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Patient-specific parameter estimation: coupling a heart model and

experimental data

Andrei A. Domogo, Johnny T. Ottesen

• Mathematical modeling of the atrium, ventricle, veins, and arteries is

given

• Unsteady Bernoulli equation is used for atrial inflow

• Model parameters are determined through patient-specific data

• Age and sex related differences in heart functions are captured

• Effects of dobutamine and glycopyrrolate to the cardiovascular system

is quantified
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Abstract

This study develops a hemodynamic model involving the atrium, ventri-

cle, veins, and arteries that can be calibrated to experimental results. It is

a Windkessel model that incorporates an unsteady Bernoulli effect in the

blood flow to the atrium. The model is represented by ordinary differential

equations in terms of blood volumes in the compartments as state variables

and it demonstrates the use of conductance instead of resistance to capture

the effect of a non-leaking heart valve. The experimental results are blood

volume data from 20 young (half of which are women) and 20 elderly (half of

which are women) subjects during rest, inotropic stress (dobutamine), and

chronotropic stress (glycopyrrolate). The model is calibrated to conform with

data and physiological findings in 4 different levels. First, an optimization

routine is devised to find model parameter values that give good fit between

the model volume curves and blood volume data in the atrium and ven-

tricle. Patient-specific information are used to get initial parameter values
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as a starting point of the optimization. Also, model pressure curves must

show realistic behavior. Second, parametric bootstrapping is performed to

establish the reliability of the optimal parameters. Third, statistical tests

comparing mean optimal parameter values from young vs elderly subjects

and women vs men are examined to support and present age and sex related

differences in heart functions. Lastly, statistical tests comparing mean op-

timal parameter values from resting condition vs pharmacological stress are

studied to verify and quantify the effects of dobutamine and glycopyrrolate

to the cardiovascular system.

Keywords: cardiovascular dynamics modeling, patient-specific, parameter

estimation, intropic stress, chronotropic stress

1. Introduction

Cardiovascular diseases may be fatal. The World Health Organization

reported that Ischaemic heart disease and stroke have been the leading cause

of death worldwide in 2016 and for the previous 15 years (WHO). Other heart

diseases like stenosis, leaking heart valves, scar tissue in the ventricle, etc.

are also common. Most of these heart diseases are diagnosed late, usually

only when the ventricle starts to inefficiently pump blood. However, the

majority of cardiovascular diseases can be interpreted in terms of pressure

variation in the heart and blood vessels. Thus, understanding the blood

flow in the cardiovascular system, i.e., looking at the volume and pressure

profiles in the heart chambers, lungs, and blood vessels, may lead to earlier

detection of these heart diseases and or their symptoms. Medical doctors

believe that early signs of heart diseases can be seen in the atria (Douglas
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(2003); Aurigemma et al. (2009); Vieira et al. (2014)). Thus, in particular,

the importance of studying atrial dynamics.

Mathematical modeling of the Cardiovascular system has progressed over

the years. There are already thorough studies involving the interaction and

dynamics of the cardiovascular system and its control (Danielsen and Ottesen

(1997); Ottesen (1997); Ursino (1998); Ottesen and Olufsen (2011); Olufsen

and Ottesen (2013); de los Reyes et al. (2014); Calderon et al. (2017)). There

are even 3 dimensional models for blood flow in the heart (Peskin and Mc-

queen (1989); Mcqueen and Peskin (1989)). These Cardiovascular models

differ in the sense that some have a lot of parameters to achieve better phys-

iological accuracy and some have lesser parameters to be able to compare

and validate results with experimental data. Some studies that favoured

complexity are Lu et al. (2001), Fan and Khoo (2002), Olufsen et al. (2005),

and Lim et al. (2013). On the other hand, some of the studies that favoured

comparability with data are Ottesen and Danielsen (2003), Pope et al. (2011),

Aboelkassem et al. (2015), Marquis et al. (2018), and Williams et al. (2019).

Of these models, only a few involved the atrium and only a few did patient-

specific parameter estimation. To the best of our knowledge, there are no

studies involving patient-specific parameter estimation during resting condi-

tion and pharmacological stress.

For this study, we will use a pulsatile cardiovascular model, involving the

atrium, ventricle, veins, and arteries. We will build on the work of Ottesen

(2011b) and Vingaard and Ottesen (2017) on an open loop model of blood

flow in the left heart, denoted the Open Differential Model (See Figure 1).

Linear pressure-flow relation (Windkessel approach) originally used in the
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Open Differential Model will be substituted by a second order relation ob-

tained by the unsteady Bernoulli equation. There are available data for blood

volume and flow in the left heart at rest and during pharmacological stress.

These data were obtained from 20 young and 20 elderly subjects through

Cardiac Magnetic Resonance Imaging by Rigshospitalet, Copenhagen, Den-

mark. Description of these phasic volume changes are given in the paper of

Ahtarovski et al. (2012). The model and patient-specific data will be used to

find individual system parameter values through optimization of fit in blood

volume model curves. These model parameters can be used to estimate a

normal range of values for the different parameters involved in blood circu-

lation. Analysis of parameter values beyond and below the normal range

may identify various pathophysiological conditions. Hence, the model and

the data may be used to formulate specific interventions.
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Figure 1: Top Panel: Physiological illustration of the left heart. Bottom Panel: In

the open circuit model diagram, V , Q, R, and P stand for volume, flow, resistance, and

pressure, respectively. The subscripts p, a, v, ao, and pf are for preload, atrium, ventricle,

aorta, and peripherals, respectively.

Our main concerns for this study are the following. First, we observe

whether a pulsatile Cardiovascular model involving the atria, ventricle, veins,

and arteries can be developed. We ask. Is it possible to use the unsteady

Bernoulli equation to represent blood flow into the atrium? Is it viable to use

conductance instead of resistance to represent non-leaking heart valves? Is

it useful to have blood volumes in compartments as state variables? Second,

we see whether an optimization scheme can result in a good fit between

model blood volume curves and blood volume data in the atria and ventricle

during rest and pharmacological stress. We ask. To what extent can we

use patient-specific data to get model parameter values that will serve as

initial guess for the optimization scheme? Will the optimization scheme give
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optimal patient-specific model parameter values that are within physiological

range? Will the optimal model parameters give rise to realistic blood flow

dynamics in the atria, ventricle, veins, and arteries? Third, we perform a

bootstrapping method to look at the reliability of the parameter estimates.

We ask. Can we characterize the parameter uncertainty brought about by

noise in data or perturbation of initial parameter estimates? Fourth, we

discern whether a statistical test on the optimal model parameters comparing

the mean values between young vs elderly and women vs men is in accordance

with medical studies. We ask. What age and sex related differences in blood

flow dynamics can be obtained from the model parameter values? Lastly, we

inspect whether a statistical test on the optimal model parameters comparing

the mean values between resting condition and pharmacological stress is able

to characterize the effect of the drugs. We ask. What parameters are affected

by the drugs? Are we able to quantify these effects?

2. Methods

This study undertakes a simple heart model involving the atrium that

can be fitted well to blood volume data in the left heart. In this section, we

describe how we are able to compute patient-specific model parameter values.

We start by looking at the data used for parameter estimation, followed by

the construction of the model. After which, we look at the optimization

process used in the parameter estimation.

2.1. Data

Data for blood volume in the left heart and flow velocity out of the ven-

tricle at rest and during pharmacological stress is from Rigshospital in Den-
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mark. Twenty young (20-30 years old) and 20 elderly (60-70 years) subjects

with no known cardiovascular diseases or medication are considered. In each

group, half are males and half are females. Blood volumes in the left atria

and left ventricle, and flow velocity out of ventricle into aorta were calcu-

lated from 18-22 cross sectional images for 25 instance of one heart cycle.

These images were acquired via Cardiac Magnetic Resonance Imaging or

CMRi scanning. Heart rate of the participants were also measured. All

these data were gathered during resting conditions and during pharmaco-

logical stress. Pharmacological stress was introduced through intravenous

infusion of dobutamine (Dobutrex) and intravenous bolus injection of gly-

copyrrolate (Robinul). For the rest of the paper, when we use dobutamine

and glycopyrrolate, we emphasize that we are referring specifically to the

drugs Dobutrex and Robinul, respectively. Dobutamine was used to induce

inotropic stress while glycopyrrolate was used to induce chronotropic stress.

