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a b s t r a c t 

Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is one of the most abundant phenolic acids found in 

the plant kingdom. In this work, the electron paramagnetic resonance (EPR) spectrum of the gallate 

semiquinone radical tri-anion (GAS) derived from GA by air oxidation was measured and analyzed by 

advanced simulation procedures. The observed main spectrum was surrounded by five satellite spectra 

from which a thorough analysis led to determination of hyperfine splittings (HFS) from five chemically 

different 13 C nuclei in natural abundance. The spectra were further characterized by detailed linewidth 

analyses. The assignment of the 13 C HFS constants was supported by the results of theoretical calcula- 

tions, using the classical, semi-empirical Karplus-Fraenkel approach, as well as quantum chemical proce- 

dures based on density functional theory (DFT), representing the influence of the solvent by polarizable 

continuum models (PCM). The combined results suggest a consistent assignment of positions and signs 

for all five 13 C constants of GAS, providing a unique insight into the electron spin structure of this radical. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Gallic acid (3,4,5-trihydroxybenzoic acid, GA) and many of its 

erivatives are widely present in numerous fruits and plants, 

here they represent a large family of secondary metabolites. 

any of these metabolites, containing the gallate moiety, are es- 

ential phytochemicals known to participate in pharmacological 

ctivities, hereby being responsible for antioxidant, antiviral, and 

ther important properties. For an introduction to the literature, 

ee Ref. [1] . At an elevated pH, GA is oxidized by air to yield the

nusually stable gallate semiquinone radical tri-anion [ 1 , 2 ] (GAS, 

cheme 1 ). In this publication, we present the results of a de- 

ailed investigation of GAS by electron paramagnetic resonance 

EPR) spectroscopy and by theoretical calculations. 

The aim of the investigation is to determine and assign the 13 C 

FS constants of GAS. The two aromatic protons at positions 2 and 

 give rise to a very intense 1:2:1 triplet in the EPR spectrum [ 1 , 2 ],

ut when amplifying the signal out of scale, numerous satellite 

ines appear, all deriving from the 13 C nuclei present in the rad- 

cal in their natural abundance [2] . Actually, signals are observed 
∗ Corresponding author. 
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rom all seven carbon centers, enabling a unique insight into the 

lectron spin structure of GAS. 

However, assignment of the observed 

13 C constants to individ- 

al positions in the radical is not straightforward. Theoretical in- 

estigations of the radical tri-anion in aqueous solution are diffi- 

ult because of the strong influence of the polar and protic solvent 

edium. We shall apply two approaches: (1) We shall first attempt 

o adopt the classical theories of Das and Fraenkel [3] and Karplus 

nd Fraenkel [4] . (2) We then apply modern quantum chemical 

rocedures based on density functional theory. 

(1) Das and Fraenkel [3] studied 1,4-benzosemiquinone and 

2,5-dioxy-1,4-benzosemiquinone and had available proton as 

well as 13 C splittings at all positions in the radicals. They 

could thereby make a thorough test of the semiempirical 

Karplus-Fraenkel theory [4] relating the carbonyl 13 C split- 

tings to the π-electron spin densities. We shall apply the 

classical Karplus-Fraenkel theory in order to see how far we 

can get in assigning the 13 C constants observed for GAS. If 

we permute the constants, using positive as well as negative 

sign to each constant, we are facing a calculation of 384 dif- 

ferent possible assignments. The task becomes to single out 

only one, correct one. 

(2) In a second attempt, the hyperfine coupling constants are 

studied by density functional theory (DFT) calculations, rep- 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Scheme 1. Gallate semiquinone radical tri-anion (GAS) with the adopted atom 

numbering. 
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resenting the influence of the solvent by polarizable contin- 

uum models (PCM) [5] . Two PCM procedures were applied: 

the integral equation formalism PCM (IEFPCM) [6–9] and the 

isodensity PCM (IPCM) [ 10 , 11 ]. 

Detailed results are provided as Supplementary material, re- 

erred to in the ensuing text as S1–S4. 

