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ABSTRACT
With the increasingly available indoor positioning technologies,
indoor location-based services (LBS) are becoming popular. Among
indoor LBS applications, indoor routing is particularly in demand. In
the literature, there are several existing studies on indoor keyword-
aware routing queries, each considering different criteria when
finding an optimal route. However, none of these studies explicitly
constraint the time budget for the route. In this paper, we propose
a new problem formulation TIKRQ that considers the time needed
for a user to complete the route, in addition to other criteria such as
static cost and textual relevance. A set-based search algorithm and
effective pruning strategies are proposed for TIKRQ. We conduct
extensive experiments to verify the efficiency of our proposals.

1 INTRODUCTION
With recent developments in indoor positioning technologies and
the widespread use of smartphones, indoor location-based services
(LBS) [1] are becoming increasingly popular. Typical indoor LBS
related applications include finding interested indoor objects and
locations [13, 27, 30, 32, 33], indoor navigation and route plan-
ning [9, 16, 23–25], and indoor movement pattern mining [12, 14].
Among them, indoor route planning is particularly in demand,
which assists users in planning a route satisfying their preferences,
especially in an unfamiliar and large indoor environment like an
airport or a shopping mall.

Consider that Alice has just passed the security check in the
airport. As she has 90 minutes before the boarding time of the
flight, she wants to buy a coffee, some souvenirs and a new charging
cable. She can issue an indoor routing query from a source point
(her current location) to a target point (i.e., the boarding gate), and
specify the preferences by some keywords (e.g., coffee, souvenir, and
charging cable). The query should return a route that passes through
a shop that sells coffee, a souvenir shop, and a shop that sells
charging cables. Most importantly, she should be able to complete
the route within the 90-minute time constraint.

There are several existing studies on indoor keyword-aware
routing query [9, 23–25], each of which considers different criteria
when finding the result, including route distance, keyword rele-
vance, and static cost. These existing route planning queries focus
on minimizing the total length of the route that visits all requested
keywords. However, none of these studies considers the time con-
straint as a hard constraint. In this paper, we propose a new problem
formulation that is capable of taking all these criteria into account.

In practice, measuring the time needed to complete a route is
much more reasonable and comprehensive than focusing on the
route distance. First, instead of giving a concrete maximumwalking
distance (e.g., 500m), a user might feel more friendly to give the time

she/he is willing to walk (e.g., 5 minutes), especially in some time-
sensitive situations (e.g., as in our example, the user has to arrive
at the boarding gate before a particular boarding time). Second, the
distance metric overlooks the distances we travel by other means,
such as elevators in the shopping malls and Automated People
Mover (APM) in the airports. For example, the APM in Hong Kong
International Airport needs 10 minutes to arrive at the farthest
midfield concourse 1. While these travel means do not incur any
walking distance, the time needed on them should not be simply
neglected when planning the route. A recent work [9] converts a
time constraint into a distance constraint by multiplying the former
by a maximum indoor walking speed, which, however, cannot
handle these cases properly. Third, the waiting time of the shops
(e.g., queuing time for a restaurant, or checkout time needed for a
supermarket) should also be taken into account when returning a
route to the user.

Following a previous work [24], we also consider the static cost
of shops in this paper. The static cost of a shop could refer to the
average price of the products in the shop, or an estimated crowd-
edness of the shop. It could also be a composite cost of different
criteria, such as price, popularity, and rating.

In this paper, we propose a new problem formulation that takes
the route’s time needed into account, rather than the (walking) dis-
tance. Specifically, we formulate a time-constrained indoor keyword-
aware routing query (TIKRQ). A TIKRQ requires a source point 𝑝𝑠 ,
a target point 𝑝𝑡 , a set𝑄𝑊 of query keywords and a time constraint
Δ𝑀𝑎𝑥 . It returns the top-𝑘 routes from 𝑝𝑠 to 𝑝𝑡 such that each of
their total time needed is less than Δ𝑀𝑎𝑥 and their costs are the
minimum compared to those of the others. In our setting, the cost
of a route captures the static cost and the textual relevance of the
indoor partitions with respect to 𝑄𝑊 .

Figure 1 shows our running example, which consists of a floor
plan of a shopping mall with two floors, and a table listing the
shops’ static costs and waiting time. Suppose a user will meet her
friends in 20 minutes. During her spare time, she wants to buy a
coffee and a charging cable for her phone. She then issues a query
with her current location as the source point 𝑝𝑠 (in 𝑣23 on 2/F), the
meeting location as the target point 𝑝𝑡 (in 𝑣10 on 1/F), two query
keywords coffee and charging cable, and a route’s time constraint
of 20 minutes. Both routes 𝑅 and 𝑅′ are possible solutions of the
query. Route 𝑅 visits costa (which is a coffee shop) and apple (which
sells charging cables), and uses the elevator 𝑒1 to reach 1/F from
2/F, while route 𝑅′ visits starbucks (which is another coffee shop)
and T-Mobile (which also sells charging cables) and goes from 2/F
to 1/F by the staircase 𝑠1. Suppose the total walking time of 𝑅 and
𝑅′ is 5 and 4 minutes, respectively, and the elevator takes 1 minute
1https://en.wikipedia.org/wiki/Hong_Kong_International_Airport_Automated_
People_Mover
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Figure 1: Running Example

to go from 2/F to 1/F. The total time needed to complete 𝑅 and 𝑅′ is
5+ 1+ 8+ 4 = 18minutes and 4+ 5+ 3 = 12minutes, respectively. In
this case, both 𝑅 and 𝑅′ can be completed within 20 minutes, while
𝑅 should be more desirable to the user, since 𝑅 has a total static
cost of 2 + 6 = 8 which is much smaller than that 8 + 3 = 11 of 𝑅′.

In addition, we develop a concept of unique partition set to im-
prove the diversity of the top-𝑘 results. Also, we organize and
distinguish three types of indoor keywords to better capture the se-
mantics of the query keywords. To answer the TIKRQ, we propose
an algorithm based on a novel set-based search strategy to search
for the top-𝑘 routes. Efficient pruning techniques and computation
strategies are also designed to improve performance.

Compared to the existing studies [9, 23–25], our proposed TIKRQ
(1) provides the flexibility for users to specify the time constraint of
the routes, (2) is more comprehensive as it also considers the static
cost of the partitions, (3) better organizes the keyword in an indoor
setting by introducing an additional category-word, and (4) adopts
the concept of unique partition set to improve the diversity of the
top-𝑘 results.

The contributions of this work are summarized as follows.

• We formulate the time-constrained indoor keyword-aware rout-
ing query (TIKRQ) that takes the routes’ time needed into con-
sideration. We also propose a concept of unique partition set to
diversify the top-𝑘 routes. (Section 2)

• We propose a keyword organization for indoor keywords, and a
method to compute textual relevance for routes. (Section 3)

• We design a set-based search algorithm with effective pruning
techniques to resolve TIKRQ. (Section 4)

• We conduct extensive experiments and case studies to evaluate
the proposed techniques. (Section 5)

In addition, we review the related work in Section 6 and conclude
the paper in Section 7.

2 PROBLEM DEFINITION

2.1 Preliminaries
Table 1 shows the frequently used notations in this paper.

Table 1: Notations

Notation Description

𝑣,𝑑, 𝑝 Partition, door, and point in an indoor space
𝑣.𝑐𝑜𝑠𝑡, 𝑣.𝑤𝑎𝑖𝑡𝑇𝑖𝑚𝑒 Static cost and waiting time of a partition 𝑣

𝑒 Transport in indoor space (e.g., an elevator)
𝑤 A word in a partition
𝑄𝑊 The set of query keywords

𝐾𝑃𝑆 (𝑅) The set of key partitions on route 𝑅
𝑃𝐶 (𝑅) Partition cost of route 𝑅
𝛾 (𝑅) Time cost of route 𝑅
𝜌 (𝑅) Textual relevance of route 𝑅
𝑐𝑜𝑠𝑡 (𝑅) Route cost of route 𝑅
𝐶𝐾𝑃 A set of candidate key partitions
𝑆 A key partition set

A partition and a transport are the basic building blocks in an
indoor space. A point is located inside a partition or a transport.
In an indoor routing, one needs to move from one door to another
through their common partition or transport. Following [17], we
use the mapping to capture the indoor topology: Given a door 𝑑𝑖 ,
we use 𝐷2𝑃= (𝑑𝑖 ) and 𝐷2𝑃< (𝑑𝑖 ) to denote the set of partitions and
transports that one can enter and leave through 𝑑𝑖 , respectively.

Given a partition 𝑣𝑘 or a transport 𝑒𝑘 , and two different doors
𝑑𝑖 and 𝑑 𝑗 , the intra-partition door-to-door distance from 𝑑𝑖 to 𝑑 𝑗 is
defined as

𝛿𝑑2𝑑 (𝑑𝑖 , 𝑑 𝑗 ) =


|𝑑𝑖 , 𝑑 𝑗 |𝐸 , if 𝑣𝑘 ∈ 𝐷2𝑃= (𝑑𝑖 ) and 𝑣𝑘 ∈ 𝐷2𝑃< (𝑑 𝑗 )
0, if 𝑒𝑘 ∈ 𝐷2𝑃= (𝑑𝑖 ) and 𝑒𝑘 ∈ 𝐷2𝑃< (𝑑 𝑗 )
∞, otherwise

In the case that 𝑑𝑖 and 𝑑 𝑗 are in the same partition (say 𝑣𝑘 ), one can
enter the partition from𝑑𝑖 and leave by𝑑 𝑗 . We measure the distance
between 𝑑𝑖 and 𝑑 𝑗 by Euclidean distance. Other distance metrics
such as obstacle distance can also be adopted here. Following [9],
we handle the special case of 𝑑𝑖 = 𝑑 𝑗 , which happens when one
needs to enter a partition due to its keyword relevance but then
leave it from the same door for further routing, as follows. We set
𝛿𝑑2𝑑 (𝑑𝑖 , 𝑑𝑖 ) to be the double of the longest non-loop distance one
can reach inside the partition from the door 𝑑𝑖 . In the case that 𝑑𝑖
and 𝑑 𝑗 are in the same transport, we simply regard the door-to-door
distance from 𝑑𝑖 to 𝑑 𝑗 as zero. To reflect the practical time needed
to pass a transport, we assign each transport a waiting time, as to
be detailed in Section 3.1.