Roughly, pharmacological stress is used to simulate the effect of exercise

to the heart and/or to assess heart functions (Travin and Wexler (1999);

Marwick (2003)). In particular, inotropic stress increases the heart’s power

to pump blood or contractility and chronotropic stress increases heart rate

(Danielsen (1998)). Further description of the data can be found in the paper

of Ahtarovski et al. (2012).

2.2. Model Formulation

The part of departure is a compartmental model of blood flow in the left

heart by Vingaard and Ottesen (2017). In section 2.2.1 and 2.2.2, we give

specific details about the model as given in Vingaard and Ottesen (2017). We

then introduce a modification of the model in section 2.2.3. The model is de-

7



scribed by the following equations, which is denoted as the Open Differential

Model.



V̇a = Qa −Qv

V̇v = Qv −Qao

V̇ao = Qao −Qpf

Q̇a = 1
La

[(Pp − Pa)−Ra ·Qa]

Q̇v = 1
Lv

[(Pa − Pv)−Rv ·Qv]

Q̇ao = 1
Lao

[(Pv − Pao)−Rao ·Qao]

Qpf = 1
Rpf

(Pao − Ppf )

Pa = 1
Ca

(Va − Va,u)

Pv = 1
Cv

(Vv − Vv,u)

Pao = 1
Cao

(Vao − Vao,u)

(1)

where, V , Q, P , R, L, and C stand, respectively, for volume, flow, pressure,

resistance, inertance, and compliance. The subscripts p, a, v, ao, and pf

refer to preload (veins), atrium, ventricle, aorta, and peripheral (capillaries),

respectively. Also, the subscript u pertains to the unstressed volume in a

given compartment.

These equations are derived from the following natural relations. (1) Law

of conservation: V̇ = Qin−Qout. The change in volume in a compartment is

equal to the difference of the inflow and outflow in the compartment. (2) The

total pressure difference is assumed to be caused partly by friction due to the

blood’s viscosity and partly by the effect of inertia: Pin−Pout = R ·Q+L ·Q̇.

(3) Blood vessel compliance: V = C ·P +Vu. The volume in a compartment
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is an increasing function of pressure. This relation is assumed to be linear.

The pressure P denotes the transmural pressure, that is, it is the pressure

in the blood vessel relative to the ambient pressure. Note that the volume

in the blood vessels is equal to the unstressed volume when the transmural

pressure is zero.

2.2.1. Variable Resistance

In order to take account of the heart valves, a variable resistance is intro-

duced for the flow into and out of the ventricle. To avoid infinite quantities,

these are expressed in term of conductivities, ρ, which is the reciprocal of

resistance. That is, R = 1/ρ. The mitral and aortic valves open and close

as a result of the pressure difference between adjacent compartments. This

means that respective conductivities are also dependent on these pressure

differences. It is assumed that the conductivities can be described in the

following way. For the mitral valves,

ρv = (ρvM − ρvm) · 1

1 + e−k(Pa−Pv)
+ ρvm (2)

and for the aortic valves,

ρao = (ρaoM − ρaom) · 1

1 + e−k(Pv−Pao)
+ ρaom, (3)

where, ρvm and ρvM are respectively the minimum (closed valve) and maxi-

mum (open valve) conductivity for the flow into the ventricle. Correspond-

ingly, ρaom and ρaoM are the conductivity for the flow out of the ventricle into

the aorta. The constant k determines how fast the valves open and close. For

both valves, the minimum conductivity is equal to zero. This corresponds to

having an infinite resistance when the valves are closed.
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For the resistance to the flow into the atrium, there is a very asymmetric

spatial geometry for flow between veins and atria. Hence it seems that the

relative slow flow from veins to atria is easier than that of the fast back

flow from atria to veins during contractions. Slow flow causes less resistance

and inertance than fast flow. Also, the 90 degree change in direction of the

impulse, which is pictured in Figure 2, may follow the same pattern. In

addition, one may imagine that a part of the back flow from atria to veins

is reflected at the opposite vessel wall. To account for such asymmetry, we

model the resistance to flow into the atrium also to be pressure dependent.

That is, the conductivity for the flow into the atrium is given by the following.

ρa = (ρaM − ρam) · 1

1 + e−k(Pp−Pa)
+ ρam. (4)

Thus, the resistances for flow into the atrium, ventricle, and aorta in system

(1) is state dependent. That is, Ra = 1/ρa, Rv = 1/ρv, and Rao = 1/ρao and

ρv = ρv(Pa, Pv), ρao = ρao(Pv, Pao), and ρa = ρa(Pp, Pa), which is given by

(2), (3), and (4) respectively. In the conductivities given in (2), (3), and (4),

k determines how fast the valves transition between opening and closing.

Since there are no available data on differences between these transitions

for the different heart valves, we simply let k be equal for all the valves to

minimize the number of model parameters.
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Figure 2: Asymmetric spatial geometry for flow between veins and atria.

2.2.2. The Pumping Heart

It is also assumed that the compliance in the atrium and ventricle are

functions of time. This is sensible since the two compartments expand and

contract significantly during each heartbeat. The representation of a time

dependent compliance for the ventricle is taken from Ellwein et al. (2009).

The time dependent compliance for the atrium is modeled similarly. The

compliance is often given in terms of its reciprocal, which is elastance. In

the following, ev represents the elastance of the ventricle, while evm and evM

denote the minimum and maximum elastance of the ventricle respectively.

A similar notation is given for the atrial elastance. We have the following

equations.

ev(t) =


evm + 1

2
(evM − evm)(1− cos( πt

Tvs
)) 0 ≤ t ≤ Tvs

evm + 1
2
(evM − evm)(1 + cos(π(t−Tvs)

Tvr
)) Tvs ≤ t ≤ Tvs + Tvr

evm Tvs + Tvr ≤ t ≤ T

(5)
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ea(t) =


eam + 1

2
(eaM − eam)(1− cos( πt

Tas
)) 0 ≤ t ≤ Tas

eam + 1
2
(eaM − eam)(1 + cos(π(t−Tas)

Tar
)) Tas ≤ t ≤ Tas + Tar

eam Tas + Tar ≤ t ≤ T

(6)

The constants Tvs and Tvr correspond to the time when the ventricle assumes

its maximum and minimum elastance, respectively. A corresponding notation

is used for the atrium. Heart rate is taken into account as Tvs, Tvr, Tas,

and Tar are calculated as fractions of the period of a heartbeat, denoted

by T . These fractions are denoted as Tvs,frac, Tvr,frac, Tas,frac, and Tar,frac,

respectively. During implementation, a parameter DT is introduced to shift

the curve for the elastance of the atrium to the left. That is, DT accounts for

the gap between the contraction of the atrium and the ventricle and we define

DTfrac := DT/T . A visualization of a time series profile of the elastance of

the atrium and ventricle for one heart cycle is given in Figure 3.

The compliance of the atrium and ventricle in system (1) are then time

dependent, Ca = 1/ea and Cv = 1/ev, with elastances ea = ea(t) and ev =

ev(t) as given in (5) and (6), respectively.

12



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

e
la

s
ta

n
c
e
 (

m
m

H
g

/m
l)

elastance ventricle

elastance atrium

ventricular contraction

ventricular relaxation

T
vs

T
vr

DT

Figure 3: Elastance curve profile of the atrium (red curve) and ventricle (yellow curve) in

one heart cycle.

2.2.3. The Atrial Inflow

We modify the model by changing the equation for flow into the atrium,

Qa, using the unsteady Bernoulli equation. We hope that modifying the

model will impact the behaviour of the curves for the volume, pressure, and

flow positively. The flow from the pulmonary veins to the atria using the

unsteady Bernoulli equation is given in equation (7), see Grimes et al. (1995).

Pp − Pa = ρLeff
dua
dt

+
ρu2a
2

(7)

where, Pp and Pa stands for venous and left atrial pressure, respectively, ua is

the velocity at the atrial inlet, Leff is the length of the summated pulmonary

veins, and ρ is the blood density. Note, here flow is assumed uni-directional.