. Experimental 

Gallic acid (CAS 149-91-7) was commercially available (Fluka, 

G) and used without further purification. The semiquinone rad- 

cal was formed at room temperature in a water/ethanol alka- 

ine solution by air oxidation at an elevated pH (solvent: 20 mm 

3 

0% ethanol v/v mixed with 5 mm 

3 water adjusted with NaOH, 

H = ca. 13). The EPR spectrum was run at the X-band on a Bruker

R 200 spectrometer with a modulation frequency of 12.5 kHz and 

quipped with a Gaussmeter for standardization. No accumulations 

ere needed due to a very intense spectrum. The spectrum was 

tored digitally and “best fit” parameters were obtained by an iter- 

tive optimization procedure as described earlier [12] . By this pro- 

edure, the splitting constants, relative intensities, as well as dif- 

erent peak-to-peak linewidths for high and low field triplets for 

ach individual spectrum were obtained ( Table 1 ). 
Table 1 

Experimental 1 H and 13 C hyperfine coupling constants from Fig. 1 and 

simulations were performed with a resolution of 2.5 mG, coupling const

Curve | a ( 13 C)| (G) 

Linewidth of low field 

1:2:1 triplet (G) 

Linewidth of hig

1:2:1 triplet (G) 

a 0.952 0.084 0.097 

b 2.259 0.108 0.076 

c 3.470 0.080 0.072 

d 5.999 0.075 0.089 

e 7.733 0.087 0.123 

a H = 1.088 

2 
. Theoretical calculations 

Application of the semiempirical Karplus-Fraenkel theory [ 3 , 4 ] 

s described in Section 4.2 (details are provided as Supplemen- 

ary material S1). Quantum chemical calculations were performed 

ith the Gaussian16 software package [13] using density functional 

heory (DFT) with inclusion of a contribution from the solvent by 

eans of polarizable continuum models (PCM) [5] . The B3LYP den- 

ity functional [ 14 , 15 ] has in previous studies been found to be a

uitable functional for the calculation of hyperfine coupling con- 

tants [16–23] , and the results reported in the following were ob- 

ained with the unrestricted version of this functional. A number 

f basis sets have been developed for the computation of hyperfine 

onstants; a survey was published recently by Jakobsen and Jensen 

21] . We have performed B3LYP calculations on GAS with several of 

he recommended basis sets: D95(d,p) [24] , EPR-II [17] , EPR-III [17] , 

cH-2 [21] , and pcH-3 [21] . But the signs and the relative values of

he computed 

13 C constants were found to be rather insensitive to 

he choice of basis. The results reported in the ensuing sections 

ere obtained primarily with the EPR-III basis set. This is a triple- 

eta basis including diffuse functions, double d- and a single set of 

 -polarization functions, and with an enhanced s -part to optimize 

he description of the nuclear region [17] . Solvent effects were con- 

idered by using the IEFPCM [6-9] and the IPCM [ 10 , 11 ] solvation

odels. The IEFPCM calculations were performed with the default 

arameters for the solvent water [13] . In the IPCM, the number 

f angular points in the spherical grids around each atom were 

aken as φ = 40 and θ = 20, and the surface isodensity param- 

ter IsoD and the dielectric constant ε were selected as described 

n Section 4.4.2 . Optimizations of molecular geometries were per- 

ormed with IEFPCM (S2), since Gaussian16 does not allow geome- 

ry optimizations with IPCM. Several IEFPCM calculations were per- 

ormed within a mixed discrete-continuum model [5] with inclu- 

ion of a number of explicit solvent species in the solute cavity. 

hese calculations were performed with B3LYP/EPR-II and were of 

 tentative nature; the results are qualitative and are not reported 

n detail. Atomic net charges and spin populations were estimated 

y the natural population analysis (NPA) [25] . 

. Results and discussion 

.1. Observed spectrum 

Fig. 1 shows the experimental spectrum of GAS. Because the 

adical is observed at an elevated pH the carboxyl and hydroxyl 

rotons are all dissociated leaving the semiquinone as a tri-anion. 

he upper spectrum consists of a main 1:2:1 triplet from two 

quivalent protons and numerous satellite lines, all deriving from 

3 C carbon atoms in naturally abundance. Because of in-pairs 

quivalence between two sets of carbon atoms, the seven 

13 C 

toms give rise to only five 1:2:1 1:2:1 satellite spectra, furnishing 

ve HFS constants. The spectra are here shown as the simulated 

nes, a to e . 
peak-to-peak linewidth data obtained from the simulations. The 

ant uncertainty ±5 mG. 

h field 

Intensity (relative) 

