mean = 19.38, SD = 11.59; novices-mean = 19.01, 4 

SD = 11.43). Further, there was no difference in the quality of transitions between the different 5 

equation AOIs; on average, 26.82% transitions for experts were long transitions (SD = 5.49), 6 

while the proportion for novices was 26.4% (SD = 6.64). 7 

 Finally, experts did not vary in volatility values in the balancing task (0.47; SD = 0.09) 8 

from novices (0.41; SD = 0.05). 9 

Summary and discussion 10 

The representational competence-related results confirmed that the professional 11 

chemists and teachers we recruited as experts were indeed representationally more competent 12 

than our novices (undergraduate students). In terms of perceptual-sensorimotor differences, as 13 

table 5 summarises below, experts’ attention patterns were no different from novices. However, 14 

experts did differ from novices in the way they navigated representations during categorisation 15 

(e.g. qualitative physical handling of the cards/representations, eye-movement), suggesting a 16 

relationship between representational competence and perceptual navigation patterns. 17 

--Table 5-- 18 

Further, as anticipated, presenting perceptually similar representations (equations) 19 

in a non-representational competence-context did not trigger such distinct perceptual navigation 20 

behaviour among experts. This confirmed that experts’ distinct perceptual markers are exhibited 21 

only when the cognitive system recruits representational competence. If the sensorimotor 22 

(perceptual navigation or eye-movement-related) changes among experts were task-general (i.e. 23 
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not specific to representational competence), they would be exhibited regardless of whether a 1 

task exploited representational competence, whenever perceptually similar stimuli (e.g. chemical 2 

equations) were presented to them. This result indicates a role of context in sensorimotor 3 

simulation, as other studies show that the perception of a stimulus automatically triggers the 4 

simulation of one’s interaction with that stimulus (Barsalou, 2008; Chandrasekharan, 2009). 5 

 Perceptual navigation patterns indicate participants’ attempts to integrate different parts 6 

of a representation (Holsanova, 2014), unlike attention, which is a measure of how much 7 

emphasis a participant gives to certain parts of that representation. Eye-movements are also 8 

related to the binding between one’s internal representations and external representations into a 9 

coherent integrated mental model (Gilbert, 2005; Levy & Wilensky, 2009). However, our results 10 

suggest that the relation between expertise and different measures of eye-movement is more 11 

complex. For instance, a high frequency of saccades may not necessarily mean that a 12 

participant’s coordination between features of the representations was systematic, as in the case 13 

of our novices, who made fewer, and qualitatively inferior, between-AOI eye-movements while 14 

viewing equations and graphs, despite exhibiting high saccade frequency and representation 15 

viewing duration (Cook et al., 2008; Kohl & Finkelstein, 2008). Experts exhibited exactly 16 

opposite patterns, indicating that their eye-movements were more efficient in binding of the kind 17 

mentioned above. 18 

 Indicative evidence from our pilot studies in the past has shown that this expert-novice 19 

difference in perceptual navigation could be a function of growing expertise. Undergraduate 20 

students who performed categorisation in ways similar to experts (Authors, 2015), in one such 21 

study, tended to exhibit expert-like gaze patterns across equations and graphs, in contrast to 22 
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relatively novice candidates who scanned equations linearly with long pauses in between, with 1 

nearly twice as many short transitions as long transitions (figure 7). 2 

--Figure 7-- 3 

 Previous research in the broad domains of learning and instruction has demonstrated that 4 

providing gaze-based cues on stimuli presented during problem solving in a learning interface 5 

helps participants gain insights into problem solutions (Litchfield & Ball, 2011; Jarodzka et al., 6 

2013). These cues – static or dynamic replays of specific fixation and/or eye-movement patterns 7 

– are often modelled on experts’ gaze patterns. Eye-movements are rapid and spontaneous during 8 

navigation (e.g. in space, through stimuli), and are considered automatic and implicit (i.e. not 9 

completely in one’s control, Irwin, 2004). These instructional approaches based on gaze cues 10 