Since the pulmonary veins leading to the atria is treated as a single tube,
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the flow into the atria, Qa, is equal to Aa ·ua, where Aa is the cross sectional

area of the tube. Incorporating this into equation (7), we get

Pp−Pa = ρLeff
d(Qa/Aa)

dt
+
ρ(Qa/Aa)

2

2
=
ρLeff
Aa

d(Qa)

dt
+

ρ

2A2
a

Q2
a = La

d(Qa)

dt
+baQ

2
a,

where ba := ρ
2A2

a
and the inertance, La =

ρLeff

Aa
. Thus, the flow from the veins

into the atria is described by

Q̇a =
1

La
[(Pp − Pa)− baQ2

a]. (8)

To take account for flow in the opposite direction from the atria into the

veins, the last sign changes. Thus, the general equation for flow between

veins and atria becomes,

Q̇a =
1

La
[(Pp − Pa)− ba|Qa|Qa]. (9)

Note, equation (9) corresponds to assuming Ra in system (1) is flow de-

pendent, that is, Ra = ba|Qa|. The formulation of Qa using the unsteady

Bernoulli equation makes it possible to omit the ad-hoc formulation of vari-

able resistance for blood flow into the atrium given by equation (4).

As a denotation, we call system (1) together with the details and modifi-

cation given in sections 2.2.1, 2.2.2, 2.2.3 as the Open Bernoulli-Differential

Model. For this model, we have the following 25 model parameters. 1) Un-

stressed volumes: Va,u, Vv,u, and Vao,u, 2) Compliances: Cao and the elastance

and time constant parameters eam, eaM , evm, evM , Tvs, Tvr, Tas, Tar, and DT ,

which arise from the time dependence of compliance of the atria and ventricle,

3) Constant Pressures: Pp and Ppf , 4) Resistances: Rpf , and the conductance
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parameters ρvm, ρvM , ρaom, ρaoM , and valve constant k, which arise from the

variable resistance to flow into the ventricle and aorta, 5) Inertances: La, Lv,

and Lao, and 6) Bernoulli parameter: ba.

2.3. Parameter Estimation

The objective of this section is to find parameter values that will give

atrial and ventricular volume curves that conforms with given data. It is also

required to have flow and pressure curves that show realistic behavior. The

parameter estimation process involves (1) an a priori parameter estimation

followed by (2) an iterated optimization.

In the a priori estimation, available data are used to calculate parameter

values for the model. Also, parameter values from related literature are used

for parameter values that cannot be calculated from available data. For the

optimization, we use the a priori parameter values as initial condition for a

minimization problem, which we solve in Matlab 2020a using the fmincon

function. The objective cost of this minimization problem is given by

Obj. Cost =
1

WT

24∑
i=0

[{Va(ti)− V ∗a (ti)

V ∗a (ti)

}2

+
{Vv(ti)− V ∗v (ti)

V ∗v (ti)

}2]
+

W

WT

∑
i∈I

{Va(ti)− V ∗ac(ti)
V ∗ac(ti)

}2

+
W

WT

∑
i∈J

{Vv(ti)− V ∗vc(ti)
V ∗vc(ti)

}2

+ 106
∑24

i=0

(
Pao(ti)−100

100

)2
if Pao(ti) < 70 or Pao(ti) > 130

+ 106
∑24

i=0

(
Pv(ti)−100

100

)2
if Pv(ti) > 130

+ 106
∑24

i=0

(
Qpf (ti)−125

125

)2
if Qpf (ti) < 0 or Qpf (ti) > 250.

The first line of the objective cost function is the sum of the squares of

the relative error between volume in the atrium and ventricle from model

simulation and from 25 data points. The volume from model simulation are
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given by Va(ti) and Vv(ti) while the volume from data are given by V ∗a (ti)

and V ∗v (ti). The t′is are 25 equally spaced time instances from 0 to T (du-

ration of a heart cycle for a given person). The second line in the objective

cost function is added to give more weight to visually identified important

data points. The important data points are initially where the data have

some qualitative change in behavior. Example of important data points are

points where there are local extrema, change in concavity, and endpoints.

After optimization, important points are added or removed when we want

to influence the simulated curves to move in certain directions. After which,

we perform again the optimization. The important data points from volume

data in the atrium and ventricle are denoted by V ∗ac(ti) and V ∗vc(ti), respec-

tively. I and J are correspondingly the index sets containing the index of the

important data points for the atrium and ventricle. We let n be the number

of elements of I and k be the number of elements of J . W is an assigned

weight and WT = W × (n + k) + 50. This makes the weight of the relative

error between volume in the atrium and ventricle 1 in total. The last 3 terms

in the objective cost function are penalty terms so that pressure in the aorta

stays between 70 mmHg and 130 mmHg, pressure in the ventricle is below

130 mmHg, and flow in the peripherals is between 0 and 250 ml/s. The value

of the weight W and the set of important points I and J for each of the 40

persons is given in Supplementary A.

2.3.1. A Priori Parameter Estimation

We put together information from literature and patient-specific data to

get the a priori model parameters. Atrial and ventricular volume data from

each person are used to get the a priori volume parameter values. However,
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pressure data in the compartments were not measured for these persons.

Hence, average values from the literature are utilized. A lot of a priori

parameters are dependent on a persons total blood volume, VTotal. The total

blood volume is calculated using the following formula that uses the body

surface area (BSA) and sex as input (Shoemaker (1989)).

VTotal =

 (3.47 ·BSA− 1.954) · 1000 ml, woman

(3.29 ·BSA− 1.229) · 1000 ml, man

To get BSA, we use Boyd’s formula (Boyd (1935)), BSA = 0.03330·w0.6157−0.0188·log(w)·

H0.3, where w is the weight in kilograms and H is the height in centimeters.

Unstressed Volume. The unstressed volume in the compartments are

taken as percentages of the volume in the compartments and the volume in

the compartments are percentages of VTotal (see Table 1).

Parameter Formula Units Source

Va,u 33.3% · Va ml Vingaard and Ottesen (2017)

where Va = 1.745% · VTotal Guyton and Hall (2016)

Vv,u 9.1% · Vv ml Vingaard and Ottesen (2017)

where Vv = 2.0026% · VTotal Guyton and Hall (2016)

Vao,u 74.4% · Vao ml Vingaard and Ottesen (2017)

where Vao = 13% · VTotal Guyton and Hall (2016)

Table 1: A priori values for unstressed volumes in the compartments.

Constant Pressures. The a priori estimates for preload pressure, Pp = 5.8

mmHg and peripheral pressure, Ppf = 67.9 mmHg are taken from Vingaard
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and Ottesen (2017) and Danielsen (1998), respectively.

Compliance. The compliance of a compartment is calculated through a re-

formulation of the linear relation of volume and pressure, i.e., C = V−Vu
P

. The

minimum and maximum atrial compliance is calculated using values taken

in the end systolic phase and end diastolic phase, respectively (see Table 2).

The end systolic and diastolic volumes can be identified from blood volume

data for the atrium and ventricle. In general, the end systolic volumes are the

minimum blood volume data while the end diastolic volume is the maximum

blood volume data. Similarly for the minimum and maximum ventricular

compliance.

Parameter Formula Units Source

Cam
Va,ESV −Va,u

Pa,ESV
ml/mmHg Data and Blume et al. (2011)

CaM
Va,EDV −Va,u

Pa,EDV
ml/mmHg Data and Blume et al. (2011)

Cvm
Vv,ESV −Vv,u

Pv,ESV
ml/mmHg Data and Guyton and Hall (2006)

CvM
Vv,EDV −Vv,u

Pv,EDV
ml/mmHg Data and Guyton and Hall (2006)

Cao
Vao−Vao,u

Pao
ml/mmHg Data and Danielsen (1998)

Table 2: A priori values for minimum and maximum compliance of the compartments.