Theoretical intensity 

(relative) Deviation 

2.37 2.216 6.9% 

0.98 1.108 11.6% 

1.07 1.108 3.4% 

2.16 2.216 2.5% 

1.10 1.108 0.7% 
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Fig. 1. Experimental spectrum from the gallate semiquinone tri-anion (GAS) with 

the main triplet [2H, 1:2:1] shown out of scale (top curve) and numerous satellite 

lines from seven 13 C atoms in their natural abundance. Due to pairwise equivalence, 

the seven 13 C atoms give rise to only five 1:2:1 1:2:1 satellite spectra ( a to e ), here 

shown as the simulated ones. Adapted with permission from Ref. [2] , p. 25 (Copy- 

right © 1985, CRC Press, Taylor & Francis Group). 
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Advanced simulations [12] as described above have furnished 

he data shown in Table 1 . Due to the mentioned equivalence we 

ave two sets of constants, the first one including the values 0.952 

nd 5.999 G with relative intensity 2 for the corresponding spectra. 

hese values have to be assigned to the C2 ( = C6) and C3 ( = C5)

ositions. The second set, with relative intensity 1, consists of the 

onstants 2.259, 3.470, and 7.733 G to be assigned to the positions 

1, C4 , and C7. 

.2. Karplus-Fraenkel theory 

In order to get each individual constant assigned and obtain its 

ign, we shall use the theory by Karplus and Fraenkel [4] . This the-

ry relates carbonyl 13 C splittings to π-electron spin densities via 

 number of σ−π parameters. In case of a carbonyl group the pa- 

ameters Q CO 
C and Q OC 

C give rise to the 13 C splittings from po- 

arization through unpaired π-electrons on the carbon and oxygen 

toms, respectively. For a CC’ bond the corresponding parameters 

re termed Q CC’ 
C and Q C’C 

C and the contribution from the 1s elec- 

ron, S C . 

The theory involves in the present case eight π-spin densities 

 ρ i ) and yield five equations for the five HFS constants: 

 1 
C = 

(
S C + 3 Q CC ′ 

C 
)
ρ1 + Q CC ′ 

C 
( 2 ρ2 + ρ7 ) (1) 

 2 
C = 

(
S C + 2 Q CC ′ 

C 
)
ρ2 + Q C ′ C 

C 
( ρ1 + ρ3 ) (2) 

 3 
C = 

(
S C + 2 Q CC ′ 

C + Q CO 
C 
)
ρ3 + Q C ′ C 

C 
( ρ2 + ρ4 ) + Q OC 

C ρ8 (3) 

 4 
C = 

(
S C + 2 Q CC ′ 

C + Q CO 
C 
)
ρ4 + 2 Q C ′ C 

C ρ3 + Q OC 
C ρ9 (4) 
3 
 7 
C = 

(
S C + Q CC ′ 

C + 2 Q CO 
C 
)
ρ7 + Q C ′ C 

C ρ1 + 2 Q OC 
C ρ11 (5) 

For the parameters we use the semiempirical ones obtained by 

as and Fraenkel [3] : 

 

C = −12 . 7 G , Q CC ′ 
C = +14 . 4 G , Q C ′ C 

C = −13 . 9 G , Q CO 
C 

= +17 . 7 G , Q OC 
C = −27 . 1 G . 

At this point it should be noticed that these parameters are ob- 

ained from two planar semiquinone radicals. Our radical is not 

ecessarily planar because of the possible out-of-plane twist of the 

arboxylate group (see Section 4.4 ) for which the parameters might 

eed to be adjusted. We shall discuss this later. In addition to the 

bove equations we shall apply the McConnell equation [26] with 

 CH 
C = –26 G, 

 2 
H = Q CH 

H ρ2 (6) 

Finally, we have for the conservation of π-spin density the 

quation, 

 ρi = 1 . (7) 

here the summation runs over all eight different atoms in the 

-electron system, including equivalent atoms. 

.2.1. Assignment by semiempirical spin density calculations 

In order to perform spin density calculations we need 8 equa- 

ions for the 5 different 13 C atoms and 3 different 17 O atoms. We 

ave five 13 C HFS constants (cf. Eqs. (1) –(5) ), one proton constant 

6), and the conservation Eq. (7) , hereby lacking one equation. We 

herefore proceed as follows. We assume we know the π-spin den- 

ity at C1 (see below) and derive equations for all other spin den- 

ities as a function of this density ( ρ1 ). By insertion of relevant 

arameters in the above equations we obtain 

2 = −0 . 0418 (8) 

3 = −ρ1 − 0 . 0485 − 0 . 0719 a 2 
C (9) 

7 = 2 . 1942 ρ1 + 0 . 0837 − 0 . 0719 a 1 
C (10) 

11 = 1 . 2455 ρ1 + 0 . 0572 − 0 . 0493 a 1 
C − 0 . 0185 a 7 

C (11)

4 = 0 . 8274 − 1 . 8148 ρ1 + 0 . 1395 a 1 
C + 0 . 2043 a 2 

C 

+0 . 0302 

(
2 a 3 

C + a 4 
C + a 7 

C 
)

(12) 

The spin density ρ4 has been obtained by including the nor- 

alization condition (7). The last two ρ8 and ρ9 are now easily 

btained from (3) and (4), respectively. 

