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Abstract: The development of electro-mobility is one of the centerpieces of European country
attempts to reduce carbon emissions and increase the quality of life in cities. The goals of reducing
emissions from the transport sector and phasing out fossil-fueled vehicles in (urban) transport by
2050 present unrivaled opportunities to foster electro-mobility. This paper provides a comprehensive
review of the literature and provides a detailed analysis of the current development of electro-mobility
in Europe, assessing social, economic, and environmental aspects under a circular economy (CE)
context. It also examines the existing challenges and suggests ways of addressing them towards
improving the environmental performance of electro-mobility and the urban quality of life. The
paper argues that a narrow technology-only agenda in electro-mobility will be less successful without
the imperative of the CE, including not just materials and resources but also energy, to unlock the
medium-term co-benefits of de-carbonization of both the transport as well as the building and energy
sectors. The paper critically reviews some of the anticipated future developments that may guide the
growth of this rapidly growing field into a CE.

Keywords: circular economy; electric mobility; Europe; carbon emission; transport; urban sustainability

1. Introduction: Electric Vehicles and Electro-Mobility

Modern electric vehicles (EVs) are increasingly deployed around the world for electro-
mobility, with ambitious targets set by the mature industrialized and currently industrial-
izing countries. Electro-mobility (e-mobility), which refers to vehicles that can be fueled
by the electricity network with or without an auxiliary internal combustion engine, is
part of the landscape of (ultra-) low emissions vehicle-based transport, mostly in urban
environments. As electricity is an energy vector, rather than the principal energy source, it
is critical to explore both the degree (of electrification) and the volume (consumption) of
electricity used to power transportation and the supporting infrastructure along the supply
chain. It is equally significant to examine the source of electricity generation (i.e., to what
extent it is from renewable sources, and with what equivalents of CO2 emissions).
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In the current global trend of increasing populations and personal vehicles in cities,
the use of an e-mobility strategy can represent a partial solution to many sustainability
challenges including climate change, poor air quality, noise pollution, and energy security
if connected to renewable energy (RE) as well as closer/closed resource loop cycles, and if
developed at scale with an efficiency increase also in terms of fuel cost [1–4]. There are also
substantial numbers of non-city EV users commuting into cities for work, self-sufficiency,
and environmental concerns [5]. E-mobility can be key in reducing fossil fuel consumption,
provided the source of electricity generation is shifted away from those sources, and
its transmission and distribution are decarbonized and designed with the lowest losses
possible. According to a recent global overview of EVs [6], cleaner energy generation, better
recycling schemes, and further improvements to electric vehicle battery technology are
needed before electric cars, vans, buses, and trucks can contribute their full environmental
and economic potentials. E-mobility is vital to the European sustainable mobility agenda.
By 2050, fossil-fueled vehicles are likely to be proscribed in cities and replaced by other
technological alternatives such as battery electric vehicles (BEVs) [7]. The Circular Economy
(CE), as well as e-mobility if designed and executed in a deep sustainability way, is relevant
to contributing towards the United Nations (UN)’s Sustainable Development Goal (SDG)
12 (Responsible Consumption and Production), SDG 13 (Climate Action), SDG 9 (Industry,
Innovation, and Infrastructure), SDG 11 (Sustainable Cities and Communities)—relying
on the action in the domain of SDG 7 (Affordable and Clean Energy). The 17 SDGs are
the replacement of the UN’s Millennium Development Goals at the international/global
level and are also connected to a trajectory from the UN’s Conference on Environment and
Development (UNCED) in 1992 (also known as the Rio Summit), with its associated (in
the Annex) Local Agenda 21. There is now also the Local 2030 Agenda of the UN, which
brings together leaders from national, regional, and local governments, the UN, the private
sector, civil society, philanthropy, and academia to collaboratively develop and implement
solutions that will advance the SDGs at the local level.

1.1. The Circular Economy and E-Mobility: Recent Trends

Recently, arguments around connecting CE with the e-mobility industry have been
developed further. For instance, in the autumn of 2020, the German Circular Economy
Initiative Deutschland (CEID) [8] used the example of electric car batteries to illustrate
what can be achieved by a closed-looped system around the integration of traction batteries
by 2030. The CEID formulated proposals and recommendations for government, science,
and industry for building a system of products and services that maximize value creation
throughout a traction battery’s entire life cycle. This included suggested actions around
more transparent information on traction battery life by setting incentives and establishing
IT systems to improve the provision of battery data both during and after the end of life,
for example through battery passports (backed also by Avere, the European Association
of Electromobility). Furthermore, a European battery disassembly network is suggested
in terms of the physical infrastructure to support reverse logistics and the dismantling of
vehicle traction batteries [8–11]. This is important, as there is a clear trend of a substantially
increased establishment of traction battery production for e-mobility in Europe.

Likewise, the overall agenda of the European Raw Materials Alliance (ERMA) an-
nounced in September 2020 as part of an EU Action Plan on Critical Raw Materials “to
reduce Europe’s dependency on third countries, diversifying supply from both primary
and secondary sources and improving resource efficiency and circularity while promoting
responsible sourcing worldwide” [12]. Similarly, the publication of the 2020 List of Critical
Raw Materials by the EU proclaims its intention to contribute to “the best framework for
raw materials and the CE worldwide”. By 2030, the activities of ERMA are meant to “inten-
sify the production of raw and advanced materials and to address CE by increasing the
recovery and recycling of ‘Critical Raw Materials.’ The activities include: (a) intensifying
the development of “environmentally and socially equitable innovations and infrastruc-
ture” (b) implementing a CE of complex products such as EVs, clear (and clean) tech, and
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hydrogen equipment, (c) supporting the capability of Europe’s raw materials industry
for extracting, designing, manufacturing, and recycling materials, and (d) promoting in-
novation, strategic investment, and industrial production across specific value chains”
(p. 1).

Wurster et al. [13] state that developing sustainable CE ecosystems requires the par-
taking companies (organizations) to engage customers in innovation processes. They note
that so far “specific preferences of the end-users of sustainability-focused cars such as EVs
and users of biofuels are unknown in the CE context” (p. 1). They see open innovation
ecosystems as the way forward for the CE and define it as the emerging sets of actors,
activities, institutions, and relations that are essential for innovation in a CE (p. 2). One
automotive systems component for EVs that has recently been investigated from the sus-
tainability and sourcing through the value chain angle is tires, with some manufacturers
now producing EV-specific ones, due to the often relatively higher weight of EVs compared
to the equivalent Internal Combustion Engine (ICE). Given the current oversupply of
End-of-Life tires (from ICEs in volume), the potential of CE tires and bio-based tires has
been conceptually explored in the context of an acceptance model and labeling/marketing
based on that [14].

