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1Roskilde University, Denmark
2Heidelberg University, Germany
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Abstract

Human blood cell production is maintained by hematopoietic stem cells (HSC) which give rise to all types of
mature blood cells. Experimental observation of HSC in their physiologic bone-marrow microenvironment, the
so-called stem cell niche, is challenging. Therefore, the details of HSC dynamics and the cellular interactions in
the stem cell niche remain elusive. Mutations that give a competitive advantage to the mutated cells are the
cause of clinical challenges when treating HSC-derived malignancies such as acute myeloid leukemia (AML) or
the myeloproliferative neoplasms (MPNs). To investigate the significance of the interaction between the HSC
and the stem cell niche in these malignancies, we propose and analyse a mechanism-based mathematical model
of HSC dynamics within the bone-marrow microenvironment.

The model is based on the central hypothesis that HSC self-renewal depends on the niche. In the model, the
interaction of HSC with specific niches located in the bone marrow are key to the indefinite renewal necessary
for long-term maintenance of blood-production. We formulate a general model of n distinct clones that differ
with respect to cell properties. We identify an attractive trapping region and compute and classify all steady
states. A concept of HSC fitness naturally arises from the model analysis. HSC fitness is found to determine the
asymptotic behaviour of the model, as the only steady state that is locally stable is related to the HSC-clone
with the highest fitness.

Based on biological assumptions about HSC, we propose two reduced models of different complexity. A
thorough mathematical analysis reveals that both reduced models have the same asymptotic behaviour as the
full model.

We compare the simpler of the two models, a logistic equation of the disease burden, to clinical data of
MPN-patients. The reduced model is found to agree well with data and suggests a simple interpretation and
possible prediction of patient prognosis.

The proposed mathematical model and the reduced forms have the potential to provide insights into the
regulation of HSC dynamics and blood cell formation, and ultimately for future advances in treatment of
hematologic malignancies.

1 Introduction

Human blood consists of a vast amount of blood cells. As these mature blood cells (such as e.g. red blood cells,
thrombocytes or leukocytes) die by programmed cell death or other mechanisms, a large number of new cells
must be produced each day. The process of blood cell production, referred to as hematopoiesis, originates in the
pool of hematopoietic stem cells (HSC). Through many steps of cell-division, self-renewal and differentiation,
the diverse types of blood cells are produced, without exhaustion of the HSC population. While much research
has been done in an effort to uncover the cell intrinsic regulatory mechanisms of HSC, open questions about
their properties and functions still remain.

One particular area where an understanding of HSC-dynamics has a significant impact is the research of
hematopoietic malignancies, such as acute myeloid leukemia (AML), chronic myeloid leukemia (CML) or the
myeloproliferative neoplasms (MPNs). These diseases are believed to arise from malignant stem cells (Reya
et al., 2001) that give rise to malignant cells which trigger disease-specific symptoms, such as e.g. an excess
of thrombocytes. Understanding how malignant stem cells differ from wild-type HSC is crucial for efficient
treatment (Dingli and Michor, 2006) and hence patient prognosis. HSC-specific niches have been in the focus
of some research as they have been found to induce cellular quiescence, which can explain why some malignant
stem cells respond poorly to treatment (Ishikawa et al., 2007).

1



Somatic mutations in the HSC genome can result in a subpopulation of HSC, referred to as a HSC clone,
that differ from the normal HSC. As mutations accumulate through ageing, clonal hematopoiesis in which a
substantial part of the production of blood cells is due to a single clone is expected to arise in as many as 10%
of the population of people over 65 years of age. (Genovese et al., 2014). While clonal hematopoiesis by itself
does not necessarily lead to symptoms of disease, it gives rise to the clinical concept of clonal hematopoiesis of
indeterminate potential (CHIP) which can be a precursor or early stage of hematopoietic malignancy (Jaiswal
and Ebert, 2019). Determining the significance of mutations and CHIP can be highly relevant in regards to the
clinical question of understanding the risk of hematopoietic malignancies, particularly in an ageing population.

Despite years of comprehensive research on the behaviour and dynamics of HSC, both mathematically and
biologically, a complete quantitative description still remains unclear. This leaves some open questions about
HSC yet to be answered, such as:

� Which role do the HSC-specific niches play in maintaining HSC and blood cell counts?

� Which factors determine the outcome of competition between multiple distinct clones within the bone
marrow microenvironment?

� How do mutational changes to HSC properties lead to the wide range of disease dynamics observed in
patients with hematologic malignancies?

� Why are some clinical interventions highly successful for specific HSC-derived malignancies, yet less suc-
cessful for other similar malignancies?

� Can insights about one malignancy guide the clinical management of other, potentially similar, malignan-
cies?

In an effort to explore these questions, as well as many others, mathematical models have been developed
throughout the literature. These include models of ordinary differential equations (Stiehl et al., 2015; Wang
et al., 2017; Stiehl et al., 2020; Dingli and Michor, 2006; Andersen et al., 2017; Komarova and Wodarz, 2007;
Ashcroft et al., 2017), delay differential equations (Colijn and Mackey, 2005; Park et al., 2019) as well as
stochastic models (Roeder and Loeffler, 2002; Catlin et al., 2011). We refrain from giving a complete review of
such work, but direct the reader to the work of Clapp and Levy (2015) or to a more general review on cancer
modelling due to Altrock et al. (2015).

The mathematical models of hematologic malignancies and HSC behaviour found in the literature differ
greatly in complexity, and hence the applicability of the models also varies. While complex models provide a
detailed picture of a system, simpler models allow more directly for comparison with clinical data. Hence a
dilemma arises where a model must have enough detail to be biologically accurate, but still simple enough to
be useful in a clinical setting. Constructing complex models based on biological ideas and hypotheses allows
for investigations about the nature of those ideas and hypotheses. By reducing and simplifying a complex
model in mathematically or biologically reasonable ways, a simpler model arises. Such simpler models allow
for comparison with data which would have been inconclusive when based on the complex model. In this
way simplification helps to identify the data necessary to distinguish between different complex models. Hence,
model reduction, simplification and subsequent comparison with experimental data both clarify the applicability
of the model and pave the way for future experiments that can determine the validity of the hypotheses that
the model was based on.

In this paper we present a model of HSC-behaviour, which captures the most significant parts of the biology,
as well as the dynamical behaviour of blood cell production observed in both healthy and diseased individuals.
The model is based on the dynamics of HSC within the bone-marrow microenvironment and builds on a central
hypothesis about limited HSC renewal following detachment from HSC-specific niches. The processes impairing
self-renewal when HSC are removed from their microenvironment are not well understood. Different from
previous models of HSC dynamics (Stiehl et al., 2020; Ashcroft et al., 2017; Becker et al., 2019), we here
propose that HSC can perform a limited number of divisions after detaching from the niche and then either
differentiate or reattach to the niche. Reattachment to the niche is required to maintain stemness and to become
reactivated at a later time.

A simplified version of the model has previously been presented by the authors (Pedersen et al., nd), and
was used to investigate medical interventions such as HSC mobilization and transplantation. In particular, we
found evidence that when suggesting novel treatment strategies of HSC-derived malignancies, careful attention
must be paid to the treatment-induced changes in healthy and malignant stem cell dynamics to avoid potential
harm.

Through mathematical analysis of the model, we determine the dynamics for non-negative initial conditions
of a general model of n distinct HSC clones. By assuming that most HSC remain quiescent or inactive for
extended periods of time, we propose a reduced model. The reduced form maintains the same general structure
and dynamics as the full model, but allows for a more direct comparison with experimental data from literature.
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Following still further simplifications, the simplest form of the model is compared to clinical data. In the
most reduced form, the model is in agreement with data, suggesting that the proposed model is useful, albeit
overparametrized in the full form with the current data available.

2 Model presentation

We propose a model of hematopoetic stem cells (HSC) and in particular their interaction with the bone marrow.
Such a model has previously been developed by us (Pedersen et al., nd), and the present work is a generalization
of that model. The biological foundation and assumptions are described here:

� HSC-specific niches are located in the bone marrow microenvironment. The specific cellular composition
of the niches is not considered, and rather we consider an abstract notion of niches, assumed to be well-
mixed throughout the bone marrow. It has been suggested that niche cells dynamically respond to the
presence of HSC, and fluctuate in numbers (Becker et al., 2019). We hypothesize that the effect is minor
and assume constant counts of niche-cells.

� HSC bind to the niches and remain quiescent for extended periods of time. The nature of how quiescence
of HSC is maintained by the niches is a complex picture involving many different types of signalling (Nie
et al., 2008; Nilsson et al., 2005), and is assumed to be necessary for maintaining stem cell function (Kumar
and Geiger, 2017; Vaidya and Kale, 2015; Zhang and Gao, 2016). We denote niche-bound HSC as N , and
denote the remaining free niches NE .

� Niche-bound cells are assumed to detach from the niches with rate u, either spontaneously or through
activation. The specifics of how this activation occurs are assumed not to impact on the behaviour of the
resulting free HSC. We denote the activated free HSC as A. We assume that activated HSC can reattach
to the empty niches NE with rate bA. These two processes can be written as:

N
u−→ A+NE (1)

NE +A
bA−→ N (2)

� Upon detaching from the niche, the free HSC lose their quiescence and enter the cell-cycle (Kumar and
Geiger, 2017). The detached cells are primed to undergo either self-renewal or differentiation, possibly
due to signalling from the niche prior to release (Wilson and Trumpp, 2006). We assume that when HSC
differentiate into more mature cells, they cannot reacquire stemness. We focus on the remaining stem
cells, and differentiation is simply considered a loss of cells. If differentiation occurs with rate dA this can
be written as:

A
dA−→ ∅ (3)

Note that this may include death of the HSC. However, under normal circumstances HSC death is assumed
to occur for a negligible fraction of HSC.

If a free HSC self-renews, it divides into two HSC. Assuming the rate of division-related mutations is
negligible, the two resulting cells are identical. We hypothesize that the resulting HSC are limited in their
ability to further self-renew if they do not reattach to the niche. HSC following division that have to
reattach to the niche to restore their full self-renewing potential are referred to as inhibited or exhausted
HSC. For the the most general formulation, we consider one free HSC to self-renew with rate r and that
the process results in 2γ inhibited HSC where γ ≥ 1. In the supplementary material A we argue for the
appropriateness of including the factor γ ∈ R. The process can be written as:

A
r−→ 2γI (4)

where I denotes the inhibited HSC.

� The inhibited HSC cannot self-renew, but are still assumed to differentiate into more mature cells such
as progenitors. This occurs with rate dI , and as above we do not keep track of the resulting cells:

I
dI−→ ∅ (5)

Inhibited HSC are hypothesized to attach to free niches, thereby gaining the ability to self-renew if they
detach again. The attachment occurs with rate bI and thus we write the process as:

I +NE
bI−→ N (6)
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The above processes are modelled as a system of differential equations, describing the rate of change of free
niches, NE , and the different states of HSC, N , A and I.

In the bone-marrow microenvironment, HSC with different cell-specific properties can co-exist for extended
periods of time. We refer to HSC subpopulations with persistent and inheritable differences in cell properties as
different clones. To define our model in the most general form, we model n different clones. The rates involved
in the processes described above can all differ from one clone to the other, and hence we write each clone-specific
rate with a subscript. Note that different clones interact only through the niches. No direct interaction between
cells of different clones are considered in the model. A schematic representation of the model for n = 2 is shown
in figure 1. The complete n-clone system of differential equations has 3n+ 1 dimensions, and is given by:

ṄE =
n∑

i=1

uiNi −NE
n∑

i=1

(bIiIi + bAiAi) (7a)

Ṅj = bIjNEIj + bAjNEAj − ujNj (7b)

İj = 2γrjAj − bIjNEIj − dIjIj (7c)

Ȧj = ujNj − bAjNEAj − rjAj − dAjAj (7d)

where j refers to the jth clone and ˙ represents the derivative with respect to time t, d
dt . NE denotes the

abundance of empty niches, Nj are niches occupied by HSC of the jth clone while Aj and Ij are free HSC of
the jth clone, in the active and inactive state, respectively. Based on their biological meaning, all parameters
are non-negative: uj , bIj , bAj , rj , dIj , dAj ≥ 0 for all j. A unique solution to system (7) exists and the solutions
NE(t), Nj(t), Ij(t), Aj(t) are C1, since the right-hand sides of system (7) are continuous and fulfil a Lipschitz
condition in the variables. As negative cell-counts are biologically meaningless, we define feasibility of solutions.