We can now calculate a set of spin densities from the equations 

ust found, then permute the constants to a new assignment and 

ontinue to see whether some of the assignments for the five 13 C 

onstants can be discarded as being meaningless. By this procedure 

any calculated densities become close to 1 or larger than 1 and 

he corresponding assignment can as a rule be discarded. However, 

ince we are facing a task with 384 different assignments, it has 

urned out to be a more fruitful procedure to include calculation 

f the two oxygen HFS constants a 8 
O , a 9 

O , even though these con- 

tants are not known experimentally. The constants may be calcu- 

ated by an equation proposed by Broze, Luz, and Silver [27] being 

imilar to the equations by Karplus et al. The equations for O8 and 

9 run: 

 8 
O = Q OC 

O ρ8 + Q CO 
C ρ3 (13) 
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 9 
O = Q OC 

O ρ9 + Q CO 
C ρ4 

For the Q parameters we shall apply Q CO 
C = + 17.7 G, the value

sed before, and Q OC 
O = –40 G, the value used by Broze et al. [27] .

Since we have a semiquinone radical with an unpaired electron 

istributed over 12 atoms, we might assume there exists a numer- 

cal upper limit for the sizes of the two 17 O constants (cf. 7.733 G

eing the largest among the 13 C constants). We shall assume that 

n assignment can be discarded in case the calculated numerical 

alue of either one of a 8 
O and a 9 

O exceeds 10 G or we get un-

sually large spin densities, i.e., our conditions for discarding an 

ssignment are: 

a 8 
O 
∣∣ > 10 G or 

∣∣a 9 O 
∣∣ > 10 G or ρi > 0 . 9 . (14) 

We now proceed as follows: For the unknown density ρ1 pre- 

iminary calculations with ρ1 lying in the range –0.3 < ρ1 < + 0.3 

learly indicates that this density has to be positive. Accordingly, 

e shall apply the center value on the positive side ρ1 = 0.15 

this value turns out to be close to the NPA value ρ1 = 0.16, see

ection 4.4.2 ). 

We begin the calculations by first considering the set of con- 

tants 5.999 and 0.952 G to be assigned to the carbon atoms C2 

nd C3, then the set of constants 7.733, 3.470 and 2.259 G to be as-

igned to the carbon atoms C1, C4 and C7. Each individual calcula- 

ion is straight forward, but because the 384 different assignments 

equire the same number of calculations the process is comprehen- 

ive. We shall leave the details to Supplementary material S1 and 

nly illustrate the procedure by some examples. 

We start by placing the constant + 5.999 G at C2, the constant 

.952 G ( ±) then being at C3. No matter what assignments we 

hoose for the remaining constants, being negative or positive, a 8 
O 

nd a 9 
O show up with completely meaningless values in all cal- 

ulations. In fact the 96 permutations which can be formed lead 

o 

 8 
O > +27 G and a 9 

O < −41 G 

If we then assign + 5.999 to C3, the constant 0.952 G ( ±) being

laced at C2, the analysis becomes more intricate, but the results 

re the same, all 96 assignments can be discarded. We have hereby 

uled out half of the possible assignments ( = 192) with the result, 

hat the constant 5.999 has to be negative. 

We next repeat the calculations assigning –5.999 first to C2 and 

ubsequently to C3 and permute all other constants. Only when 

ssigned to C2 do we get meaningful results. We can thus rule out 

he 96 permutations with the constant –5.999 placed at C3 and 

tate that 

 2 
C = −5 . 999 G and a 3 

C = ±0 . 952 G 

Turning to the second set of constants, 7.733, 3.470, 2.259, there 

emain 96 permutations to consider. From the calculations it is ob- 

ious, that 7.733 G ( ±) placed at the carbon atoms C4 or C7 breaks

he condition (14) in all 64 cases, no matter how we assign the 

ther two constants, i.e., the constant 7.733 has to be assigned to 

1. Assigning the value –7.733 to C1 leads to the following results 

or the 16 possible permutations, 

 8 
O < −42 G and a 9 

O > +68 G , 

mphasizing that the value 7.733 has to be positive, i.e. 

