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Increasing evidence indicates that superspreading plays a domi-
nant role in COVID-19 transmission. Recent estimates suggest that
the dispersion parameter k for severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is on the order of 0.1, which corre-
sponds to about 10% of cases being the source of 80% of infec-
tions. To investigate how overdispersion might affect the outcome
of various mitigation strategies, we developed an agent-based
model with a social network that allows transmission through con-
tact in three sectors: “close” (a small, unchanging group of mutual
contacts as might be found in a household), “regular” (a larger, un-
changing group as might be found in a workplace or school), and
“random” (drawn from the entire model population and not re-
peated regularly). We assigned individual infectivity from a gamma
distribution with dispersion parameter k. We found that when k
was low (i.e., greater heterogeneity, more superspreading events),
reducing random sector contacts had a far greater impact on the
epidemic trajectory than did reducing regular contacts; when k was
high (i.e., less heterogeneity, no superspreading events), that differ-
ence disappeared. These results suggest that overdispersion of
COVID-19 transmission gives the virus an Achilles’ heel: Reducing
contacts between people who do not regularly meet would sub-
stantially reduce the pandemic, while reducing repeated contacts
in defined social groups would be less effective.

pandemic | overdispersion | mitigation strategies | superspreading | social
networks

Countries worldwide have responded to the COVID-19 pan-
demic by implementing unprecedented “lockdown” strate-

gies: closing schools and workplaces; closing or strictly regulating
restaurants, bars, theaters, and other venues; and banning large
gatherings. Such measures moderately reduced disease trans-
mission in the 1918 Spanish influenza epidemic (1); however, in
the COVID-19 pandemic, lockdowns have been highly effective,
albeit at great cost to society (2). Not enough is known about
which of the mitigation measures used during lockdowns is most
effective. Understanding the relative contributions of reducing
different types of contacts in different settings is essential for the
current situation as well as for pandemic preparedness.
The occurrence of “superspreading events,” in which a large

number of people are infected in a short time (often in a single
location), is a well-documented aspect of the COVID-19 pan-
demic (3), from a string of superspreading events at fitness centers
in Seoul, South Korea (4) to a wedding reception at the Big
Moose Inn in Millinocket, ME at which at which over half the
guests were infected (5).
Heterogeneity in transmission is well known in several infec-

tious diseases (6–9), including the recent coronavirus threats
severe acute respiratory syndrome (SARS) (10) and Middle East
respiratory syndrome (MERS) (11). In 2005, Lloyd-Smith et al.
(6) surveyed the importance of superspreading events across
infectious diseases and pioneered the use of the “dispersion
parameter” k to describe how the number of infections

generated by an individual is distributed around the mean, with
lower values of k corresponding to a broader distribution.
Multiple studies have found that k for SARS-CoV-2 is on the

order of 0.1, corresponding to ∼10% of infected people causing
80% of new infections (12–15) This also implies that the majority
of infected individuals cause less than one secondary infection
and thus, cannot sustain the epidemic on their own should the
superspreading events somehow be prevented.
Consistent with this, the household attack rate is low, as shown

by several studies. In China, figures of 15 and 12% have been
reported (13, 16), while a nationwide study from Denmark gave a
household attack rate of 17% (17); in the context of a super-
spreading event in a South Korean call center, the household
attack rate was 16% (18). The low household attack rate implies
that most infected people do not even infect their household
contacts. The overdispersion seen in SARS-CoV-2 stands in
contrast to pandemic influenza, which was found to have a dis-
persion parameter of about k = 1 (19), so that 45% of infected
people cause 80% of new infections.
Measurements of the level of transmission heterogeneity in