Definition 2.1: Feasibility

A set of solutions NE , Nj , Ij , Aj is feasible if all variables NE , Nj , Ij , Aj are non-negative for all j.

For non-negativity (and hence feasibility) of solutions, the time-derivatives for each variable must be non-
negative when the given variable is zero. For all variables non-negative we find:

ṄE |NE=0 =

n∑

i=1

uiNi ≥ 0 (8a)

Ṅj |Nj=0 = NE
(
bAjAj + bIjIj

)
≥ 0 (8b)

İj |Ij=0 = 2γrjAj ≥ 0 (8c)

Ȧj |Aj=0 = ujNj ≥ 0 (8d)

for all j. Thus, due to the existence and uniqueness of solutions described above, the solutions of the system
will remain non-negative for all t > 0, given non-negative initial conditions at t = 0.

From equations (7a) and (7b), ṄE +
∑n
i=1 Ṅi = 0, and we define K = NE +

∑n
i=1Ni. As all variables are

non-negative, K ≥ 0, and in general we assume K > 1. Eliminating NE , the system of equations reduces to a
3n dimensional system:

Ṅj = bIj

(
K −

n∑

i=1

Ni

)
Ij + bAj

(
K −

n∑

i=1

Ni

)
Aj − ujNj (9a)

İj = 2γrjAj − bIj

(
K −

n∑

i=1

Ni

)
Ij − dIjIj (9b)

Ȧj = ujNj − bAj

(
K −

n∑

i=1

Ni

)
Aj − rjAj − dAjAj (9c)

for all j. In addition, NE = K −∑n
i=1Ni. Assuming feasible initial conditions, NE ≥ 0 restricts the range of

Nj(t) to [0,K] for all j. In fact, NE ≥ 0 implies
∑n
i=1Ni(t) ≤ K. For feasible initial conditions, the range of

Ij(t) and Aj(t) is [0,∞) for all j. This reformulation is an equivalent system, so results and conclusions based
on one of the two formulations also holds for the other formulation. For this reason, parts of the analysis use
the formulation in equations (7), while other parts make use of equations (9) to ease analysis.

Default parameters, determined in our previous work (Pedersen et al., nd), are given in table 1.
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Nj

Aj Ij

(Progenitors)

×
bAj

uj bIj

2γ

rj 2γrj

dIjdAj

Nk

Ak Ik

(Progenitors)

×

bAk
uk bIk

2γ

rk 2γrk

dIkdAk

Figure 1: Compartment diagram of the model. The diagram
depicts two distinct clones and the (indirect) competition through
the niche. The two clones are denoted by subscript j and k respec-
tively. Each box illustrates a variable while arrows illustrate the
relationship between variables. The circle with the cross, ×, signi-
fies a multiplication with 2γ. Note that I and A cannot change to
N when there are no free niches, illustrated by the darkened boxes.
The red rectangles at the bottom illustrate the bone-marrow cells
that are part of the HSC niches.

K 15000 cells uj 0.04 day−1

rj 2.32 day−1 bIj 0.96 day−1

dAj 2.06 day−1 dIj 3.77 day−1

Table 1: Default parameters for the proposed model.
Parameter-values were determined in our previous work (Peder-
sen et al., nd). Unless otherwise noted, parameters are equal for
all clones j. While bAj = 0 was previously assumed, we here set
bAj = 0.01 day−1.

3 Model analysis

3.1 Identifying an attractive trapping region

We showed above that the solutions of equations (9) remain non-negative for non-negative initial condition, and
that Nj(t) is restricted to the domain [0,K] for all j. In this section we show that an attractive trapping region
exists in which solutions with initial conditions inside the region stay within the region.

An upper limit for the sum of niche-bound cells is
∑n
i=1Ni = K, and thus for any given clone Nj =

K −∑k 6=j Nk ≥ 0. Hence, Nj is bound from above, since due to equation (9a),

Ṅj |∑n
i=1 Ni=K

= −ujNj ≤ 0 (10)

Note that Ṅj = 0 exactly when Nj = 0.
Extending this, note that:

n∑

i=1

Ṅi|∑n
i=1 Ni=K

= −
n∑

i=1

uiNi < 0 (11)

since not all ujNj are zero when
∑n
i=1Ni = K.

We define Âj,ε =
ujK

rj+dAj
+ ε for any ε ≥ 0. Thus:

Ȧj |Aj=Âj,ε = −uj(K −Nj)− (rj + dAj )ε− bAj (K −
n∑

i=1

Ni)

(
ujK

rj + dAj
+ ε

)
(12)

≤ −(rj + dAj )ε ≤ 0 (13)
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since
∑n
i=1Ni ≤ K and Nj ≤ K. Hence Ȧj ≤ 0 for Aj = Âj,0 and Ȧj < 0 for Aj ≥ Âj,ε for any ε > 0.

Consider an interval A = [Âj,ε, Âj,ε + ∆] with ∆ > 0 on which Ȧj < 0. Due to the extreme value theorem,

there exists a finite µ such that −Ȧj ≥ µ,∀Aj ∈ A, since A is a compact subset. In particular

inf
A

(−Ȧj) = min
A

(−Ȧj) = µ > 0 (14)

and hence 1
−Ȧj
≤ 1

µ holds for all Aj ∈ A.

To determine the time tA it takes for the flow from Aj(0) = Âj,ε + ∆ to reach Aj(tA) = Âj,ε we integrate
over the interval:

tA =

∫ tA

0

dt =

∫ Aj(tA)

Aj(0)

1

Ȧj
dAj =

∫ Âj,ε+∆

Âj,ε

1

−Ȧj
dAj ≤

∆

µ
(15)

and hence tA is finite. Thus for any ∆ > 0, any point with Aj(0) = Âj,ε + ∆ will move along a trajectory that

enters the region Aj ≤ Âj,ε in finite time for any ε > 0.

For Ij , we define Îj,ε =
2γrjujK

dIj (rj+dAj ) +
2γrj
dIj

ε+ ε for any ε ≥ 0. Thus, for both Aj ≤ Âj,ε and Ij ≥ Îj,ε:

İj |Ij=Îj,TR,ε ≤ 2γrj

(
ujK

rj + dAj
+ ε

)
−
(
bjI

(
K −

n∑

i=1

Ni

)
+ dIj

)(
2γrjujK

dIj (rj + dAj )
+

2γrj
dIj

ε+ ε

)
(16)

≤ −dIj ε ≤ 0 (17)

since
∑n
i=1Ni ≤ K. Hence for Aj ≤ Âj,ε and Ij ≥ Îj,ε, İj ≤ 0, with İj < 0 for all ε > 0.

Through an argument similar to the one above, it can be shown that trajectories with Ij(0) > Îj,ε will follow

a trajectory that enters the region Ij ≤ Îj,ε in finite time for any ε > 0.

Theorem 3.1: Trapping region TRε

Defining Âj,ε =
ujK

rj+dAj
+ε and Îj,ε =

2γrjujK
dIj (rj+dAj ) +

2γrj
dIj

ε+ε for any ε ≥ 0, a trapping region for equations

(9) is given by:

TRε =





n∏

j=1

(Nj , Aj , Ij) ∈ R3n : Nj ≥ 0, Aj ≥ 0, Ij ≥ 0,
n∑

j=1

Nj ≤ K,Aj ≤ Âj,ε, Ij ≤ Îj,ε, j = 1, . . . , n





(18)
for any ε ≥ 0. For ε > 0, TRε is an attracting trapping region.

3.2 Steady states

To understand the asymptotic behaviour of the trajectories of the model, we look for steady states in TR0.
All points in TR0 have feasible values of the variables, and hence existence of such steady states also implies
feasibility of the steady state. We denote the steady state values with an asterisk (∗).

For brevity, we use N∗E as the empty niches in a given steady state, i.e. N∗E = K−∑n
i=1N

∗
i . From equations

(9) it is seen trivially that:

A∗j =
ujN

∗
j

rj + dAj + bAjN
∗
E

(19)

and similarly:

I∗j =
2γrjujN

∗
j(

rj + dAj + bAjN
∗
E

) (
dIj + bIjN

∗
E

) (20)

Considering Ṅj = 0 we find:

N∗j =
1

uj
N∗E

(
bIjI

∗
j + bAjA

∗
j

)
(21)

N∗j = 0 for all j implies both A∗j = 0 and I∗j = 0, and hence a steady state in which a cell-type j has
zero niche-bound cells but non-zero free cells cannot exist. However, equation (21) implies existence of a trivial
steady state.
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Theorem 3.2: Trivial steady state S∗0

A trivial steady state, denoted S∗0 , always exists. In the trivial steady state N∗j = A∗j = I∗j = 0,
∀j ∈ {1, . . . , n}.

The number of empty niches N∗E in the trivial steady state is N∗E = K since NE = K −∑n
i=1Ni.

We proceed to investigate the case N∗j > 0. From equations (19), (20) and (21) we obtain:

N∗j = N∗E

(
bIj

2γrj(
rj + dAj + bAjN

∗
E

) (
dIj + bIjN

∗
E

) + bAj
1

rj + dAj + bAjN
∗
E

)
N∗j (22)

which for N∗j > 0 simplifies to

rj + dAj + bAjN
∗
E = bIjN

∗
E

2γrj
dIj + bIjN

∗
E

+ bAjN
∗
E (23)

since we assume N∗E ≥ 0. Hence:

N∗E = K −
n∑

i=1

N∗i =
dIj
(
rj + dAj

)

bIj
(
(2γ − 1)rj − dAj

) , (24)

assuming (2γ − 1)rj 6= dAj . Thus, requiring N∗j > 0 implies a unique value of N∗E = K −∑n
i=1N

∗
i . For later

purposes we define the fitness of the jth clone:

Definition 3.1: Fitness

The fitness of the jth clone is defined as:

Fj =
bIj
(
(2γ − 1)rj − dAj

)

dIj
(
rj + dAj

) . (25)

Hence, equation (24) can be written K −∑n
i=1N

∗
i = F−1

j . Since in general 0 ≤ ∑n
i=1Ni ≤ K, we find

that 0 ≤ F−1
j ≤ K must hold. Hence, for feasibility of a steady state in which N∗j > 0 we have in particular

(2γ − 1)rj > dAj and F−1
j < K. In the case F−1

j = K, we would have
∑n
i=1Ni = 0 and hence N∗j > 0 is

violated and only S∗0 exists.
A∗j and I∗j are unique and given in terms of N∗j due to equations (19) and (20). In addition, A∗j and I∗j are

non-zero only if N∗j is non-zero.

Lemma 3.1: Steady state values for free cells

For any non-trivial steady state, with N∗j > 0 and K−∑n
i=1N

∗
i = F−1

j , A∗j and I∗j are unique and given
by equation (19) and (20) respectively.

Lemma 3.1 allows us to restrict our focus to just N∗j .

A steady state where only the jth clone is non-zero exists, with N∗j = K − F−1
j .