1.2. Renewable Energy Sources as Part of Electric Mobility and the Circular Economy

EVs can increasingly use RE sources, thereby reducing the carbon footprint from a life
cycle assessment viewpoint, which tallies with the EU’s 2008 Strategic Energy Technology
Plan to ensure its leadership in developing and deploying cost-effective low-carbon energy
technologies. Using RE sources in the electricity production mix is important since the
well-to-wheel cycle consists of the entire production chain and vehicle operation: well-to-
tank (WTT) and tank-to-wheel (TTW) emissions. For instance, the Union of Concerned
Scientists notes considerable differences across the United States regions/metropolitan
areas in electricity generation sources, leading to markedly different outcomes for the
environmental profiles of EVs [15]. Thus, communication attempts are needed to frame the
relative advantages of EVs, smart charging, and bi-directional charging to a wide range
of stakeholders, and the net carbon savings between comparable ICE vehicles and EVs
powered through a plugin, battery swapping, or inductive/wireless charging. This could be
as a smart meter or like the MyGridGB smart home’s Dashboard (displaying live electricity
data for Great Britain by generation source of low-carbon electricity and carbon intensity by
generation type, and trends in electricity demand and supply) [16]. Hoekstra [17] (p. 1412)
maintains through comparative BEV and ICE sample calculations (including a speculative
‘renewable (energy) scenario’) that the “greenhouse gas (GHG) emission reductions possible
with battery electric vehicles (BEVs) are underestimated in the scientific literature. The
following causes are identified and illustrated: overestimating battery manufacturing,
underestimating battery lifetime, assuming an unchanged electricity mix over the lifetime
of the BEV, using unrealistic tests for energy use, excluding fuel production emissions, and
lack of system thinking.”

1.3. Towards Contributions to the United Nations Sustainable Development Goals

The importance of e-mobility is emphasized in the Sustainable Development Goals
(SDGs), a set of 17 global goals agreed by the UN in 2015, such as in SDG 7 (encouraging the
use of clean energy), SDG 11 (helping cities to use energy sustainably and integrate public
charging options to facilitate e-mobility), and SDG 13 (reducing carbon emissions) [18,19].
The transport sector accounts for about one-quarter of the total GHG emissions and is
among the sectors contributing the most to climate change [20]. To limit global warming to
1.5 ◦C above pre-industrial levels, investments in e-mobility are crucial as over one billion
passenger cars are on roads worldwide today, which could double by 2040 [21]. Likewise,
the CE has significant important connections with several SDGs (Table 1) [22].
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Table 1. Comparing the principles of e-mobility sustainability and the CE. Source: adapted from German Federal Environ-
mental Agency, 2020. The table is adapted, on the left, from the German Federal Environmental Agency (2020), 9 Principles
for a Circular Economy, Dessau, Germany (p.8) [23] https://www.umweltbundesamt.de/sites/default/files/medien/1410
/publikationen/2020_10_23_leitlinie_kreislaufwirtschaft_englisch_bf.pdf (accessed on 15 May 2021). The right side is newly
created by the authors.

Principles of E-Mobility Sustainability Principles of Circular Economy

Definition

Work in progress in electric mobility on
resource-efficiency of using components and
energy use, but with many advantages over

Internal Combustion Engines in greater simplicity
of traction systems (battery electric vehicles).

Minimize loss of electricity/energy in
distribution systems also.

Definition: “The circular economy is part of a
resource-efficient, sustainable way of life and

management, encouraging the implementation of the
UN’s Agenda 2030 for Sustainable Development, and

respecting planetary boundaries.” (p.8).

Scope

Electricity is not an energy source, but rather a
vector. Hence, the need to decarbonize the

production of electricity used in electric mobility,
as well as producing other components (including

chassis and electric batteries).

Scope: “The concept of a circular economy encompasses
not only traditional waste management but all phases of
material and product life cycles. It must be viewed from a

global perspective, including cross-border flows of raw
material, goods and waste, and their associated

environmental and social effects as well as long-term
aspects such as stocks of goods and resulting

material flows.” (p. 8)

Objectives

No tail-pipe emissions of battery electric vehicles,
in terms of greenhouse gases and urban air
pollutants.Improvements in well-to-wheel

emissions are still being enacted and depend on
inputs and scenarios in the extraction of primary
resources and production sources of electricity

(as well as its distribution).
Second-life and recycling of components

(including electric traction batteries) still under
development, as well as of used vehicles.

Objectives: “The circular economy helps to protect natural
resources and the climate, as well as the environment and
human health, following the precautionary principle. In
addition, it aims at securing raw material supplies. The
circular economy is meant to reduce negative impacts

along the life cycle of materials and products—by
economizing on primary materials and substituting them
with secondary materials—and of waste generation and

waste management.” (p. 8).

Financing

Holistic business cases for electric mobility are still
being developed and discussed. Currently, most
are operating with some level of public subsidy.

The internalization of public health (air pollution
avoidance) and the ecological cost is critical here,
and also smart grids/digitalization co-benefits.

Measuring expenditure: “The expenditure for circular
economy measures should be compared to the

expenditure of the primary raw materials industry with
associated environmental impact, including external social

and environmental costs, for producing the same
materials or materials or goods fulfilling the same

function.” (p.8)

Reusage
Second-life/re-use, cradle-to-cradle design, and

recycling are still being much discussed in electric
mobility and being worked on by a range of actors.

Material cycles: “The circular economy aims at managing
materials in same or higher value cycles so that primary

materials can be replaced by secondary material of
suitable quality, thus economizing on primary material.

However, cascading use and final disposal of materials are
also required to achieve the objectives and expenditure

criteria.” (p. 8)

Reduction

Second-life/re-use, cradle-to-cradle design, and
recycling are still being much discussed in electric
mobility and being worked on by a range of actors.

The lifespan of electric mobility components
(including electric traction batteries) can be

extended/maximized with smart and
responsible strategies.

Prevention: “Designing products for a circular economy
means retaining the functional and economic value of
products, their components, and materials as long as

possible to minimize negative impacts on humans and the
environment. Design concepts should sustain the

reorganization of ways of production and consumption
within society. Optimum design must be evaluated in

terms of achieving the objective and expenditures
required.” (p. 8).

https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2020_10_23_leitlinie_kreislaufwirtschaft_englisch_bf.pdf
https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2020_10_23_leitlinie_kreislaufwirtschaft_englisch_bf.pdf
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Table 1. Cont.

Principles of E-Mobility Sustainability Principles of Circular Economy

Smart Design
Work is ongoing on components of electric traction

batteries and recycling, as well as safety and
toxicity issues, by a range of actors

Design: “Designing products for a circular economy
means retaining the functional and economic value of
products, their components and materials as long as

possible in order to minimise negative impacts on humans
and the environment. Design concepts should sustain the
reorganisation of ways of production and consumption
within society. Optimum design must be evaluated in

terms of achieving the objective (3) and expenditures (4)
required.” (p. 8).

Pollution
potential

Electric mobility—especially if battery mode
only—removes urban air pollutants (including

particular matters). Reuse and recycling of
components (including electric traction batteries)

are being worked on by a range of actors.The
source of electricity production (renewable, rather
than fossil fuel-based) matters also.The authors are
neutral for the present purposes of nuclear energy

(as are most official sources).

Pollutants: “It must be avoided to place products on the
market that contain substances that have an adverse effect
on the public interest and, in particular, on human health

and the environment. If such substances cannot be
substituted, are already contained in products, or are only

later identified as harmful, the substances must be
destroyed or stored safely in final sinks. Alternatively,

after weighing up the objectives and expenditure, they can
also be transferred into safe cycles that prevent the

accumulation of harmful substances.” (p. 8).

CSR

There are still major issues currently being worked
on by a range of actors, for original equipment
manufacturers and their corporate social and

environmental responsibilities concerning critical
key components, such as “rare metals” for electric

traction batteries and other conductive
components in electric mobility infrastructures.

Responsibility: “In a circular economy, all players within
product life cycles and along material value chains bear
responsibility for achieving the objectives of the circular

economy. Where responsibility is not assumed otherwise,
legal requirements must be implemented.” (p.8).