COVID-19 have been based on several different methodologies,
each having its own strengths and weaknesses. Perhaps the most
direct measurement is by contact tracing (13). This method al-
lows for a straightforward assessment of overdispersion but may
be affected by biases inherent in contact tracing data, such as
close contacts being more readily found or large outbreaks being
more carefully investigated. Other studies have relied on ag-
gregate incidence data (12, 15, 20) and even phylodynamic
methods (14). These disparate studies found similar levels of
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heterogeneity, increasing the robustness of the basic finding that
overdispersion is high in COVID-19.
Given the importance of superspreading to COVID-19 trans-

mission, modeling studies assessing the effect of different mitiga-
tion strategies would do well to take superspreading into account.
Agent-based models, which set up a network of individual agents
that interact according to defined rules, are well suited to exploring
the impact of mitigation in the presence of superspreading. Like
standard compartmental Susceptible, Exposed, Infected, Recov-
ered (SEIR) models, they can reproduce the epidemic curves ob-
served in a population in an unmitigated scenario. Unlike purely
compartmental models, agent-based models can easily adjust in-
dividual infectivity and mimic repeated social interactions within
defined groups, as might be found in households, schools, and
workplaces. Agent-based models can also include different types of
social interaction and phenomena such as a disease saturating
some households or workplaces by infecting all susceptible agents.
We therefore developed an agent-based model with a social

network structure to investigate how overdispersion might affect
nonpharmaceutical mitigation efforts to control a superspreading
disease such as COVID-19. In brief, we simulated epidemic tra-
jectories in an agent-based model with a population of 1 million
agents. Upon infection, agents transition from susceptible to ex-
posed, infected, and recovered states (Fig. 1A); agents are on
average infectious for 5.5 d. We allowed contacts of three types:
close (within a small, unchanging group as might be found in a
household or other close association), regular (within a larger,
unchanging group as might be found in a workplace, school, ex-
tended family, or other social unit), and random (drawn randomly
from the entire agent population and not repeated regularly)
(Fig. 1B). We adjusted the contact rates to achieve a 1:1:1 ratio of
contact time in the three sectors, consistent with survey data from
Mossong et al. (21). Within the timescale set by the generation
time of COVID-19, our close and regular networks can be con-
sidered constant. Contacts that occur less frequently belong to the
random sector. To simulate superspreading, we assigned infec-
tivity according to a gamma distribution with dispersion parameter
k = 0.1 and adjusted the overall infectivity to produce an initial
growth rate of 23% per day, as observed for COVID-19 in Europe
and North America (22–24), which corresponded to a basic re-
productive number of 2.5. In the unmitigated case, contacts were
allowed in all three sectors; we then simulated two additional
scenarios in which the regular and random contacts were re-
stricted. These three scenarios were simulated under two condi-
tions, with k set to infinity (no superspreading) and with k set to
0.1 (superspreading). The model is described in detail in Methods.
Our findings suggest that superspreading gives COVID-19 an

Achilles’ heel: Limiting contacts in the part of the social envi-
ronment where many random contacts are encountered—and where
superspreading events are most likely to occur—slows transmission
dramatically and far more effectively than limiting contacts in social
groups where people meet repeatedly, such as in the home, work,
or school.

Results
We found that the presence of superspreading profoundly im-
proves the impact of reducing random contacts in mitigating the
epidemic. Regardless of whether superspreading is present in the
model, the overall percentage of the population infected in a no
mitigation scenario is 90% (Fig. 2). Thus, superspreading has
hardly any effect on the trajectory of an unmitigated epidemic.
Furthermore, comparing Fig. 2, it is clear that a mitigation
strategy based on restricting regular contacts performs similarly
in both the superspreading (Fig. 2B) and nonsuperspreading
(Fig. 2A) scenarios. However, when a mitigation strategy based
exclusively on restricting random contacts is employed in the
superspreading scenario, the effect is dramatically enhanced:

The final epidemic size is just 15%, compared with 57% in the
absence of superspreading.
We performed several sensitivity tests to investigate whether

our findings were robust to changes in model parameters.
We varied the dispersion parameter k in the interval [0.05, 1.0]

and found that as it increased, the effect of preventing random
contacts gradually diminished (Fig. 3). This shows that the effi-
cacy of random sector-based mitigation increases monotonically
with the degree of superspreading. On the other hand, even
partial mitigation of the random sector still had a considerable
effect when k = 0.1 (SI Appendix, Fig. S1).
By adjusting the mean infection rate, we varied the initial

epidemic growth rate from 16 to 30% per day (SI Appendix, Fig.
S2), an interval that covers the range of premitigation growth
rates observed in Europe and North America (22–24). We
found, as expected, that a faster-growing epidemic is more dif-
ficult to mitigate; however, the enhanced effect of random sector
mitigation when superspreading is present remains.
To assess the sensitivity of our results to the partitioning of the

three social sectors, we varied the ratio of contacts in each sector
from the base case of 1:1:1 to 2:2:1 for close, regular, and ran-
dom contacts (SI Appendix, Fig. S3A) and increased the size of
the groups from which regular and close contacts were drawn,
respectively (SI Appendix, Fig. S3 B and C). These variations had
only a moderate negative effect on mitigation, reflecting that a
mitigation strategy based on removing random contacts becomes
relatively less effective if fewer random contacts are made in the
premitigation scenario. In a related analysis, we analyzed the effect
of introducing heterogeneity in the number of individuals with whom
an agent interacts. We did this by letting half of the population
spend only 1/6 of their contact time in the random sector while
allowing the other half to spend 1/2 of their contact time interacting
in the random sector. In this way, we maintained the overall activ-
ity in the random sector to be 1/3. The result was a moderate de-
crease in the degree of mitigation (SI Appendix, Fig. S4).
To determine the effect of increased heterogeneity in social

activity, we exponentially distributed the overall contact time of
individuals, so that some agents would make contact more fre-
quently than others (SI Appendix, Fig. S5). This heterogeneity was
found to decrease the epidemic size in general, similar to what
Britton et al. (25) recently showed for COVID-19. Nonetheless,
random sector-based mitigation remained by far the most effective.
Finally, we measured the distribution of the number of sec-

ondary infections arising in our simulations (SI Appendix, Fig.
S6). This analysis is an important test of our model since it is
crucial that the model reproduces the degree of transmission
heterogeneity reported in the literature; the analysis also allows
us to assess the degree of transmission heterogeneity introduced
by the model’s social structure alone. When we set the dispersion
parameter for infectivity to k = 0.1 (our base superspreading
scenario), the coefficient of variation (CV) of the observed dis-
tribution of secondary cases is 3.1, consistent with an observed k
value of ∼0.1 for a negative binomial distribution (6), indicating
that the model has the desired level of transmission heteroge-
neity in our base superspreading scenario. When the distribution
of infectiousness is taken to be homogeneous (i.e., the non-
superspreading scenario [formally obtained at infinite k for in-
fectivity]), the observed distribution of cases has a CV of 0.7,
consistent with an observed k value of 3.3 for a corresponding
negative binomial distribution. Thus, the social structure by itself
contributes only very moderately to the transmission heteroge-
neity observed in our superspreading simulations.
Across the sensitivity analyses, our basic finding remains un-

changed: In an epidemic driven by superspreading, restricting
random nonrepeating contacts is far more effective than limit-
ing the regular repeating contacts that occur in interconnected
groups.
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Discussion
Policy makers worldwide face excruciating choices as they seek
to ease restrictions as much as possible without causing a surge in
COVID-19 cases that would overwhelm health care systems, es-
pecially by exceeding available intensive care unit beds needed to
keep critically ill COVID-19 patients alive. These policy choices
must take new information into account as the pandemic unfolds.
Evidence is now overwhelming that superspreading plays a key

role in COVID-19 transmission (12–15). Yet, models used to
predict effects of mitigation strategies often do not consider this
phenomenon (26–28). In this study, we built an agent-based
model with an underlying social structure to take on this task.
Our results indicate that reducing random contacts has an out-