Given a point 𝑝𝑖 , we use 𝑣 (𝑝𝑖 ) to denote the partition or trans-
port that contains 𝑝𝑖 . Given a partition 𝑣𝑖 , we use 𝑃2𝐷= (𝑣𝑖 ) and
𝑃2𝐷< (𝑣𝑖 ) to denote the set of doors through which one can enter
and leave the partition 𝑣𝑖 , respectively. Similarly, given a transport
𝑒𝑖 , we use 𝐸2𝐷= (𝑒𝑖 ) and 𝐸2𝐷< (𝑒𝑖 ) to denote the set of doors which
one can enter and leave the transport 𝑒𝑖 , respectively. Given a door
𝑑𝑘 and a point 𝑝𝑖 , the point-to-door distance and door-to-point
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distance are defined as

𝛿𝑝𝑡2𝑑 (𝑝𝑖 , 𝑑𝑘 ) =


|𝑝𝑖 , 𝑑𝑘 |𝐸 , if 𝑑𝑘 ∈ 𝑃2𝐷< (𝑣 (𝑝𝑖 ))
0, if 𝑑𝑘 ∈ 𝐸2𝐷< (𝑣 (𝑝𝑖 ))
∞, otherwise

𝛿𝑑2𝑝𝑡 (𝑑𝑘 , 𝑝𝑖 ) =


|𝑑𝑘 , 𝑝𝑖 |𝐸 , if 𝑑𝑘 ∈ 𝑃2𝐷= (𝑣 (𝑝𝑖 ))
0, if 𝑑𝑘 ∈ 𝐸2𝐷= (𝑣 (𝑝𝑖 ))
∞, otherwise

When the context is clear, we use 𝛿∗ (𝑥𝑖 , 𝑥 𝑗 ) to indicate the dis-
tance from a point/door 𝑥𝑖 to a point/door 𝑥 𝑗 .

2.2 Problem Definition

Definition 1 (Route [9]). A route 𝑅 = (𝑥𝑠 , 𝑑𝑖 , ..., 𝑑𝑛, 𝑥𝑡 ) is a path
through a sequence of doors from point/door 𝑥𝑠 to 𝑥𝑡 . A route is a com-
plete route if 𝑥𝑠 and 𝑥𝑡 are the source and target points, respectively.
Otherwise, it is a partial route.

We can easily obtain the partitions and transports that a route 𝑅
passes using the aforementioned indoor topological mappings.

Consider the partial route 𝑅 on 2/F in Figure 1, we have 𝑅 =

(𝑝𝑠 , 𝑑26, 𝑑22, 𝑑25, 𝑑25, 𝑑2). We know that 𝑅 passes 𝑣23, 𝑣22, 𝑣25 and
𝑣20 since 𝑅 = (𝑝𝑠

𝑣23−−→ 𝑑26
𝑣22−−→ 𝑑22

𝑣20−−→ 𝑑25
𝑣25−−→ 𝑑25

𝑣20−−→ 𝑑2).
We use the term relevant partition [9] to refer to a partition

that covers 𝑝𝑠 , 𝑝𝑡 or a subset of query keywords. Given a route 𝑅, a
key partition of 𝑅 is a partition that 𝑅 has been through and that
has the maximum keyword relevance (to be given in Definition 6)
for at least one query keyword. We use 𝐾𝑃𝑆 (𝑅) to denote the set
of key partitions in 𝑅. Considering the example in Figure 1 with
query keywords starbucks and apple, partitions 𝑣10, 𝑣11, 𝑣14, and 𝑣23
are relevant partitions and 𝐾𝑃𝑆 (𝑅) = {𝑣11, 𝑣14}.

Definition 2 (Partition Cost). We define the partition cost of a route
as the sum of the static cost of its key partitions.

𝑃𝐶 (𝑅) =
∑︁

𝑣∈𝐾𝑃𝑆 (𝑅) 𝑣 .𝑐𝑜𝑠𝑡

Note that any monotonic function can be used to model a route’s
partition cost. In this paper, we use the sum function for conciseness.

Definition 3 (Route Cost). We define the cost of a route as the linear
combination of its partition cost and textual relevance, i.e.,

𝑐𝑜𝑠𝑡 (𝑅) = 𝛼 · 𝑃𝐶 (𝑅)
𝑃𝐶𝑚𝑎𝑥 · |𝑄𝑊 |

+ (1 − 𝛼) · (1 − 𝜌 (𝑅)) (1)

where𝛼 ∈ [0, 1] is a user parameter, 𝑃𝐶𝑚𝑎𝑥 is the maximum partition
cost in the indoor venue, and 𝜌 (𝑅) is the textual relevance of 𝑅 (to be
defined in Section 3.2).

The parameter 𝛼 controls the weighting between the partition
cost and textual relevance, and can be tuned according to the user
needs. A smaller 𝛼 puts a larger weight on route’s textual relevance,
while a larger 𝛼 focuses more on the partition cost. We vary and
evaluate this parameter in Section 5.2.1.

We define our problem as follows.
Problem 1 (Time-Constrained Indoor Keyword-aware Routing).
Given a source point 𝑝𝑠 , a target point 𝑝𝑡 , a set𝑄𝑊 of query keywords,
a time constraint Δ𝑀𝑎𝑥 and an integer 𝑘 , a Time-Constrained In-
door Keyword-aware Routing Query 𝑇 𝐼𝐾𝑅𝑄 (𝑝𝑠 , 𝑝𝑡 , 𝑄𝑊 ,Δ𝑀𝑎𝑥 , 𝑘)

returns 𝑘 complete routes with the smallest route cost, and each such
a route 𝑅 from 𝑝𝑠 to 𝑝𝑡 (i.e., 𝑅 = (𝑝𝑠 , ..., 𝑝𝑡 )) has a time cost 𝛾 (𝑅) less
than the time constraint (i.e., 𝛾 (𝑅) < Δ𝑀𝑎𝑥 ).

Above,𝛾 (𝑅) captures the time needed for 𝑅 to complete the given
routing query (to be defined in Section 3.1). We say that a route is
a feasible route if it satisfies the time constraint. Therefore, the
TIKRQ is to find 𝑘 feasible routes with minimum cost.

To ensure the resulting routes are meaningful, we use the fol-
lowing two principles of indoor routing [9].

Principle of Regularity. Unlike traditional outdoor routing algo-
rithms [2, 34] that exclude loops in a route to avoid endless route
searching, we allow a regular route in the indoor space to have a
loop of doors in some cases. Consider the example in Figure 1, a
user who wants to visit partition 𝑣14 must enter and leave 𝑑14, pro-
ducing a partial route (..., 𝑑14, 𝑑14, ...). The principle of regularity
disqualifies a route that contains a loop without any key partitions
in the loop. That is, we exclude loops in a route between any two
key partitions. For example, for a query with the keyword starbucks,
𝑅′ = (𝑝𝑠 , 𝑑26, 𝑑26, 𝑑23, 𝑠𝑑2, 𝑠𝑑1, 𝑑14, 𝑑14, 𝑝𝑡 ) is not allowed since 𝑣22
visited by the loop (𝑑26, 𝑑26) is not a key partition of the query.

Principle of Diversity. The concepts of diversifying top-𝑘 re-
sults [20, 35] and prime route [9] inspire us to avoid homogeneous
routes in our routing results. We propose a concept of unique
partition set. Specifically, for each of the 𝑘 resulting routes, its key
partition set must be unique. That is, for any two resulting routes
𝑅 and 𝑅′, we must have 𝐾𝑃𝑆 (𝑅) ≠ 𝐾𝑃𝑆 (𝑅′).

Table 2: Four Example Routes from 𝑝𝑠 to 𝑑2
Each Covering 𝑐𝑜𝑠𝑡𝑎 and 𝑐𝑖𝑡𝑖𝑏𝑎𝑛𝑘

𝑅1 (𝑝𝑠
𝑣23−−→ 𝑑26

𝑣22−−→ 𝑑22
𝑣20−−→ 𝑑21

𝑣21−−→ 𝑑21
𝑣20−−→ 𝑑25

𝑣25−−→ 𝑑25
𝑣20−−→ 𝑑2)

𝑅2 (𝑝𝑠
𝑣23−−→ 𝑑26

𝑣22−−→ 𝑑22
𝑣20−−→ 𝑑25

𝑣25−−→ 𝑑25
𝑣20−−→ 𝑑21

𝑣21−−→ 𝑑21
𝑣20−−→ 𝑑2)

𝑅3 (𝑝𝑠
𝑣23−−→ 𝑑23

𝑣20−−→ 𝑑25
𝑣25−−→ 𝑑25

𝑣20−−→ 𝑑21
𝑣21−−→ 𝑑21

𝑣20−−→ 𝑑2)
𝑅4 (𝑝𝑠

𝑣23−−→ 𝑑23
𝑣20−−→ 𝑑21

𝑣21−−→ 𝑑21
𝑣20−−→ 𝑑25

𝑣25−−→ 𝑑25
𝑣20−−→ 𝑑2)

Consider Figure 1 as an example. Suppose a user wants routes
from 𝑝𝑠 to𝑑2 while covering two keywords𝑄𝑊 = {𝑐𝑜𝑠𝑡𝑎, 𝑐𝑖𝑡𝑖𝑏𝑎𝑛𝑘}
in the route. Several possible routes are listed in Table 2. For ease of
illustration, we insert the partitions that connect two consecutive
items in the route. We can see that 𝐾𝑃𝑆 (𝑅1)=𝐾𝑃𝑆 (𝑅2)=𝐾𝑃𝑆 (𝑅3)
= 𝐾𝑃𝑆 (𝑅4)= {𝑣23, 𝑣21, 𝑣25, 𝑣20}. The four routes pass the same set
of key partitions with different orders and different partial routes
in-between. Thus, only one of the four routes should be included
in the query result.