 1 
C = +7 . 733 G 

Out of 384 permutations we end up with the task to assign the 

alues 2.259 and 3.470 to C3 and C4 or vice versa. However, the 

alculations alone cannot yield an unequivocal answer, mainly be- 

ause of the closeness in magnitude of the two values. The same 

oncerns whether the two values, together with the smallest con- 

tant (0.952 G) at C3 are positive or negative. Accordingly, we 
4 
hall turn to the observed asymmetric linewidth broadening, to see 

hether we can confirm the above conclusions. 

.3. Linewidth analysis 

De Boer and Macker [28] were the first to show, that signs of 
3 C splittings may be determined by utilizing the differences in 

inewidths observed between low and high field 

13 C satellite lines. 

y making appropriate assumptions, the details of which shall not 

e stated here [ 29 , 30 ], it can be shown that 

 i 
C / 

∣∣a i C 
∣∣ = ±ρi / | ρi | (15) 

here the upper sign holds if the high-field satellite is broader 

han the low-field satellite, and vice versa. ρ i is the local π- 

lectron spin density on atom i . 

We look at the two largest constants, 5.999 and 7.733 G from 

he curves d and e ( Fig. 1 ) and see whether we can confirm the

esults obtained so far. All six lines are easily seen for both curves, 

ut notice that the two innermost lines of e are coincident with 

he two outermost lines of c . Still, the simulated fit for d and e

s nearly perfect (cf. Table 1 ). The curves exhibit broader lines to 

igh field meaning the upper sign in (15) holds. From above we 

ave ρ1 = + 0.15 and ρ2 = –0.042, meaning a 1 
C should be posi- 

ive and a 2 
C negative, in complete agreement with the calculations 

nd analyses made previously. The result is also in line with the 

heory [31] stating that the widths of the lines vary approximately 

s the first power of the local spin density. Looking at Table 1 we

ee that curve e has a 36 mG broadening difference, approximately 

hree times that of curve d (3 × 14 mG) in fair agreement with the 

imilar relative differences in π-spin densities. 

For the curves a, b and c ( Fig. 1 ) we are facing a much more

ubtle analysis. All three curves compete about the same nar- 

ow space around the main proton lines, and nearly half of their 

8 lines (3 × 6) are overlapped by these three strong lines. In 

ase of b only the two outermost lines are seen, in line with the 

imulation for this curve giving a 12% relative intensity deviation 

 Table 1 ). Furthermore, the b curve differs from curves a and c by

aving the largest asymmetric broadening (32 mG), compared to 

3 and 8 mG for a and c , respectively. 

However, Eq. (15) is valid for a planar system, but the carboxy- 

ate group in GAS is likely to be twisted more or less out-of-plane 

f the benzene ring (see Section 4.4 ). Furthermore, the Karplus- 

raenkel parameters used above are obtained empirically for aro- 

atic CC and CO carbonyl bonds. Use of these parameters in the 

bove calculations seems reasonably justified, since we have fo- 

used on the carbonyl constants from the O8, O9, and O10 oxy- 

ens. Use of the same parameters in case of our carboxylate group 

ight lead to erroneous results. Five parameters are needed in or- 

er fully to cope with a carboxylate group. Since we have no way 

f checking the validity of the results we might obtain, we shall 

ot go any further into adjusting these five σ−π parameters. 

The results of the semiempirical analyses can thus be summa- 

ized: 

 1 
C = +7 . 733 G and a 2 

C = −5 . 999 G 

 3 
C = +0 . 952 G or a 3 

C = −0 . 952 G 

 4 
C / a 7 

C = 2 . 259 / 3 . 470G or 3 . 470 / 2 . 259G , 

the signs of the values being unknown . 

.4. Quantum chemical calculations 

.4.1. IEFPCM 

In this model, the solute cavity is defined as a superposition 

f interlocked atomic spheres with fixed radii, using a continu- 
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Table 2 
13 C, 1 H, and 17 O hyperfine coupling constants (G) predicted with B3LYP/EPR-III and the solvation models IEFPCM and IPCM. 

Experimental values ( Sections 4.2 and 4.3 ) are included for comparison. 