Theorem 3.3: Single-clone steady state S∗j

Given (2γ−1)rj > dAj and F−1
j < K, a single-clone steady state exists for which N∗j > 0, A∗j > 0, I∗j > 0

and N∗E > 0 while ∀k 6= j : N∗k = A∗k = I∗k = 0. In particular, N∗j = K − F−1
j and N∗E = F−1

j .

We denote the unique jth single-clone steady state as S∗j .

Equation (24) holds for any clone j. This allows for existence of steady states where the multiple clones
co-exist, if Fj is equal for the clones.

As a particular example, we consider a scenario with two clones, 1 and 2, with equal fitness F (i.e. F =
F1 = F2). The clones have equal fitness only when

bI1 ((2γ − 1)r1 − dA1
)

dI1 (r1 + dA1)
=
bI2 ((2γ − 1)r2 − dA2

)

dI2 (r2 + dA2)
(26)
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Note that the conditions (2γ − 1)r1 > dA1 and (2γ − 1)r2 > dA2 as well as F < K must hold for existence
of a non-trivial steady state. In a co-existences steady state, the empty niches are uniquely determined as
N∗E = F−1. In addition, it must hold that F−1 + N∗1 + N∗2 = K which constrains the possible values of N1

and N2 (and in turn A∗1, I∗1 , A∗2 and I∗2 , due to lemma 3.1) In particular, for N∗1 = β, N∗2 = K − F−1 − β.
Since F−1 is uniquely determined, this is a line parametrized by β, connecting the single-clone steady states S∗1
(when β = K − F−1) and S∗2 (when β = 0).

Similar relations may be found for 3 distinct clones (Resulting in a triangle of co-existences steady states)
as well as higher numbers of clones.

Theorem 3.4: Co-existence steady states

Co-existence steady states in which multiple clones assume positive concentrations may exist.
A necessary and sufficient condition for co-existence is that Fj is equal for all co-existing clones.
The number of empty niches, N∗E , in the co-existence steady states is given uniquely by N∗E = F−1

j .

Additionally, the bound cells must fulfil the condition
∑
i∈C Ni = K − F−1

j where C is the set of all
co-existing clones.
This implies that co-existence steady states exists on a simplex where the dimension of the simplex is
the number of co-existing clones, dim(C).
When there is no ambiguity, we denote the simplex of steady states S∗C .

We note that multiple co-existence steady states can exist. As an example, consider a scenario with four
clones. In such a scenario, we could have F1 = F2 6= F3 = F4, which implies two separate lines of co-existence,
one connecting S∗1 and S∗2 and another connecting S∗3 and S∗4 . Similarly, many different combinations of co-
existence steady states can exist when two or more clones have the same fitness. However, such situations
of equal fitness are unlikely to persist in a noisy biological setting. Because of this, we do not discuss the
vast multitude of possible combinations of co-existence, and instead restrict our focus to situations without
multiple simplexes of co-existence steady states. In some part we do however briefly comment on the case with
co-existence of just two distinct clones, as it is exemplary for situations with multiple cases of equal fitness.

We sum up the feasible steady states. When the fitness of all clones are different, there are n + 1 steady
states: A trivial steady state, S∗0 , (theorem 3.2) and n single-clone steady states, S∗j (theorem 3.3). In case of
k clones with equal fitness, a k-dimensional simplex of steady states, as described in theorem 3.4.

As a particular example, the two-dimensional case features three steady states and, if F1 = F2, a line of
steady states for which N∗1 +N∗2 = K − F−1

1 = K − F−1
2 .

Omitting A∗1, I∗1 , A∗2 and I∗2 due to lemma 3.1, but including N∗E for clarity, we order a subset of variables
as (N∗E , N

∗
1 , N

∗
2 )T , and the steady states are written as:

S∗0 =




K

0

0




, S∗1 =




F−1
1

K − F−1
1

0




, S∗2 =




F−1
2

0

K − F−1
2




(27)

When F1 = F2, a line of steady states also exists:

S∗C =




F−1
1

β

K − F−1
1 − β




(28)

where β is a number between 0 and K−F−1
1 . We refer to this line as the co-existence steady states for cell-types

1 and 2.
In figure 2 all possible combinations of steady states for one, two and three clones are illustrated. Since the

unique values of A∗j and I∗j follow directly from N∗j , the figures depict only the values of N∗j .
As we describe below, the stability of steady states can be determined. In all panels of figure 2 the white

circle signifies an unstable steady state, black circles signify steady states with no positive eigenvalues while the
grey circle signifies a steady state which is stable only on the single-cell subspace.

3.3 Local stability of steady states

In this section, we determine the local stability of the steady states discussed above.
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Figure 2: Illustrations of all possible combinations of steady
states for one, two and three feasible clones. For clones that
permit feasible single-clone steady states, all possible combinations
are shown here. Hence this figure is a complete visual description
of one-, two-, and three-clone scenarios up to permutations. As
A∗j and I∗j follow directly from N∗j , the figures depict the Nj-axes.
In all figures, the white circle depicts the trivial steady state S∗0 in
which all cell-counts are zero. Grey circles are steady states that are
not locally stable, but are attracting within a single-clone subspace.
Black circles and thick black lines depict locally stable steady states.
Panel (a) shows a single-clone scenario. When (2γ−1)r1 > dA1 , the
S∗1 steady state is feasible and stable. Panel (b) depicts a scenario
with two distinct clones. In particular, F1 < F2, which implies that
the S∗2 steady state is stable and both the trivial and the S∗1 steady
state is unstable. If no cells from clone 2 are present, the S∗1 steady
state is attracting. The dashed line is only for illustrative purposes.
In panel (c), a two-clone scenario is also shown, but here F1 = F2,
resulting in a line of steady states connecting S∗1 and S∗2 . Numerical
investigations show that this line is attracting, however, as shown in
supplementary material B, the steady states have a zero eigenvalue
and hence the steady states are non-hyperbolic. Panels (d) through
(g) depict the full range of possible scenarios with three clones. In
(d) all three clones have different fitness. In (e) F1 = F2 < F3, while
panel (f) has F1 < F2 = F3. Finally, panel (g) depicts the scenario
where F1 = F2 = F3. The greyed out triangles in panel (d-f) are
guides for the eye, while the black triangle in panel (f) is a triangle
of co-existence steady states S∗C .
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Using the formulation of equations (9), we order the 3n variables as (N1, I1, A1, . . . , Nn, In, An). This allows
us to write the Jacobian as a block-matrix of the form:

Jac =




D1 G1 G1 . . . G1

G2 D2 G2 . . . G2

G3 G3 D3 . . . G3

...
...

...
. . .

...

Gn Gn Gn . . . Dn




(29)

where

Dj =




−bIjIj − bAjAj − uj bIj (K −∑n
i=1Ni) bAj (K −∑n

i=1Ni)

bIjIj −bIj (K −∑n
i=1Ni)− dIj 2γrj

uj + bAjAj 0 −bAj (K −∑n
i=1Ni)− rj − dAj




(30)

and

Gj =




−bIjIj − bAjAj 0 0

bIjIj 0 0

bAjAj 0 0




(31)

To determine the stability of the steady states described above, we investigate the eigenvalues of the Jacobian
evaluated at the steady states. We note that the matrix Dj is the Jacobian for the subspace considering only
the j’th clone, i.e. the subspace with all other Nk, Ik and Ak equal to zero, for k 6= j.

At the trivial steady state, S∗0 , the matrices Gj are zero, and hence the eigenvalues of the full Jacobian is
given by the eigenvalues of the Dj matrices, since the Jacobian is a diagonal block-matrix:

Jac|S∗
0

=




D1|S∗
0

0 0 . . . 0

0 D2|S∗
0

0 . . . 0

0 0 D3|S∗
0

. . . 0

...
...

...
. . .

...

0 0 0 . . . Dn|S∗
0




(32)

where |S∗
0

denotes evaluation in S∗0 .
In the k’th single-clone steady state, S∗k , any Gj where j 6= k is zero. Thus the eigenvalues of the Jacobian

are again given by the eigenvalues of the Dj matrices. For illustration, the Jacobian in the single-clone steady
state with clone 1, Jac|S∗

1
, is given as:

Jac|S∗
1

=




D1|S∗
1

G1|S∗
1

G1|S∗
1

. . . G1|S∗
1

0 D2|S∗
1

0 . . . 0

0 0 D3|S∗
1

. . . 0

...
...

...
. . .

...

0 0 0 . . . Dn|S∗
1




(33)
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Lemma 3.2: Stability of S∗0 and S∗j is determined by Dj

In the trivial steady state S∗0 and in the single-clone steady states S∗j , the eigenvalues of the Jacobian
of the system of equations (9) evaluated in the given steady state values, are equal to the eigenvalues of
the submatrices Dj , defined in equation (30).
Hence, the stability of the steady states can be determined by considering the submatrices Dj .

Before considering the co-existence steady states, S∗C , we first discuss the sign of the eigenvalues of Dj .
In appendix B, we go through the process of checking the Routh-Hurwitz stability criterion for Dj . The

results are summarized in the lemma below:

Lemma 3.3: Routh-Hurwitz stability criterion for Dj

Assume that S∗j is feasible and hence (2γ − 1)rj > dAj as well as K − F−1
j > 0 holds.

The matrix Dj of equation (30) evaluated in the trivial steady state, S∗0 , i.e. Dj |S∗
0
, has at least one

eigenvalue with positive real part.
Evaluated in S∗j , the jth single-clone steady state, all eigenvalues of the matrix Dj |S∗

j
have negative real

part.
The eigenvalues of Dj |S∗

k
where k 6= j (i.e. the matrix with parameters of the jth clone, evaluated in

the single-clone steady state of the kth clone) depend on the fitnesses of both the jth clone and the kth

clone. In particular, if Fk > Fj , all eigenvalues have negative real part, and when Fk < Fj at least one
eigenvalue has positive real part.

Hence, for scenarios where no clones have equal fitness, we have determined the signs of the real parts of
the eigenvalues of Dj when evaluated in S∗0 and S∗j . This in turn determines the local stability of S∗0 and S∗j .

Theorem 3.5: Stability of S∗0 and S∗j for all j

If the system has a feasible single-clone steady state S∗j , the trivial steady state S∗0 is locally unstable.
Otherwise, it is locally stable.
Assuming no clones have equal fitness, a particular single-clone steady state S∗k is stable if and only if
Fk > Fj holds for all j 6= k. If it does not hold, the steady state S∗k is unstable.
In the special case where only one clone is considered, S∗1 is stable.

Thus, when no fitnesses are equal, the system has exactly one stable steady state and n unstable steady
states. In particular, the stable steady state is the single-clone steady state of the clone with the highest fitness.
Our use of fitness for Fj is thus justified.

Stability of the co-existence steady state
As discussed above, a simplex of solutions exists when multiple cell-types have equal fitness. As such situa-

tions are unlikely to arise in a noisy biological setting, we do not discuss them in great detail. In supplementary
material B we show that in a scenario with two clones with equal fitness, the line of co-existences steady states
has an eigenvalue of zero with a corresponding eigenvector along the line. Numerical investigations have shown
that there is a zero eigenvalue along the simplex in general, see supplementary material B. When multiple clones
have the same fitness, the Jacobian evaluated in the simplex of steady states has a zero eigenvalue. Furthermore,
the numerical investigations also show that the eigenvalues depend on the fitness in the expected way: If the
clones with equal fitness have a higher fitness than all other clones, the remaining eigenvalues are negative,
and hence solutions of the system will approach the simplex of steady states. In the scenario where another
clone has a higher fitness, the single-clone steady state of that type is stable, as expected. These relations are
summarized in table 2.