Note that this requirement provides a more diversified result
than a prime route [9], as the unique partition set is more restric-
tive than the prime route. In particular, the concept of prime route
only requires 𝑆𝑅𝑃 (𝑅) ≠ 𝑆𝑅𝑃 (𝑅′), where 𝑆𝑅𝑃 (𝑅) denotes the se-
quence of relevant partitions in 𝑅. In our example, 𝑅1 and 𝑅2 (or
𝑅3 and 𝑅4) could be in the prime route query result at the same
time, since 𝑆𝑅𝑃 (𝑅1)=⟨𝑣23, 𝑣21, 𝑣25, 𝑣20⟩ is different from 𝑆𝑅𝑃 (𝑅2) =
⟨𝑣23, 𝑣25, 𝑣21, 𝑣20⟩.

3 TIME COST AND TEXTUAL RELEVANCE
In this section, we detail the formulation of the time cost 𝛾 (𝑅) in
Section 3.1 and the textual relevance 𝜌 (𝑅) in Section 3.2.
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3.1 Time Cost
In this paper, we consider two types of time for a route 𝑅.
Travelling Time. The travelling time of a route 𝑅, denoted by
𝑡𝑡𝑟𝑎𝑣𝑒𝑙 (𝑅), refers to the time needed for a user to complete 𝑅. As
discussed in Section 1, both walking and taking a transport incur
travelling time, and we model them as follows. Assuming the av-
erage human walking speed 𝑠𝑤𝑎𝑙𝑘 is 5km/hour 2, we can easily
compute the travelling time on walking as the walking distance
divided by the walking speed.

To model the travelling time on taking transport, consider a user
taking an elevator for illustration. To take an elevator, the total
journey time includes waiting (outside the elevator) and travelling
(inside the elevator). The estimation of this waiting time can be
based on the average value of previous records, which is beyond
the scope of this paper. This paper assumes a fixed waiting time
(e.g., 30 seconds), rather than a distribution, for ease of illustration.
Similar to computing the walking time, the travelling time on an
elevator is the height of travel from one floor to another divided by
the elevator’s speed.

Based on the above, given two doors 𝑑𝑖 and 𝑑 𝑗 that connect to a
partition 𝑣 or a transport 𝑒 , the time needed to travel from 𝑑𝑖 to 𝑑 𝑗
is defined as

𝛾 (𝑑𝑖 , 𝑑 𝑗 ) =


𝛿𝑑2𝑑 (𝑑𝑖 ,𝑑 𝑗 )
𝑠𝑤𝑎𝑙𝑘

, if 𝑣 ∈ 𝐷2𝑃= (𝑑𝑖 ) and 𝑣 ∈ 𝐷2𝑃< (𝑑 𝑗 )
|𝑑𝑖 ,𝑑 𝑗 |
𝑠𝑒
+ 𝑒𝑤𝑎𝑖𝑡 , if 𝑒 ∈ 𝐷2𝑃= (𝑑𝑖 ) and 𝑒 ∈ 𝐷2𝑃< (𝑑 𝑗 )

∞, otherwise

where |𝑑𝑖 , 𝑑 𝑗 | is the actual distance of the two doors in 𝑒 , 𝑠𝑒 is the
moving speed of the transport, and 𝑒𝑤𝑎𝑖𝑡 is the waiting time of the
transport. For simplicity, we assume that the start point and target
point are located in partitions only 3.

The travelling time of 𝑅 = (𝑝𝑠 , 𝑑𝑖 , . . . , 𝑑𝑘 , 𝑝𝑡 ) can be computed
as follows.

𝑡𝑡𝑟𝑎𝑣𝑒𝑙 (𝑅) =
𝛿∗ (𝑝𝑠 , 𝑑𝑖 )
𝑠𝑤𝑎𝑙𝑘

+
𝑛−1∑︁
𝑘=𝑖

𝛾 (𝑑𝑘 , 𝑑𝑘+1) +
𝛿∗ (𝑑𝑛, 𝑝𝑡 )
𝑠𝑤𝑎𝑙𝑘

PartitionTime.The partition time of a route𝑅, denoted by 𝑡𝑝𝑎𝑟𝑡 (𝑅),
is the sum of time spent in the key partitions where the user stays
to fulfill her purposes implied by the keywords, i.e.,

𝑡𝑝𝑎𝑟𝑡 (𝑅) =
∑︁

𝑣∈𝐾𝑃𝑆 (𝑅) 𝑣 .𝑤𝑎𝑖𝑡𝑇𝑖𝑚𝑒

where 𝑣 .𝑤𝑎𝑖𝑡𝑇𝑖𝑚𝑒 denotes the waiting time of the partition 𝑣 . Sim-
ilar to the transport’s waiting time, we assume a fixed value for the
waiting time in each partition.
Time Cost. Based on the above, we define the time cost of a route
by the following cost function.

Definition 4 (Time Cost). Given a route 𝑅, the time cost of 𝑅, denoted
by 𝛾 (𝑅), is defined as the sum of the travelling time and the waiting
time of 𝑅.

𝛾 (𝑅) = 𝑡𝑡𝑟𝑎𝑣𝑒𝑙 (𝑅) + 𝑡𝑝𝑎𝑟𝑡 (𝑅) (2)
2Weuse a universal walking speed in this paper for ease of illustration, but the proposed
method can be easily adapted to the walking speed tailored for partitions.
3We do not consider the extreme case that the source and target points are located in
the transport, but our technique can easily support it.

3.2 Textual Relevance
Keywords in Indoor Space. In the literature, an identity word
(i-word) [9] identifies the specific name of a partition (e.g., star-
bucks, apple), and a thematic word (t-word) [8, 9] refers to a tag
relevant to that partition (e.g., coffee, laptop). In addition, we employ
a category word (c-word) that specifies the type of the partition
(e.g., coffee shop, supermarket). A partition can be associated with
one c-word and one i-word, but a set of t-words. For example, a
partition in a shopping mall is associated with a c-word coffee shop,
an i-word starbucks and t-words coffee, mocha, latte; another parti-
tion can be associated with a c-word electronics, an i-word apple,
and t-words smartphone, laptop, headphone. Note that it is possible
to extend our organization to support one partition associated with
multiple or hierarchical c-words, which is left for future work.

Insufficiency of Existing Setting. The previous work [9] differ-
entiates two types of keywords associated with indoor partitions.
In particular, they assumed that two partitions having the same i-
word must have the same set of t-words. However, this assumption
over-simplifies the case. For example, depending on the shop’s size
and location, two starbucks can have different menus. A smaller
one might not have some products (e.g., cakes and juices) for sale,
while the one close to a train station sells more grab-and-go foods.
As another example, some ATMs offer different currencies in cash,
while some others do not. Compared to the assumption and the
limitations in the organization of indoor space keywords in [9], our
keyword organization, which we introduce below, is more general
and comprehensive.

We assume that the three sets of words are disjoint for ease of
illustration. Given a partition 𝑣𝑖 , a P2I mapping 𝑃2𝐼 (𝑣𝑖 ) maps 𝑣𝑖 to
its associated i-word, and a P2T mapping 𝑃2𝑇 (𝑣𝑖 ) maps 𝑣𝑖 to its
associated t-words. Given an i-word𝑤𝑖 , an I2C mapping 𝐼2𝐶 (𝑤𝑖 )
maps 𝑤𝑖 to its associated c-word, and an I2P mapping 𝐼2𝑃 (𝑤𝑖 )
maps𝑤𝑖 to the partitions associated with it. Given a t-word𝑤𝑡 , a
T2P mapping 𝑇2𝑃 (𝑤𝑡 ) maps𝑤𝑡 to the partitions associated with
it. Given a c-word 𝑤𝑐 , a C2I mapping 𝐶2𝐼 (𝑤𝑐 ) maps 𝑤𝑐 to the
associated i-words.

To better represent the real-world setting, we maintain P2I as a
many-to-one mapping and I2P as a one-to-many mapping such that
a partition can be associated with one i-word, and each i-word can
be associated with multiple partitions. For example, there could be
multiple starbucks in a mall. Wemaintain P2T and T2P as twomany-
to-many mappings, meaning that each partition can be associated
with multiple t-words and vice versa. Besides, we maintain I2C as a
many-to-one mapping and C2I as a one-to-many mapping. Figure 2
shows an example of the organization of indoor space keywords.