IEFPCM 

a Planar IEFPCM 

a Non-planar c IPCM 

b Planar IPCM 

b Non-planar c Expt. 

a 1 
C + 5.836 + 5.713 + 6.167 + 6.030 + 7.733 

a 2 
C = a 6 

C –5.009 –4.764 –5.281 –5.007 –5.999 

a 3 
C = a 5 

C –0.803 –1.095 –0.380 –0.729 ±0.952 

a 4 
C –0.334 + 0.521 + 0.697 + 1.206 ±2.259 or ±3.470 

a 7 
C –2.541 –2.194 –2.424 –2.361 ±3.470 or ±2.259 

a 2 
H = a 6 

H + 1.414 + 1.117 + 1.495 + 1.226 + 1.088 

a 8 
O = a 10 

O –4.263 –3.819 –3.923 –3.670 

a 9 
O –7.516 –8.171 –7.254 –7.837 

a 11 
O = a 12 

O –0.315 –0.815 –0.309 –0.927 

a Solvent = water (S2). 
b IsoD = 0.0025, ε = 30 (S3,S4). 
c Carboxylate group twisted out-of-plane by 90 °. 

Fig. 2. HFS constants for positions in the gallate semiquinone radical tri-anion 

(GAS) computed for the non-planar C 2v symmetrical conformation with B3LYP/EPR- 

III and the IPCM solvation model as a function of the solvent parameter ε (constant 

IsoD = 0.0025). 
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Fig. 3. HFS constants for positions in the gallate semiquinone radical tri-anion 

(GAS) computed for the non-planar C 2v symmetrical conformation with B3LYP/EPR- 

III and the IPCM solvation model as a function of the cavity boundary parameter 

IsoD (constant ε = 30). 
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t

us surface charge formalism [6–9] . This procedure allows opti- 

ization of the molecular structure in the solvent reaction field. 

ull B3LYP/EPR-III geometry optimization of GAS in water predicts 

 slightly non-planar equilibrium structure with the carboxylate 

roup twisted 4 ° out of the plane of the benzene ring (S2). The 

oupling constants predicted for the equilibrium structure are es- 

entially identical to those predicted for the structure optimized 

nder the assumption of a perfectly planar C 2v symmetrical geom- 

try (S2). The constants computed for the latter structure are listed 

n Table 2 . 

It is expected that specific solvation of the tri-anion in protic 

olvents like water and alcohols will lead to a significant twisting 

f the carboxylate group in order to accommodate intermolecular 

ydrogen bonds with the solvent molecules. Table 2 also lists the 
5 
onstants predicted for the structure optimized under the assump- 

ion of a non-planar C 2v symmetrical geometry, i.e., with the di- 

edral angle of the carboxylate group equal to 90 ° (S2). Most of 

he predicted constants are not strongly affected by the twisting, 

ut the proton constant is reduced from 1.41 G in the planar to 

.12 G in the non-planar structure. The latter value is in much bet- 

er agreement with the observed proton constant, 1.09 G. This sug- 

ests that the non-planar structure may be a better model for GAS 

n aqueous solution. Also, the 13 C constant a 4 
C is affected; it is pre- 

icted to be small and changes sign when passing from the planar 

o the non-planar structure. 

The analyses described in Sections 4.2 and 4.3 led to unam- 

iguous assignment of the 13 C constants a 1 
C and a 2 

C ( = a 6 
C ). The

heoretical values calculated with IEFPCM agree with the assigned 
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Fig. 4. Natural atomic net charges computed for planar and non-planar gallate semiquinone radical tri-anion (GAS). The charges correspond to the data listed in Table 2 , 

columns “IPCM Planar” and “IPCM Non-planar”. 
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igns and relative magnitudes for these constants, irrespective of 

he assumed twisting angle ( Table 2 ). The abovementioned anal- 

ses also showed that the constant a 3 
C ( = a 5 

C ) has the smallest

agnitude of the five observed 

13 C constants, but the assignment 

f its sign was left open. The constant calculated with IEFPCM is 

ot in perfect agreement with the observed relative magnitude, 

ut indicates the assignment of a negative sign. The analyses out- 

ined in Sections 4.2 and 4.3 were not able to distinguish between 

he magnitudes and the signs of the remaining two 13 C constants, 

 4 
C and a 7 

C . The magnitude of a 7 
C is predicted to be larger than

hat of a 4 
C ( Table 2 ). As mentioned above, the calculated sign of

 4 
C depend on the assumed twisting angle, but the sign of a 7 

C is 

redicted to be negative, irrespective of the twisting. 