In conclusion, the considerations about an equal fitness scenario shown in table 2 together with theorem 3.5
provides a complete description of hyperbolic steady states of the system and the criteria for non-hyperbolic
steady states to arise.
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F1 > F2 > F3 > . . . F1 = F2 > F3 > . . . F1 = F2 = F3 > . . . F1 > F2 = F3 > . . .

S∗1 Stable Zero eigenvalue Zero eigenvalue Stable

S∗2 Unstable Zero eigenvalue Zero eigenvalue Zero eigenvalue

S∗3 Unstable Unstable Zero eigenvalue Zero eigenvalue

...
...

...
...

...

S∗0 Unstable Unstable Unstable Unstable

Co-existence? No Line (S∗1 and S∗2 ) Triangle (S∗1 , S∗2 and S∗3 ) Line (S∗2 and S∗3 )

Table 2: Overview of the stability of steady states for exam-
ples of combinations of fitness. All steady states are assumed to
be feasible. The row labeled co-existence describes the given simplex
of co-existence steady states and the points it connects. All steady
states located on the co-existence simplex lead to the existence of a
zero eigenvalue of the related Jacobian.

4 Model reduction

We present a model reduction. Scaling of variables together with two assumptions reduce the 3n dimensional
system of equations (9) to an n dimensional system. The reduced system maintains most of the features and
dynamics of the full system. While our considerations above yielded a complete description of the steady states
of the model, a reduced model offers greater versatility as the number of parameters is reduced.

We make two general assumptions based on biological considerations:

Assumption 1 Only few niches remain empty at any given time, as found in the work of Bhattacharya et al.
(2009). Hence NE should be low in numbers compared to Nj + Ij +Aj in steady state.

Assumption 2 Under most circumstances, the majority of HSC are niche-bound. Hence, in steady state, Nj
are numerous compared to Aj and Ij .

Assumption 2 is in agreement with HSC mobilization studies (Yang et al., 2009) and the low division frequencies
of HSC (Lee-Six et al., 2018).

Before proposing a reduced model, we first introduce a simplification by setting bAj = 0. Biologically, bAj
is the re-attachment rate of HSC that have not yet divided after detaching from the niche. The simplification
is justified, since such cells that immediately rebind can be considered included in the count of bound cells, Nj .
Note that bAj does not contribute to either the steady state values N∗j and N∗E , or to the fitness, equation (25).
The local stability of the steady states described above has been determined to be unchanged when bAj = 0.
In addition, preliminary numerical investigations showed that the parameter should be small for the model to
agree with data from literature. The model presented separately (Pedersen et al., nd) is this special case, with
the additional assumption of γ = 1.

We introduce a scaling of the variables. Denoting unscaled variables with a superscript o and denoting
the new scaled variables with the original notation without superscript, we define No

j = ÑjNj , I
o
j = ĨjIj and

Aoj = ÃjAj . Our particular choices of scalings are Ñj = K, Ĩj =
uj
bIj

and Ãj =
uj
rj
K. Defining the smallest uj

as U , i.e. the uj such that uj ≤ uk holds for all k, we introduce a scaled time-variable: τ = Ut. The scaled
version of equations (9) with bAj = 0 is thus:

dNj
dτ

=
uj
U

((
1−

n∑

i=1

Ni

)
Ij −Nj

)
(34a)

U
dIj
dτ

= 2γbIjKAj − bIjK
(

1−
n∑

i=1

Ni

)
Ij − dIjIj (34b)

U
dAj
dτ

= rjNj − (rj + dAj )Aj (34c)
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where Nj , Ij and Aj now denote the scaled variables. The scaling of Nj also scales the domain of functions

that are solutions to Ṅj , and hence Nj(t) ∈ [0, 1] while still Aj(t), Ij(t) ∈ [0,∞). The empty niches are also
scaled, such that we now have NE = 1−∑n

i=1Ni ∈ [0, 1].
From the steady state considerations discussed in the previous section, we note that the steady state values

of Ioj and Aoj scale linearly with uj (Equations (20) and (19)), while the steady state values of No
j and No

E

are independent of uj , see theorem 3.3. In addition, the steady state value of No
E scales with b−1

Ij
. Hence,

Assumption 1, stating that the steady state value of No
E is small compared to those of No

j , Ioj and Aoj , can be

mathematically interpreted as
uj
bIj
� 1.

We divide by bIjK in equation (34b). When we defined K in the text immediately before equations (9),

we assumed K > 1 to hold in general. Hence U
bIjK

≤ uj
bIjK

<
uj
bIj
� 1. Letting U

bIjK
→ 0, we obtain a

quasi-steady-state approximation for Ij for all j.

Lemma 4.1: Quasi-steady-state approximation, Ij

The expression

Ij,redu =
2γ

dIj
bIjK

+ 1−∑n
i=1Ni

Aj (35)

is a quasi-steady-state approximation of equation (34b), which is valid under Assumption 1.

Note that Ij,redu scales with Aj .
Dividing equation (34c) by rj+dAj , the expression U

rj+dAj
appears on the left-hand-side. When bAj = 0, the

steady state value of Aoj , equation (19), is simply
uj

rj+dAj
No∗
j . Under Assumption 2, Nj are numerous compared

to Ij and Aj , or equivalently,
uj

rj+dAj
� 1. Hence U

rj+dAj
≤ uj

rj+dAj
� 1 suggests the limit U

rj+dAj
→ 0, and a

quasi-steady-state approximation for Aj arises.

Lemma 4.2: Quasi-steady-state approximation, Aj

The expression

Aj,redu =
rj

rj + dAj
Nj (36)

is a quasi-steady-state approximation of equation (34c), which is valid under Assumption 2.

The two quasi-steady-state approximations together give rise to a reduced model, which is valid under
Assumption 1 and Assumption 2. We first define the domain of the reduced model.

Definition 4.1: Reduced domain, T

We define the reduced domain as:

T = {(N1, . . . , Nn) : Nj ≥ 0, j = 1, . . . , n ∧
n∑

j=1

Nj ≤ 1} (37)

By substituting Aj in equation (35) by Aj,redu and subsequently substituting Ij in equation (34a) by the
resulting expression for Ij,redu, the reduced model is obtained.

Definition 4.2: Reduced Model

On the domain T, the Reduced Model, is given by:

Ṅj = uj

(
2γρj(1−

∑n
i=1Ni)

αj + 1−∑n
i=1Ni

− 1

)
Nj (38)

where ρj =
rj

rj+dAj
and αj =

dIj
bIjK

. The variables Ij and Aj are given by equations (35) and (36)

respectively.

Note that equation (38) is given in unscaled time. We refer to the parameters uj , ρj and αj as the reduced
parameters. While ρj and αj are dimension-free, uj has dimension [time]−1.
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4.1 Steady states of the reduced model

The reduced form of the model, equation (38), was obtained through quasi-steady-state approximations of İj
and Ȧj , and hence the steady states of the reduced form and the full system are the same. We here derive the
steady states for illustration, and show that the stability of the steady states of the reduced form mirrors the full
system. In the reduced model, Ij and Aj are obtained from Nj through equations (35) and (36) respectively,
so we only consider N∗j .

As discussed above, the niche-bound cells are scaled with K. Hence 0 ≤∑n
i=1Ni ≤ 1 must hold generally,

and the empty niches are given as NE = 1−∑n
i=1Ni.

In steady state, we find that either N∗j = 0 or

1−
n∑

i=1

N∗i =
αj

2γρj − 1
(39)

assuming 2γρj 6= 1. Note that the condition (2γ−1)rj > dAj described in section 3.2, is equivalent to 2γρj > 1.
As with the scaled variables, we introduce a scaling of the fitness. The scaled fitness is fj = KFj , where Fj

is the fitness of the full model as defined in definition 3.1. Hence the fitness in terms of the reduced parameters
ρj and αj is:

fj =
2γρj − 1

αj
(40)

and hence equation (39) can be written as 1−∑n
i=1N

∗
i = f−1

j .
This leads to the reduced forms of the steady states.

Theorem 4.1: Trivial steady state S∗0 , reduced form

A trivial steady state, denoted S∗0 , always exists. In the trivial steady state N∗j = 0, ∀j ∈ {1, . . . , n}.

When 0 < f−1
j < 1, a single-clone steady state exists and is feasible.

Theorem 4.2: Single-clone steady state S∗j , reduced form

Given 2γρj > 1 and f−1
j < 1, a single-clone steady state exists for which N∗j > 0 while ∀k 6= j : N∗k = 0

In particular, N∗j = 1− f−1
j and N∗E = f−1

j .

We denote the jth single-clone steady state as S∗j .

As for the full model, for clones with equal fitness, co-existence steady states also exist, with the condition∑
i∈C Ni = 1− f−1 where C is the set of all co-existing clones and f is the fitness for the clones.
Two-clone example
For illustration, the steady states of the two-clone reduced form, ordered as (N∗1 , N

∗
2 )T , are:

S∗0 =




0

0


 , S∗1 =




1− f−1
1

0


 , S∗2 =




0

1− f−1
2


 (41)

If f1 = f2, a line of steady states exists, given as:

S∗C =




β

1− f−1 − β


 (42)

where f = f1 = f2 and β ∈ [0, 1− f−1]. Note that both S∗1 and S∗2 are on the line, with β = 1− f−1 and β = 0
respectively.

Local stability of the steady states of the reduced model
To investigate the stability of the steady states of the reduced form, we first define:

gj(N1, . . . , Nn) = ujαjfj

(
1−∑n

i=1Ni − f−1
j

αj + 1−∑n
i=1Ni

)
(43)

and

hj(N1, . . . , Nn) = −2γρjαjuj

(
1

αj + 1−∑n
i=1Ni

)2

Nj (44)
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As the functional dependence on N1, . . . , Nn is clear, we simply write gj and hj for the rest of this section.

Note that equation (38) can be written as Ṅj = gjNj and that
∂gj
∂Nj

= hjN
−1
j

This allow us to write the Jacobian for the reduced system as:

Jacredu =




h1 + g1 h1 . . . h1

h2 h2 + g2 . . . h2

...
...

. . .
...

hn hn . . . hn + gn




(45)

In the trivial steady state, S∗0 , we find

gj |S∗
0

=
αjuj
αj + 1

(fj − 1) (46)

for all j. The feasibility criteria for the single-clone steady state S∗j , implies that fj > 1 when S∗j is feasible.
Thus the sign of gj in the trivial steady state depends on the feasibility of the single-cell steady state.

Evaluating in the j’th single-clone steady state S∗j we find gj |S∗
j

= 0. For any k 6= j, we find that:

gk|S∗
j

=
uk

αk + 1
fj

(
fk
fj
− 1

)
(47)

Hence the sign of gk is determined by the relative fitness of the two clones. When clone k is more fit than clone
j, gk|S∗

j
> 0, and when they have the same fitness, it is zero.

We note that Nj = 0 ⇒ hj = 0. Thus hj |S∗
0

= 0, as well as hk|S∗
j

= 0 for any k 6= j. In addition, when

N∗j > 0 we find that hj < 0, and hence hj |S∗
j
< 0 as well as hj |S∗

C
< 0.

Evaluating the Jacobian in the trivial steady state we find:

Jacredu|S∗
0

=




g1|S∗
0

0 . . . 0

0 g2|S∗
0

. . . 0

...
...

. . .
...

0 0 . . . gn|S∗
0




(48)

Since the matrix is diagonal, the eigenvalues are simply gj |S∗
0
, and hence the stability of S∗0 is unstable if

any fj > 1, and stable only if for all j, fj < 1, in which case S∗0 is the only feasible equilibrium.
The stability of the single-clone steady state S∗j follows that of the full model. For illustration, we evaluate

the Jacobian in the steady state for the 1st cell-type:

Jacredu|S∗
1

=




h1|S∗
1

h1|S∗
1

. . . h1|S∗
1

0 g2|S∗
1

. . . 0

...
...