𝑣!!
𝑣!"
𝑣#!
𝑣#$
…

𝐶𝑊! bank

𝐶𝑊# coffee shop

𝐶𝑊% electronics

𝐶𝑊" supermarket

… …

ID WORD

𝐼𝑊! apple

𝐼𝑊# citibank

𝐼𝑊% costa

𝐼𝑊" starbucks

… …

ID WORD

𝑇𝑊! charging cable

𝑇𝑊# cheesecake

𝑇𝑊% coffee

𝑇𝑊" smartphone

… …

ID WORD

i-word set c-word sett-word set Partition

ID

Figure 2: Keyword Mappings in Indoor Space
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Given the organization described above, we are now ready to
introduce the calculation of keyword relevance between the query
keywords and a route as follows.
Keyword Relevance Computation.Given a set𝑄𝑊 of query key-
words, we first match each query word𝑤 ∈ 𝑄𝑊 to the candidate
partitions for facilitating the routing afterwards.

Definition 5 (Candidate Partitions). Given a query keyword 𝑤 ∈
𝑄𝑊 , its candidate partitions CP(𝑤) is represented as a set of entries
each of which is in the form of (𝑣𝑖 , 𝑟𝑠), where 𝑣𝑖 is the matching
partition and 𝑟𝑠 is the relevance score between 𝑣𝑖 and𝑤 . We discuss
different cases based on the type of𝑤 as follows.
• Case 1 (𝑤 is a c-word): All partitions associated with the matching

i-words in 𝐶2𝐼 (𝑤) are matched with 𝑟𝑠 = 1.
• Case 2 (𝑤 is an i-word): All partitions associated with the i-word
𝑤 are matched with 𝑟𝑠 = 1. To enrich the result, we also include
partitions associated with other i-words. In particular, all partitions
associated with an i-word 𝑤 ′

𝑖
such that 𝐼2𝐶 (𝑤 ′

𝑖
) = 𝐼2𝐶 (𝑤) are

matched with 𝑟𝑠 = 0.1 4.
• Case 3 (𝑤 is a t-word): All partitions associated with the matching

t-word𝑤 are matched with 𝑟𝑠 = 1. All partitions 𝑣 𝑗 associated with
t-words 𝑡 ′

𝑖
such that 𝑡 ′

𝑖
∈ ⋃𝑣𝑖 ∈𝑇 2𝑃 (𝑤) 𝑃2𝑇 (𝑣𝑖 ) are matched with

𝑟𝑠 =
𝑃2𝑇 (𝑣𝑗 )∩

⋃
𝑣𝑖 ∈𝑇 2𝑃 (𝑤) 𝑃2𝑇 (𝑣𝑖 )

𝑃2𝑇 (𝑣𝑗 )∪
⋃

𝑣𝑖 ∈𝑇 2𝑃 (𝑤) 𝑃2𝑇 (𝑣𝑖 )
based on the Jaccard Similarity.

Compared to [9], our definition has an extra case that 𝑤 is a
c-word, and it uses a different scoring scheme to handle the case
that𝑤 is an i-word, which is designed based on our new keyword
organization.
Definition 6 (Keyword Relevance). Given a route 𝑅 and a query
keyword𝑤𝑄 , we define the keyword relevance of𝑤𝑄 w.r.t. 𝑅 as the
maximum 𝑟𝑠 of 𝑣𝑖 ∈ 𝑅 as follows.

𝑟𝑒𝑙 (𝑅,𝑤𝑄 ) = max
(𝑣𝑖 ,𝑟𝑠) ∈CP(𝑤𝑄 ) |𝑣𝑖 ∈𝑅

CP(𝑤𝑄 ).𝑟𝑠

Definition 7 (Textual Relevance). Given a route 𝑅, we define the
textual relevance 𝜌 (𝑅) as the sum of keyword relevance of all query
keywords as follows.

𝜌 (𝑅) =
(∑︁

𝑤𝑄 ∈𝑄𝑊
𝑟𝑒𝑙 (𝑅,𝑤𝑄 )

)
/|𝑄𝑊 |

where |𝑄𝑊 | is the normalization term to make 𝜌 (𝑅) fall in [0, 1].
Consider our example in Figures 1 and 2. Suppose the query key-

words are coffee and charging cable (both keywords are t-words). 𝑅
passes the key partitions 𝑣11 and 𝑣25, which is associated with charg-
ing cable (i.e., 𝑣11 ∈ 𝑇2𝑃 (𝑇𝑊1)) and coffee (i.e., 𝑣25 ∈ 𝑇2𝑃 (𝑇𝑊3)),
respectively. Thus, we have 𝜌 (𝑅) = 1+1

2 = 1. If the query keywords
are changed to starbucks (which is an i-word) and electronics (which
is a c-word), 𝑣11 and 𝑣25 are still the key partitions of 𝑅, and we have
𝜌 (𝑅) = 0.1+1

2 = 0.55 since 𝐼2𝑃 (𝑣11) = costa is of the same category
coffee shop with starbucks, and 𝐼2𝑃 (𝑣25) = apple is associated with
the category electronics.

4 TIKRQ PROCESSING FRAMEWORK
In this section, we propose our Set-Based Search Algorithm to find
the resulting routes. Before we present the algorithm, we extend

4Any small value can be used here as long as the original i-word 𝑤 has a higher score.
The routes with 𝑤 will have higher rankings than those with 𝑤′𝑖 .

the concept of skeleton distance [29] to skeleton time which will
be used in our pruning rules. Given two indoor items 𝑥𝑖 and 𝑥 𝑗 , the
skeleton time 𝛾 (𝑥𝑖 , 𝑥 𝑗 )𝐿 can be used as a lower bound of the time
needed from 𝑥𝑖 to 𝑥 𝑗 .

𝛾 (𝑥𝑖 , 𝑥 𝑗 )𝐿 =



|𝑥𝑖 ,𝑥 𝑗 |𝐸
𝑠𝑤𝑎𝑙𝑘

, if 𝑥𝑖 and 𝑥 𝑗 are on the same floor;

min
(
min𝑠𝑑𝑖 ∈𝑆𝐷 (𝑥𝑖 ),

𝑠𝑑 𝑗 ∈𝑆𝐷 (𝑥 𝑗 )

|𝑥𝑖 ,𝑠𝑑𝑖 |𝐸+𝛿𝑠2𝑠 (𝑠𝑑𝑖 ,𝑠𝑑 𝑗 )+ |𝑠𝑑 𝑗 ,𝑥 𝑗 |𝐸
𝑠𝑤𝑎𝑙𝑘

,

min𝑒𝑑𝑖 ∈𝐸𝐷 (𝑥𝑖 ),
𝑒𝑑 𝑗 ∈𝐸𝐷 (𝑥 𝑗 )

(
𝛾 (𝑥𝑖 , 𝑒𝑑𝑖 )𝐿+

𝛾𝑒2𝑒 (𝑒𝑑𝑖 , 𝑒𝑑 𝑗 ) + 𝛾 (𝑒𝑑 𝑗 , 𝑥 𝑗 )𝐿
))
, otherwise.

where 𝛾 (𝑥𝑖 , 𝑥 𝑗 )𝐿 is the time needed to walk in Euclidean distance
from 𝑥𝑖 to 𝑥 𝑗 if they are on the same floor. Otherwise, we find the
time needed for the fastest path that goes through the staircase
doors (e.g., 𝑠𝑑𝑖 ∈ 𝑆𝐷 (𝑥𝑖 ) and 𝑠𝑑 𝑗 ∈ 𝑆𝐷 (𝑥 𝑗 )) or the transport doors
(e.g., 𝑒𝑑𝑖 ∈ 𝐸𝐷 (𝑥𝑖 ) and 𝑒𝑑 𝑗 ∈ 𝐸𝐷 (𝑥 𝑗 )) to reach 𝑥 𝑗 from 𝑥𝑖 .

4.1 Set-Based Search Algorithm (SSA)
We give the following observation which provides a clue to devel-
oping an efficient algorithm for TIKRQ.

Observation 1 (Partition Set). Given a set 𝑆 of key partitions, any
route 𝑅 formed by the partitions in 𝑆 has the same partition cost and
textual relevance.

With a slight abuse of notations, we denote the partition cost
and textual relevance of a set 𝑆 of key partitions by 𝑃𝐶 (𝑆) and 𝜌 (𝑆),
respectively. It is easy to see that bothmetrics are not affected by the
order of visiting, and thus 𝑃𝐶 (𝑆) = 𝑃𝐶 (𝑅) and 𝜌 (𝑆) = 𝜌 (𝑅) for any
route 𝑅 formed by the key partitions in 𝑆 . Based on this observation,
we propose a set-based search algorithm SSA as follows.
High Level Idea. This algorithm searches for the resulting routes
by focusing on the partition sets, as shown in Figure 3. For each set
𝑆 of key partitions, we check whether any feasible route 𝑅 exist (i.e.,
𝛾 (𝑅) < Δ𝑀𝑎𝑥 ). If such a route exists, the top-𝑘 results are updated
accordingly.

Cross-iteration computation strategy

Find candidate 
key partition 
set (Step 1)

Find a key 
partition set 

(Step 2)

Maintain 
top-k

results

No

Lemmas 1 and 2

Feasible 
route exist?