(implicitly or explicitly) exploit the effect (of the kind our study demonstrates) that instruction 11 

and/or knowledge have on one’s perceptual-sensorimotor behaviour (Kostons et al., 2009). This 12 

effect, often dubbed as experts’ ‘visual strategies’, is difficult to explain through an information 13 

processing stance, which considers representations to be mere carriers of information, and the 14 

eye as an extractor of information (Klein et al., 2018; Madsen et al., 2012). Following from the 15 

recent enaction-based models of expertise (Authors, 2017; Braithwaite et al., 2016) we interpret 16 

this change in experts’ behaviour as a systematic fine-tuning of their perceptual-sensorimotor 17 

system, emerging from their interaction experience with representations and conceptual systems 18 

(Author, 2020). 19 

 Further corroborative evidence in this direction is provided by the fact that our experts 20 

employed assumedly ‘irrational’ actions, from a solution point-of-view, such as spreading the 21 

cards/representations on the table and devising preliminary criteria to arrange them on the table, 22 

before proceeding to form finer categories (e.g. expert2, figure 4). Experts in various domains 23 
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are known to perform such systematic actions – termed ‘epistemic actions’ (Kirsh & Maglio, 1 

1994) during tasks, in order to change structures in their environment to optimise search for a 2 

solution and/or lower the cognitive load generated in a situation (Kirsh, 2010). But most 3 

importantly, epistemic actions help experts see newer relationships between the task elements 4 

and representations (Aurigemma et al., 2013; Kirsh & Maglio, 1994). Epistemic actions are 5 

different from ‘pragmatic actions’, in that the latter only bring the agent physically closer to a 6 

goal, without serving any specific cognitive role. The actions some of our experts performed 7 

cannot be considered pragmatic given their cognitive role in helping the experts gain newer 8 

insights into relationships between the representations, which were initially not imagined, or only 9 

partially imagined. These relationships, which the experts used to form finer categories, 10 

‘appeared’ to the experts only after performing an epistemic action (e.g. sorting the 11 

representations media-wise). This is also consistent with new behavioural evidences from 12 

research on action-based learning (e.g. Goldin-Meadow, 2011; Kang, Tversky & Black, 2015), 13 

and learning through interactive computer-supported environments (e.g. Basu, Sengupta & 14 

Biswas, 2015; Kothiyal et al., 2014; Majumdar et al., 2014; Virk & Clark, 2019). These new 15 

evidences demonstrate how one’s richness of understanding of concepts and representations in 16 

science (i.e. expertise) is related to their overall interaction behaviour, besides gaze (e.g. 17 

frequencies and patterns of mouse-clicks, drags, gestures). 18 

The 'sensorimotor fine-tuning' approach may also help explain how some experts (e.g. chemists) 19 

make seemingly mysterious ‘micro’ and instantaneous decisions (and actions) during practice 20 

(e.g. while carrying out chemical processes such as synthesis). Most such instances are reported 21 

as anecdotes of ‘intuition’, with limited understanding of how these intuitions are acquired 22 

during learning (Kutchukian et al., 2012). 23 
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While the education and learning sciences communities broadly agree that even seemingly 1 

abstract learning is grounded in body-based interaction between the learner and the world 2 

(Barsalou, 2008; Landy et al., 2014), and that learners’ qualitative and ‘pre-symbolic’ 3 

understanding and interactions with the world evolve into their sophisticated formulations 4 

(Abrahamson, 2019; Abrahamson & Sánchez-García, 2016; Markauskaite et al., 2020; 5 

Nemirovsky & Ferrara, 2020), it is debated whether experts' distinct sensorimotor behaviour 6 

manifests expertise or is a manifestation of expertise. It would also be interesting to explore if 7 

different kinds of expertise (e.g. scientific, or pedagogical or both) and/or experience within a 8 

broad scientific domain exhibit different sensorimotor behaviours (Pande & Sevian, 2016). 9 

More research is needed to understand if, when, and how distinct perceptual-sensorimotor 10 

behaviours evolve with the development of representational competence and expertise in science. 11 