. . .
...

0 0 . . . gn|S∗
1




(49)

The matrix is upper triangular and hence the eigenvalues are again easily found. For any j 6= 1, the sign
of gj |S∗

1
is determined by

fj
f1
− 1. When gj |S∗

1
< 0, f1 > fj . Since h1|S∗

1
< 0 always, we note that S∗1 is stable

when f1 > fj holds for all j, and unstable if any fj > f1. This result holds for any single-clone steady state.
Finally, in a co-existence steady state, S∗C , where m clones have the same fitness and p clones have lower

fitness, the Jacobian has m rows of hj |S∗
C
< 0 and p rows of zeros. As an example, a three dimensional case

where f1 = f2 > f3 we have:

Jacredu|S∗
C

=




h|S∗
C

h|S∗
C

h|S∗
C

h|S∗
C

h|S∗
C

h|S∗
C

0 0 0




(50)
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where h|S∗
C

= h1|S∗
C

= h2|S∗
C

, and hence the eigenvalues are 2h|S∗
C
< 0 and 0 (with algebraic multiplicity 2).

In conclusion, the stability of the reduced model mirrors that of the full model: Fitness of clones determines
the stability in such a way that the single-clone steady state for the clone with the highest fitness is stable.

4.2 Change of variables and further simplifications

Biologically, the relative frequency of a malignant clone can be considered a measure for the molecular residual
disease in the stem cell compartment.

On the set T \ S∗0 in Rn, we define the sum of total niche-bound cells:

T =
n∑

i=1

Ni (51)

and the relative frequency of a clone for j ∈ (2, 3, . . . , n) as:

Cj =
Nj∑n
i=1Ni

(52)

Note that we can calculate C1 as C1 = 1 −∑n
i=2 Ci. As the trivial steady state S∗0 = {(0, . . . , 0)} has been

omitted, T > 0 holds and Cj is well-defined.
The n differential equations for the reduced model in equation (38) can be given in terms of T and Cj .

Definition 4.3: Transformed Model

On the domain (0, 1]× [0, 1]n−1 the transformed model is given as:

Ṫ = T

n∑

i=1

gi(T )Ci (53a)

Ċj =

(
gj(T )

n∑

i=1

Ci −
n∑

i=1

gi(T )Ci

)
Cj for j = 2, . . . n (53b)

C1 = 1−
n∑

i=2

Ci (53c)

where gj(T ) is given as

gj(T ) = ujαjfj

(
1− T − f−1

j

αj + 1− T

)
(54)

Lemma 4.3: Equivalence of the reduced model and the transformed model

When excluding the trivial steady state S∗0 from the domain of the reduced model, the transformed
model is equivalent to the reduced model from definition 4.2 in the sense that solutions of one model
can be transformed to equivalent solutions of the other model.

The function

F : (N1, . . . , Nn) ∈ T\S∗0 ⊂ Rn 7→ (T,C2, . . . , Cn) =

(
n∑

i=1

Ni,
N2∑n
i=1Ni

, . . . ,
Nn∑n
i=1Ni

)
∈ (0, 1]× [0, 1]n−1 ⊂ Rn

(55)
transforms points in the domain of the reduced model to the domain of the transformed model. The inverse
function is trivially found as:

F−1 : (T,C2, . . . , Cn) ∈ (0, 1]×[0, 1]n−1 ⊂ Rn 7→ (N1, . . . , Nn) =

(
T (1−

n∑

i=2

Ci), TC2, . . . , TCn

)
∈ T\S∗0 ⊂ Rn

(56)
The transformation F and its inverse are bijective, and hence lemma 4.3 is proven.
The function gj(T ) in equation (54) determines the sign of Ṫ and Ċj . gj(T ) = 0 only when T = T ∗1 = 1−f−1

j ,

i.e. the steady-state value of Nj in the single-clone steady state, S∗1 . For T > 1 − f−1
j , then gj(T ) < 0 and
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conversely gj(T ) > 0 when T < 1 − f−1
j . Hence, for Cj = 1 and Ci = 0 for all i 6= j, we find that T will

approach the j’th single-clone steady state:

T −→
t→∞

1− f−1
j (57)

In the transformed model, the steady states previously discussed correspond to:

S1 =




1− f∗1

0

0

...

0




, S2 =




1− f∗2

1

0

...

0




, S3 =




1− f∗3

0

1

...

0




, . . . , Sn =




1− f∗n

0

0

...

1




(58)

where Sj describes (T,C2, C3, . . . , Cn).
Co-existence steady states also exists under the same conditions as before the transformation. We restrict our

attention to a two-clone scenario where the dynamics and the co-existence steady states are clearly illustrated.

4.2.1 Total cell-count and relative HSC frequency in a two-clone scenario

While multiple populations of distinct malignant clones can arise during some hematologic malignancies, we
now consider malignancies with just one population of malignant stem cells.

Such malignancies can be described as a two-clone scenario, where the one clone models the healthy HSC
population and the second clone models the population of malignant stem cells. In a two-clone subsystem, we
write C2 as C to be concise (and hence C1 = 1− C2). Equations (53a) and (53b) can be written as:

Ṫ = [g1(T )(1− C) + g2(T )C]T (59a)

Ċ = (g2(T )− g1(T )) (1− C)C (59b)

We refer to this model as the 2-clone transformed model. In section C of the supplementary material, a detailed
analysis of the model is presented. We here summarize the most important results and refer the reader to the
supplementary material for details.

For equal fitness, f = f1 = f2, the functions g1 and g2 are identical only if all parameters are equal (i.e.
u1 = u2, α1 = α2 and f1 = f2). In this particular case, the system reduces to Ċ = 0 and Ṫ = g(T )T where
g = g1 = g2.

For f = f1 = f2 but α2 6= α1, the system has a line of steady state for which T = 1− f−1 and C ∈ [0, 1].

Theorem 4.3: Transformed two-clone system, equal fitness

For f = f1 = f2, a line of steady states SC = {(T,C) = (1 − f−1, η)} for all η ∈ [0, 1] exists. The line
of steady states is attracting along the T -axis for all C. Ċ = 0 for all T only if α1 = α2 and u1 = u2.
Otherwise T ∗e = 1 + α1α2

u2−u1

u2α2−u1α1
exists and is a nullcline for Ċ, if 0 < T ∗e < 1.

Considering now only f1 6= f2. The steady states S1 and S2 exist, corresponding to S∗1 and S∗2 respectively.
In order (T,C) they are:

S1 =




1− f−1
1

0


 , S2 =




1− f−1
2

1


 (60)

These two steady states are the only steady states of the system when f1 6= f2, and the global dynamics can
be determined.

Theorem 4.4: Global dynamics of the transformed two-clone system

For f1 6= f2, the system of equations (59) has just two steady states, S1 and S2, as defined in equations
(60). There are no periodic solutions.
For f1 > f2, all solutions with C(0) < 1 are attracted toward S1.
For f1 < f2, all solutions with C(0) > 0 are attracted toward S2.
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Details and proof of theorem 4.4 are given in section C of the supplementary material.
Nullclines for Ṫ and Ċ can be determined.

Lemma 4.4: Nullclines for the 2D transformed model

Ċ has 2 to 4 nullclines within the domain. These are C = 0, C = 1, and the two values T = T± given
in supplementary material C.
T± depend on parameters and are not considered nullclines when they are outside the domain.
Ṫ has a nullcline described by a value T between 1 − f−1

1 and 1 − f−1
2 , and a corresponding value of

Cnull(T ) given as:

Cnull(T ) =
g1(T )

g1(T )− g2(T )
(61)

The Ċ-nullclines and the Ṫ -nullcline only cross in S1 and S2.

In figure 3 some exemplary plots of the (T,C) phase-plane are shown. The nullcline(s) for Ċ are shown in
red, while the nullcline for Ṫ is shown in green. Further examples are shown in supplementary C. The figures
highlight changes in the relative frequency of the HSC belonging to the two clones which could be difficult
to notice when considering solutions of the reduced model for two clones. In particular, one of the simulated
scenarios shown in figure 3c starts from initial conditions where T (0) = 0.3 and C(0) = 0.5. In this scenario,
cell counts of both clones, N1 and N2, increase initially, with N1 increasing faster. By modelling the relative
frequency directly, we see that a decrease in relative frequency is followed by an increase when T approaches
≈ 0.65. Hence even if N1 is increasing faster than N2, the 1st clone is eventually outcompeted by the 2nd clone.
If the 2nd clone is a malignant clone, such scenarios could have clinical significance as they could arise following
treatment.

(a) f1 > f2 (b) f1 = f2 (c) f1 < f2

Figure 3: Phase-planes displaying exemplary scenarios of the
2-clone transformed model. The open circle denotes unstable
steady states while the asterisk denotes the stable steady states.
Grey lines are numerical solutions, with the same initial conditions
in the three panels. The green dashed lines are the nullclines for
T , while the red dotted lines are the nullclines for C. The arrows
show the directional field of flows. As the flow and the values of the
steady states depend on the specific parameter values, the figures
are examples of typical behaviours, but differences in parameter will
influence the specific flows. In panel (b) the fitness is equal, and the
line of co-existence steady states, SC is shown as a black dash-dotted
line

4.2.2 Additional simplification of a two-clone scenario

We introduce a final simplification of the model, valid close to S1. Evaluating in S1, i.e. T = T ∗1 , we see from
equation (54), g1(T ∗1 ) = 0 and

g2(T ∗1 ) = u2
α2

α2 + f−1
1

(
f2

f1
− 1

)
(62)

Assuming T ∗1 ≈ T ∗2 , we approximate Ṫ = 0. For T (0) = T ∗1 , a simplified expression for the relative frequency
of the HSC belonging to the two clones arises, in which the expression for g2(T ∗1 ) above determines the model
behaviour.
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Definition 4.4: Logistic Approximation describing the relative frequency of the mutated
clone

The Logistic Approximation Model is given as

Ċ = φ(1− C)C (63)

where φ = g2(T ∗1 ) = u2
α2

α2+f−1
1

(
f2

f1
− 1
)

. The sum of HSC is constant with T = 1− f−1
1 .

Note that φ is not a dimension-free parameter and has units of [time]−1, like uj .
The logistic approximation model is valid close to S1, and when T ∗1 ≈ T ∗2 , i.e. when the steady-state cell-

count of second clone is similar to the cell-count of the first clone in steady state. This is the case when f1 ≈ f2.
Hence, we assume that the initial stages of a malignancy which only has a minor fitness advantage are described
accurately by the logistic approximation model.

Equation (63) is a logistic equation, with steady states C = 0 and C = 1, corresponding to S1 and S2

respectively. φ determines the direction of flow and hence the disease progression. When φ > 0, the steady
state C = 1 is stable, while C = 0 is stable for φ < 0. The sign of φ depends solely on f2

f1
. When f2 > f1, φ > 0,

while f2 < f1 implies φ < 0. Thus the asymptotic behaviour of the logistic approximation is in agreement with
previous analysis of the model.

φ does not depend on u1. This is an artefact of the approximation. When u1 and u2 are much different,
only little agreement is found with numerical solutions of equations (59).

The logistic approximation model represents the simplest formulation that maintains the asymptotic be-
haviour of the model. Further simplification, e.g. to exponential growth during initial disease stages, fails to
capture both S1 and S2 and the dependence on fitness as determinant of steady-state stability.

5 Model application to clinical data

Consider a specific hematopoietic malignancy; the group of Philadelphia-negative myeloproliferative neoplasms
(MPNs), characterized by the JAK2V 617F mutation. The allele burden of cells with the JAK2V 617F mutation
provides an estimate of the residual disease and can be interpreted as the relative frequency of the malignant
clone in our model.