sized effect in an epidemic characterized by superspreading; in the
absence of superspreading, the same mitigation strategy is much
less effective. This means that mitigation policies should focus on
limiting contacts during activities that bring together large numbers

of people who would otherwise not routinely come into contact,
such as at sporting events, restaurants, bars, weddings, funerals, and
religious services; repeated contacts that occur in smaller social
groups are much less important. If such gatherings cannot be avoi-
ded, steps such as wearing face masks and moving events outdoors
might also help. Our results also suggest that in complex settings
such as workplaces and schools, which have characteristics of both
our regular and random sectors, preventing congregation of large
groups of people who would otherwise rarely meet is important.
Why does our model suggest that the presence of superspreaders

favors these policy choices? When random contacts are prevented,
regular contacts become the main source of infection. However, be-
cause the number of possible connections is limited in a regular social
unit, a highly infectious individual soon runs out of susceptible contacts.
When random contacts are allowed, however, there is no such limi-
tation because as far as the superspreading agent is concerned, every
contact is new. It follows that an epidemic driven by superspreading is

A

B

Fig. 1. (A) Schematic representation progression of disease in our agent-based model. Individual agents become infectious 2.5 d before symptom onset on
average. Agents enter the recovered state after an average of 3 d of symptoms, giving an average total infectious period of 5.5 d. (B) Schematic repre-
sentation of the connectivity between 150 agents. Individuals are represented as nodes, with shading indicating age (light = young, dark = older). Edges
represent social connections, with bright yellow denoting close contacts, orange denoting regular contacts between adults, and red edges denoting regular
contacts involving children. Random contacts are not pictured. The network diagram was generated by running our simulation on a smaller population of just
150 individuals, with the same rules for connectivity as in the full-scale simulations.
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fueled more by the diversity of contacts—the total number of different
people encountered—and less by the duration of contacts—how long
one spends with each. Thus, preventing random contacts in the model
provides more benefit than preventing regular contacts.
It is worth noting that an equal ratio of contact time across

sectors does not mean that the number of secondary infections is
the same in each. Even when k is high so that superspreading is
not present (Fig. 2A), about 40% of transmissions occur during
random contacts because the saturation effect is small. When k is
low and superspreading is present, this fraction increases to about
60%, the removal of which corresponds to a 2.5-fold reduction in
the reproductive number of the disease—a reduction sufficient to
mitigate the epidemic (Fig. 2B).
Our finding that the propagation of an overdispersed disease

is more sensitive to the many random contacts (rather than the
few but persistent regular contacts) is broadly applicable, re-
gardless of the underlying biological mechanism. If, for example,
one considers a disease where the high reproductive number of
some individuals is the result of a prolonged infectious period,
transmission would still be limited by the number of different
persons an individual encounters. In our model, this number is
set by the combined size of their close and regular contacts, when
access to random contacts is restricted.
The most important limitation of our study is the model’s simplicity

compared with the complex reality of human society. Our social
structure does not precisely reproduce the complex and fluid inter-
actions of human societies. However, our division of contacts ap-
proximates the range of possible interactions, from familiar to
random. We relegated all nonrepeating contacts to the random sec-
tor, so that contacts with known persons occurred only through two
fixed social networks, one small and one somewhat larger. In the real
world of large families, workplace cafeterias, school playgrounds, and
neighborhood restaurants, many interactions in the random sector
would be with familiar but rarely seen people such as old friends and
extended family; likewise, some contacts with random people would
occur in places dominated by repeat contacts with familiar people.We
simply separated those into two artificially distinct spheres.
The mechanism that underlies superspreading is not under-