Resistance. The resistance to flow into a compartment is calculated through

a reformulation of the relation of pressure difference and flow. In particular

for open heart valves, we have that Rvm =
Pa,dias−Pv,dias

Qa
and Raom = (Pv−Pao)

Qao

where Pv > Pao. The peripheral resistance, Rpf , is equal to
Pao−Ppf

Qpf
. In

Vingaard and Ottesen (2017), they have approximated these minimum resis-
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tances as the average change in pressures divided by the average flow. They

have the following approximations: Pa,dias−Pv,dias ≈ 2 mmHg, Pv −Pao ≈ 2

mmHg, when Pv > Pao, and Pao − Ppf ≈ 18.8 mmHg. Also, the average flow

was approximated by the total flow, QTotal := VTotal

60s
, assuming that the blood

circulates within one minute. We adopt these approximations for the a priori

values for resistances from which the a priori values of ρvM and ρaM follows

(see Table 3). The minimum conductivities ρvm and ρam, which corresponds

to the maximum resistance to flow (closed valves) respectively, are set to

zero. The value of k, the parameter associated with how fast the valves open

and close, is set at 1000 (Vingaard and Ottesen (2017)).

Parameter Formula Units Source

Rvm
2

Qtotal
mmHg·s/ml Data and Vingaard and Ottesen (2017)

Raom
2

Qtotal
mmHg·s/ml Data and Vingaard and Ottesen (2017)

Rpf
18.8
Qtotal

mmHg·s/ml Data and Vingaard and Ottesen (2017)

Table 3: A priori values for resistance to flow into the compartments.

Time Constants. The time constants are visually identified from volume

data in the atrium and ventricle. The time when the left atrium is contract-

ing is given by Tas. The initial value of Tas, is taken as the number of volume

data points during the atrial systole multiplied by one time step (the period

T divided by 25). Tar is the time when the left atrium achieves its relaxed

state after contracting. To get the initial value, we count the number of vol-

ume data points after atrial systole that seem to be constant. Usually, the

duration is one time step. Tvs is the time when the left ventricle is contract-

ing. The initial value is taken to be the number of volume data points during
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the ventricular systole multiplied by one time step (T/25). Tvr is the time

when the left ventricle achieves its relaxed state after contracting. To get

this, we count the number of volume data points after ventricular ejection

that seem to be constant. Usually, the duration is one or two time steps. DT

is the time between the contraction of the atrium and the ventricle. We set

it at Tas + Tar. Now, we hypothesized that the data might not be recorded

exactly at the start of the isovolumetric contraction of the ventricle. So we

introduce an additional parameter, S, to take into account this possible delay

in the time of start for recording blood volume data. We set it at 1 or 2 time

steps depending on the number of the volume data points that seem to be

constant at the end diastolic phase. The a priori values of the time constants

for each person is given in Supplementary A.

Inertance. The inertance parameters are taken from literature. From

Danielsen (1998), we have that La = 5.0 × 10−5 mmHg·s2/ml and Lv =

4.6× 10−4 mmHg·s2/ml. Also, Lao = 2.1× 10−5 mmHg·s2/ml is taken from

Ottesen (2011b).

Bernoulli Parameter. The Bernoulli parameter, ba, is given by the blood

density divided by twice the square of the cross sectional area of the inlet

leading to the atrium. For the cross sectional area of the inlet leading to the

atrium, we use 8 cm2, which is the total area of the venae cavae (Guyton and

Hall (2016)). With these, ba = 1.06g/cm3

2(8cm2)2
. Multiplying the conversion factor

1
1330

, ba = 6.23×10−6 mmHg ·s2/ml2. However, we found in the optimization

that the a priori value of ba is a factor 30 greater during rest and a factor 10
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greater during pharmacological stress.

Initial Values. The initial values for the system of ODE for the Open

Bernoulli-Differntial Model are given as follows. The initial value for volume

in the atrium, Va(0), and ventricle, Vv(0), are taken to be the first volume

data in the atrium and ventricle, respectively. The initial value for volume

in the aortic compartment, Vao(0), is assumed to be 10% of VTotal. The

initial value for flow into the atrium, Qa(0), is calculated from model equa-

tions assuming that initially the ODE is in a steady state. We have that

Qa(0) =
√

1
ba
· (Pp − Va,ESV −Va,u

CaM
). The initial value for the flow into the ven-

tricle, Qv(0), and flow into the aorta, Qao(0) are assumed to be zero because

at t = 0, the heart valves are closed.

The a priori parameters for each of the 40 persons were calculated us-

ing the above formulas or values. They were used as an initial guess in the

optimization process. For a few persons however, these initial values led to

failure of the optimization process due to parameters having values beyond

the boundary constraints during iterations in the optimization process. The

boundary constraints were set to 50% above and below the initial parameter

values. Also, for a few persons, these initial values led to having optimal pa-

rameters from undesired local minima. Due to these, we made adjustments

to the corresponding a priori parameters. That is, we perturbed some of

the parameters for persons where we did not achieve a desired fit in the vol-

ume curves. Also, we have re-adjusted some of the a priori parameters after

comparing their values to the computed optimal parameters. During phar-

21



macological stress, some of these parameter values where adjusted to take

into account the effect of the drugs. A table of the final a priori parameters

for resting condition and during pharmacological stress is given in Supple-

mentary A. Furthermore, a description of the origin of the a priori parameter

values taken from (Vingaard and Ottesen (2017)) is given in Supplementary

A.1.

2.3.2. Optimization

In this section, the a priori parameters are used as initial point for an

optimization scheme. We optimize all model parameters except for k, ρvm,

ρaom, Va(0), Vv(0), Qv(0), and Qao(0). The parameter k is chosen as a fixed

sufficiently large value. ρvm and ρaom are chosen to be 0, which corresponds

to the maximum resistance RvM and RaoM being equal to infinity. The

initial volumes in the atrium and ventricle, Va(0) and Vv(0), are fixed values

from data. The initial flow into the ventricle and into the aorta, Qv(0) and

Qao(0), are fixed to 0 because the heart is at the isovolumetric stage. Also,

post optimization sensitivity analysis show that k is not a sensitive parameter

(see sensitivity analysis given in Supplementary F).

First, observe that the objective cost is a function of the parameter values

and the volume and pressure output of the model. That is, if X(par) is the

volume and pressure output of the model given the input parameters par,

we have that

Objective Cost = f(par,X(par)).

Our minimization problem is given by

min f(par,X(par)) where par ∈ [0.5 ∗ init par, 1.5 ∗ init par].
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We note that the initial parameters are the calculated a priori parameters,

which are approximations. These values are away from the optimal values in

different degrees. Hence, we want to choose bounds for the value of par such

that our minimization problem will give desirable results. From simulations,

we have observed that moving 50% above and below the initial parameters

are suitable boundary values.

Now, to explore other minimizers near the obtained minimizer of f , we

solve for the minimizer of f iteratively using the optimal parameters as ini-

tial parameters for the next minimization problem. We have the following

scheme.

Initialization:

init par = a priori parameters

obj cost old =∞

opt par = arg min of f , where par ∈ [0.5 ∗ init par, 1.5 ∗ init par]

obj cost = f(opt par,X(opt par))

while |obj cost− obj cost old|/obj cost < tol do:

obj cost old = obj cost

init par = opt par

opt par = arg min of f , where par ∈ [0.5 ∗ init par, 1.5 ∗ init par]

obj cost = f(opt par,X(opt par))

We use the Matlab function fmincon to solve for the minimizer of f . In

particular, we use the default Interior Point Algorithm. This option solves
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the minimization problem through a sequence of approximate minimization

problems involving barrier functions. The approximate minimization prob-

lems are then solved by going in the direction of a direct(Newton) step in

each iteration. If the Newton step fails, the algorithm goes into a Conjugate

Gradient step using a trust region (The Mathworks, Inc.). We solve for the

volume and flow output of the Model using a combination of the Forward

and Backward Euler method and RK2 method. The Forward Euler is used

to solve for the volume. We note that the change in flow into the ventricle

and aorta makes the system of ODEs stiff. Hence, we use the backward Euler

method, which is a more stable numerical solver, to solve for the flow into the

ventricle and the aorta. We use the RK2 method to solve for the flow into

the atrium. In the model, when a non-leaky valve closes the corresponding

resistance to flow goes to infinity corresponding to conductivity zero. While

the resistance approach infinity the corresponding flow through the valve ap-

proach zero. Thus, the product appearing on the right hand side of the ODEs

in (1) need to be carefully calculated to avoid failure. Due to this, solving

the ODE using explicit methods is not appropriate. This is remedied by

the use of the Backward Euler method. A Backward Euler method was also

used in solving a system of ODEs corresponding to a cardiovascular model in

(Hoppensteadt and Peskin (2002)) to address a similar problem. The codes

for the optimization and numerical ODE solver and a detailed explanation

of the numerical method used are given in Supplementary E.
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3. Results

This section is written in the following order. First, we show the model

curves that are obtained from optimal parameter values. Secondly, we present

the range of values for the obtained optimal model parameters. Finally, we

give the statistical findings about significant differences between mean values

of optimal parameters from different subgroups of the data.