However, the pure IEFPCM is likely to be inadequate for GAS 

n aqueous solution. The PCM approach is based on the assump- 

ion that the electronic structure of the solute molecule is insignif- 

cantly affected by interactions with individual solvent species. But 

emiquinone radical anions tend to be strongly influenced by spe- 

ific solute-solvent interactions in protic media [32–37] . An ade- 

uate model of GAS in aqueous solution must consider interac- 

ions with individual solvent molecules. A proper theoretical treat- 

ent should probably use advanced molecular dynamics proce- 

ures [38–40] , but such procedures are presently not within our 

each. To obtain a qualitative estimate of the possible impact 

f specific interactions, we have experimented with a variety of 

ixed discrete-continuum models [5] , including up to ten water 

olecules and three sodium counter ions in the solute cavity. The 

eometry of each model system was optimized with IEFPCM with- 

ut any restrictions. In general, the predicted constants were not 

rastically affected by the inclusion of the solvent clusters. The 

redicted magnitude and sign of a 4 
C varied with the details of the 

esulting solute-solvent clusters, but the value obtained for a 7 
C was 

onsistently large and negative. Hence, the results of the tentative 

iscrete-continuum calculations tend to support the assignment of 

 negative value for a 7 
C , as predicted also for the “un-clustered”

adical ( Table 2 ). 
6 
.4.2. IPCM 

As described above, the solute cavity in the IEFPCM is con- 

tructed as a superposition of atomic spheres with fixed radii. The 

efault values for these radii, optimized for neutral molecules, are 

ot necessarily adequate for a triply charged anion like GAS. In the 

PCM, the boundary of the cavity is defined as an isodensity sur- 

ace, i.e., a surface of constant electronic density. This surface is 

elaxed in the solvent reaction field and thus reflects the reactive 

hape of the solute molecule. In this respect, IPCM may be more 

uitable than IEFPCM for a radical like GAS. 

The IPCM calculation requires input of two parameters, the sur- 

ace isodensity value (IsoD) and the dielectric constant ( ε) of the 

edium. Increasing the values of any of the two parameters leads 

o an increase of the strength of the solvent reaction field. In previ- 

us applications on semiquinones, it has been possible to simulate 

he total impact of a protic solvent on the coupling constants by 

ppropriate adjustment of the two model parameters [ 18 , 22 ]. This 

mounts to the assumption that the rapidly changing formation 

nd breaking of complexes between solute and solvent molecules 

an be considered as giving rise to an effective electrostatic solvent 

eld at the position of the solute, and thus can be simulated in an 

verage manner within the continuum picture [ 18 , 22 , 36 ]. 

We have performed a survey of the influence of the parame- 

ers IsoD and ε on the predicted hyperfine coupling constants of 

AS. The results obtained with the non-planar C 2v symmetrical 

AS geometry computed with IEFPCM are shown in Figs. 2 and 

 . Fig. 2 shows the computed constants as a function of ε in the 

ange 1–50, keeping IsoD equal to 0.0025 (electrons Bohr –3 ), and 

ig. 3 displays the constants as a function of IsoD in the range 

.0 010–0.0 025 for constant ε equal to 30. It is apparent that the 

omputed constants are quite insensitive to the impact of the sol- 

ent field, except for a shift of a 4 
C for the initial values of ε in

ig. 2 . No crossing of the curves for the 13 C constants are observed,

o reordering of the relative values. This is in striking contrast 

o the results of similar IPCM calculations for other semiquinones 

here the predicted impact of the solvent is profound, completely 
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Fig. 5. Natural atomic spin populations computed for planar and non-planar gallate semiquinone radical tri-anion (GAS). The populations correspond to the data listed in 

Table 2 , columns “IPCM Planar” and “IPCM Non-planar”. 
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Fig. 6. Correlation of observed and calculated 13 C HFS constants for positions in 

the gallate semiquinone radical tri-anion (GAS) according to the suggested assign- 

ment (see main text). The calculated constants are listed in the column “IPCM 

Non-planar” in Table 2 . The straight line indicates the least squares scaling relation 

Y = 1.283 X (R = 0.995, SD = 0.43 G). 
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earranging the relative magnitudes and signs of the 13 C constants 

 18 , 22 ]. The insensitivity of the coupling constants of GAS can 

robably be explained by the circumstance that the excess nega- 

ive charge in this tri-anion is localized on the five exposed oxy- 

en centers, rather uniformly distributed on the periphery of the 

olute species ( Fig. 4 ). The solvation seems to affect the electronic 

tructure in a fairly uniform manner; the gradient of the solvent 

eaction field is evidently too small to rearrange the relative values 

f the coupling constants. 