Gaining insights into this relationship is critical to understanding the process of learning, 12 

clarifying the nature of expertise, and designing effective learning interventions. 13 

Conclusion 14 

 We report a theoretically motivated investigation of sensorimotor markers of 15 

representational competence and expertise in the context of chemistry. Our results extend 16 

findings from previous research, indicating that distinct perceptual navigation (eye-movement) 17 

marks expertise in chemistry. Further, we show how this marker is triggered specifically while 18 

solving problems that demand representational competence, and how this could be related to the 19 

growth of expertise (Authors, 2015). The specific activation of experts’ perceptual-sensorimotor 20 

behaviour indicates that their perceptual system could be 'tuned' to support representational 21 

competence, allowing them to seamlessly integrate perception and imagination processes, as well 22 
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as (epistemic) actions. These findings support ‘field’ models of science cognition, and open up 1 

new avenues for research in science education, and learning and educational technology design. 2 

However, we consider these results as only indicative, because our sample size was limited. 3 

Future approaches to studying the co-development of domain expertise and perceptual-4 

sensorimotor tuning, based on interaction with representations, would need to simultaneously 5 

investigate the embodied-cognitive as well as the situated-social mechanisms supporting 6 

representational competence (Kozma, 2020). These approaches may demand an employment of 7 

wider cross-sectional and/or longitudinal methods in more situated/ecological research settings, 8 

to investigate questions such as when and how stable perceptual-sensorimotor behaviour is 9 

exhibited in the development process, and how findings related to these questions can inform 10 

new designs for science learning. 11 
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Appendices (supplementary material) 1 

 Appendix 1 2 

 For the categorisation task, we chose five different chemical reactions from different 3 

undergraduate general chemistry textbooks: a strong acid-strong base neutralisation reaction, a 4 

precipitation reaction, NO2-N2O4 gas equilibrium, and two other equilibrium reactions involving 5 

complex-ions. For each reaction, we generated the following external representations with the 6 

help of a professional 3D animator using image processing and animation software: a chemical 7 

equation and a graph (static representations), a laboratory demonstration of the reaction and a 3D 8 

molecular animation (space-fill models) depicting the overall molecular dynamics (e.g. 9 

particulate collision; dynamic representations). All the representations were unannotated (e.g. the 10 

dynamic representations did not embed textual information or any other representation). 11 

 An image or screenshot of each representation was colour printed on a cardboard for 12 

hands-on categorisation. 13 

 Sample representations used in the categorisation task (screenshots) 14 

Image Description of the representation 

 

A solubility vs. concentration curve 

governing the dissolution of silver 

chloride in relation to the concentration of 

ammonia. 
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Representative equation of a 

neutralisation reaction between strong 

base and strong acid. 

 

Demonstration video of the precipitation 

reaction between potassium iodide and 

lead nitrate. 

 

3D molecular animation depicting the 

dynamics of the above reaction. 

 1 

 Appendix 2 2 

 The stimuli were six different chemical equations from a general chemistry 3 

undergraduate textbook, with randomly deleted coefficients, subscripts and superscripts from the 4 

reactants and products in those equations; thus generating images of unbalanced equations. 5 

Sample chemical equation-balancing problem: 6 
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Image 

 

 Appendix 3 1 

 Instructions given to each participant during the Balancing task: 2 

 You will be seeing a simple unbalanced chemical equation and your task is to balance it. 3 

No paper and pencil are available as you are expected to do it mentally. There is no time limit, so 4 

you can take as long as you want. You can also proceed to the next equation if you find the 5 

current one difficult but remember that you will not be allowed to return to the equation you skip. 6 