This article provides a comprehensive analysis of the current development of electro-
mobility in Europe, assessing social, economic, and environmental aspects under both
a CE context and a sustainable urban mobility planning perspective. It also examines
the existing challenges and suggests ways of addressing them towards improving the
environmental performance of electro-mobility and, inter alia, urban quality of life led by
reduced CO2 emissions and noise.

2. Methods

This paper uses a two-method approach. Firstly, it comprehensively describes trends
in e-mobility within a sustainability and CE perspective. Secondly, it provides an in-depth
literature review, and the use of secondary data is drawn upon. The paper also draws on
project work/reports for two recent successfully concluded EU Interreg projects (Baltic Sea
Region (BSR) Electric and Smart, clean Energy and Electric Vehicles for the City (SEEV4-
City)), both of which produced state-of-the-art review reports of literature and policy,
as well as deliverables based on pilot/innovation/use cases within those projects across
multiple European countries [24,25]. The literature review queried multiple academic and
industry databases (Web of Science, ScienceDirect, Google Scholar, and electrive.com). Key
search terms used included “e-mobility”, “electro-mobility”, “low-emission vehicle-based
transport”, “Europe”, “electric vehicle”, “zero-emission vehicle”, “circular economy”, and
“electro-mobility services”. Retrieved articles and reports were selected based on relevance
to the topic and currency. The contents were arranged in themes, analyzed, and synthesized
as done in previous studies [26]. The outcome was used in gaining further insights into the
topic and developing subtopics to be investigated (Table 2).
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Table 2. Themes developed for the study through a state-of-the-art literature review.

Themes Data Source Interpretation Insights

Overview of e-mobility
in Europe and forms of

e-mobility

Books, journal
articles, reports,

organizational websites

Illustrative and
descriptive

Reducing carbon and noise emission due to
e-mobility. Decarbonization through RE is also
required. E-bikes, e-buses, and e-scooters will

play roles in achieving e-mobility in urban areas

Fostering sustainability Books, journal articles,
reports

Illustrative and
descriptive

Reduction of air pollution but energy
consumption might increase; the possibility of

new job creation

Context of CE
Books, journal articles,
reports, organizational

websites, regulators

Illustrative and
conceptual

Principles of a CE—preservation of materials,
elongation of life cycles, reduction of distances

Perspective/principles
of sustainable urban

mobility planning

Books, journal articles,
reports, organizational
websites, news articles

Illustrative and
conceptual

Electro-mobility is an important—but by no
means the only—perspective to take on board,
alongside other (and to be prioritized, where
possible) modes of transport (active travel);

inter-modal transport is important, as is spatial
planning and social and organizational

engagement/participation and collaboration

Fostering e-mobility
solutions

Books, journal articles,
reports, websites

Explanatory and
analytical

Different e-mobility solutions, with
trends analysis

The methods used in the BSR Electric and SEEV4-City EU Interreg projects are also
drawn on here in terms of key deliverables (outputs) comprised of systematic state-of-
the-art literature reviews, stakeholder mappings, policy expert and industry surveys,
collaborative workshops and webinars, in-depth interviews with sampled key actors, and
utilizing public statistical data on e-mobility, legislation and public policies, analysts’ and
professional/industry journalism accounts of organizational behaviors, strategies, and
activities, and content and discourse analysis of statements by those organizations/industry
players that are publicly available on their websites.

3. Results from the Analysis and Literature Review
3.1. Forms of E-Mobility—A More Holistic Lens for Sustainable (Urban) Transportation

Cities, including their rural hinterlands, have holistic targets for decarbonization, with
the decarbonization of transport as one of the major targets. Depending on the nature of
the city, this may only be road surface-related, though in most it is also related to light rail
in different shapes. In most cities, this is also related to urban and warehouse logistics.
For some cities, it prominently includes inland waterways or is inland or maritime ports-
related. For all these dimensions, both the types of vehicles (or vessels) as well as their
energy/power source are important for decarbonization. Low emission vehicles, including
electric cars and vans, e-buses [27,28], e-bicycles and pedelecs [29–32], e-scooters [33],
electric motorbikes, electric trams, e-ferries, and e-logistics (such as forklifts) [34,35] are
increasingly being implemented as sustainable transport and climate strategies.

For the most part, the focus is—due to quantity and collective impact—still heavily
on electric cars (and vans), as well as public transport. However, private e-cars especially
are not the full answer to mobility and environmental problems when they only partially
replace ICE vehicles by serving as the second household vehicle, thus not reducing traffic
congestion [36]. The notion of “zero-emissions vehicles” is largely a marketing framing,
since it only applies to full BEVs, not Hybrid Electric Vehicles (HEVs) [37].

To further address the field of commercial city logistics, the BSR Electric project
(Figure 1) collaboratively developed a set of hands-on checklists for a range of actors, i.e., a
tool to facilitate decision-making and corresponding investments in a range of e-mobility
solutions, e.g., to support the uptake of electric vans and e-logistics [33,38]. E-buses have
seen a major upswing in cities in recent years (as well as other ultra-low carbon technologies



Sustainability 2021, 13, 7786 7 of 23

for fueling buses, such as hydrogen). This is reflected in the BSR Electric use case on e-buses
in Hamburg (Germany) and Tartu (Estonia). The BSR Electric project developed a checklist
particularly for municipalities and public transport providers who want to accelerate the
sustainable transformation of their bus fleet. Even though the checklists do not explicitly
refer to the concept of CE, its key dimensions, or recommended topics to consider for
decision-making, they support the circular approach (see Figure 1).

Figure 1. Value of action checklists for facilitating the transformation of transport systems. Note: The
blue boxes indicate recommended topics that the BSR electric project identified and highlighted in
their distinctive action checklists; only the ‘End of Life’ phase of recycling was not explicitly addressed
in the various project use cases (e-vans, e-buses, e-bikes, e-scooters, e-ferries). Source: Authors.

E-bikes are also increasingly becoming a part of mobility concepts in several cities,
because e-bikes can be used for longer routes into and within the city and are gradually
replacing car use due to their positive health and environmental impacts [28–36]. This
approach ties in with the principles of the Sustainable Urban Mobility Planning (SUMP)
agenda of prioritizing active travel and reducing or substituting (on a socialneeds basis)
private motorized transport in particular, but e-cargo bikes have also been used to replace
(especially for the last mile) motorized commercial road logistics [39]. Public transport and
shared transport are also favored by the SUMP agenda over private transport, with an
electrification agenda of those since the 2019 update of the guidelines for the development
and implementation of the Sustainable Urban Mobility Plan with some associated (updated
and new) topic guides and practitioner briefings [40]. However, what is missing so far in all
the now-available SUMP guidance is an explicit and detailed focus on RE source charging
infrastructure to underpin this electrification agenda [25]. Likewise, no explicit focus on
CE principles appears evident either. Overall, SUMP strategies or similar approaches
diagnose that a range of publicly organized mobility services is needed in cities for a
more sustainable mobility landscape that is both environmentally and socially delivering
for work, leisure, economy, and social lives [41]. Shared e-mobility (car-sharing and car
clubs) is slowly expanding with potential under a range of socioeconomic and behavioral
conditions, alongside Information and Communication Technology (ICT) and optimized
system deployment issues [42].