The IPCM results obtained with IsoD = 0.0025 and ε = 30 

or the planar and the non-planar geometries are included in 

able 2 (detailed results are provided as S3 and S4). In general, 

he results are not drastically affected by the twist angle, similar 

o the case of IEFPCM. This observation may be explained in part 

y the calculated NPA atomic spin populations shown in Fig. 5 . It 

s apparent that the predicted spin populations on the carboxylate 

roup are very small in both conformations. Apart from the spin 

ensity on the protons, the overall spin distribution is affected only 

o a minor degree by rotation of the COO 

– group. 

The IPCM results ( Table 2 ) are in agreement with the previously 

stablished assignments of a 1 
C and a 2 

C ( = a 6 
C ), and suggest the as-

ignment of a negative sign for the smallest constant a 3 
C ( = a 5 

C ),

nd positive and negative signs for a 4 
C and a 7 

C , respectively, with 

 a 4 
C | < | a 7 

C |. As shown in Fig. 6 , adopting these assignments leads

o a satisfactory linear correlation between experimental and cal- 

ulated values: The observed constants are reproduced to an RMS 

tandard deviation of 0.43 G by the scaling relation 

 

C ( obsd ) = 1 . 283 · a C ( theor ) . 

On the other hand, it is apparent that the computed con- 

tants significantly underestimate the observed magnitudes. We 

ave presently no obvious explanation for this. But it should be 

ept in mind that the theoretical description of a highly charged 

pecies like the gallate radical tri-anion in an aqueous medium is 

 difficult task. 
7 
. Concluding remarks 

The determination of the spin-density distribution in aromatic 

ree radicals has in many studies been based on proton HFS con- 

tants determined by EPR. In the case of aromatic hydrocarbons, 

his is often an acceptable situation. But when it comes to the in- 

estigation of semiquinone free radicals, derived either from ben- 

oquinols or benzoquinones [2] , the situation is quite different, due 

o the many “blind” spots from the presence of OH groups and 

ther substituents such as COOH groups. Furthermore, to gain sta- 

ility, semiquinone radicals are often generated at an elevated pH 

n order to dissociate the COOH and OH protons, leaving only the 

H protons to be observed, often few in numbers. 
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The present EPR study of the gallate semiquinone radical tri- 

nion (GAS) has furnished a complete mapping of the five HFS 

onstants derived from all seven carbon positions via naturally 

ccurring 13 C isotopes. Three constants have been unequivocally 

ssigned by way of the classical, semi-empirical Karplus-Fraenkel 

heory with determination of the signs for the two largest con- 

tants. These signs were further confirmed by detailed linewidth 

nalyses. The assignment of the two remaining constants by this 

pproach were inconclusive, as well as the sign determination of 

he three smallest constants. 

In a different theoretical approach, the HFS constants of GAS 

ere calculated by density functional theory (DFT). These calcula- 

ions, with inclusion of a contribution from the solvent by means 

f polarizable continuum models (PCM), led to fair agreement with 

he results of the Karplus-Fraenkel analysis and with the exper- 

mental evidence. As shown in Fig. 6 , adopting the assignment 

orresponding to the relative magnitudes and the signs predicted 

ith B3LYP/EPR-III + IPCM leads to a satisfactory correlation be- 

ween calculated and observed 

13 C constants. However, the pre- 

icted magnitudes consistently underestimate the observed values. 

his may be related to the difficulties associated with an adequate 

escription of the influence of the solvent on the semiquinone tri- 

nion in aqueous solution. 

A drawback in this study is the lack of 17 O data. All 1 H and
3 C positions are covered, but the absence of three 17 O HFS con- 

tants from five oxygen atoms makes us unable to test and possi- 

ly refine the Karplus-Fraenkel parameters and test the predicted 

7 O hfs constants presented in Table 2 . Due to costly and time con-

uming synthesis, rather few HFS data from enriched quinones or 

uinols have been reported [2] . Exchange reactions may be part of 

he answer, as seen with cases of deuterium exchange [1] or use 

f enriched alcohols in exchanging methoxy or ethoxy groups [12] . 
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