stood, but relevant factors include both the rate at which an

infected person sheds the virus and the environment in which the
virus is shed, including the density of people and their suscepti-
bility. Behavior, including shouting or singing, can increase both
the rate of viral shedding and the susceptibility to infection, and a
gathering in a closed room with poor ventilation involves consid-
erably higher risk than one outdoors (29, 30). Superspreading has
been broadly categorized in three main categories: biological,
behavioral/social, and opportunistic (31). However, these cate-
gories are not mutually exclusive, and superspreading is generally
a question of means (high infectiousness) and opportunity (social
and environmental context). In order for a superspreading event
to occur, a highly infectious individual must have access to a large
number of distinct contacts. In our model, the means is simulated
by assigning a distribution of individual infectiousness from a
gamma distribution. While we do not specifically model events, we
do allow many contacts in the random sector, which allows some
agents to cause large clusters of secondary infections.
Other recent studies modeling superspreading in COVID-19

have generally come to the conclusion that “cutting the tail” (i.e.,
targeted elimination of superspreaders) would be an effective

A B

Fig. 2. The impact of mitigation on modeled incidence. Simulation of epidemic trajectories with mitigation starting when 1% of the population has been
infected. In each panel, we show three trajectories corresponding to the unmitigated epidemic, the case where we completely restrict all regular contacts, and
the case where we restrict all random contacts. When superspreading is not present (i.e., k is infinite; A), the effect of eliminating regular and random
contacts is similar; however, when superspreading is a factor in transmission (i.e., when k = 0.1; B), the effect of eliminating random contacts is dramatically
enhanced. We did not consider mitigation by limiting close contacts as this would not be a credible mitigation strategy.

Fig. 3. Sensitivity of model results to dispersion factor k. When an epidemic
size of 1% is reached, a mitigation scheme consisting of restricting all random
contacts is initiated. We explore the epidemic trajectories for different values
of the overdispersion factor k. As k decreases (i.e., transmission heterogeneity
increases), eliminating random contacts has a progressively greater effect.
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means of mitigation (31–33). What is less clear is how to con-
struct policies to accomplish that and how to identify the situa-
tions and modes of contact which are likely to lead to
superspreading. By distinguishing between repeated and random
contacts, our model points to a feasible population-wide miti-
gation strategy. This is not possible in well-mixed (32), branching
process (31), or purely network-based models (33), which do not
incorporate different types of social contacts.
The social network underlying our model is of the “small-

world” variety (34), insofar as it is characterized by cliquishness
and short typical distances between nodes. Thus, any given node in
our model can typically be reached by moving through only a few
close and regular units. Block et al. (27) recently used small-world
networks to explore how mitigation strategies that alter typical
nodal distance and cliquishness affect the epidemic trajectory. In
the same vein, Leng et al. (35) studied the influence of social
bubbles on mitigation efforts using an agent-based model with
three levels of transmission: within households, between house-
holds in the same bubble, and lastly, community spread (akin to
our random sector). However, none of these papers addressed the
effect of superspreading on the mitigation strategies. Our results
lend support to mitigations based on cutting links between cliques
(27, 35) since the mixing of different close and regular groups
occurs primarily through encounters in the random sector. Our
work further shows that this kind of mitigation strategy is en-
hanced in a pandemic characterized by superspreading, as illus-
trated by Fig. 2B (compared with Fig. 2A).
Superspreading is a defining feature of the COVID-19 pan-

demic; a relatively small minority of the population causes the
majority of infections, while most do not even infect people in their
own household. As it is not possible to identify these super-
spreaders before transmission occurs, we here suggest an effective
alternative strategy, namely that policies should aim to reduce
contact diversity, rather than attempt to limit total contact time.
This means that mitigation policies should focus on limiting ac-
tivities that bring together many people who would otherwise not
routinely come into contact.

Methods
We developed an age-stratified, agent-based model with three sectors of social
contact through which the disease can be transmitted. Each agent is assigned to
one close and one regular unit, within which contacts are repeated over time,
and participates in random contacts drawn from the entire population.