3.1. Model Fit

The simulated model curves show that the model is able to capture the

dynamics of blood flow in the left heart. Through optimization, the model

can be calibrated well to blood volume data at rest and during pharmacologi-

cal stress. The sum of squared errors (SSE) between model curves and data is

summarized in Figure 4. The mean ± standard deviation of the SSE for the

atrium at rest, dobutamine stress, and glycopyrrolate stress are 17.43±6.23,

20.56 ± 8.51, 16.07 ± 6.69, respectively. The mean ± standard deviation of

the SSE for the ventricle at rest, dobutamine stress, and glycopyrrolate stress

are 38.61±22.42, 47.02±25.22, 31.6296±13.55, respectively. Using the SSE

as basis, we see that the model is calibrated best during glycopyrrolate stress

and least at dobutamine stress. Also, we observe that we are able to get a

better fit in the blood volume in the atrium than in the ventricle.
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Figure 4: Boxplot for the sum of squared errors between model volume curves for

the atrium and ventricle and data during rest, Inotropic stress (Dobutamine), and

Chronotropic stress (Glycopyrrolate).

We show in Figures 5, 6, 7 model curves from one elderly woman during

rest and pharmacological stress. From Figure 5, we observe the decrease

in minimum and maximum volume in the atrium and shorter period of one

heart cycle during pharmacological stress. Prominently, we can see the differ-

ence during mid diastolic expansion. At rest, the volume is able to increase

from mid diastolic expansion and peaks before atrial contraction. This is

not present during pharmacological stress. From Figure 6, we also observe

the decrease in minimum and maximum volume in the ventricle and shorter

period of one heart cycle during pharmacological stress. During pharmaco-

logical stress, we see that the volume does not plateau during diastolic filling.

From Figure 7, we see the increase in ventricular and arterial pressure during

pharmacological stress, suggesting that the heart is exerting more effort in

these conditions. Indeed, the model is able to capture blood volume dynam-

ics and is able to give consistent pressure profile. The model curves from

optimal parameters for all persons are given in Supplementary B.
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Figure 5: Volume in the atrium for an elderly woman (person 24) during resting condition,

dobutamine strees, and glycopyrrolate stress. The SSE between the model curves and

data at rest, dobutamine stress, and glycopyrrolate stress are respectively 13.02, 17.17,

and 14.02.
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Figure 6: Volume in the ventricle for an elderly woman (person 24) during resting condi-

tion, dobutamine strees, and glycopyrrolate stress. The SSE between the model curves and

data at rest, dobutamine stress, and glycopyrrolate stress are respectively 13.97, 28.42,

and 24.35.
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Figure 7: Pressure curves in the different compartments in the model for an elderly woman

(person 24) during resting condition, dobutamine strees, and glycopyrrolate stress. The

blue, orange, and yellow curves correspond to the pressure in the atrium Pa, ventricle Pv,

and aorta Pao, respectively.

3.2. Parameter Range of Values

We collate the different parameter values for each of the 40 persons to

obtain a range of values for a given parameter during rest and pharmaco-

logical stress. As an illustration, we give in Table 4 the mean ± standard

deviation of the values for maximum ventricular compliance, CvM , from all

40 persons and for the subgroups: young vs elderly and women vs men. We

present a boxplot visualization for the range of values for CvM in Figure 8.

We can observe from the boxplots that there might be a significant differ-

ence between CvM of the young vs elderly, and women vs men during rest

and pharmacological stress. In general, CvM of the young is higher than

the elderly. Also, CvM of the men is higher than the women. The boxplot

also suggest that there might be significant differences in even smaller sub-

groups. For example, we observe from the boxplots that the elderly women

have lower CvM when compared to the young women, young men, and elderly
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men. However, due to smaller data sets we do not consider making conclu-

sions regarding these smaller subgroups. A complete boxplot presentation

of the range of values for the optimal model parameters for all the persons

during rest and pharmacological stress is given in Supplementary C.
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Figure 8: Boxplots for the range of values for the maximum ventricular compliance CvM

at resting condition (Rest), dobutamine stress (Dob), and glycopyrrolate stress (Gly) for

all 40 persons and different subgroups (young, elderly, women, men, young men, elderly

men, young women, and elderly women).

All Young Elderly Women Men

Rest 37.86±11.73 45.30±10.73 30.42±7.12 33.63±9.07 42.08±12.752

Dob 35.20±12.97 42.96±12.72 27.44±7.52 31.02±10.46 39.37±14.10

Gly 36.40±11.53 43.16±11.30 29.63±7.00 31.26±8.12 41.53±12.31

Table 4: The mean ± standard deviation of the maximum ventricular compliance for all

40 persons and for the subgroups: Young vs Elderly and Women vs men.
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3.3. Statistics

The mean ± standard deviation for the parameter values for all 40 pa-

tients and for subgroups young vs elderly and women vs men during resting

condition are shown in Table 5. The mean ± standard deviation for the pa-

rameter values during pharmacological stress are given in Supplementary D.

In this section, we also want to determine whether there are significant differ-

ences in mean parameter values between young and elderly, women and men,

resting condition and pharmacological stress, and interactions between these

factors. To do this, we use the repeated measures model design ANOVA and

a statistical significance level of 0.05. We use the Matlab function fitrm to

fit a repeated measures model having 1 within-subjects independent variable

and 2 between-subjects independent variable. The within-subjects indepen-

dent variable is the state of the patients (at rest, during dobutamine stress,

and during glycopyrrolate stress). The between-subjects independent vari-

able are age (young and elderly) and sex (women and men). Note that the

dependent variable is the value of the model parameter being considered. The

repeated measures model is then analyzed using the Matlab function anova

to determine between-subjects effects while the Matlab function ranova is

used to get within-subject and interaction effects. The anova function per-

forms the analysis of variance for the between-subjects effects where the

dependent variable is calculated by taking the average of the within-subjects

factor. On the other hand, the ranova function is used to perform the anal-

ysis of variance on the repeated measures model (The Mathworks, Inc.). For

the repeated measures ANOVA, the mauchly function in Matlab is used to

test for sphericity. In the case where sphericity does not hold, the adjusted
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p-value calculated through Greenhouse-Geisser approximation is taken when

p < 0.75. Otherwise, we use the Huynh-Feldt approximation (Howell (2002);

Field (2013)).

Parameter Units All Young Elderly Women Men

Pp mmHg 8.27 ± 2.31 9.18 ± 2.76 7.35 ± 1.26 8.15 ± 3.01 8.38 ± 1.38

ba/10−3 mmHg·s2/ml2 0.21 ± 0.17 0.25 ± 0.23 0.17 ± 0.07 0.25 ± 0.23 0.16 ± 0.08

La/10−4 mmHg·s2/ml 0.54 ± 0.19 0.52 ± 0.17 0.56 ± 0.21 0.57 ± 0.20 0.51 ± 0.18

Va,u ml 12.69 ± 3.67 11.74 ± 3.80 13.63 ± 3.36 10.99 ± 3.44 14.38 ± 3.11

Cam ml/mmHg 3.31 ± 1.82 3.11 ± 2.20 3.50 ± 1.36 2.80 ± 1.15 3.81 ± 2.22

CaM ml/mmHg 11.92 ± 3.49 10.88 ± 3.77 12.96 ± 2.93 10.88 ± 2.23 12.95 ± 4.22

Tas,frac % of T 24.27 ± 6.75 22.74 ± 8.00 25.80 ± 4.95 24.57 ± 7.18 23.97 ± 6.46

Tar,frac % of T 4.22 ± 1.61 4.23 ± 2.09 4.20 ± 0.99 4.57 ± 2.06 3.87 ± 0.92

DTfrac % of T 15.76 ± 6.29 13.27 ± 6.98 18.25 ± 4.42 14.90 ± 7.37 16.61 ± 5.04

Rvm mmHg·s/ml 0.0074 ± 0.0018 0.0072 ± 0.0018 0.0076 ± 0.0018 0.0078 ± 0.0014 0.007 ± 0.002