We introduce examples of patient-data, previously presented (Pedersen et al., 2020). The patient-data
consists of measurements of the JAK2V 617F allele burden identified in blood-cells during treatment-free periods
and periods with mono-therapy with pegylated Interferon-α. We consider the measured JAK2V 617F allele
burden indicative of the frequency of mutated HSC among all HSC.

A general rule for applying models to clinical practice is to keep the models as simple as possible without
losing the agreement with data to avoid overparametrization. From visual inspection, the data for both the
treatment-free disease progression and the development during therapy is approximately logistic. We fit the
logistic approximation from equation (63) to data, by minimizing the mean square error, using the MATLAB

R2018b function fminsearch. In figure 4a depicts data from three untreated MPN-patients along with fits of
the logistic equation. In addition, we also fit the initial value of C. Note that the first 200 days are excluded from
the fit. This is done since all three patients previously received treatment and a continued decline immediately
after treatment-stop is expected (Pedersen et al., 2020).

Figure 4b displays five patients with a range of different initial JAK2V 617F allele burdens, receiving treatment
with pegylated interferon alfa-2a (Pegasys) or pegylated interferon alfa-2b (PegIntron). The figure also shows
a fit of the logistic approximation model to the data. Baseline-measurement have been time-shifted to coincide
with a growth of the JAK2V 617F allele burden of φ = 0.6, similar to two of the patients shown in figure 4a.

The data and fits presented exemplify the range of values of φ for disease progression and treatment for
MPN-diagnosed patients.
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(a) (b)

Figure 4: Fit of the logistic approximation to data from
MPN-diagnosed patients. Panel (a) depicts data from three
patients during a treatment-free period. Note that data during the
initial 200 days were excluded from the fit, as delayed responses from
previous treatment are expected to influence this period. For the
fits, both the initial value of C and the value of φ was fitted to the
data. Panel (b) shows a typical disease progression in the model in
dotted black, along with data from five patients receiving treatment
with interferon-α, time-shifted to coincide with the growth. At the
time of treatment initialization, the value of φ is changed. The new
value of φ was fitted such that it minimized the least-square error
between the model and the given patient. In units of years−1, the
three patient-specific values of φ in panel (a) during untreated de-
velopment of MPNs are 0.59, 0.63 and 0.30. For the development
during treatment, the five patient-specific values of φ in panel (b)
are −0.66, −0.85, −1.1, −1.7 and −2.3.

6 Discussion and conclusion

Despite the vital role of HSC in the human body, many questions about their dynamics remain unanswered.
The elusive processes within the bone-marrow microenvironment have yet to be fully identified and determined
quantitatively. We propose a mechanism-based mathematical model of HSC behaviour based on the state-of-
the-art biological knowledge about HSC behaviour. Through mathematical analysis and numerical simulations,
the model can help to clarify the general understanding of HSC dynamics, and in future work be used to
generate testable hypotheses that can elucidate the open questions surrounding HSC, both in health and in
disease. Through a series of considerations and assumptions based on biological knowledge, multiple model
simplifications arise. This leads to a reduced model (Definition 4.2), a transformed model (Definition 4.3) and
a logistic approximation model (Definition 4.4), in addition to the full model.

Mathematical analysis of a proposed model of HSC dynamics

The full form of the proposed model consists of a system of ordinary differential equations, describing HSC-
specific niches in the bone-marrow and n distinct clones of HSC. In the model, HSC can be in three distin-
guishable states; niche-bound, active and inactive. The n clones model separates subpopulations of HSC where
cells pertaining to a given clone are assumed to be identical. Considering multiple clones in the model hence
corresponds to scenarios where cellular heterogeneity is present in the HSC population, such as in the case of
hematologic malignancies as e.g. acute myeloid leukemia or MPN. HSC are modelled to bind reversibly to the
niches. Following detachment from the niches, the HSC are in the active state. The self-renewal potential of
this active state decreases during divisions outside the niche. After a certain number of divisions, cells enter an
inactive state and have to rebind to the niche or differentiate. During rebinding to the niche, the HSC restore
their self-renewal potential and can become reactivated. The switching between the niche-bound HSC state,
the active state (outside the niche, prone to divide) and inactive state (outside the niche, prone to differentiate
or reattach) is the novelty of the proposed model.

A special case of the model has previously been investigated with focus on certain clinical consequences
of the modelled mechanisms (Pedersen et al., nd). In contrast, the present work is a thorough mathematical
analysis of a more general model.

The proposed model bears similarities to models of HSC found in the literature. Ashcroft et al. (2017)
proposed a similar model of HSC dynamics and interaction with the niches, in which detachment from the niche
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was also explicitly considered. The detachment was related to a subsequent release into the peripheral blood,
related to an enhanced probability of stem cell death, and not related to stem cell division in the way we consider
in our model. Instead, Ashcroft et al. (2017) models HSC division such that one cell maintains its position within
the niche and the other enters either an empty niche or the peripheral blood. By modelling detachment from
the niche as a prerequisite for HSC division, we were able to investigate which effect such detachment could have
on clonal competition. Interestingly, our model implies that clonal dominance was independent of detachment
rate, which suggests that detachment in the way we modelled it only plays a minor role in competition between
clones. We emphasize that our suggestion of detachment as a prerequisite for division is a novel hypothesis, and
requires confirmation by experimental evidence. In the work of Stiehl et al. (2020), a model of the HSC-niche
system is also considered. Similarly, cell-division occurs in the niche and one of the resulting cells maintains
its position in the niche. The model does not consider explicit detachment from the niche, instead free stem
cells can dislodge bound stem cells from the niche leading to a cell-cell competition for specific niches. HSC
differentiate after a certain number of unsuccessful attempts to occupy a niche. Hence, the model proposed by
Stiehl et al. (2020) provides a biological explanation for why HSC differentiate which is lacking in our proposed
model. However, a model extension with multiple stages of free cells, similar to the extension discussed in
supplementary material A, could allow for a similar interpretation in our model, by modelling an increasing
probability for differentiation following each division.

Becker et al. (2019) considers a model of HSC interaction with the niche. Similar to our model, niche-bound
cells are considered quiescent and free cells are proliferating. In the model described by Becker et al. (2019),
HSC feedback on niche cells plays a significant role, modelling a dynamic relation between HSC and niche cells.
In contrast, we implicitly assume that the number of niches are constant in our model, and instead focus on
the dynamics of HSC under this condition. Modelling changes in the number of niches could be considered by
a more elaborate expression for the dynamics of empty niches, the processes considered by Becker et al. (2019)
could be included on our model. However, due to the uncertainty about the exact cells that make up the niche,
considering such specifics as reproduction and death rates of the abstract niches we consider would be difficult.
Combining the findings of our model with those of Becker et al. (2019), suggest that the biological HSC-niche
system is robust, and can return to homeostasis after perturbations of both cell- and niche-count.

Analysis of our model identified an attractive trapping region. Solutions to the system of differential equa-
tions with initial conditions outside this region were found to enter the region in finite time. This implies that
the model is biologically reasonable and appropriate even when the initial state is perturbed.

Mathematical analysis revealed the equilibria of the system, as well as their local stability. The existence,
non-negativity and stability of the steady states were found to depend on an expression consisting of clone-
specific parameters, which we denote as the HSC fitness, Fj for the jth clone. A trivial steady state, S∗0 , with no
HSC and only empty niche-space always exists. For each clone considered, a single-clone steady state, S∗j , exists

in which the given clone has non-zero cell-counts and all other clones are vanishing. The jth clone has positive
cell-counts only when the respective fitness Fj is positive. When any Fj is positive, the trivial steady state is
unstable. The single-clone steady state of the clone with the higher fitness is locally stable. Determining the
fitness of clones thus reveals which clone is dominant in a competitive setting. If multiple clones have the same
fitness, a simplex of steady states exists in which the clones co-exists. Although such situations of co-existence
could be mathematically possible, it is biologically unlikely that equal fitness is attainable for extended lengths
of time due to the noisy biological environment and other systemic factors. For this reason, the co-existence of
steady states can be considered a mathematical artefact rather than a biological relevant feature of the system.
The complete local stability considerations of the full 3n+ 1 dimensional model are described in section 3.3.

The stability of the steady states reveals that the fitness can be used to predict the outcome of competition
between HSC clones. A given clone outcompetes a less fit clone, leading to extinction of the less fit clone.
Comparing this dynamic to dynamics known from ecology sheds light on the nature of competing stem cells
as not simply cells that interact freely with the bone-marrow niches, but instead as populations competing for
a shared resource, similar to ecological systems. The fitness expression depends solely on the properties of a
given clone and its interaction with the bone-marrow niches and thus it is independent of the properties of other
clones. For this reason, the fitness of a clone can be determined from single-clone experiments and the result
of competition can be predicted without experiments in which multiple clones are present simultaneously. The
fitness is independent of the number of niches, K. This implies that the presence of many or few niches has no
qualitative effect on the asymptotic behaviour; the clone with the higher fitness will out-compete other clones
regardless of niche-counts. It is possible that this independence of the number of niches is a consequence of
the assumption that K is constant in the proposed model. Changes to the niche-count K could arise due to
e.g. age-related growth of a young individual, a specific HSC-niche interaction as suggested by Becker et al.
(2019), or feedback from the immune system in response to hematologic malignancy. Such changes could affect
the entire bone-marrow microenvironment, either indirectly by changing niche-counts, or indirectly through
other means. This could in turn affect the proposed model and the fitness expression. By considering HSC in
isolation from external factors, the proposed model provides an estimate of HSC dynamics based on the process
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parameters that we considered most significant.

Biological assumptions imply a model reduction

Based on the biological assumptions that only few niches are empty in homeostasis and that the majority of
HSC are bound to the niche, a reduced model is proposed. These assumptions are interpreted mathematically
and imply that quasi-steady-state approximations of non-niche-bound HSC are appropriate. For n clones, the
full model has 3n dynamic variables, whereas the reduced model is given by an n-dimensional system of ODEs,
and reduce the number of parameters considered from 6n + 2 to 3n + 1. The steady states of the reduced
model correspond to the steady state of the full model, and stability considerations reveal that the criteria
for stability of the steady states depend on HSC fitness in the same way as in the full model. In the reduced
model, parameters are grouped together in aggregated parameters. Thus, it is possible that specific changes to
the parameters are not captured by the reduced model, e.g. if the attachment and differentiation of inactive
HSC increase equally, the reduced model remains unchanged while minor changes appear in the full model. For
comparing the model with experimental or clinical data however, this implies that there can be types of data
where the reduced model is identifiable but the full model is not.

Transformation of the model highlights clinical relevance

We presented a transformation of the reduced model to the total HSC cell-count and a measure of the fraction
of cells pertaining to a given clone. Under the transformation the trivial steady state is omitted, however the
existence and stability of the remaining steady states are identical to those in the full model. The transformed
variables can be related to clinical measurements. In particular, many hematologic malignancies arise from a
single malignant clone in a setting where the remaining HSC are similar enough in properties to be considered
identical. As such, considering the transformation for a two-clone scenario has significant clinical relevance.

The transformed model offers a different way to understand and illustrate HSC dynamics compared to the
reduced model. One particular concept with clinical relevance was illustrated in figure 3c. In a scenario where
a malignant clone had a higher fitness compared to healthy HSC, we observed that for low initial counts of
HSC, it was possible for the relative frequency of the malignant clone to decrease initially before approaching
the attracting steady state corresponding to full disease. Clinically, this is interesting as low HSC counts can
arise due to treatment such as chemotherapy. Hence, the model suggests that after chemotherapy, a patient
could experience a temporary decrease in disease burden, followed by an increasing disease burden. Immediately
following the treatment, it could hence wrongly be interpreted that the treatment leads to long-lasting decrease
of disease burden, and give false hopes for eradication of the malignancy. Even for scenarios with equal fitness,
chemotherapy leading to an equal decrease for all clones can cause changes in relative frequency, as illustrated
in supplementary figure A2. It is unclear how these observations apply to clinical practice, but our findings
suggest evaluating the response to treatment can be nonlinear and complex.