E-scooters, e-tricycles, and e-motorcycles are mostly lightweight and thus energy-
efficient, and their batteries can be small without losing too much range and allow for
replacement and cost-efficient charging equipment including smart recharging stations [43].
According to Apostolou et al. [44], the leading target group of Dutch solar e-bikes is
that of commuters in the 40–60-year-old age group, with commuting distances longer
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than 6 km and a gross income higher than €2500. They conclude solar-powered e-bikes
that can serve as a sustainable way of urban transport by displacing some conventional
transportation. For e-bikes (bicycles, both for commuters and families), the BSR Electric
project collaboratively produced an action checklist for a range of implementing local level
actors [45]. However, users of e-scooters are confronted with having to check which roads
they are allowed on, because they are too fast for general bicycle lanes but a traffic hazard
when combined with cars. Most e-scooters do not have a clearly defined legal status [33].

3.2. Electric Transport Vehicles

In Norway, the fully electric car ferry Ampere began operating in 2015 [46]. E-boats
have far lower costs for fuel than conventional diesel ferries, thereby having a crucial
impact in reducing carbon emissions [34]. Two ferries connecting Sweden and Denmark
(Helsingborg to Helsingör) made the switch-over to fully electric in 2017 [47]. A similar
switch-over at a much smaller scale was implemented in the French holiday town of Cap-
breton in 2019 with a fully recyclable aluminum hull [48]. The BSR Electric project recently
collaboratively produced an action checklist for e-ferries, from which other watercourse-
rich cities (such as Oslo and Amsterdam, which are moving towards electrification of their
ferries) can benefit as well [49].

Market interventions for a transitional duration to reduce acquisition and operational
costs of EVs versus ICEs must be accompanied by efforts to overcome the challenges
e-mobility faces, such as technical and infrastructural limitations, consumer awareness,
and ecological and economic cost-benefit issues that depend on the content and perspec-
tive taken [50–53]. Other challenges are the interplay between the automotive and the
ICT/mobility services industry, fast charging systems, availability of electricity, building,
and RE infrastructures, insecurity of consumers and their (un)willingness for behavioral
change and adaptation, regulatory and emerging taxation, local trading of decentralized
energy, and battery capacity, degradation, life-cycle, and environmental burdens—unless
significantly relieved by second-life applications and the recapture of key elements in the
EV batteries.

Social conditions—such as the transfer of knowledge and raising awareness of the
advantages and process of EVs, with preferential treatments and incentives—are very
important for fostering e-mobility solutions in urban areas. Changing social norms and
organizational behavior (around fleets and with business-provided vehicles) and framings
of mobility styles and entitlements should be encouraged and regulated by a reinforcing
relationship between transportation, land use, and energy planning, in the context of
digitalized, energy-efficient, connected, and socially livable cities [54,55].

Nykvist and Nillson [56] (2015) reported that Stockholm was not leading in BEV
uptake innovation at the time because of a lack of niches, which limited the experiences of
BEVs within a regime favoring plug-in HEVs and with cognitive and normative barriers.
Limited support for BEV was associated with anxiety about selecting technology winners
and repeating past policy mistakes. Van der Hoed et al. [57] derive lessons learned from
integrating electric mobility, RE, and Smart Charging and Vehicle to Everything (V2X) tech-
nologies, concluding that the V2X setups need to be tailor-made by coalescing prevailing
but not yet readily compatible components, that it pays to know the V2X market, and
that there is no universal V2X business model. Kester et al. [58] compare the logic and
arguments behind EV incentives and policy mechanisms among Nordic cities. Perceived
as the highest incentives were the cost reduction mechanisms (especially tax exemptions),
infrastructural support for public and residential charging, consumer awareness, procure-
ment programs, and environmental zones. The merits and demerits of these mechanisms
vary by nation, transport segment, the transition phase, and market share. The study
advocates “strong stable national targets and price incentives combined with local flexibil-
ity to implement secondary benefits and give more attention to awareness campaigns to
advance the implementation of electric vehicles.” Kotilainen et al. [59] (2019) focused on the
Nordic countries with common decarbonization targets for the (road) transportation sector,
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interwoven electric energy systems, and a joint electricity market largely based on low
carbon energy generation. They detected technological, institutional, and behavioral mech-
anisms that can either constrain or enable a transition by shaping national socio-technical
systems and regimes. Incumbent industries can shape policy choices through the lock-in
into institutional inter-dependencies. A buildup of social and material features and the
vested interests of actors could result in regime-level inertia, but technological lock-in can
benefit EVs through learning effects from technologically interrelated wind energy projects
as well as available infrastructure in buildings that support EV charging. Kester et al. [60]
draw on a range of interviews with electric mobility experts in the Nordic region to suggest
that Vehicle-to-Grid (V2G) is still unfamiliar among private transport, electricity, and EV
experts. Identified obstacles include flexible storage markets and the role of aggregators
charging infrastructure sites and electricity distribution companies. Recommendations
consist of new/revised regulations, taxes, pilot projects, planning, and communication.

Thus, (renewable energy-charged) EVs provide an environmentally friendly urban
mobility alternative, but currently, a large-scale uptake is still undermined by compara-
tively high acquisition costs and charging infrastructure (e.g., actual costs for EV charging
depending on access to it). In Sweden, for instance, the vehicle cost, range, and infras-
tructure development hinder consumer acceptance of EVs [61]. Delays in EV delivery
and the limited driving range of most EVs (about 100–150 miles) can cause higher relative
costs on longer trips (p. 116). Charging infrastructure is still limited. The Netherlands
and Denmark have about 1 charger per 4–8 EVs, with Norway’s ratio at 1 charger per
20 electric cars—far below the global average of 1 charger per 10 electric cars [61] (p. 40).
Danish government politicians are currently revisioning the planning law to implement
zero-carbon zones so that every local plan in cities either requires or needs to consider
charging infrastructure in future planning proposals. Transport & Environment’s (T&E’s)
(2020) report and recommendations on the required EV charging infrastructure during
the current decade until 2030 across the EU note that “instead of simply counting each
charge point as one, T&E’s supply metric proposes to weigh charge points based on how
much energy they can provide to the electric vehicle fleet and how available they are to the
public. This metric should be used to set the EU public charging infrastructure deployment
targets for each country for 2025 and 2030, corresponding to 1.3 million public charge
points EU-wide in 2025 and close to 3 million in 2030” [62] (p. 3). It also states that smart
charging systems are capable of aligning charging events with electricity generation, due
to charge session monitoring and control structures that adjust to flexible electricity pricing.
Public charging systems should at the minimum have an “intelligent metering system”
(p. 4). Taxis are a significant segment targeted for electrification (and in some cities, such as
Amsterdam, to be fully electric) with their specific demands due to long durations of service
and short turn-around [63]. Slow charging stations are most common in European cities,
but the amount of fast charging stations is rising. Local demand for electricity due to large
numbers of EVs fast charging will place a substantial burden on the national power grid,
needing substantial increases in RE generation to avoid environmental impact. Addressing
these challenges requires reframing e-mobility both under deeper sustainability as well as
under a CE context.