 Instructions for the categorisation task: 7 

 Now we begin the second task. Here, I will be showing you one by one, a number of 8 

representations such as chemical equations, graphs, 3D animations and laboratory demonstration 9 

videos on the laptop screen. When I show you each representation, I will be handing over to you 10 

a card with the corresponding representation printed on it. In case of animations and 11 

demonstration videos, the card will have a screenshot of some moment in the movie. Attend to 12 

each representation on the screen carefully as you will not be allowed to return to it after you 13 

have proceeded to the next one. You can take as much time as you want to view each image, and 14 

watch each movie as many times as you want before proceeding to the next. Once you have seen 15 

all the representations on the laptop and collected all the corresponding cards with you, I will tell 16 

you what to do with them. 17 
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On completion of the experiment, the participant was informed to not discuss any details about 1 

the study with their peers. 2 

 Appendix 4 3 

 Category coding scheme (informed by Kozma & Russell, 1997). 4 

Nature of 

categories 
Criteria Example Kozma & Russell (1997) 

equivalent 

Conceptual Chemically meaningful 

combinations of cards, 

supplemented with correct 

conceptual description of 

chemical principles (e.g. phase-

based, chemical reaction-based) 

Associations of cards depicting 

equilibrium reactions 
This type of categories is 

comparable to Kozma & 

Russell’s ‘conceptual sorts’ (pp. 

957, paragraph 6, lines 1-2; 

description and examples 

continued to page 958). 

Mixed Categories with correct or 

plausible combinations of cards, 

where some associations and/or 

representations are explained 

through chemical principles 

while others through visual 

features 

A category made with 4 cards 

depicting equilibrium reaction; 

of which, two cards are 

explained using the concept of 

equilibrium, while the other 

two using feature-similarity 

such as Δ (heat symbol) and a 

burner. 

This type of categories is 

comparable to Kozma & Russell’s 

‘partial sorts’ (pp. 956, lines 13 

onward; continued to page 957). 

Feature-based Associations of cards explained 

purely through visual features of 

the representations 

Associating an animation 

showing molecules settling 

down with a laboratory 

demonstration of precipitation; 

explained in words such as, 

‘both settling down’. 

Surface-feature-based (pp. 957, 

paragraph 6, lines 3 onward; 
description and examples 

continued to page 958) 
 

Media-based Combinations of cards based on 

the medium of representation 
All molecular animations as a 

category, all graphs as another, 

and so on. 

Komza & Russell refer to this as 

‘perfect media’ sorts (pp. 956, 

paragraph 2). 

Inappropriate 

or incorrect 
Incorrect combinations of cards An association between 

equation of a precipitation 

reaction and a video showing 

effect of temperature on a 

chemical equilibrium 

No Kozma & Russell equivalent. 

Their sorting results did not 

appear to have any completely 

incorrectly made categories. 

Perhaps many sorts made by 

their sample were only partially 

incorrect, hence included in the 

‘partial’ sorts. 

 5 

 Appendix 5 6 

 Definitions of gaze parameters. 7 
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Fixation point Point (location) on the stimulus where the eye is fixated. 

Fixation index Represents the order in which a fixation event was recorded. The index is an 

auto-increment number starting with 1 (first gaze event detected). 

Fixation 

duration 

The duration of each individual fixation for a participant within an AOI. 

Fixation count This metric measures the number of times the participant fixates on an AOI or 

an AOI group. 

Saccade Movement of the eye between fixation points. 

Gaze 

Transitions 

 

Eye movements between two consecutive fixations (e. g. A-B, where A and B 

are two different AOIs) 

Gaze transitions are systematic eye-movements between fixations. The nature of 

gaze transitions is considered an important marker of a participant’s activity of 

comparing between and integrating multiple AOIs, and the content they embed. 

For our analysis, a transition Saccades are the eye movements between two 

consecutive fixations, irrespective of AOIs. Transitions, however, are those 

saccades between consecutive fixations happening between two different AOIs. 

Consider two AOIs x and y, for instance; now suppose if the first few fixations 

happen in x and the next fixation(s) happen in y, our algorithm would register 

only one transition between x and y. However, the eye-tracker will register many 

saccades between the fixations irrespective of x and y. Hence, all transitions are 

saccades, but all saccades are not transitions. 

Inertia The number of transitions made to the same AOI/total number of transitions. 