(Step 3)

Yes
Query

Pruning 2Pruning 1 Lemma 3Pruning 3

Figure 3: Flow of Set-based Search Algorithm

The advantage of 𝑆𝑆𝐴 is that it separates the time needed of
a route 𝑅 from its cost part. Thus, effective pruning techniques
based on partition cost and textual relevance can be applied to
filter out unpromising routes quickly, without performing the time-
consuming route search and expansion. Compared to the graph-
based algorithms in [9], 𝑆𝑆𝐴 maps multiple routes into one set,
resulting in a much smaller search space. Note that this search
strategy naturally conforms with our requirement of the unique
partition set, which improves the diversity of our top-𝑘 results.
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Specifically, 𝑆𝑆𝐴maintains a list𝑇𝑜𝑝𝐾𝑅𝑜𝑢𝑡𝑒𝑠 storing the current
top-𝑘 best feasible routes, and 𝑐𝑢𝑟𝐾𝐶𝑜𝑠𝑡 storing the cost of the 𝑘-th
route found so far. It has four major steps.

• Step 1 (Candidate Key Partition Set Finding): Find the candidate
key partition set (𝐶𝐾𝑃 ) of candidate key partitions from the set
of query keywords 𝑄𝑊 .

• Step 2 (Key Partition Set Finding): Find a set 𝑆 of key partition set
from 𝐶𝐾𝑃 to be the key partition set of a route 𝑅 to be found.

• Step 3 (Feasible Route Finding): Find a feasible route 𝑅 which starts
from 𝑝𝑠 , passes all key partitions in 𝑆 and ends at 𝑝𝑡 (if any),
and update 𝑇𝑜𝑝𝐾𝑅𝑜𝑢𝑡𝑒𝑠 with 𝑅 correspondingly if 𝑐𝑜𝑠𝑡 (𝑅) <
𝑐𝑢𝑟𝐾𝐶𝑜𝑠𝑡 .
• Step 4 (Iterative Step): Resume Step 2 until all key partition sets

are traversed.
The above search strategy is based on the set of all possible

combinations of 𝐶𝐾𝑃 . A straightforward implementation of this
strategy would enumerate 2 |𝐶𝐾𝑃 | key partition sets, and each set
would have |𝑆 |! possible routes. This is prohibitively expensive in
practice. Thus, we need a careful design to prune the search space
effectively. In the following, we discuss the pruning techniques
enjoyed by 𝑆𝑆𝐴.

4.1.1 Pruning at Step 1.

Pruning Rule 1 (Candidate Key Partitions). For a partition 𝑣𝑖 in a
key partition set 𝑆 , if its time cost lower bound 𝐿𝐵(𝛾 (𝑣𝑖 )) > Δ𝑀𝑎𝑥 ,
then 𝑣𝑖 can be pruned, where

𝐿𝐵(𝛾 (𝑣𝑖 )) = 𝛾 (𝑝𝑠 , 𝑣𝑖 , 𝑝𝑡 ) + 𝑡𝑤𝑎𝑖𝑡 (𝑣𝑖 )

𝛾 (𝑝𝑠 , 𝑣𝑖 , 𝑝𝑡 ) = min
𝑑𝑖 ∈𝑃2𝐷= (𝑣𝑖 ),
𝑑 𝑗 ∈𝑃2𝐷< (𝑣𝑖 )

(
𝛾 (𝑝𝑠 , 𝑑𝑖 )𝐿 +

𝛿𝑑2𝑑 (𝑑𝑖 , 𝑑 𝑗 )
𝑠𝑤𝑎𝑙𝑘

+ 𝛾 (𝑑 𝑗 , 𝑝𝑡 )𝐿
)

4.1.2 Pruning at Step 2.
Firstly, we utilize an inverted file indexed by 𝑄𝑊 to organize 𝐶𝐾𝑃
to avoid generating sets that contain ‘unnecessary’ key partitions.
That is, only the partition sets with each partition contributing to a
query keyword will be considered. Note that in this way, we also
bound the size of each set 𝑆 to |𝑄𝑊 |.

Secondly, given a subset 𝑆 ′ of the key partition set 𝑆 to be gener-
ated, we impose a cost lower bound 𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆 |𝑆 ′) of 𝑆 , as follows.

𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆 |𝑆 ′) = 𝛼
𝑃𝐶 (𝑆 ′)

𝑃𝐶𝑚𝑎𝑥 · |𝑄𝑊 |
+(1−𝛼) (1− 𝜌 (𝑆

′) + (|𝑄𝑊 | − |𝑆 ′ |)
|𝑄𝑊 | )

Lemma 1 (Set Cost). Let 𝑆 be a key partition set and 𝑆 ′ ⊂ 𝑆 , we have
𝑐𝑜𝑠𝑡 (𝑆) ≥ 𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆 |𝑆 ′).

Proof 1. Since |𝑆 | = |𝑄𝑊 | > |𝑆 ′ | and each key partition has its
relevance 𝑟𝑠 ≤ 1 for each query keyword, we have 𝜌 (𝑆) ≤ 𝜌 (𝑆 ′) +
(|𝑄𝑊 | − |𝑆 ′ |). It is easy to see that 𝑃𝐶 (𝑆 ′) ≤ 𝑃𝐶 (𝑆). Thus, we have
𝑐𝑜𝑠𝑡 (𝑆) > 𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆 |𝑆 ′).

The above Lemma suggests that if 𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆 |𝑆 ′) > 𝑐𝑢𝑟𝐾𝐶𝑜𝑠𝑡 , we
can terminate the enumeration on 𝑆 ′.

Thirdly, we sort the partitions 𝑣𝑖 in each inverted list in ascending
order of 𝑓 (𝑣𝑖 ), where

𝑓 (𝑣𝑖 ) = 𝛼
𝑃𝐶 (𝑣𝑖 )
𝑃𝐶𝑚𝑎𝑥

− (1 − 𝛼) 𝑣𝑖 .𝑟𝑠

Lemma 2 (List Ordering). Let 𝑣𝑖 and 𝑣 𝑗 be two key partitions in
an inverted list with 𝑓 (𝑣𝑖 ) ≤ 𝑓 (𝑣 𝑗 ), 𝑆 ′ be a key partition set con-
taining 𝑣𝑖 and 𝑆 ′′ = 𝑆 ′ \ {𝑣𝑖 } ∪ {𝑣 𝑗 }. Then, we have 𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆 |𝑆 ′) ≤
𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆 |𝑆 ′′).

Proof 2. Consider the set 𝑆 ′𝑜 = 𝑆 ′ \ {𝑣𝑖 }. It can be proven that
𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆 |𝑆 ′𝑜 ) ≥ 𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆 |𝑆 ′) −

𝑓 (𝑣𝑖 )
|𝑄𝑊 | . Since 𝑆

′′ = 𝑆 ′𝑜 ∪ {𝑣 𝑗 }, we

have 𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆 |𝑆 ′𝑜 ) +
𝑓 (𝑣𝑗 )
|𝑄𝑊 | ≥ 𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆 |𝑆

′′). As 𝑓 (𝑣𝑖 ) ≤ 𝑓 (𝑣 𝑗 ), we
have 𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆 |𝑆 ′) ≤ 𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆 |𝑆 ′′).

By ordering the inverted lists in this way, we can impose an early
stopping condition: If 𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆 |𝑆 ′) > 𝑐𝑢𝑟𝐾𝐶𝑜𝑠𝑡 , we can terminate
the enumeration of the remaining partitions in the list.

Fourthly, some key partition sets can be excluded by considering
their upper bound of total waiting time.
Pruning Rule 2 (Set Waiting Time). Given a key partition set 𝑆 , we
upper bound 𝑆 ’s total waiting time of partitions in 𝑆 ,

∑
𝑣∈𝑆 𝑣 .𝑤𝑎𝑖𝑡𝑇𝑖𝑚𝑒 ,

by𝑤𝑎𝑖𝑡𝑇𝑖𝑚𝑒𝑚𝑎𝑥 , which is defined as follows.

𝑤𝑎𝑖𝑡𝑇𝑖𝑚𝑒𝑚𝑎𝑥 = Δ𝑀𝑎𝑥 − 𝛾 (𝑝𝑠 , 𝑝𝑡 )𝐿
Note that𝑤𝑎𝑖𝑡𝑇𝑖𝑚𝑒𝑚𝑎𝑥 can be pre-computed because 𝛾 (𝑝𝑠 , 𝑝𝑡 )𝐿

is identical for all queries with the same pair of 𝑝𝑠 and 𝑝𝑡 .

4.1.3 Algorithm SSA.
We design 𝑆𝑆𝐴 as shown in Algorithm 1. Specifically, it maintains
a list 𝑇𝑜𝑝𝐾𝑅𝑜𝑢𝑡𝑒𝑠 storing the 𝑘 best-known routes found so far
(line 2). Then, it finds the set of candidate key partitions𝐶𝐾𝑃 (line 4),
by utilizing Pruning 1. Next, it performs an iterative process as
follows (lines 5 to 11). It iterates through each key partition set 𝑆 ,
and if 𝑆 passes our lower bound cost checking (Lemma 1) and
waiting time checking (Pruning 2), it finds the feasible route 𝑅 of 𝑆
by 𝑓 𝑖𝑛𝑑𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑅𝑜𝑢𝑡𝑒 () (to be detailed in Algorithm 2). If such a
route 𝑅 exists, we update the 𝑇𝑜𝑝𝐾𝑅𝑜𝑢𝑡𝑒𝑠 by 𝑅. The algorithm
terminates when all sets have been processed. The 𝑇𝑜𝑝𝐾𝑅𝑜𝑢𝑡𝑒𝑠 is
then returned as the result.
Algorithm 1 SSA (𝑝𝑠 , 𝑝𝑡 , 𝑄𝑊 , Δ𝑀𝑎𝑥 , 𝑘)
1: if 𝛿 (𝑝𝑠 , 𝑝𝑡 ) > Δ𝑀𝑎𝑥 then return ∅
2: 𝑇𝑜𝑝𝐾𝑅𝑜𝑢𝑡𝑒𝑠 ← ∅
3: 𝑤𝑎𝑖𝑡𝑇𝑖𝑚𝑒𝑚𝑎𝑥 ← Δ𝑀𝑎𝑥 −