The policy proposals put forward by the SEEV4-CITY EU Interreg project, with
project partners Polis and Avere as the key professional and industry network/platform
organization alongside the academic researchers, have developed such a set of suggested
ways of progressing this [64], with suggestions also for a wider European (EU and UK)
roadmap currently being further devised (Table 3) [25]. Van Bergen et al. observe a range
of types of pilot energy services and suggest the upscaling of types of use cases [65]. These
were based also on the learnings derived from understanding and further developing
(including for the future) business models for several larger and smaller operational
pilots of different complexity and kinds of vehicle-for-energy services (depending on the
preferred strategies and interest of the participating local actors’ vehicle-to-building or
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vehicle-to-grid and different settings of smart charging to Vehicle-to-Grid characteristics at
present, or for the near future) (Figure 2).

Table 3. Selected SEEV4-City recommendations for policy-makers at EU/national levels (on the right) and local/regional
levels (on the left) [25].

SEEV4-City Project Policy-Recommendations

Harmonize the existing energy and mobility activities and
plans/planning, including SUMPs, Sustainable Energy and

Climate Action Plans (SECAPs), and Sustainable Energy Action
Plans (SEAPs).

Long-term, agile, and integrated strategic planning in full
alignment with the local/regional roadmaps, and based on the

interdisciplinary and inter-organizational/interagency
cooperation among public and private actors, including charge

point operators (CPOs) and distribution systems
operators (DSOs)

Establish clear political commitment and an explicit regulatory
framework through the European Green Deal, specifically
through the Strategy for smart Sector Integration and the

Strategy on Sustainable and Smart Mobility, to fully enable
smart charging and Vehicle-Grid-Integration’s potential for
climate protection, and a transport- and energy transition.

Avoid working in silos. Instead, Local and Regional Authorities
(LRAs) should consider setting up inter-departmental and

cross-cutting task forces within the municipalities, ensuring
both vertical and horizontal alignment and exchange. This

approach should also allow a more harmonized approach to
reduce the danger for the process to become exclusively

politically or business-driven

Remove existing barriers (i.e., through the effective
implementation of the Clean Energy Package) and allow for full

market participation of flexible electric loads such as smart
charging infrastructure and V2G solutions, as well as flexible

tariff structures, across the EU/in the EU Member States,
European Free Trade Association (EFTA), and the UK.

Close cooperation between private and public stakeholders
along the entire supply chain, namely: energy providers,

charging solution providers, consumers, public authorities
(mainly the above-mentioned cross-cutting task forces). This
approach will help in reducing the danger for the process to

become exclusively politically or business driven.

Use the revision of the EU’s Alternative Fuels Infrastructure
Directive (AFID)to support the roll-out (where applicable) of

smart-charging and V2G-ready technologies in public,
semi-public, and private infrastructures.

Develop strategies applicable to local circumstances instead of a
“one size fits all” approach.

Provide a roadmap over a long enough period to stakeholders
so that they can prepare and adapt accordingly, including

making the appropriate investments and having the certainty of
financial returns. Integrated Energy Management Systems,

smart charging, and V2X approaches should become an integral
part of the plans, ensuring future-proof planning.

Promote smart charging and V2G solutions in the roll-out of the
public charging infrastructures and include (whenever possible)

concession granting and/or state aid as a requirement in
the procurement.

Foster the integration of the energy, mobility, and digital sectors,
allowing for optimization of the energy system as a whole.

Green incentives need to be accompanied by infrastructure, i.e.,
parking, shared charging stations, etc. It is important not only to

consider affordability but also consumer convenience.

Enhance demand-side flexibility to smartly manage the energy
system, which has large shares of renewables and EVs. This will

reduce the overall costs, including those for grid upgrades
(central and local).

Develop a more integrated skill set for energy and transport
intersection amongst planners, local authority managers,

consultants, and technologists.

One of the critical fields to address is both focused and public communication. The BSR
Electric project did so by developing theme-specific recommendations for municipalities,
politicians, companies, and organizations. Based on the findings from piloting activities,
the project partners established hands-on guidance for the target group in support of
informed decision-making [25]. The BSR Electric project also developed an interactive and
openly accessible online learning module for local/regional decision-makers in public and
private entities as well as urban transport actors within the Baltic Sea Region and beyond,
as well as for those who are currently studying this field and will be the decision-makers
of the future. All findings were consolidated in an interactive Baltic Sea Region Roadmap
for Urban E-Mobility, which summarizes the BSR Electric project’s results across all work
packages and is directed at general and theme-specific target groups, in particular urban
transport planners, municipal and regional decision-makers, and civil servants, executives
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of city-owned companies and public transport providers in cities of the Baltic Sea Region,
as well as researchers (Figure 3).

Figure 2. Electric vehicles for energy services. Source: Edward Bentley, Richard Kotter, Ghanim Putrus, Yue Wang, Ridoy
Das, Geoff O’Brien (SEEV4-City EU North Sea Region Interreg project).

Figure 3. BSR electric roadmap offering interactive guidance on sustainable urban transport solutions.
Source: https://www.bsr-electric.eu/results (accessed on 5 July 2021).

The Roadmap uses a nested 4-layer approach. The four different formats vary in their
information depth and content and thus cater to the information needs of specific target
groups, listed according to their information depth:

• Augmented reality static 3D model
• Folding map
• Website feature (interactive map, see image above)

https://www.bsr-electric.eu/results
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• Roadmap report: Single page view or double page view.

4. Discussion
4.1. Socioeconomic and Environmental Aspects of Electro-Mobility

The literature indicates that the transport sector grapples with increasing GHG emis-
sions despite various interventions, which is largely due to dependence on fossil fuel for
private and public transportation, with major environmental impacts such as pollution,
noise, and climate change [8,66,67]. Shifting from ICE vehicles to e-mobility is necessary, as
large-scale adoption of EVs can significantly reduce GHG emissions, bringing about more
sustainable and healthier environments in cities by enhancing air quality, reducing danger-
ous emissions, and mitigating noise nuisance [68,69]. Successful reduction of emissions
largely depends on the source and type of electricity utilized in EVs. As the substantial
deployment of EVs results in increased electricity consumption, decarbonizing electricity
generation must be advanced [69,70].

E-mobility can also improve energy security by investing in energy generation [70].
Renewable energy is preferred to nuclear power to charge EVs in Germany and other
countries; nuclear power mostly meets the electricity demand in many parts of France
and Finland. However, in France, the share of RE sources (RES) in the electricity mix is
increasing, particularly from solar and wind [71]. Distributed RES could present a problem
for local electricity grids, as could a large rise in the uptake of (especially BEV) electric ve-
hicles. Aligning those innovation trends could mitigate the impacts, producing co-benefits
if charging periods of the EVs are matched with local RES production. Codani et al.’s [72]
analysis of the implementation of this strategy by 2020 considers diverse local energy mixes
across France as well as their seasonal dependencies. This reveals the “achievable green
charging ratio” for the EV fleet per season and region, with and without a smart charging
strategy. In Denmark and elsewhere, there is an increasing focus on using wind-generated
electricity for e-mobility [73]. For some countries, future increases in RE generation might
be inadequate to meet the increased demand by EVs, and stability snags are anticipated
within electric grids because of high load spikes. Meeting increased energy demand poses
severe challenges to electricity companies who may be forced to pursue RE solutions,
including expanding existing ones. Smart charging and bi-directional charging could
significantly ease these challenges according to several future energy system scenarios [74].
This can also include Plug-in Hybrid Electric Vehicles (PHEVs), although benefits from
BEVs on average will be higher. There is also an expanding field of stationary energy
storage (including second-life automotive batteries) that can perform grid balancing, peak
shaving, and energy services for the grid, for instance in parking garages. Using EVs
and direct coupling of several infrastructures (transport, logistics, ICT) also enhances the
flexibility of electricity systems [75–77].