Inertia indicates how flexible or rigid a participant is in terms of visiting 

different parts of a representation. Alternatively, it could also be understood to 

indicated how stable a participant is in navigating the different parts of a 

representation. 

Volatility 1 – inertia. 
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Figures 1 

--Figure 1-- 2 

 3 

Figure 1. Experiment setup and protocol (ER = external representation). 4 

--Figure 2-- 5 

 6 

 Figure 2. AOIs for (a) graph representations, (b) chemical equations. Each shaded box is 7 

a separate AOI (R = reactant, P = product). AOI shapes and sizes may differ for each 8 

representation. 9 

--Figure 3-- 10 
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 Figure 3. Long and short transitions between AOIs of a chemical equation (R = reactant, 1 

P = product). Arrows indicate direction of transitions. 2 

--Figure 4-- 3 

 4 

 Figure 4. An episode of ‘epistemic’ actions (Kirsh, 2010) – in (1), expert2 is seen sorting 5 

the representations media-wise and keeping them on the table as four different stacks. In (2) she 6 

picks up two representations from the stack of chemical equations and compares them, while the 7 

other three sets of representations (animations, video-snapshots and graphs) lie on the table. In 8 

(3), the participant has spread all the equations – another epistemic action performed to improve 9 

perceptual reach. She is also comparing the graphs (held one in each hand) either with each other 10 

or the equations. In (4 and 5), expert2 can be seen comparing different representations and 11 

placing them together. Finally, (6) depicts the completion of expert2’s categorisation. 12 

--Figure 5-- 13 
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 1 

 Figure 5. Percent transitions between AOIs averaged across all graphs. Each box 2 

represents an AOI. Direction of the arrow indicates direction of the transition. The thickness and 3 

the numbers on the arrows indicate the relative number of transitions between those two AOIs. 4 

The transition patterns of experts are qualitatively different from those of the novices. 5 

--Figure 6-- 6 

 7 

 Figure 6. Box plots depicting (a) mean long transitions (p < .001); and (b) short 8 

transitions for experts and novices (p < .01) across equations. 9 
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--Figure 7-- 1 

 2 

Figure 7. An instance of gaze behaviour of an expert-like undergraduate student (Authors, 2015). 3 

Arrows indicate direction of transitions. This student makes fewer but focussed fixations and 4 

equally frequent short and long transitions. 5 
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Tables 1 

--Table 1-- 2 

Nature of categories (best of two rounds/trials) 3 

Nature of category Experts Novices p-value 

Conceptual 1.5 (1.19) 0.28 (0.49) .05* 

Mixed 1.83 (0.65) 0.71 (0.76) .01* 

Feature-based 1.16 (0.83) 3.29 (1.38) .00* 

Media-based 0.67 (1.07) 0.57 (0.53) .46 

Inappropriate 0 (0) 0.85 (1.07) .18 

Mann-Whitney U-test for independent samples 

 4 

  5 

--Table 2-- 6 

Mean viewing duration in seconds 7 

 Experts Novices p-value 

Equations 13.65 (8.45) 26.94 (21.84) .00* 

Graphs 21.43 (12.44) 35.25 (24.06) .00* 

Animations 38.75 (26.34) 69.65 (31.76) .01* 

Demonstrations 64.98 (38.18) 125.28 (73.11) .00* 

Mann-Whitney U-test for independent samples 

 8 

--Table 3-- 9 

Fixation count and fixation duration per 10 seconds (R = reactant, P = product) 10 

Fixation count/10sec 

Equations Graphs 

AOIs Arrow R1 R2 P1 P2 Origin Curve X-Axis Y-Axis 

Experts 0.45 

(0.82) 

8.19 

(13.54) 

2.70 

(3.04) 

10.74 

(14.32) 

8.25 

(14.01) 

0.30 

(0.68) 

7.74 

(6.05) 

4.46 

(4.04) 

6.26 

(4.69) 