𝛿 (𝑝𝑠 ,𝑝𝑡 )
𝑠𝑤𝑎𝑙𝑘

4: 𝐶𝐾𝑃 ← ∪𝑤𝑄 ∈𝑄𝑊 CP(𝑤𝑄 ) ⊲ Step 1
5: for each possible subset 𝑆 of 𝐶𝐾𝑃 do ⊲ Step 2
6: if 𝑐𝑜𝑠𝑡𝐿𝐵 (𝑆) > 𝑐𝑢𝑟𝐾𝐶𝑜𝑠𝑡 then continue;
7: if

∑
𝑣∈𝑆 𝑣 .𝑤𝑎𝑖𝑡𝑇𝑖𝑚𝑒 > 𝑤𝑎𝑖𝑡𝑇𝑖𝑚𝑒𝑚𝑎𝑥 then continue;

8: 𝑅 ← 𝑓 𝑖𝑛𝑑𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑅𝑜𝑢𝑡𝑒 (𝑆, 𝑝𝑠 , 𝑝𝑡 ,Δ𝑀𝑎𝑥 ) ⊲ Step 3
9: if 𝑅 ≠ ∅ then
10: update 𝑇𝑜𝑝𝐾𝑅𝑜𝑢𝑡𝑒𝑠 with 𝑅
11: 𝑐𝑢𝑟𝐾𝐶𝑜𝑠𝑡 ← cost of the 𝑘-th route in 𝑇𝑜𝑝𝐾𝑅𝑜𝑢𝑡𝑒𝑠
12: return 𝑇𝑜𝑝𝐾𝑅𝑜𝑢𝑡𝑒𝑠

One remaining issue is that given a set 𝑆 , how to efficiently find
the feasible route, if it exists. We present an algorithm for that in
the following section.

4.2 Feasible Route Search
Given a set 𝑆 of partitions, we want to find a feasible route from
𝑝𝑠 to 𝑝𝑡 that passes all partitions in 𝑆 . A naive approach is to try
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all permutations of the partitions in 𝑆 . Instead, we propose a best-
first search algorithm that can find the feasible route efficiently. It
returns the feasible route 𝑅 if it exists. Otherwise, it returns ∅.

Before we present the algorithm, we introduce some pruning
techniques to speed up the feasible route search. First, not all partial
routes need to be explored. In particular, given a partial route 𝑅 =

{𝑝𝑠 , ..., 𝑑𝑘 }, we compute its lower bound time cost and introduce a
pruning as follows.
Pruning Rule 3 (Route Time Cost). A partial route 𝑅 = {𝑝𝑠 , ..., 𝑑𝑘 }
can be pruned if 𝛾𝐿𝐵 (𝑅) = 𝛾 (𝑅) + 𝛾 (𝑑𝑘 , 𝑝𝑡 )𝐿 ≥ Δ𝑀𝑎𝑥 .

Second, not all doors in each key partition need to be considered
when expanding a partial route. Given a key partition 𝑣 ′, a partial
route 𝑅 = {𝑝𝑠 , ..., 𝑑𝑦−1, 𝑑𝑦} that has expanded to 𝑣 ′, if both 𝑑𝑦−1
and 𝑑𝑦 are connected to 𝑣 ′, 𝑅′ can be safely discarded. Formally,
we have the following lemma.
Lemma 3 (Route Pruning). Consider a partial route𝑅′ = {𝑝𝑠 , .., 𝑑𝑦−1
, 𝑑𝑦}, where 𝑑𝑦−1, 𝑑𝑦 ∈ 𝑃2𝐷= (𝑣 ′). There exists a route 𝑅 that con-
nects to 𝑣 ′ and is faster than 𝑅′.

Proof 3. Consider another partial route 𝑅 = {𝑝𝑠 , .., 𝑑𝑦−1}. It is easy
to see that 𝛾 (𝑅′) ≥ 𝛾 (𝑅) since 𝛾 (𝑅′) = 𝛾 (𝑅) + |𝑑𝑦−1,𝑑𝑦 |𝐸𝑠𝑤𝑎𝑙𝑘

.

Based on the above Lemma, a partial route 𝑅′ = {𝑝𝑠 , .., 𝑑𝑦−1, 𝑑𝑦}
can be pruned if 𝑑𝑦−1, 𝑑𝑦 ∈ 𝑃2𝐷= (𝑣 ′).

Algorithm 2 presents the 𝑓 𝑖𝑛𝑑𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑅𝑜𝑢𝑡𝑒 algorithm. Specifi-
cally, a minimum priority queue 𝑄 (initialized in line 1) is used to
handle the order of route expansion. An element in𝑄 is a four-tuple
(𝑣, 𝑅,𝛾𝐿𝐵, 𝑆 ′) that stores the local information of the current partial
route, where 𝑣 is the last partition that 𝑅 reaches, 𝑅 = {𝑝𝑠 , 𝑑𝑖 , ..., 𝑑𝑘 }
is the partial route that has been expanded so far, 𝛾𝐿𝐵 is the lower
bound time cost of 𝑅∪{𝑝𝑡 }, and 𝑆 ′ is the set of remaining partitions
that have not been explored by 𝑅 yet. The elements in 𝑄 are sorted
in ascending order of |𝑆 ′ |.

Algorithm 2 findFeasibleRoute (𝑆 = (𝑣1, 𝑣2, ..., 𝑣𝑛), 𝑝𝑠 , 𝑝𝑡 , Δ𝑀𝑎𝑥 )
1: Initialize a priority queue 𝑄
2: 𝑅0 ← (𝑝𝑠 )
3: 𝑄.𝑝𝑢𝑠ℎ(𝑣 (𝑝𝑠 ), 𝑅0, 0, 𝑆)
4: while 𝑄 is not empty do
5: (𝑣, 𝑅,𝛾𝐿𝐵, 𝑆 ′) ← 𝑄.𝑝𝑜𝑝 ()
6: 𝑑𝑘 = 𝑅.𝑡𝑎𝑖𝑙

7: if 𝑆 ′ = ∅ then
8: find fastest route from 𝑑𝑘 to 𝑝𝑡
9: 𝑅′ ← append (𝑑𝑘 , ..., 𝑝𝑡 ) to 𝑅
10: if 𝛾 (𝑅′) ≤ Δ𝑀𝑎𝑥 then return 𝑅′

11: for each 𝑣 ′ ∈ 𝑆 ′ do
12: for each 𝑑𝑦 ∈ 𝑃2𝐷= (𝑣 ′) do
13: find fastest route from 𝑑𝑘 to 𝑑𝑦
14: if 𝑑𝑦−1 ∈ 𝑃2𝐷= (𝑣 ′) then continue;
15: 𝑅′ ← append (𝑑𝑘 , ..., 𝑑𝑦) to 𝑅
16: 𝛾 ′

𝐿𝐵
← 𝛾 (𝑅′) + 𝛾 (𝑑𝑦, 𝑝𝑡 )𝐿

17: if 𝛾 ′
𝐿𝐵
≤ Δ𝑀𝑎𝑥 then

18: 𝑄.𝑝𝑢𝑠ℎ(𝑣 ′, 𝑅′, 𝛾 ′
𝐿𝐵
, 𝑆 ′ \ {𝑣 ′})

19: return ∅

The algorithm initializes a route 𝑅0 by 𝑝𝑠 and puts it into 𝑄
(lines 2 to 3). It then performs the expansion iteratively (lines 4
to 18). In each iteration, it pops out the element (𝑣, 𝑅,𝛾𝐿𝐵, 𝑆 ′) with
the smallest |𝑆 ′ | from 𝑄 (line 5), and check if 𝑆 ′ is empty. If so,
all key partitions in (the original) 𝑆 is covered by 𝑅, and it con-
nects 𝑅 from 𝑑𝑘 to 𝑝𝑡 to form a complete route 𝑅′. If 𝛾 (𝑅′) < Δ𝑀𝑎𝑥 ,
it returns 𝑅′ immediately as 𝑅′ is a feasible route (lines 7 to 10).
Otherwise, it expands the current partial route to cover a key parti-
tion 𝑣 ′ ∈ 𝑆 ′ (lines 11 to 18). For each 𝑑𝑦 ∈ 𝑃2𝐷= (𝑣 ′), it finds the
fastest route from 𝑑𝑘 to 𝑑𝑦 , checks if the route passes the checking
(Lemma 3). If so, it generates a new route 𝑅′ by appending the
fastest route to 𝑅, and pushes it to 𝑄 if it passes the time constraint
checking (Pruning 3). The expansion continues until all elements
in 𝑄 have been processed. It returns ∅ if no feasible route can be
found.

Cross-Iteration Computation Strategy. To further speed up the
algorithm, we have the following strategy to store and reuse the
information computed in the current iteration for future iterations.

Consider an iteration. Given two doors 𝑑𝑖 and 𝑑 𝑗 that we have
processed, we maintain the fastest partial route information from
𝑑𝑖 to 𝑑 𝑗 in a global hashmap 𝐻𝑓 𝑝𝑟 , to avoid re-computation in the
future iterations. In particular, when we find the fastest route from
𝑑𝑖 and 𝑑 𝑗 (line 13), we check whether 𝑘𝑒𝑦 = (𝑑𝑖 , 𝑑 𝑗 ) exists in 𝐻𝑓 𝑝𝑟 .
If so, we can append the saved route to the current route directly.
Otherwise, we proceed to search for the route. Once such a route
is found, it is inserted into 𝐻𝑓 𝑝𝑟 .