Lv/10−3 mmHg·s2/ml 0.42 ± 0.15 0.40 ± 0.15 0.43 ± 0.15 0.39 ± 0.14 0.44 ± 0.16

Vv,u ml 7.93 ± 1.26 7.98 ± 1.34 7.88 ± 1.21 7.09 ± 1.11 8.76 ± 0.75

Cvm ml/mmHg 0.46 ± 0.14 0.53 ± 0.11 0.39 ± 0.13 0.40 ± 0.12 0.51 ± 0.15

CvM ml/mmHg 37.86 ± 11.73 45.30 ± 10.73 30.42 ± 7.12 33.63 ± 9.07 42.08 ± 12.75

Tvs,frac % of T 45.93 ± 6.38 43.57 ± 6.88 48.30 ± 4.94 48.43 ± 5.90 43.44 ± 5.97

Tvr,frac % of T 4.34 ± 1.53 4.34 ± 1.43 4.33 ± 1.66 4.70 ± 1.73 3.98 ± 1.25

Raom mmHg·s/ml 0.0308 ± 0.013 0.0277 ± 0.013 0.0338 ± 0.0127 0.0332 ± 0.0157 0.0283 ± 0.0094

Lao/10−4 mmHg·s2/ml 0.19 ± 0.03 0.19 ± 0.03 0.19 ± 0.02 0.19 ± 0.03 0.19 ± 0.02

Vao,u ml 310.08 ± 58.98 306.96 ± 55.62 313.20 ± 63.45 264.63 ± 31.04 355.53 ± 42.75

Cao ml/mmHg 2.89 ± 0.57 2.77 ± 0.61 3.01 ± 0.51 2.53 ± 0.47 3.24 ± 0.42

Rpf mmHg·s/ml 0.26 ± 0.08 0.27 ± 0.07 0.26 ± 0.08 0.30 ± 0.08 0.23 ± 0.05

Ppf mmHg 57.97 ± 6.27 58.68 ± 7.25 57.25 ± 5.19 57.13 ± 4.00 58.81 ± 7.95

Table 5: Mean ± standard deviation for all 40 persons during resting condition and for

subgroups: Young vs Elderly and Women vs Men. For similar table under pharmacological

stress see Supplementary D.

Young and Elderly. We found that there was a significant effect of age

on the parameter values of Pp, Va,u, CaM , Rvm, Cvm, CvM , Tvs,frac, Raom,
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and Ppf . Strictly speaking, it means the hypothesis that these average value

across the within-subjects model are equal is rejected, which is commonly

interpreted as these parameters are significantly different between young vs

elderly. The young have lower marginal mean for Va,u (9.55 ± 3.81 vs 11.86 ±

3.34 ml, p = 0.001), CaM (9.75 ± 3.17 vs 11.84 ± 3.08 ml/mmHg, p = 0.015),

Rvm (0.0069 ± 0.0018 vs 0.0084 ± 0.0028 mmHg·s/ml, p = 0.005), Tvs,frac

(45.59 ± 7.34 vs 51.24 ± 6.87 % of T , p < 0.001), and Raom (0.021 ± 0.09

vs 0.22 ± 0.08 mmHg·s/ml, p = 0.0495). On the other hand, the young have

higher marginal mean for Pp (8.94 ± 1.86 vs 7.53 ± 1.19 mmHg, p < 0.001),

Cvm (0.50 ± 0.18 vs 0.29 ± 0.16 ml/mmHg, p < 0.001), CvM (43.81 ±

11.46 vs 29.16 ± 7.21 ml/mmHg, p < 0.001), Rpf (0.24 ± 0.09 vs 0.22

± 0.08 mmHg·s/ml, p = 0.008), and Ppf (60.85 ± 10.39 vs 56.82 ± 7.15

mmHg, p = 0.003). A visualization of the significantly different parameters

between the young and elderly is given in Figure 9. The marginal means of

all parameters for the young vs elderly are given in Supplementary D.
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Figure 9: Model parameters that are significantly different between the young vs elderly

when the parameter values are averaged across resting condition, dobutamine stress, and

glycopyrrolate stress.

Women and Men. We found that there was a significant effect of sex on

the parameter values of ba, Va,u, CaM , Rvm, Vv,u, Cvm, CvM , Tvs,frac, Raom,

Vaou, Cao, Rpf , and Ppf . Strictly speaking, it means the hypothesis that

these average value across the within-subjects model are equal is rejected,

which is commonly interpreted as these parameters are significantly different

between women vs men. The women have lower marginal mean for Va,u (8.83

± 3.35 vs 12.57 ± 3.17 ml, p < 0.001), CaM (9.83 ± 2.65 vs 11.76 ± 3.59
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ml/mmHg, p = 0.024), Vv,u (7.25 ± 1.86 vs 9.23 ± 1.95 ml, p < 0.001),

Cvm (0.35 ± 0.18 vs 0.44 ± 0.21 ml/mmHg, p = 0.009), CvM (31.97 ± 9.19

vs 41.00 ± 12.91 ml/mmHg, p < 0.001), Vao,u (235.94 ± 61.76 vs 317.26 ±

91.73 ml, p < 0.001), Cao (3.02 ± 0.91 vs 3.72 ± 1.07 ml/mmHg, p < 0.001),

and Ppf (56.04 ± 7.34 vs 61.63 ± 9.88 mmHg, p < 0.001). On the other

hand, the women have higher marginal mean for ba (0.15 ± 0.15 vs 0.11 ±

0.06 mmHg·s2/ml2, p = 0.022), Rvm (0.0083 ± 0.0024 vs 0.007 ± 0.0024

mmHg·s/ml, p = 0.012), Tvs,frac (50.98 ± 7.59 vs 45.85 ± 6.81 % of the

period T , p < 0.001), Raom (0.026 ± 0.016 vs 0.021 ± 0.009 mmHg·s/ml,

p = 0.023), and Rpf (0.24 ± 0.09 vs 0.22 ± 0.08 mmHg·s/ml, p = 0.008).

A visualization of the significantly different parameters between the women

and men is given in Figure 10. The marginal means of all parameters for the

women vs men are given in Supplementary D.
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Figure 10: Model parameters that are significantly different between women vs men when

the parameter values are averaged across resting condition, dobutamine stress, and gly-

copyrrolate stress.

Effects of Dobutamine and Glycopyrrolate. We found that there was

a significant effect of state of the patients on the parameter values of ba,

La, Va,u, Cam, CaM , Tas,frac, Tar,frac, DTfrac, Rvm, Lv, Cvm, Tvs,frac, Tvr,frac,

Raom, Lao, Vao,u, Cao, Rpf , and Ppf . Indicating the hypothesis that the mean

values of these parameters without considering between subjects effect for

any state are all equal is rejected. This is commonly interpreted as the mean

values of these parameters for at least two states are significantly different.
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To determine which states are significantly different for these parameters, we

perform post hoc test using the Matlab function multcompare. Multcompare

is able to perform multiple pairwise comparison of treatment effects or group

means with different options to compensate for multiple tests. We choose the

default option Tukey’s honesty significance difference criterion. In particular

we are interested on the parameters that have significantly different mean

values during rest vs dobutamine stress and during rest vs glycopyrrolate

stress. We have found that the mean values of the parameters ba, La, Va,u,

Cam, CaM , Tas,frac, DTfrac, Lv, Cvm, Raom, Lao, Vao,u, Cao, and Rpf are

significantly different at rest vs during dobutamine stress. Furthermore, the

mean values of the parameters ba, La, Va,u, CaM , Tas,frac, Tar,frac, DTfrac,

Lv, Tvs,frac, Tvr,frac, Raom, Lao, and Vao,u are significantly different at rest

vs during glycopyrrolate stress. Figure 11 gives the percentage increase or

decrease of parameters having significant change from rest vs dobutamine

stress and rest vs glycopyrrolate stress.
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Figure 11: The percentage increase or decrease of parameters having significant change

from rest vs dobutamine (Dob) stress and rest vs glycopyrrolate (Gly) stress. An arrow

pointing upward is used to indicate an increase while an arrow pointing downward is for

a decrease.