Further simplification allows for simple comparison to clinical data

A further simplification of the transformed model for two clones may be illustrative as well as applicable in the
clinical setting. Under the assumption that HSC counts in steady state do not vary significantly between the
healthy state and the full-blown disease state, the transformed model simplifies to a logistic equation for the
relative frequency of the malignant clone. A single aggregated parameter, φ, determines the dynamics of the
relative frequency, revealing how independent parameters influence the general behaviour. The steady states of
the logistic approximation were the same as in the full model. Local stability of the steady states was similarly
determined sby HSC fitness, and the criteria for clonal dominance in the logistic approximation model agree
with the full model. The simplification offers an explanation for the success and frequent use of logistic or
exponential models to describe hematologic malignancies. Our approach provides a theoretical foundation for
otherwise empirical models of disease burden growth and decay.

We identified the parameter φ of the logistic equation for the relative frequency for an exemplary subset of
a published MPN-patient cohort. Both treatment-free disease progression and periods of interferon-α mono-
therapy were found to agree well with the logistic approximation. Hence, the model provides an estimate for the
development of the disease burden for the patients investigated. The clinical data consisted of measurements
of the JAK2V 617F allele burden in blood cells. Although the disease burden of blood cells and HSC can be
different in principle, evidence suggests that specifically for the JAK2V 617F mutation, the disease burdens in
mature and immature cell compartments are strongly correlated (Takahashi et al., 2013). For this reason, we
assumed the relative frequency of malignant cells to be equal for blood cells and HSC.

The single-parameter logistic expression agreed well with data of MPN patients during and following
interferon-α treatment and set a lower bound for how well a more complex model could fit to data. When
considering the scenario with two distinct HSC clones, the reduced model has 7 parameters and the full model
has a total of 14 parameters. Hence, a fit of either model to the sparse data presented could result in significant
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overparametrization. Thus, even if the logistic approximation appeared simplistic, it provided a reasonable
estimate for HSC dynamics. Further investigation of how the different forms of the model compares to data
may suggest novel in vitro or mice experiments to understand and directly quantify the HSC-processes that
the model was based on. This could include various HSC labelling assays which could identify properties such
as e.g. how many times an active HSC divides before exhaustion (γ) or if labelled cells always divide before
attaching to the niche in vivo, implying bAj = 0.

Concluding remarks

In conclusion, mathematical analysis of a proposed model of hematopoietic stem cells allowed us to investigate
the dynamics of a complex biological system which is inherently difficult to observe experimentally. Through
a sequence of model reductions and simplifications based on biological knowledge, a simple logistic expression
arose. Long-term persistence of a clone was determined by an expression of stem cell fitness, and criteria for
clonal dominance were the same for the reduced and simplified models. By comparing the simplified model
to clinical data, the model was found to be in agreement with clinical observations. Our results have clinical
implications about hematopoietic stem cells when the various systems of feedback from the blood or immune
system are not considered. In this work, we assumed that the effect of such feedbacks had little significance.
How these feedbacks, such as e.g. inflammation of the bone-marrow, change the dynamics of the hematopoietic
stem cells is an important topic to be investigated in future work.
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Supplementary material

A Arbitrary number of division before HSC exhaustion

In general, the number of divisions HSC perform before entering the state of exhaustion can be larger than
one. In the following, we present a model where HSC become exhausted after an arbitrary finite number of J
divisions. Under certain assumptions, this model is identical to the model derived in the main text. For the sake
of simplicity we consider a version of the model describing only a single clone. We subdivide the compartment
of active cells A to keep track of the number of divisions cells have performed. By Ai we denote the population
of activated HSC that have performed i−1 divisions. Hence, cells that have just detached from the niche belong
to compartment A1, upon division each cell of compartment A1 gives rise to two cells of compartment A2, et
cetera.

The model with J HSC divisions before exhaustion can be written as:

Ṅ =
J∑

i=1

(bi(K −N)Ai)− uN (A.1a)

Ȧ1 = −b1(K −N)A1 − (r1 + d1)A1 + uN (A.1b)

Ȧi = −bi(K −N)Ai + 2ri−1Ai−1 − (ri + di)Ai (A.1c)

ȦJ = −bJ(K −N)AJ + 2rJ−1AJ−1 − dJAJ (A.1d)

N

A1

AJ

A2

A3

(Progenitors)

u

b1

b2

b3

bJ

r1

2r1

×

r2

2r2

×

dJ

d1

d2

d3

Figure A1: Compartment diagram of the model with mul-
tiple stage of free HSC. Each box illustrates a variable, with
arrows depicting the relations between the variables. The circles
with the crosses, × signify a doubling.

By a quasi-steady-state approximation of A2 type cells, we find that

Ȧ2 = 0⇒ A2 =
2r1

r2 + d2 + b2(K −N)
A1 (A.2)

The expression for Ȧ3 can then be written as:

Ȧ3 = 2r2

(
2r1

r2 + d2 + b2(K −N)

)
A1 − d3A3 − b3(K −N)A3 (A.3)

For the model presented in our previous work (Pedersen et al., nd), fitting to data revealed that bA1
is very

low. Here this corresponds to b1. Assuming that this also holds for the intermediate steps, we set b2 = 0.
Equation (A.3) then becomes

Ȧ3 = 4r1ρ2A1 − d3A3 − b3(K −N)A3 (A.4)
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where ρ2 =
r2

r2 + d2
.

Repeating this for all division events taking place before exhaustion, i.e. assuming bi = 0 and making a
quasi-steady-state approximation of step i, the final step, AJ , becomes:

ȦJ = 2r1

(
J∏

i=2

2ρi

)
A1 − dJAJ − bJ(K −N)AJ (A.5)

Defining γ =
∏J
i=2 2ρi we obtain the system described in the main text. In addition, if the probability ri

that a stem cell in compartment Ai divides is approximately equal to the probability that it differentiates, di,
we can approximate 2ρi = 2ri

ri+di
≈ 1. This implies that γ = 1 which further simplifies the system. Hence the

final step, AJ , is defined as presented in the main paper.

B Details about stability of steady states

In section 3.3 of the main text, we consider the stability of the steady states for the full 3n system.
For the trivial steady state S∗0 and the single-clone steady states S∗j , this depends solely on the eigenvalues

of the matrix Dj defined as:

Dj =




−bIjIj − bAjAj − uj bIj (K −∑n
i=1Ni) bAj (K −∑n

i=1Ni)

bIjIj −bIj (K −∑n
i=1Ni)− dIj 2γrj

uj + bAjAj 0 −bAj (K −∑n
i=1Ni)− rj − dAj




(B.1)

The characteristic polynomial of Dj , can be written as Pj(λ) = λ3 + a2λ
2 + a1λ+ a0 for which:

a2 =(bIj + bAj )NE + bIjIj + bAjAj + dIj + dAj + rj + uj

a1 =bAj bIjN
2
E + bIj (bAjAj + bAjIj + bAj

dIj
bIj

+ dAj + rj + uj)NE

+ (dAj + dIj + rj)
(
bAjAj + bIjIj + uj

)
+ dIj (rj + dAj )

a0 =bIj
[
bAjdIjIj − ((2γ − 1)rj − dAj )bAjAj − ((2γ − 1)rj − dAj )uj

]
NE

+ dIj (rj + dAj )
(
bAjAj + bIjIJ + uj

)

where NE = K −∑n
i=1Ni

The Routh-Hurwitz criterion can be used to determine if all roots of the polynomial Pj have negative real
part. This is the case if and only if a2 > 0, a1 > 0, a0 > 0 and a2a1 > a0.

It can be seen from the above expressions that when NE , Aj and Ij are non-negative, it must hold that
a2 > 0 as well as a1 > 0. Hence when Dj is evaluated in either of the feasible steady states, it is the case that
a2 > 0 and a1 > 0.

Whenever NE , Aj and Ij are non-negative, we find that a2a1− a0 > 0. This can be seen by considering the
negative parts of −a0. Each negative contribution also appears in a2a1 and hence only positive contributions
of −a0 and a2a1 remain, and thus a2a1 − a0 > 0

Thus, the Routh-Hurwitz stability criterion depends only on the sign of a0.
When evaluating in the trivial steady state, S∗0 , we find that the characteristic polynomial of Dj |S∗

0
has

a0|S∗
0

= −ujbIj
(
(2γ − 1)rj − dAj

) (
K − 1

Fj

)
. The requirement for feasibility of a single-clone steady state S∗j

implies that (2γ−1)rj−dAj > 0 as well as K− 1
Fj
> 0, and hence if the j’th single-clone steady state is feasible,

a0|S∗
0
< 0, and hence the Routh-Hurwitz stability criterion does not hold and Dj |S∗

0
has at least one eigenvalue

with positive real part.
Evaluating in the single-clone steady state, S∗j , we find a0|S∗

j
= −a0|S∗

0
, and the Routh-Hurwitz stability

criterion holds. Hence, all eigenvalues of Dj |S∗
j

have negative real part.

Finally we consider Dj |S∗
k

where j 6= k, i.e. the matrix related to the j’th clone evaluated at the k’th
single-clone steady state. Again, assuming the j’th clone has feasible steady states, only the sign of a0 has to
be considered.

To determine the eigenvalues of Dj |S∗
k

for j 6= k, we find that the constant term of the characteristic
polynomial is:

a0,Dj |S∗
k

= ujbIj
(
(2γ − 1)rj − dAj

) 1

Fk

(
Fk
Fj
− 1

)
(B.2)
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If Fk > Fj we find a0,Dj |S∗
k
> 0, and the Routh-Hurwitz stability criterion holds, and the eigenvalues of

Dj |S∗
k

all have negative real part. Conversely, when Fk < Fj , the criterion does not hold, and at least one
eigenvalue has positive real part.

Co-existence steady state
When two or more cell-type have equal fitness, a simplex of steady states exists, S∗C . We here show that the

system has an eigenvector along the simplex, and that the corresponding eigenvalue is zero. For simplicity, we
show this for the case where only two cell-types are considered.

In this particular case, the Jacobian is given as:

Jac =



D1 G1

G2 D2


 (B.3)

When projecting the simplex of steady states onto a N1, N2 plane, it is a line with slope −1. The particular
non-zero eigenvector corresponding to the eigenvalue zero can be written as:

V0 =




1

νI1

νA1

−1

−νI2

−νA2




(B.4)

where νAj and νIj are defined as

νAj =
uj

bAj
1
Fj

+ rj + dAj
(B.5)

and

νIj =
2γrjuj(

rj + dAj + bAj
1
Fj

)(
dIj + bIj

1
Fj

) =
2γrjνAj

dIj + bIj
1
Fj

(B.6)

Note that the steady state values of Aj and Ij can be written in general as:

A∗j = νAjN
∗
j (B.7)

and
I∗j = νIjN

∗
j (B.8)

The Jacobian multiplied by the eigenvector V0 yields:

JacV0 =




−u1 + νI1bI1NE + νA1bA1NE

−νI1(bI1NE + dI1) + νA1
2γr1

u1 − νA1
(bA1

NE + r1 + dA1
)

−u2 + νI2bI2NE + νA2bA2NE

−νI2(bI2NE + dI2) + νA2
2γr2

u2 − νA2
(bA2

NE + r2 + dA2
)




(B.9)
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For existence of the co-existence steady state, we have F = F1 = F2. Evaluating at S∗C we find:

Jac|S∗
C
V0 =




−u1 + νI1bI1F
−1 + νA1bA1F

−1

−νI1(bI1F
−1 + dI1) + νA1

2γr1

u1 − νA1
(bA1

F−1 + r1 + dA1
)

−u2 + νI2bI2F
−1 + νA2bA2F

−1

−νI2(bI2F
−1 + dI2) + νA2

2γr2

u2 − νA2
(bA2

F−1 + r2 + dA2
)




(B.10)

All terms of this vector are zero. This can be seen by substituting F with F1 =
bI1 ((2γ−1)r1−dA1

)

dI1 (r1+dA1
) in

the first three components and with F2 =
bI2 ((2γ−1)r2−dA2

)

dI2 (r2+dA2
) in the bottom three components. Thus, we find

Jac|S∗
C
V0 = 0V0, and the vector V0 is indeed a non-zero eigenvector of Jac|S∗

C
, with the corresponding eigenvalue

of 0.