E-mobility supports market innovations in the automotive as well as ICT sectors, using
new concepts and technologies. Energy providers and service companies are potential
beneficiaries of the shift with new jobs created by increasing demand for onboard batteries,
electric motors, and other related accessories [78,79]. However, market diffusion of EVs
currently remains low, albeit with an upward trend in new registrations. Less than 2%
of vehicles purchased in the EU in 2015 were electric, indicating a still-low popularity of
EVs hinging on a general lack of understanding of its benefits [71,80]. The level of social
acceptance enjoyed by fossil-driven conventional vehicles as well as continuous techno-
logical advancements in their design and operation (including fuel efficiency increases)
are major reasons for their sustained dominance of the transport sector. Recent scandals
on manipulated test results of most Original Equipment Manufacturers’ (OEMs’) diesel
models have hit this segment, which was a peculiar European strategy by governments and
regulators to comparatively reduce emissions, increase fuel efficiency, and reduce fuel costs
not much adopted in the USA or Japan, with the latter’s petrol-hybrid strategy (producing
the Toyota Prius). Even before the diesel scandals in Europe and the US, GHG emissions
reduction from a shift to diesel were (perhaps significantly) overestimated at just 1/10th,



Sustainability 2021, 13, 7786 13 of 23

and “these minor savings are on the other hand overcompensated by a significant increase
of supply chain CO2 emissions and extensive black carbon emissions of diesel cars without
a particulate filter” [81]. They concluded that the European diesel car boom did not have
the stated GHG emissions intervention objective and “toxic NOx emissions of diesel cars
have been underestimated up to 20-fold in officially announced data.”

The European transport sector is currently dominated by ICE vehicles with a total
market share of 93%, while a few years ago, the HEVs, plug-in hybrid, and BEVs only
constituted about 1.8% and 1.1% of the market share, respectively [82]. EVs are usually
expensive to purchase and are still comparatively limited in terms of a variety of available
models compared to China’s, Japan’s, and California’s toughening CO2 emissions cap
for the average vehicle fleet of an automotive OEM. Although prospective buyers are
not yet well informed regarding the capabilities of EVs, there are efforts to change this
by stakeholders. Efforts to minimize GHG emissions via e-mobility have been largely
successful with a 15% reduction in emissions, but this has not yet propelled substantial
economic progress in the EV market.

4.2. Accelerating Successful Transition to Electro-Mobility

One way of improving the demand for EVs is through the implementation of support-
ive national incentive schemes and policies such as direct subsidies that have been proven
effective [83]. Fuel cost savings offered by e-mobility and other favorable cash incentives
are vital in promoting a shift to e-mobility. The Car Allowance Rebate System, offering
significant payment to customers for replacing old vehicles with new environmentally
friendly ones, was an economic stimulus instrument for the automotive industry following
the global economic recessions after the 2008 financial crisis.

EV subsidies and rebate policies still vary internationally, according to European Alter-
native Fuels Observatory [84]. Wesseling [85] argued that the marked variance in national
plug-in electric vehicle policies (comprising R&D subsidies, infrastructure investments,
and sales incentives) across 13 nations between 2008 to 2014 is explainable by exploring
circumstances that could impact policy expenditures. Content and statistical analyses
revealed that Plug-in Electric Vehicle (PEV) policies varied substantially among countries
both in intensity and orientation, from a focus on supply-side innovation to demand-side
environmental policy. The governments’ role explained differences in PEV infrastructure
investments but national PEV diffusion targets for 2020 surprisingly did not correlate
with any national PEV policy. Economic interest in the automotive industry explained
why large car-producing countries focused their policy on technology development and
non-car producing nations on technology diffusion. Van der Steen et al. [86] noted the
variance of EV policies pursued by different Northern European countries. In their view,
these policies were not part of an evident policy strategy as they mainly addressed the
introduction of e-mobility as an issue of “piling-up” enough incentives to overcome early
market issues (e.g., high purchasing costs, mostly reticent or hesitant customers, a slow
adaptation of regulation and standardization). They cautioned that in the short-term this
may work—though also with the effect of a large share of HEVs in the market. Such a
scenario is very prominent in the Netherlands, which may be either a transitioning step or
springboard or more of a “valley of death” trap for full BEV-based electro-mobility. For
the medium- and longer-term ambitions, these policies may not be viable. They called for
alternative policy strategies reflecting “mixes” of policies stimulating a self-reinforcing
loop in EV adoption.

The German experience shows that “electric cars will only be successful when part of a
system innovation” [87], and this highlights the importance of involving society by making
it aware of the new e-mobility options [88]. Spain acknowledges the private firms as vital for
developing the e-mobility sector, and public authorities have worked on electrifying public
and private transport in cities [89]. The Netherlands likewise has ambitious e-mobility
targets, expecting to sell only “zero-emissions” cars by 2030, maintaining the increase in
the number of EVs and the offer of financial incentives to remain among Europe’s leaders
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in e-mobility [90]. Norway is another European country focusing on a high share of EVs
in the transport sector [91]. In addition to financial initiatives, other strategies can be
adopted to address the barriers preventing the full acceptance of e-mobility. These include
further enhancement of existing charging infrastructures, extending the charging network
to workplaces, railway stations, parking model shift change locations, retail locations, road-
tax exemptions, and introducing flexible traffic rules such as the utilization of conventional
bus lanes or free/reduced parking spaces originally designated for ICE vehicles [92]. Many
councils have also charged no or low tariffs for roadside PEV recharging facilities. The
construction, health, and other service sectors are also viable for e-mobility transition,
considering the number of registered vehicles in these sectors and their relatively low
mileage in daily commuting [83]. There are many such projects in European cities, with
mostly small- to medium-sized fleets ranging from compact cars to vans.

Laurischkat et al. [52] identified business model patterns that improve the economic
propositions of e-mobility. For instance, EV sharing (as part of distributed rental cars to pick
up or car clubs) enables the co-creation of benefits between the users. This is increasingly
adopted by co-housing schemes, public sector (social) housing and private sector schemes,
and EV service providers, while the Vehicle-to-Grid model provides extra revenue for
battery owners. Similarly, battery swapping has the potential to reduce lengthy charging
times and prevent quick aging of batteries, even though the precise formulation of this
by BetterPlace failed in Denmark and Israel. Battery swapping is getting a resurgence
of interest in China. Whilst lifecycle costs of EVs are high, they offer opportunities for
long-term cost savings when operational since electricity is cheaper than fuel for ICEs, in
addition to reducing (GHG) emissions.