Moreover, we maintain another global hashmap 𝐻𝑖𝑛 to store
those (partial) routes that are found to be infeasible. To illustrate,
consider an example with 𝑆 = {𝑣1, 𝑣2, 𝑣3}. If we found that there
does not exist a feasible (partial) route 𝑅 that contains ⟨𝑝𝑠 , 𝑣1, 𝑣2⟩
when we process 𝑆 , we add 𝑘𝑒𝑦 = ⟨𝑣1, 𝑣2⟩ into 𝐻𝑖𝑛 . Then, when we
find the feasible route for another set 𝑆 ′ = {𝑣1, 𝑣2, 𝑣4}, we do not
need to consider 𝑅 that contains ⟨𝑝𝑠 , 𝑣1, 𝑣2⟩ since it must also be
infeasible. Formally, we perform a checking when we search for the
feasible route for a set 𝑆 as follows. If any route 𝑅𝑖𝑛 is in 𝐻𝑖𝑛 , we
know that 𝑅𝑖𝑛 is infeasible and return ∅ immediately. Note that 𝐻𝑖𝑛
can be updated accordingly when we check the feasibility of new
partial routes to a remaining key partition. If no new partial route
satisfies the time constraint checking, 𝑅𝑖𝑛 is inserted into 𝐻𝑖𝑛 .

4.3 Time Complexity
The time complexity of 𝑆𝑆𝐴 is dominated by the key partition sets
processing part (lines 5 to 18 in Algorithm 1). Let |𝐾𝑃𝑆 | be the
number of key partition sets processed in 𝑆𝑆𝐴 and 𝜃 be the time
complexity of executing one iteration. The time complexity of 𝑆𝑆𝐴
is 𝑂 ( |𝐾𝑃𝑆 | · 𝜃 ). In practice, we have |𝐾𝑃𝑆 | << 2 |𝐶𝐾𝑃 | since it
utilizes the pruning techniques.

Consider 𝜃 . It is dominated by the time cost of executing the
𝑓 𝑖𝑛𝑑𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑅𝑜𝑢𝑡𝑒 () method (i.e., Algorithm 2). Let |𝑑𝑚𝑎𝑥 | be the
maximum number of doors a partition has, and𝑚 be the cost for
computing the fastest route from a door to another. The time cost
is𝑂 ( |𝑆 |! · |𝑆 | · |𝑑𝑚𝑎𝑥 |2 ·𝑚), where |𝑆 | = |𝑄𝑊 |, since the number of
possible permutations of 𝑆 is 𝑂 ( |𝑆 |!), and the time complexity of
computing a complete route for one permutation is𝑂 ( |𝑆 | · |𝑑𝑚𝑎𝑥 |2 ·
𝑚). Note that in practice the running time should be much faster
since our cross-iteration computation strategy can help to reduce
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the computation needed. In summary, the time complexity of 𝑆𝑆𝐴
is 𝑂 ( |𝐾𝑃𝑆 | · |𝑆 |! · |𝑆 | · |𝑑𝑚𝑎𝑥 |2 ·𝑚).

5 EMPIRICAL STUDIES
5.1 Experimental Set-up
Indoor Space. Following [9], we generate a 𝑛-floor building based
on a real world floor plan 5, where 𝑛 = {3, 5, 7, 9}. Each floor is
1368m × 1368m, consists of 96 rooms, 4 hallways, and 4 staircases.
We obtain 141 partitions and 200 doors on each floor by decompos-
ing those irregular hallways into smaller and regular partitions. To
model the elevators in an indoor space, we convert two staircases to
elevators that connect to all floors, rather than the adjacent floors
only. Each elevator has a waiting time of 30 seconds and takes 10
seconds to traverse from one floor to another. The remaining two
staircases connect two adjacent floors, each being 20m long. By
default, we set 𝑛 = 5 and the indoor space contains 705 partitions
and 1100 doors.
Partition Keywords.We assign keywords to each room as follows.
First, we crawl the shop information of five shopping malls in Hong
Kong 6 online using Scrapy. We obtain 2074 documents for 1225
shop brands. All the 1225 brand names are used as i-words. Second,
we manually categorize these brand names into 11 categories, fol-
lowing the categorization used in the shopping malls (e.g., clothing,
cosmetics and restaurant). These categories are used as the c-words.
Each category contains 111 i-words on average. Third, we feed
these i-words into the RAKE algorithm [22] to extract keywords
from the corresponding documents. Only 1120 i-words yield ex-
tracted keywords. For each such i-word, we use up to 60 extracted
keywords with the highest TF-IDF values. In total, we have 9195
extracted keywords and each i-word corresponds to an average of
16.6 extracted keywords. For the partitions, their static cost and
waiting time are picked uniformly at random, in the range [1, 10]
and [0, 100], respectively.
Queries. We generate the query keywords as follows. The number
of query keywords |𝑄𝑊 | is in the range [1, 5], as over 95% of web
search queries have at most 5 keywords 7. We vary the fractions
of c-words/i-words/t-words in 𝑄𝑊 , as the parameter 𝑐/𝑖/𝑡 . The
procedure is to vary the fraction of one type with the other two
types being changed accordingly. Take the c-word as an example,
we vary its fraction from 𝑝 = [0.1, 0.9], and the fractions of i-words
and t-words are both set to be (1 − 𝑝)/2. In addition, we vary the
parameters 𝛼 in Equation 1. Table 3 summaries the parameters
setting with default values in bold.

Table 3: Parameter Settings

Parameters Settings

𝑘 1, 3, 5, 7, 9, 11
|𝑄𝑊 | 1, 2, 3, 4, 5
Δ𝑀𝑎𝑥 3000, 3500, 4000, 4500, 5000 (seconds)
𝑐/𝑖/𝑡 0.1/0.45/0.45, 0.2/0.4/0.4, . . ., 0.05/0.05/0.9
𝑛 3, 5, 7, 9
𝛼 0.1, 0.3, 0.5, 0.7, 0.9

5https://longaspire.github.io/s/fp.html
6https://longaspire.github.io/s/hkdata.html
7http://www.keyworddiscovery.com/keyword-stats.html

Algorithms. We compare our 𝑆𝑆𝐴 algorithm with a baseline algo-
rithm 𝑆𝑆𝐴\𝑃 . 𝑆𝑆𝐴\𝑃 follows the workflow of 𝑆𝑆𝐴, but the proposed
pruning features and computation strategy in 𝑆𝑆𝐴 are removed.
Also, we adapt the algorithm 𝐾𝑜𝐸 [9], which is originally designed
for IKRQ. The adaption is as follows. It expands the partial routes
from 𝑝𝑠 to search one of the key partitions that can cover some of
those uncovered query keywords, until all keywords are covered,
and finally connects to 𝑝𝑡 . For each complete route, it calculates
the cost of the routes and maintains the top-𝑘 feasible routes. The
route-based speed-up techniques (i.e., Pruning 3 and Lemma 3) and
cross-iteration computation strategy are also employed in the adap-
tion to allow a fair comparison. All algorithms are implemented in
Java and run on a Mac with a 2GHz Quad-Core Intel i5 CPU and
16GB memory.
Performance Metrics. We measure the running time and the
memory cost. For each experimental setting, we generate 10 queries
and report the average results. Note that the results are based on the
queries with routes returned only. In case of no route is returned
as the result, we simply re-generate a new query.

5.2 Experimental Result
5.2.1 Efficiency Studies.

Effect of 𝑘 . Figure 4 shows the results of varying 𝑘 . According to
Figure 4(a), the running time of 𝑆𝑆𝐴 and 𝑆𝑆𝐴\𝑃 increases slightly
when 𝑘 increases. This is because a larger 𝑘 incurs more routes to
be explored. 𝐾𝑜𝐸 is insensitive to 𝑘 while it always requires signifi-
cantly long time to terminate. In general, our 𝑆𝑆𝐴 runs faster than
𝑆𝑆𝐴\𝑃 and 𝐾𝑜𝐸 by an order of magnitude, as contributed by the
pruning techniques and computation strategy employed. Accord-
ing to Figure 4(b), the memory usage of all algorithms fluctuates
with a varying 𝑘 . 𝑆𝑆𝐴 still consumes less than 10MB of memory in
different 𝑘 values, much less than its competitors.
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Figure 4: Effect of 𝑘

Effect of Query Size |𝑄𝑊 |. Figure 5 shows the results of varying
the number of query keywords from 1 to 5. According to Figure 5(a),
the running time of all algorithms increases with an increasing
|𝑄𝑊 |. A larger |𝑄𝑊 | leads to more relevant partitions and thus
more key partition sets need to be formed and considered. More-
over, each key partition set would be larger and therefore it takes
more time to find the complete route for the set in each iteration.
Our 𝑆𝑆𝐴 runs consistently faster than 𝑆𝑆𝐴\𝑃 and 𝐾𝑜𝐸, and the
gap enlarges when |𝑄𝑊 | increases. This is because our pruning
strategies are more effective when |𝑄𝑊 | is larger. According to
Figure 5(b), the memory usages of all algorithms are similar and
increase steadily with |𝑄𝑊 |. However, 𝑆𝑆𝐴 and 𝑆𝑆𝐴\𝑃 grow slower
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than 𝐾𝑜𝐸. Even with more pruning strategies employed, 𝑆𝑆𝐴 con-
sumes fewer memories than 𝑆𝑆𝐴\𝑃 and 𝐾𝑜𝐸 for |𝑄𝑊 |. This is due
to the use of the cross-iteration computation strategy.
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Figure 5: Effect of |𝑄𝑊 |