Novices 0.75 5.63 5.42 5.36 1.70 0.38 8.31 8.50 4.18 
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(1.06) (4.78) (3.45) (4.63) (1.40) (0.81) (5.62) (9.34) (3.47) 

p .09 .63 .42 .39 .34 .64 .59 .06 .11 

Fixation duration/10sec 

Equations Graphs 

Experts 0.04 

(0.11) 

1.11 

(1.02) 

0.77 

(0.72) 

0.76 

(0.85) 

0.35 

(0.47) 

0.03 

(0.08) 

1.24 

(1.10) 

0.64 

(0.65) 

1.11 

(1.03) 

Novices 0.11 

(0.16) 

0.98 

(0.88) 

0.93 

(0.72) 

0.92 

(0.89) 

0.32 

(0.28) 

0.07 

(0.16) 

1.48 

(1.21) 

0.83 

(0.68) 

0.75 

(0.70) 

p-value .03* .88 .29 .24 .59 .50 .41 .13 .31 

Mann-Whitney U-test for independent samples 

 1 

--Table 4-- 2 

Mean saccades per 10 seconds for each type of representation 3 

Mean saccades/10 

seconds 
Experts Novices p-value 

Equations 1.21 (0.90) 1.40 (1.15) .55 

Graphs 1.46 (1.07) 1.65 (1.10) .29 

Animations 0.35 (0.22) 0.32 (0.17) .88 

Demonstrations 1.11 (0.79) 1.45 (0.93) .13 

Mann-Whitney U-test for independent samples 

 4 

--Table 5--  5 

Task-specific differences between experts and novices across parameters of attention and 6 

navigation 7 

Between-group differences 

in tasks across behavioural 

parameters 

Measures of attention Measures of navigation 

Saccades Fixation 

count 
Fixation 

duration 
Transitions 

adjusted to 

viewing 

duration 

Quality of 

transitions 

(long & short) 

Overall quality of 

navigation 

(inertia/volatility) 

Categorisation Graphs No No No Yes Yes No 
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(representational 

competence-

related task) 

Equation

s 
No No No Yes Yes Yes 

Balancing 
(non-

representational 

competence task) 

Equation

s 
NA NA NA No No No 
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1 

Dear Dr. King, 

We thank you and the reviewers for the encouraging comments on the second revision of our 

manuscript. We have now revised the manuscript to address Reviewer 7’s concerns, particularly 

the concern about RISE publications, which was an unfortunate omission on our part. The main 

changes are below: 

 We have provided further clarity on participants’ background, in the ‘Sample’ subsection. 

 We have incorporated references to highly relevant RISE papers published recently. 

In the section below, we provide a more detailed response to the reviewer comments, to further 

address the issues raised. Our responses are in Italics. 

We hope you find this revised version acceptable for publication. 

Looking forward to hearing from you soon. 

Authors 

--------------------------------------------------------------------------------------------------------------------- 

Responses to reviewer comments 

Reviewer 6 

Thank you for submitting your manuscript entitled "Expertise as Sensorimotor Tuning: 

Perceptual Navigation Patterns Mark Representational Competence in Science." This is a very 

well written paper and a pleasure to read. I found the topic highly relevant for science educators 

seeking to understand cognition in learning science. The connectivity with embodied cognition is 

interesting and opens a pathway for the study to connect with both representational cognitive 

processes and non-representational embodied cognitive performances within authentic learning 

environments. 

Thank you for these encouraging comments. We are happy to know that you found our 

contribution relevant and interesting. 

 

Blind Response to reviewer's comments



 

2 

 

Reviewer 7 

Thank you for the opportunity to read this very interesting and relevant work. I would like to 

commend you on this research and for writing a very complex study with clarity and within the 

word limit! I am happy with your response to previous reviewer's comments. It is evident that 

you have significantly transformed the manuscript by attending carefully to their excellent 

reviews.  

Thank you for these encouraging comments. We are happy to know that our responses to 

the previous reviews are satisfactory. 