4.3. Electro-Mobility under a Circular Economy Perspective

Some industries are beginning to deploy e-mobility under a CE structure. For example,
WRAP in the UK is collaborating with leading retailers, brands, re-use and recycling
organizations, charities, and non-governmental organizations (NGOs) to address common
e-mobility challenges and to deliver commercial, environmental, social, and resource
benefits to the entire supply chain. The Electrical and Electronic Equipment Sustainability
Action Plan 2025, for instance, is a “platform for developing a circular economy” [93].
Walcher and Leube [94] argue that design and product management are critical domains
in the CE and should be pursued through the co-creation of all relevant key actors. A
recent report by the Capgemini Research Institute [95] (p. 2) on sustainability issues for
the automotive industry finds, inter alia, disjointed execution of sustainability initiatives
and inconsistent focus on sustainability initiatives across the value chain. For instance,
sustainable sales, marketing, aftersales, and mobility services and vehicle usage are pursued
only by a minority. However, “sustainability is a strategic issue for the automotive industry
with R&D and sustainable manufacturing receiving greater attention.” Furthermore, the
Capgemini report contends that “two critical areas will drive maximum sustainability
for the automotive industry: ensuring that electric vehicles are truly sustainable.” Firstly,
“based on the grid which charges EVs in the 27 EU countries and the UK, for example,
the shift to electric vehicles would cut the overall lifetime GHG emissions by about 37%
for passenger vehicles while reducing the operating footprint by 75%, when powered by
renewable sources.” Secondly, by “incorporating CE practices across the automotive value
chain, CE can potentially offer big economic benefits and make EVs more sustainable.
However, only 32% of the automotive organizations’ supply currently contributes to the
circular economy” [95] (p. 1).

In a systematic meta-review article on the management of (ICE) end-of-life vehicles
(ELVs), Karagoz et al. [96] (p. 416) note that because of legislation and new regulations,
actors like customers, producers, and treatment facilities are given new responsibilities
in the ELV management process, and that “ELV management is of vital importance for
environment conservation, circular economy and sustainable development.”
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Konietztko et al. [97] (p. 1) argue that CE “maximizes the value of material resources
and minimizes GHG emissions, resource use, waste, and pollution.” For them, “circularity
needs to be understood as a property of a system (e.g., the mobility system of a city), rather
than a property of an individual product or service (e.g., a car or a car-sharing service).
Hence, there is a need for more knowledge on how to innovate towards” circular ecosystems.

A company specializing in e-mobility and new digital services for energy—Enel—
maintains that “particularly in the case of Enel X (a), sustainable mobility is an integral
part of the CE paradigm with EVs as ‘sustainable inputs’ that contribute to curbing energy
consumption and harmful emissions.” [98].

4.4. Theoretical Framing of E-Mobility in a Circular Economy

The scientific literature theorizing the CE of urban mobility is rather limited despite the
need to transform to low carbon and economically feasible mobility systems [99–101]. By
studying several European countries, Wijkman and Skånberg [102] suggest that if a nation’s
GDP is fully shifted to a CE, GHG emissions would reduce by 70% and the workforce
would grow by 4%. A fully CE as postulated by the Ellen MacArthur Foundation (EMAF)
turns goods after their life into new resources for other goods, closing material and energy
loops [21]. Some studies on the CE of e-mobility distinguish four strands that differentiate
between the circularity of mobility and the circularity of material flow [103,104]. The CE as
a triple bottom line approach analyzes the life cycle of different e-mobility technologies,
assessing the ecological impact of products and treating economic feasibility and lifecycle
(e.g., EV batteries) as its critical components [105,106]. Another strand theorizes the CE
of mobility technologies in use: rather than focusing on mobility as a product provided
by EV or ICE, it focuses on the mobility service it delivers [107]. A third strand concerns
e-mobility as networked into the smart grid and other environmental technologies and
infrastructures [73,108]. A fourth perspective spatializes the CE of mobility, focusing on
mobility as moving across space and its ecological impacts [109]. Theoretical and practical
e-mobility studies consider consumer practices, overall mobility experiences, and the
possible acceptance of e-mobility solutions [110]. Although hardly invoked in the transport
sector, the CE lens holds principles that may spur low carbon mobility transition. From
system thinking, Grindsted [111] suggests that the higher the amount of energy, the shorter
the system’s lifecycle, and the higher the volume of materials used to provide a given
service the less efficient and economically feasible it is in a CE frame. The notion of the CE
acknowledges materials as assets to be preserved rather than consumed and focuses on
services instead of products.

The above-mentioned four principles presuppose that a CE is present when a given
service, such as mobility, is designed to provide the same or better service (efficiency) while
the following indicators near zero: (1) energy use, (2) use of materials, (3) waste, (4) open
and linear energy and material cycles [111]. Based on these presumptions, we suggest
adding two more principles to the CE of mobility: (5) shorter distances, and (6) greater use
of the mobility technology to uphold the service. The thermodynamics of any mobility
service and its design within a CE should reflect the above principles. Interestingly, the
EMAF [21] considers cars and light commercial vehicles in mobility but not their ecological
impact. While buses, metros, trams, and other public transportation modes do not close the
material cycles as the CE mobility perspective suggests (according to the principles above),
selling mobility services, not material goods, with a reduced ecological impact (e.g., CO2
emissions) can provide a given service no matter the mobility pattern [112].

Laurischkat et al. [52] suggested that V2G business models will provide extra revenue
for battery owners via the connection of EVs to the grid with at least a share of mobility
consumers becoming energy prosumers. Mobility prosumers improve the e-mobility
solution, according to the CE model. Denmark, the UK, the Netherlands, Germany, France,
the USA, and Japan all have ongoing trials and demonstration research projects on this, so
the exploration of economic and regulatory (including legal, in terms of energy trading
taxes and peer-to-peer approaches) business models is expected soon [113].
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4.5. Energy Efficiency, Vehicle Design, and Battery Management

A recent report of laboratory tests showed that the average CO2 emission of new cars
sold in the EU in 2017 was 118.5 g per kilometer (g/km) of CO2, 0.4 g/km higher than in
2016 [82]. The average emissions remained below the current target of 130 g/km, which
has existed since 2015. Since monitoring began in 2010, the mean emissions of new cars in
the EU have dropped by 22 g/km of CO2, a 15.5% decrease. Car producers must lower
emissions very significantly to meet the EU target of 95 g CO2/km by 2021. The average
CO2 emission of new vans sold in the EU in 2017 was 156.1 g/km, 7.5 g/km less than in
2016, and below the 2017 target of 175 g CO2/km. Van emissions must be cut further to
reach the 2020 EU target of 147 g CO2/km [51].

According to the International Council on Clean Transportation (ICCT) report [96]
(ICCT 2017), whilst 2016 figures in the EU indicate approximately 70 g/km CO2 emissions
from EVs on average (dependent on the energy input), there are higher CO2 emission
levels in HEVs (91 g/km) and light commercial vehicles (162 g/km). Energy efficiency in
BEVs/PHEVs depends on vehicle design and the battery and energy management, influenc-
ing the total cost of ownership over time. With more work around battery degradation and
more focus on design and environmental internalized costs, EVs should see a break-even
point [114]. Kreyenberg [115] explored the alternative power trains with a focus on electric
batteries and fuel cells in Germany and found that private users’ preferences regarding a
middle-range car in complex interaction with legal and fiscal national instruments suggest
that an upscaling of sales volume did not seem possible without public policy support in
the short term.

Different cars have similar infrastructural land use, significantly higher compared to
e-bicycle mobility. The smaller the loop, the more efficient a CE preserves physical stock,
but the more inefficient it is in overcoming long distances [103]. The loop enlarges as CE
investments and economic activity increase. The circular model of mobility focuses on
the use of mobility as a service to minimize the circulation of materials. The EMAF [21]
suggests that the world’s transport sector accounts for 40% of the global iron demand. The
steel-intensive automotive manufacturing industry should better design vehicles for closed
material loops, since 25% of the material input for a new car consists of recycled materials,
but 85% is down-cycled to other products when a car ends its life [21].