Effect of Time Constraint Δ𝑀𝑎𝑥 . Figure 6 reports the results
of varying Δ𝑀𝑎𝑥 . According to Figure 6(a), the running time of
both 𝑆𝑆𝐴 and 𝑆𝑆𝐴\𝑃 decreases when Δ𝑀𝑎𝑥 increases and our 𝑆𝑆𝐴
always outperforms 𝑆𝑆𝐴\𝑃 and 𝐾𝑜𝐸. Note that a looser Δ𝑀𝑎𝑥 re-
duces the difficulty of finding the feasible routes and results in
fewer key partition sets to explore. In this sense, the effectiveness
of Pruning Rules 2 and 3 is amplified in a setting of a larger Δ𝑀𝑎𝑥 .
Referring to Figure 6(b), the memory usage of 𝑆𝑆𝐴 decreases when
Δ𝑀𝑎𝑥 increases, since fewer paths and infeasible sets need to be
stored when a larger Δ𝑀𝑎𝑥 is set. On the other hand, both 𝑆𝑆𝐴\𝑃
and 𝐾𝑜𝐸 are insensitive to Δ𝑀𝑎𝑥 , and incur higher memory usages
than 𝑆𝑆𝐴.
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Figure 6: Effect of Δ𝑀𝑎𝑥

Effect of Number of Floors 𝑛. To evaluate the scalability of our
algorithm, we vary 𝑛 in {3, 5, 7, 9} and report the result in Figure 7.
According to Figure 7(a), the running time of all algorithms in-
creases with 𝑛 increases. A higher 𝑛 means a larger number of
partitions and thus more relevant partitions need to be checked.
Particularly, the elevators in our setting allow the route to pass
different floors easily. Thus, the time constraint can barely help re-
ducing the search space. Nevertheless, 𝑆𝑆𝐴 runs consistently faster
than its competitors and it can finish within 3 seconds when 𝑛
grows up to 9, showing its scalability.
Effect of 𝛼 . Figure 8 reports the running time of the algorithms
when varying𝛼 . Our 𝑆𝑆𝐴 runs faster than 𝑆𝑆𝐴\𝑃 and𝐾𝑜𝐸 by orders
of magnitude. Also, the running time of 𝐾𝑜𝐸 decreases when 𝛼
increases. For the route cost given in Definition 1, having a larger
𝛼 puts less weight on routes’ textual relevance, which is easier for
a graph-based algorithm like 𝐾𝑜𝐸 to find routes with smaller cost.
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The memory usages of all algorithms are insensitive to 𝛼 , and 𝑆𝑆𝐴
uses the least memory among all three. We omit the figure here
due to the page limit.
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Effect of Fraction of c/i/t-words. We vary the parameter 𝑝 of
each type of word (cf. Section 5.1) and report the result for 𝑆𝑆𝐴 in
Figure 9. In general, there is not much difference in the running
time of different combinations of keywords.

5.2.2 Effectiveness Studies.

Case Study. To show that TIKRQ is able to return desirable routes
in practice, we perform a case study by comparing the TIKRQ result
with that of minimizing the route’s time cost. The query keywords
are apple (an i-word) and coffee (a t-word), Δ𝑀𝑎𝑥 = 3600 (one hour),
𝑘 = 3. We use 𝛼 = 0.8 to reflect and suit the needs of keyword-
awareness in shopping. The routes returned by TIKRQ are listed
in Table 4. The top-1 route (say 𝑅) has a total route cost 𝐶𝑜𝑠𝑡 (𝑅) =
0.125 and time cost 𝛾 (𝑅) = 2474.545 (≈ 41 minutes). In particular,
𝑅 has a textual relevance of 1, as it passes the partitions apple and
coffee day (which sells coffee). In contrast, the route 𝑅′ with the
minimum time cost (i.e., 𝛾 (𝑅′) = 1596.807 ≈ 27 minutes) incurs an
overall route cost of 0.450. 𝑅′ only has a textual relevance of 0.55, as
it does not pass apple but another partition with category electronics.
Although 𝑅 has a longer time needed, its textual relevance and
route cost meet the practical user needs. This demonstrates that our
returned paths can better serve the users in the context of keyword
awareness.
Effect of Unique Partition Set. To compare the results with and
without adopting the concept unique partition set, we run 𝑆𝑆𝐴\𝑈𝑃𝑆
which removed the requirement of unique partition set. In other
words, it allows different routes in the 𝑘 resulting routes to have
an identical key partition set.
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Table 4: Case Study

𝑘
Textual

Relevance Route Cost Time Cost

SSA returned path
1 1 0.05 2474.545
2 1 0.08 1891.023
3 1 0.13 2540.905

minimum time
cost path 𝑅′ 0.55 0.45 1596.807

We measure the identical rate as the fraction of routes with the
identical key partition set with others. We ran 10 queries for each
𝑘 and Figure 10 reports the average rate. It shows that the identical
rate of 𝑆𝑆𝐴\𝑈𝑃𝑆 increases rapidly when 𝑘 increases. More than 60%
of the returned routes have identical key partition sets when 𝑘 ≥ 5.
Such routes are not interesting to users and hinder the diversity of
the results. This verifies that the unique partition set offers users
more diversified combinations of partitions in the result.
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6 RELATEDWORK
Query Processing in Indoor Space. Efficient indoor query pro-
cessing has received significant attention in recent years. Some
works [18, 30, 32, 33] studied the indoor spatial queries such as
range queries, 𝑘NN queries, and shortest path queries under var-
ious settings. Lu et al. [17] designed an indoor space model that
facilitates indoor shortest path finding. Shao et al. [26, 27] proposed
the VIP-Tree and KP-Tree that allows efficient processing of indoor
shortest path queries and spatial keyword queries. However, they
did not consider the keyword-aware routing queries, which is the
focus of this work. Luo et al. [19] studied the time-constrained
sequence route query in an indoor space. Their work considers
the stay-time and partitions’ category, but not the objects’ static
cost and thus their solution is not applicable to our problem. Liu
et al. [16] studied the indoor temporal-aware shortest path query,
which considers the current time stamp and the opening hours of
the doors. The temporal-aware setting is orthogonal to our problem,
and it can be integrated into our problem to model the case that
partitions and doors have different opening hours.
Keyword-aware Routing in Indoor Space. Salgado [23] studied
the keyword-aware skyline route (KSR) search in indoor venues
that considers the number of objects in the routes and the route
distances. While KSR assumes that each partition contains one
keyword, our setting allows a partition to have multiple keywords.
Salgado et al. [24] studied the category-aware multi-criteria indoor
route planning queries (CAM queries) that consider the objects’

keyword and static cost. Shao et al. [25] studied the indoor trip
planning queries (𝑖TPQ) and developed a solution called VIP-tree
neighbor expansion that exploits the features of indoor space, such
as room and hallways. Recently, Feng et al. [9] studied the IKRQ
problem, which finds 𝑘 𝑠-to-𝑡 routes with the highest scores that
consider both the keyword relevance and spatial distance. Each
route has a distance satisfying a pre-defined distance constraint.
They defined prime route to return diverse results, and developed
two algorithms for answering the query. All of these works fail
to capture different criteria at the same time and thus their solu-
tions can not be directly applied to our problem. Table 5 shows the
summary and comparison of all those proposals and our TIKRQ.

Table 5: Existing Indoor Keyword-aware Routing Queries

Textual Spatial Static Result
Constraint Constraint Cost Diversification

KSR [23] boolean distance - Skyline
CAM [24] boolean distance

√
-

𝑖TPQ [25] boolean distance - -
IKRQ [9] i/t-word distance - Prime route
TIKRQ i/t/c-word time budget

√
Unique partition set

Outdoor Keyword-aware Query and Routing. Some works [3,
6, 7, 21] studied the outdoor spatial keyword queries that retrieve a
single object close to the query location and relevant to the query
keywords, while others [4, 10, 31] find an object set as a solution.

Given a source point 𝑠 , a target point 𝑡 , and a category set 𝐶 ,
the trip planning query [11] finds the shortest 𝑠-to-𝑡 route that
passes at least one object from each category in 𝐶 . The optimal
sequenced route query [28] finds the shortest route that passes
the categories in the user-specified sequence, while others [5, 15]
consider partial order. The keyword-aware optimal route query [2]
finds a route that covers all query keywords, has the minimum
objective score, and meets the given budget constraint. The optimal
route search [34] finds a route that has maximum query keywords
coverage and satisfies the budget constraint. The clue-based route
search [36] allows users to specify the order of keywords to cover
and the distance range from one matched keyword to the next
one. All these works fall short for indoor topology considered in
our TIKRQ problem. Also, none of them organize the keywords
according to their semantics.

7 CONCLUSION AND FUTUREWORK
In this paper, we studied the problem of time-constrained indoor
keyword-aware routing, which find routes with minimum route
costs while satisfying a time constraint. In our setting, the route
costs capture both static cost and textual relevance of the route
to meet the practical user needs. We developed a set-based search
algorithm 𝑆𝑆𝐴 to answer the query. Extensive experiments were
conducted that verified the efficiency of 𝑆𝑆𝐴.

For future work, we can take the opening hours of partitions and
doors into account. It is also interesting to study the hierarchical
word organization for partitions and to provide suggestions to refine
query keywords when no route is found. Moreover, it is relevant
to consider additional constraints like prohibiting staircases in a
route and allowing the user to specify a preferred visiting order.
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