Interaction effects. We have found significant interaction for age and sex

only for La, age and state of patients for Vau, Vvu, Cvm, and Tvr,frac, sex and

state of patients for Cvm, Vaou, and Cao, and none for age, sex, and state of

patients.
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4. Discussion

In this study, we have established that our model can be calibrated well to

data during resting conditions and inotropic (dobutamine) and chronotropic

(glycopyrrolate) pharmacological stress. We have shown that a simple cardio-

vascular model involving the atrium and ventricle can capture the dynamics

of blood flow in the left heart. Medical doctors believe that some indications

of heart diseases can be seen or spotted earlier through evaluation of atrial

performance (Douglas (2003); Aurigemma et al. (2009); Vieira et al. (2014)).

Thus, the addition of the compartment for the atrium that is able to capture

realistic behavior is a helpful step forward in cardiovascular modeling. It is

also informative in understanding hardly assessible parts of the cardiovascu-

lar system in general. Through the model we were able to get a visualization

of the range of values of different model parameters. These ranges of model

parameter values translate to understanding the physiological concepts they

represent. Also, a statistical test comparing the mean values of a given pa-

rameter for the subgroups young vs elderly and women vs men gave us a way

to visualize differences between the young and the elderly and also between

women and men. Finally, we were able to quantify the effects of the drugs

dobutamine and glycopyrrolate on different heart functions.

4.1. Model Development

In the compartmental model of blood circulation given in Olufsen et al.

(2005), most of the system differential equations are in terms of change in

pressure, dP/dt. They were obtained from differentiation of the linear rela-
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tion of volume and pressure, V = cP . This gives the equation

dV

dt
= c

dP

dt
+ P

dc

dt
= Qin −Qout (10)

Through the utilization of volume in the compartments as state variables in

our model, we were able to do away with taking the rate of change of the time

dependent compliance. Also, we can directly fit the model volume curves with

data and allows patient specific data on volumes to be used as initial values of

the state variables. The use of conductance instead of resistance gives a way

of representing a non-leaking heart valve without using an infinite number.

Note that a conductance having value zero is equivalent to an infinitely large

resistance. In addition, we have less parameters to identify. On the use of

the unsteady Bernoulli effect to represent flow into the atrium, Qa, we recall

from Section 2.2.3 that this makes us do away with the ad-hoc formulation of

the resistance to flow into the atrium. Furthermore, we are able to have one

less parameter to optimize. Also, the use of the unsteady Bernoulli effect

displayed that the optimization is able to improve the fit between model

volume curves and volume data in the atrium and ventricle (see Figure 12).

Using the unsteady Bernoulli effect, the mean SSE between model volume

curves for all persons and data in the atrium and ventricle are 17.43 ± 6.23

and 38.61 ± 22.42, respectively. These are improvements of the mean SSE

between the model volume curves from the Open Differential model and

data, which are 22.36± 12.05 and 46.27± 35.59 for the atrium and ventricle,

respectively.
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Figure 12: Model volume curves at rest for an elderly female (person 22) from the Open Dif-

ferential Model, abbreviated as Diff model (orange curve) and Open Bernoulli-Differential

Model, abbreviated as Bern model (blue curve). (Left Panel:) Atrial Volume (SSE be-

tween Bern model and data is 10.78 and SSE between Diff model and data is 18.59) (Right

Panel:) Ventricular volume (SSE between Bern model and data is 22.83 and SSE between

Diff model and data is 27.92)

4.2. Bootstrapping

Noise in the data can be a major source of uncertainty for parameter esti-

mates for a given model. We use a bootstrapping method, which is described

comprehensively in Chowell (2017), to quantify parameter uncertainty that

may be caused by possible noise in the data. In outline, pseudo datasets on

blood volume in the atrium and ventricle are generated from Log Normal

Distributions with mean that gives the best fit to the experimental data and

standard deviation set to 5 ml. The best fit curves are the blood volume

curves corresponding to the optimal parameters. We assume a Log Normal

Distribution for the noise to get nonnegative and continuous pseudo blood

volume data. Next, optimal parameters are estimated from each of pseudo

datasets to generate a new set of optimal parameters. The collection of all
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the optimal parameters corresponding to each of the pseudo datasets are then

used to characterize parameter uncertainty and construct confidence inter-

vals about their means. We perform the above bootstrapping method for all

subjects at resting condition and during pharmacological stress. For most of

the subjects, we were able to get the same set of optimal parameters from

1000 bootstrap realizations. We observe that the length of the confidence in-

terval for the sample mean of the parameters are small. In particular, most

of them have length zero. Hence, we can say that that the model parameters

are reliable in the sense that small noise in the data sets does not cause a

significant change in the optimal parameter values. A colormap to visualize

the 95% confidence interval about the mean of the optimal parameters for

all patients during rest and pharmacological stress is given in Supplementary

G. From the uncertainty of the parameter estimates, we illustrate in Figure

13 a 95% confidence band around the best fit volume curves in the atrium

and ventricle for a young woman.

Another source of parameter uncertainty is the implementation of the

local optimization scheme described in section 2.3. To get a picture of this

uncertainty, we generate 1000 random points from a uniform distribution

in a neighborhood of our a priori parameter estimates. The radius of the

neighborhood was set to 10% of the a priori estimate values. We then perform

the optimization scheme using each of these 1000 points as initial parameter

guess to the minimization problem given in section 2.3.2. The collection of

all the optimal parameters corresponding to each of the initial parameter

guesses is then used to characterize parameter uncertainty with respect to

perturbation of initial estimates. We perform the said process for an elderly
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male and present in Figure 14 a 95% confidence band around the best fit

volume curves in the atrium and ventricle. The length of the confidence

interval for the sample mean of the parameters were found to be small. A

colormap corresponding to the length of the confidence interval about the

optimal parameters for this subject is given in Supplementary G.

Figure 13: (Left Panel:) Blood volume in the atrium. (Right Panel:) Blood volume in

the ventricle. The black circles are blood volume data for a young woman while the blue

curves correspond to the best fit of the model to the data, that is, the curves from optimal

parameters. The cyan curves correspond to 1000 realizations of the blood volume curves

assuming a Log Normal error structure. The dashed magenta lines are 95% confidence

bands around the best fit volume curves in the atrium and ventricle.
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Figure 14: (Left Panel:) Blood volume in the atrium. (Right Panel:) Blood volume in the

ventricle. The black circles are blood volume data for an elderly male (person 40) while

the blue curves correspond to the best fit of the model to the data, that is, the curves

from optimal parameters. The cyan curves correspond blood volume curves from 1000

perturbations of the a priori parameters. The dashed magenta lines are 95% confidence

bands around the best fit volume curves in the atrium and ventricle.

4.3. Insights into differences in heart function

For models with patient-specific parameter values, the identification of

potential “biomarkers” can be achieved through determining significantly

different parameter values between groups (Ottesen (2011a)). This ability of

patient-specific modeling is illustrated by the statistical results we have in

section 3.3. In addition, we can also use the significant differences between

parameter values of different groups as an additional validation of our model.

For example, our results show that the Cvm and CvM are significantly higher

for the young compared to the elderly group. This is in conjunction with

the findings that left ventricular compliance was observed to decrease with

ageing (Arbab-Zadeh et al. (2004); Fujimoto et al. (2012)). Also, our results

show that Cvm, CvM , and Cao are significantly higher in men compared to
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women. In terms of elastance, this means that women have higher elastance

in the ventricle and aortic compartment. Again, this result is in conjunction

with the findings that women are more likely to have higher ventricular and

aortic compartment elastance through the course of life (Najjar et al. (2004);

Redfield et al. (2005)). Also, healthy women showed higher ventricular elas-

tance and diastolic stiffness compared to men (Hayward et al. (2001); Lane

et al. (2013)). Indeed, statistical analysis of the patient-specific parameter

values between groups can be used to give insights into differences in heart

function among these groups and also for supplementary model validation.