4.6. Service-Based Mobility Solutions: Shared Assets, Shared Solutions

As vehicles in the EU have an average lifetime of 16–17 years (eight years for com-
mercial vehicles), closed material loops would extend their lifetime [96]. Additionally, CE
Principles 5 and 6 suggest minimizing materials by also applying a system perspective
in designing mobility services as part of the entire transport system, with a few materials
and cycles as closed as possible to provide the service. A CE model of mobility follow-
ing Stahel’s [103] accounts value per weight rather than GDP. Cities have long examined
car-sharing as the solution to urban mobility but have not found it to be a widely realistic
strategy so far. ICT allows for new mobility services and urban digital business models
to have a direct effect on issues of mobility partners, inter-modality, and transportation
choices [54]. Car-sharing models that frame mobility as a service rather than a product
partly challenge the linear economy of mobility (EV car ownership) by selling mobility
as a service, not as a good [112]. Since cars are predominantly still organized as goods,
they stand still 95% of the time, which is enormously inefficient by CE principles [111].
Mobility as a Service (MaaS) provides urban citizens with mobility without the need for
ownership of the assets [116–118], which can be cars and infrastructures (among others)
by transforming the e-car fleet into a network of e-car-sharing solutions so that many
passengers can use the same asset under CE Principle 6 [52]. This can be distributed or
from fixed points.

This produces quasi-private-public transportation in which e-mobility and car-sharing
services have the benefit of optimizing the service of a vehicle provider through peer-
sharing, which goes beyond the relationship between customer and company, making



Sustainability 2021, 13, 7786 17 of 23

costumers the prosumers of mobility [112]. Results from Helsinki’s Whim project suggest
that users of MaaS use public transportation much more than their counterparts, replacing
38% of daily car commuting [117,118]. Users can become multi-modal and are then better
at overcoming the first-mile problem. Public e-mobility should be the backbone of a CE
model of e-mobility, where land-use inefficiency and the energy/material inefficiency
shrink when converting EVs into shared and service-based mobility solutions [112].

A joint Cities and Regions for Transport Innovation—European Parking Association
(POLIS—EPA) discussion paper on parking and urban development notes that there is
a shift in focus from technology—digitization—to sustainable urban planning that is
based on public and shared, temporary use of vehicles with new mobility services such
as ride-hailing and micro-mobility [119,120]. Parking management technology should
inform decision-makers about mobility and urban planning, including moving away from
a mobility system based on large numbers of privately owned stationary cars. A discussion
paper on micro-mobility notes this as a hot topic (including around e-scooters and e-
bikes) for local politicians and transport planners [121]. Not developing a proactive and
consultative census may mean missing strategic opportunities.

Kopp [122] finds empirical evidence that in Germany, car-sharing is a mobility solution
with prospects of decreasing urbanization costs. Car-sharing is seen as a viable tool to
address substantial environmental and economic mobility issues as demonstrated by
the Green Move project in Milan [123]. Gender is also a social dimension that should be
explored. In Berlin, a survey indicated that electric car-sharing users are more often (middle-
aged) men with high education and income and likely to have full-time employment, while
female early adopters used battery electric vehicles (BEVs) more often than ICE vehicles,
evaluated the handling of BEVs as more positive, and showed a higher bike affinity and
lower affinities towards technology and innovation compared to male respondents [124].
Women combined public transportation and bicycling with the use of (electric) car-sharing
services as an additional part of urban mobility. The fundamental changes needed in urban
mobility for environmental/health, socioeconomic, and digitalization reasons bring real
chances to organize even complex (and inter-modal) mobility concept efficiency, increasing
their social acceptance [125]. Such is the message of the contributions to future mobility in
different formats from the DVWG [126].

4.7. Drivers of and Barriers to E-Mobility in a Circular Economy

From a meta-study perspective, Rezvani et al. [127] find that “drivers for EV adoption
include pro-environmental attitudes, symbolic meanings, identity, and emotions, purchase
cost of EVs is found to be a barrier to adoption while the lower running cost is shown
to be a driver, hands-on experience with EVs changed attitudes to a large extent, yet
the negative evaluation of range did not change, joy, pride and positive emotions from
driving an EV and environmental concerns positively influence adoption intentions.”
Environmental concerns to lessen the contribution of transportation to GHG emissions,
which in 2017 was 27% of total EU-28 GHG emissions (22% if international aviation and
maritime emissions are excluded) [82], are motivating factors for the transition to e-mobility
in Europe [128]. EU countries and coalitions such as the Platform for Electromobility are
pushing for incentives to achieve their targets of CO2 emissions reduction through policies
around e-mobility and smart cities that rely on RE [129]. In 2017, the GHG emissions
from the transport sector from the EU member countries were 946 million metric tons,
72% of which was from road transport, out of which 44% and 9% came from cars and
light commercial vehicles, respectively [82]. From 1990–2017, Iceland recorded the highest
(142%) increase in GHG emissions from the transport sector among the major adopters
of e-mobility in Europe, almost double that of Finland (78.6%) and Austria (78.4%) as the
next highest countries. In contrast, Sweden achieved a 5% reduction in its GHG emissions
from transport within the same period. E-mobility can help reduce air pollution from GHG
emissions, given that nearly 90% of the residents in EU cities are subjected to harmful
air pollutants [128]. Moreover, e-mobility needs a more holistic business model for its
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widespread adoption [130]. The developing literature on Circular Economy business
models, with an increasing emphasis on praxis framing, should be considered from now
on to future-proof them [131–136]. Solar panels, for instance, also need a circular economy
framing and a practical system for them [137]. Exploring differentiated and locally suited
pathways to degrees of energy autonomy [138] can include e-mobility in a systems mix.
Exploring the issues “only” through a sustainability (environmental, economic, and social
pillars) lens can reveal blind spots, which a Circular Economy framing and perspective can
help to address for the future. The CE in the EU is only partly developed currently and has
much further and deeper to go [139]. This could then trigger shifts towards a “virtuous
cycle” [140].

5. Conclusions

Clean transport solutions such as e-mobility powered by RE are being promoted by
public authorities worldwide. E-mobility presents technological and behavioral challenges
and opportunities for systems governance at organizational, household, and individual
levels. The technological challenges include the EV use category, the sizing of the elec-
tric battery, how it is recharged, how the EV is integrated into a smart grid via ICT as
well as smart mobility via Intelligent Transport Solutions, and V2G-enabled capability.
Overcoming the challenges includes using EVs to support the energy infrastructure by
smart charging and enabled bidirectional charging with (service and mobility) design and
CE principles.

Charging EVs from distributed local RE is being piloted by supplying EV charging
stations with local RE (beyond just supplying the energy to maintain or light the installation
itself). Solar carports powered by an energy storing device for locally generated RE
(though losses need considering) or EV charging with RE from the central grid (at low
prices of electricity) is possible. This involves the use of Smart Grid concepts to optimize
energy flow, which can be bidirectional, further engaging the consumers and making them
active prosumers.

As for the future, with technical improvements to more electric-driven transportation
technology, EVs will play an important role, especially in urban mobility. However, the
circular economy perspective has only taken an early hold on the automotive as well as
the e-mobility industry. This should change, and there is a need to further the integration
of circular economy principles to mobility, as well as to e-mobility. A deep framing of
e-mobility through CE principles, such as advocated here, can bring many environmental
and social transformational benefits for inter-modal-connected and modal-shift-oriented
urban mobility.
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