Agents are stratified by age in 10-y intervals and assigned age-dependent
social activity levels ai, which are adjusted such that the observed contact

rates in an unmitigated scenario fit the age-dependent activity given in Ta-
ble 1 (21). Close units have some properties of households: an average of 2.3
members, adults are in the same or adjacent age bands, and children are taken
to be 20 to 40 y younger than adults in the same unit. The CV of the generated
close contact network sizes is 0.59. This may be compared with The European
Union Statistics on Income and Living Conditions Survey, which reports an av-
erage household size of 2.3 with a CV of 0.57 (36). Regular units have properties
of workplaces and schools: Agents 20 to 70 y of age are assigned to a Poisson-
distributed cluster with an average of eight agents. Agents under 20 y old are
assigned a regular unit of 18 members. Each of these units is also assigned two
adults aged 20 to 70. Agents older than 70 y are not assigned to a regular unit.
Random contacts are chosen from the entire population at random for each
infection attempt to simulate brief contacts without temporal correlation.

The progression of the disease is modeled in an SEIR framework, with
agents passing through each stage at a rate determined by the average dura-
tions given in Fig. 1. The exposed state is subdivided into four stages, each of
1.25 d in length, with a constant probability rate for transitioning from one
stage to the next. The first two of these stages comprise the gamma-distributed
preinfectious state (average total duration: 2.5 d, SD: 1.8 d). The next two stages
comprise the presymptomatic infectious state (average total duration: 2.5 d, SD:
1.8 d). This is followed by the infected state, in which agents are infectious and
symptoms may be displayed [average total duration: 3 d (37, 38), SD: 3 d].
Agents then pass into the recovered state where they are no longer infectious.
Simulations are run in a population of 1 million, randomly seeded with 100
infected agents. Agents are assigned a gamma-distributed infectivity β·si, where
si is drawn from a gamma distribution P(s), proportional to sk−1 exp(−k s) with
continuous s > 0 [Lloyd-Smith et al. (6)]. Here, k is the dispersion parameter,

which determines the CV of the distribution according to CV = 1=
̅̅̅

k
√

. The rate
constant β is calibrated to reproduce the observed initial exponential growth
rate of 23% per day of an unmitigated COVID-19 epidemic (22–24).

In each time step of size Δt (of 30-min duration), each infected agent has
an age-dependent probability for making contact to another agent; for each
such contact, a contact partner is drawn from one of the three social sectors.
The rate at which each of these sectors is chosen is based on a population-based
survey of mixing patterns in eight European countries by Mossong et al. (21).
That study found that the “home” sector made up 19 to 50% of all contacts,
while the “work/school” sector accounted for 23 to 37%, and the remaining
sectors amounted to 27 to 44%. For our model, we approximated this stratifi-
cation by letting one-third of all contacts fall into each of the three sectors, for
our base case. In SI Appendix, Fig. S2, we investigate the effect of varying these
sector-specific social contact frequencies. Potential targets for infection are se-
lected proportional to the age-dependent social activity listed in Table 1.

At each contact, the disease is transmitted with probability Pt = β si Δt. The
time step length is chosen small enough to ensure that the probability of in-
fection in any given time step is always less than one, even for the most in-
fectious individuals. We simulate mitigation strategies by not permitting
infection in a chosen fraction of contacts in one or more of the contact sectors.
Mitigation is initiated when the infected population reaches 1% of the total.
Whenmitigation by reduction of random contacts is performed, social networks
are kept fixed, and the same numbers of contacts are removed in super-
spreading and nonsuperspreading scenarios to facilitate direct comparison.

To analyze the impact of heterogeneous social activity, we assigned each
agent a separate activity parameter ai selected from an exponential distri-
bution (SI Appendix, Fig. S5). At each contact attempt from agent i to agent
j, if ai < aj then the contact proceeds as usual; however, if ai > aj, then the
contact proceeds with a probability aj/ai. This procedure yields an expo-
nential distribution of observed social activity, with more active agents be-
ing removed from the susceptible pool earlier in the epidemic.

Data Availability. Model code data have been deposited in GitHub (https://
github.com/NBIBioComplexity/SuperCoV) (39).
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