4.4. Effects of Drugs

Dobutamine. Inotropic stress was introduced through intravenous infu-

sion of dobutamine (Dobutrex). Inotropic effect represents regulation of the

heart’s power to pump blood or contractility. One such measure of cardiac

contractility is maximum ventricular elastance (Suga and Sagawa (1973);

Danielsen (1998)). We were able to show that dobutamine caused a signif-

icant decrease in minimum ventricular compliance, Cvm. This means that

the drug gave rise to an increase in maximum ventricular elastance or a pos-

itive inotropic effect. In addition, we observed that there was a significant

decrease in ba, La, Va,u, Cam, CaM , Lv, Raom, Lao, Vao,u, and Rpf and an

increase in Tas,frac, DTfrac, and Cao. Using the total sensitivity defined in

Supplementary F (Sensitivity Analysis), the effects of the dobutamine can

be ranked according to the effect of the change in parameter values on the

model volume curves. In this case, we observe the effect of varying the aver-

age parameter values at rest by the percentage changes due to dobutamine

on the model volume curves. In particular, we take the sum of the relative
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change in area between the volume curves (atrium, ventricle, and aorta) dur-

ing rest and during variation due to dobutamine. In this way, we are able to

rank which change in parameter value due to dobutamine has the most to

least effect on the model volume curves. The effects of dobutamine on the

model volume curves and ranking is given in Figure 15 (Top Panel). Indeed,

we see that the main effect of dobutamine is a decrease in Cvm or an in-

crease in contractility. We note that the Electronic Medicines Compendium

(https://www.medicines.org.uk/emc/product/6270) states that dobutamine

brings about a positive inotropic effect on the myocardium, facilitates atrio-

ventricular conduction, and may decrease pulmonary vascular resistance.

Glycopyrrolate. Chronotropic stress was introduced through intravenous

bolus injection of glycopyrrolate (Robinul). Chronotropic effect represents

the increase or decrease of the heart rate. We have observed that glycopy-

rrolate caused a significant decrease in ba, La, Va,u, CaM , Lv, Raom, and Lao

and an increase in Tas,frac, Tar,frac, DTfrac, Tvs,frac, Tvr,frac, and Vao,u. As

in the case of dobutamine, the effects of glycopyrrolate can be ranked ac-

cording to the effect of the change in parameter values on the model volume

curves. In this case, we observe the effect of varying the average parame-

ter values at rest by the percentage changes due to glycopyrrolate on the

model volume curves. In particular, we take the sum of the relative change

in area between the volume curves (atrium, ventricle, and aorta) during rest

and during variation due to glycopyrrolate. In this way, we are able to rank

which change in parameter value due to glycopyrrolate has the most to least

effect on the model volume curves. The effects of glycopyrrolate on the model

volume curves and ranking is given in Figure 15 (Bottom Panel). We see that
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the main effect of glycopyrrolate is an increase in Tvs,frac or an increase in

contraction time of the ventricle relative to the period of one heart cycle.
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Figure 15: The relative change in area between the volume curves of the atrium (green),

ventricle (magenta), and aorta (cyan) during rest and during variation of a parameter due

to dobutamine (Top Panel) and glycopyrrolate (Bottom Panel). The change in parameter

values due to the drugs are ranked according to their total effect on the model volume

curves.

4.5. Leaking Heart Valve Inspection

The prevalence of heart valve disease like aortic stenosis and mitral re-

gurgitation becomes greater through age. These diseases are usually treated

surgically but it is risky especially for elderly patients (Rostagno (2019)).
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In relation to this, we want to use the model to inspect how a leaky heart

valve affects volume curves in the atrium, ventricle, and arteries. We hope

that indications in these curves can give insight for early diagnosis and thus

maybe lead to doing away with surgery in the longterm. To do this, we use

the average of the optimal model parameter values from the elderly group

but with a finite value for the maximum resistance to flow into the ventricle

for mitral regurgitation and a finite value for the maximum resistance to flow

into the aorta for aortic stenosis.

To examine mitral regurgitation, we look at test simulations where RvM

is set at 10, 5, and 1 mmHg·s/ml. Respectively, these correspond to ap-

proximately 3.31, 6.57, and 30.85 ml regurgitating from the ventricle to the

atrium in one heart cycle. The model curves corresponding to these cases

are shown in Figure 16. We see that a leaky mitral valve translates to an

increase in peak volume in the atrium, a decrease in minimum volume and

increase in mid to end diastolic volume in the ventricle, a decrease in volume

in the arteries, and a faster flow into the ventricle at the start of diastolic

filling. We observe that the effect of mitral regurgitation on blood volumes

is most prominent in the atrium.
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Figure 16: Simulation of a leaky mitral valve by decreasing the maximum resistance to

flow into the ventricle from infinity, to 10, 5, and then 1 mmHg·s/ml. These correspond

respectively to a regurgitating volume of approximately 0, 3.31, 6.57, and 30.85 ml back

into the atrium.

To examine aortic stenosis, we simulate model curves corresponding to a

finite value of 10, 5, and 1 mmHg·s/ml for maximum aortic resistance. These

values correspond to approximately 4.20, 8.33, and 39.14 ml regurgitating

from the aorta to the ventricle in one heart beat, respectively. The model

curves corresponding to these cases are shown in Figure 17. We observe that

a leaky aortic valve translates to an increase in atrial volume during mid

diastolic expansion, an increase in diastolic filling volume in the ventricle,

and a decrease in arterial volume during the diastolic phase of the ventricle.
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We observe that the effects of aortic regurgitation on the blood volumes can

be noticed in the atrium.

Figure 17: Simulation of a leaky aortic valve by decreasing the maximum resistance to

flow into the aorta from infinity, to 10, 5, and then 1 mmHg·s/ml. These correspond

respectively to a regurgitating volume of approximately 0, 4.20, 8.33, and 39.14 ml back

into the ventricle.

4.6. Limitations.

In this study, the model parameters related to the optimal fit were ob-

tained through numerical methods that require important consideration.

First, the acquired optimal parameters represents a local solution to the

optimization problem. The parameters associated with the local solution
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may not be guaranteed to be within the physiological range. Also, it may be

possible to have different sets of parameters that define similar model states

(Pope et al. (2011)). Second, the model output are insensitive to some of

the model parameters. Thus again, the estimates may not be feasible in a

physiological perspective (Kelley (1999)). Also, there might be high corre-

lation between model parameters. We address this considerations by using

initial parameter values that are derived from patient-specific data and re-

lated studies. Thus in a way guaranteeing that our local solution is near

the true solution. Also, the model has been calibrated well with 40 persons

under resting conditions, inotropic stress, and chronotropic stress. Further-

more, parametric bootstrapping was performed to establish reliability of the

parameter estimates. Lastly, statistical analysis between the obtained mean

values of the parameters agree with physiological findings thus again sup-

porting the idea that the optimal parameters may be within physiological

range.

5. Summary

In conclusion, we have developed a simple compartmental heart model

involving the atrium, ventricle, veins, and arteries that can be validated with

experimental results. Our model illustrated the use of volume in the com-

partments as state variables, the use of conductance instead of resistance to

represent perfectly closing heart valves, and the use of the unsteady Bernoulli

equation to represent blood flow into the atrium. We have shown that this

model can be fitted well to data. Specifically, we have implemented an opti-

mization scheme that identifies optimal model parameters that give good fit
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between model volume curves and volume data in the atrium and ventricle

during rest and pharmacological stress. We utilized patient-specific informa-

tion to come up with initial model parameter values that served as initial

guess in the optimization routine. The model was able to capture the blood

flow dynamics of 20 young (half of which are women) and 20 elderly (half of

which are women) subjects during rest, inotropic stress (dobutamine), and

chronotropic stress (glycopyrrolate). We have quantified parameter uncer-

tainty and verified the reliability of the parameter estimates through boot-

strapping. Finally, a statistical test comparing the mean values of optimal

parameters for the young vs the elderly and women vs men revealed that

the model is able to give insight in age and sex related differences in heart

functions. Also, a statistical test comparing the mean values of optimal pa-

rameters during rest and pharmacological stress displayed and quantified how

the patients responded to the drugs.
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