I have some minor concerns. Your experts are chemistry professors and your novices are 

undergraduate chemistry students. There needs to be some clarification of your choice of expert 

and novice. Chemistry spans many diverse areas – so are these experts in diverse areas or one 

particular area of chemistry? Why did you choose these experts? Does it matter in relation to the 

tasks? Some clarity here is important to the findings. Also what about the novices? Why did you 

choose from this cohort? (4th semester of their 6-semester bachelor's diploma in chemistry). Was 

this a purposeful or random sample? These questions have ethical consideration as well. 

To clarify the details of the sample better, we have added a paragraph on pp. 11 (lines 2-

7). 

The sampling was done on a voluntary basis (pp. 11, lines 8-10). It was thus a case of 

availability sampling. Similar to Kozma and Russell’s original study, our selection of 

participants did not assume any specific experiences with external representations in 

chemistry. However, as also clarified in response to an earlier review, we did have two 

broad screening criteria, to 1) increase the likelihood of obtaining distinct 

representational competence profiles (and thus, perceptual patterns, if any), and 2) to 

ensure that all participants were familiar with general chemistry representations. These 

criteria were: (i) The expert participants were expected to have some experience in 

researching and teaching chemistry – as in the original study. Similarly, (ii) the novice 

participants were expected to be studying general chemistry at an intermediate level; in 
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principle, students at this stage are familiar with external representations in general 

chemistry (chemical equations, graphs, molecular animations), such as those used in this 

study (although, we did not test for this factor/prior knowledge explicitly). 

Both Kozma & Russell’s study and our study used participants’ educational level, and 

professional and pedagogical experience with general chemistry (external 

representations), as a baseline. However, we considered it problematic to assume that: 

(i) our experts, just by virtue of their educational experience, possessed high RC, and (ii) 

our novices, because they had limited education and experience in chemistry, had low 

RC. Moreover, as your query pointed out, our experts specialised in diverse areas of 

chemistry. Considering these factors, it was important to confirm our participants’ 

expertise (or novice-hood) with general chemistry external representations (question 1; 

pp. 8), and only then proceed to identifying perceptual-sensorimotor markers (questions 

2 & 3; pp. 9-10). 

To address the ethical concerns, the study was conducted according to the Declaration of 

Helsinki, and informed written consent (e.g. regarding eye-tracking, video recording) 

was obtained from each participant prior to the study (pp. 11, lines 13-14).  

My second concern relates to the appropriate choice of journal for publication. I note that your 

reference list does not include a single publication from RISE, and yet there are considerable 

studies around representational competence in RISE. If this work does not connect suitably with 

the vast array of RISE publications in this area, perhaps RISE is not the right choice of journal 

for your publication? By extension to this, one could argue that your work may not be suitable 

for our readership. 

Thank you for bringing this omission to our notice. We are aware that RISE has 

published a vast array of literature on representational competence, and on learning with 

external models/representations (e.g. Hand, Hubber, Markauskaite, Nichols, Nitz, Prain, 

Tsui, Treagust, Tytler, Yore, Waldrip, Wu to name a few – some of their other 

publications have been cited in the present manuscript, as well as our prior and 

upcoming publications). This makes our research extremely relevant to the RISE 

readership, thus justifying our choice of the journal.  
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However, your comment has made us aware that our selection of citations did not include 

RISE publications. This was an unfortunate omission on our part. We agree with you that 

connecting the paper to existing work published in RISE is critical to situating our 

research in relation to the journal’s readership. To address this issue, we have revisited 

our literature citations, to add RISE publications, specifically in relation to perceptual, 

sensorimotor and cognitive analyses of learning with external models/representations. 

We have found a few recent papers on this area, which are now incorporated in the 

manuscript (e.g. pp. 4, line 18; pp. 25, lines 14-15; pp. 26, line 5). 

Apart from these citations, which are related to the core claim of the paper, we have also 

added a few RISE publications in our background literature review (pp. 2, line 13; pp. 5, 

line 15; pp. 10, line 8). 

 

We hope these responses satisfactorily address the concerns you have raised. We hope to hear 

from you soon. 

 

 