C Details about analysis of the transformed model

In section 4.2 we present a transformation of the reduced model. When only two distinct clones are considered,
the 2-clone transformed model is given as:

Ṫ = (g1(T )(1− C) + g2(T )C)T (C.1a)

Ċ = (g2(T )− g1(T ))(1− C)C (C.1b)

where gj = ujαjfj
1−T−f−1

j

αj+1−T . Only solutions to equations (C.1) that exists on the domain D = {(T,C) ∈
(0, 1]× [0, 1]} are considered. In this section, we present a detailed analysis of equations (C.1).

Initially, note that solutions are indeed restricted to the domain D. This can be observed by considering
equations (C.1) along the boundaries of the domain. We first consider the lower boundary of T by taking
T → 0+:

lim
T→0+

Ṫ

T
= g1(0)(1− C) + g2(0)C (C.2)

In general, we assume that feasible steady states exists for both clones, and hence 0 < f−1
1 < 1 and 0 < f−1

2 < 1.

This implies that g1(0) > 0 and g2(0) > 0, and hence limT→0+
Ṫ
T > 0, and trajectories of solutions with initial

conditions within D do not approach T = 0. The restrictions of the remaining three boundaries are determined
by evaluating the differential equations at the boundaries:

Ṫ |T=1 = g1(1)(1− C) + g2(1)C = −u1(1− C)− u2C < 0 (C.3)

Ċ|C=0 = 0 (C.4)

Ċ|C=1 = 0 (C.5)

Equilibria
While the steady states for the n-clone transformed model were presented in the main text, we briefly re-

iterate the steady states of the 2-clone form. Ċ = 0 implies either C = 0, C = 1 or g2(T ) = g1(T ). We consider
these in order. For C = 0, Ṫ = g1(T )T , which has just one zero, namely T = T ∗1 = 1− f−1

1 . This results in the
equilibrium S1 = (1− f−1

1 , 0). Similarly, C = 1 implies Ṫ = g2(T )T which has zero T = T ∗2 = 1− f−1
2 , resulting

in the equilibrium S2 = (1− f−1
2 , 1).

Lastly we consider co-existence steady states, SC , where 0 < C∗c < 1. We note that Ṫ can be re-written
such that:

Ṫ = (g1(T ) + (g2(T )− g1(T ))C)T (C.6)

When g2(T ) = g1(T ), we can write Ṫ = g1(T )T , which is zero only if T = T ∗1 . Hence, an equilibrium with
0 < C∗c < 1 must have T = T ∗1 . Since gj(T ) = 0 only holds for gj(1 − f−1

j ), Ṫ = 0 implies g2(T ∗1 ) = 0, and

hence f1 = f2. Thus, co-existence steady states SC only exist when f1 = f2. For f1 6= f2, equations (C.1) has
just two equilibria, S1 and S2.
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Lemma C.1: Equilibria of the 2-clone transformed model

For f1 6= f2, equations (C.1) has just two equilibria, S1 and S2. In order (T,C) these are:

S1 =




1− f−1
1

0


 and S2 =




1− f−1
2

1


 (C.7)

When f1 = f2, a line of steady states SC exist:

SC =




1− f−1
1

ν


 (C.8)

where ν ∈ [0, 1].

For f1 6= f2, the two equilibria S1 and S2 exist on the boundary of D. Hence an orbit of solutions cannot
enclose either of the equilibria. For f = f1 = f2, the line of steady states SC divides D in two sub-domains,
one with T ∈ (0, 1 − f−1) and one with T ∈ (1 − f−1, 1]. Trajectories in one sub-domain cannot enter the
other as it would require leaving the domain D or crossing SC , neither of which is possible. Hence, periodic
orbits surrounding SC cannot exist. As any periodic orbit in 2D must have at least one interior equilibrium
due to index theory (Meiss, 2007), there can be no periodic solutions to equations (C.1). Thus, due to the
Poincaré-Bendixon theorem, any solution trajectory must converge to either S1 or S2 when f1 6= f2, or to a
point on SC for f1 = f2.

Global attraction of steady states
It can be shown trivially that when f1 = f2, Ṫ > 0 for all T ∈ (0, 1− f−1) and Ṫ < 0 for T ∈ (1− f−1, 1].

Hence the points on the line SC are attractive for all initial conditions. Note however, as we show below, C is
not necessarily constant when f1 = f2, see figure A2.

For f1 6= f2, an attractive trapping region can be found. For brevity, we consider the case f1 < f2, as the
case f1 > f2 follows by symmetry.

Defining
T2,ε = 1− f−1

2 + ε (C.9)

for any ε ≥ 0, we observe that g1(T2,ε) < 0 and g2(T2,ε) ≤ 0, with equality only for ε = 0. Hence

Ṫ |T2,ε
= (g1(T2,ε)(1− C) + g2(T2,ε)C)T2,ε ≥ 0 (C.10)

where Ṫ |T2,ε
= 0 only when both C = 1 and ε = 0.

We present an argument analogous to our definition of the trapping region of the full model in section 3.1
of the main text.

Consider an interval T = [T2,ε, T2,ε + ∆] with ∆ > 0 on which Ṫ < 0. Due to the extreme value theorem,

there exists a finite η such that −Ṫ ≥ η,∀T ∈ T, since T is a compact subset. In particular

inf
T

(−Ṫ ) = min
T

(−Ṫ ) = η > 0 (C.11)

and hence 1
−Ṫ ≤

1
η holds for all T ∈ T.

To determine the time t∆ it takes for the flow from T (0) = T2,ε + ∆ to reach T (t∆) = T2,ε we integrate over
the interval:

t∆ =

∫ t∆

0

dt =

∫ T (t∆)

T (0)

1

Ṫ
dT =

∫ T2,ε+∆

T2,ε

1

−Ṫ
dT ≤ ∆

η
(C.12)

and hence t∆ is finite. Thus for any ∆ > 0, any point with T (0) = T2,ε + ∆ will move along a trajectory that
enters the region T ≤ T2,ε in finite time for any ε > 0.

Defining
T1,−ε = 1− f−1

1 − ε (C.13)

a similar argument can be made that any point with T (0) < T1,−ε enter the region in finite time. Hence there
is a region M = {(T,C) ∈ [1− f−1

1 , 1− f−1
2 ]× (0, 1)} ⊂ D which is an attractive trapping region for all points

in D \M
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Observe that for all T ∈ M, it holds that g1(T ) ≤ 0 with equality only in T = T ∗1 , and g2(T ) ≥ 0 with
equality only in T = T ∗2 . Hence g2(T )− g1(T ) > 0 since T ∗1 6= T ∗2 . Thus, for T ∈M:

lim
C→0+

Ċ

C
= lim
C→0+

(g2(T )− g1(T )) (1− C) = g2(T )− g1(T ) > 0 (C.14)

and hence S1 is unstable.
We define Mε = {(T,C) ∈ [1 − f−1

1 , 1 − f−1
2 ] × (ε, 1)} for any ε > 0. The region Mε, only contains

one equilibrium, S2. As there can be no periodic solutions, we have determined that S2 is attractive for all
trajectories with C(0) > 0. As M is an attractive trapping region for all points in D \M, this result extends
to all points in D. For the case f1 > f2, a similar construction with C ∈ [0, 1 − ε] for all ε > 0 can be made,
implying that S1 is an attractor for all initial conditions with C(0) < 1.

Lemma C.2: Limit sets of solutions

For f1 < f2, there are two equilibria, S1 and S2. S2 is an attractor for all points with C(0) > 0.
For f1 > f2, there are two equilibria, S1 and S2. S1 is an attractor for all points with C(0) < 1.

Figure A2: Illustrative example of an equal fitness scenario.
In the simulation, ρ1 = ρ2 and α1 = α2 and hence f1 = f2. However
u2 = 5u1, which causes the abundance of the clone with the higher
fitness to increase as solutions approach the co-existence equilib-
rium.

Conditions for g2(T ) = g1(T ).
The expression g2(T ) = g1(T ) can be written as a second order polynomial in T . Defining µj = ujαjfj :

g2(T ) = g1(T ) (C.15)

u2α2f2
1− T − f−1

2

α2 + 1− T = u1α1f1
1− T − f−1

1

α1 + 1− T (C.16)

µ2
1− T − f−1

2

α2 + 1− T = µ1
1− T − f−1

1

α1 + 1− T (C.17)

aT 2 + bT + c = 0 (C.18)
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where

a = µ2 − µ1 (C.19a)

b = −µ2

(
(1− f−1

2 ) + (α1 + 1)
)

+ µ1

(
(1− f−1

1 ) + (α2 + 1)
)

(C.19b)

c = µ2(1− f−1
2 )(α1 + 1)− µ1(1− f−1

1 )(α2 + 1) (C.19c)

If a = 0, b = 0 and c = 0, then g1 and g2 are identical functions. Assuming µ1 = µ2 = µ, a = 0 is fulfilled.
Equation (C.19b) then becomes:

b = µ
(
f−1

2 − f−1
1 + α2 − α1

)
(C.20)

For b = 0, it must hold that f−1
1 = f−1

2 + α2 − α1. This allows for a simplification of c:

c = µ
(
f−1

2 + α1

)
(α2 − α1) (C.21)

And hence α2 = α1 implies c = 0, since all parameters are positive.
Writing up g2(T ) = g1(T ) again, with α = α1 = α2, we obtain:

µ2
1− T − f−1

2

α+ 1− T = µ1
1− T − f−1

1

α+ 1− T (C.22)

µ2(1− T − f−1
2 ) = µ1(1− T − f−1

1 ) (C.23)

µ2(1− T − f−1
2 )− µ1(1− T − f−1

1 ) = 0 (C.24)

−(µ2 − µ1)T + µ2(1− f−1
2 )− µ1(1− f−2

1 ) = 0 (C.25)

which is linear in T . If µ1 = µ2, the expression simplifies to f1 = f2.
Finally, when both f1 = f2 and α1 = α2, the functions g1 and g2 are identical only when u1 = u2. Thus, it

is only possible for g2(T ) = g1(T ) to hold for all T when all parameters are equal.

Lemma C.3: Condition for g2 = g1

The functions g1(T ) and g2(T ) are equal for all T if and only if f1 = f2, α1 = α2 and u1 = u2, in which
case g1 and g2 are identical functions.

We emphasize that f1 = f2 is not sufficient for g2(T ) = g1(T ) to hold for all T .
Nullclines for Ṫ and Ċ
Assuming that g1 and g2 are not identical, and hence that f1 6= f2, α1 6= α2 and u1 6= u2, it is possible for

the second order polynomial of equation (C.18) to have one or two real roots between 0 and 1. These values,
T±, are nullclines for Ċ, shown in red in the figures of this section and in the main text. It is possible for both
T± to be between 0 and 1 simultaneously, see figure A3, and for neither to be between 0 and 1.

For equal fitness, f = f1 = f2, the differential equation for T can be written:

Ṫ =

(
u1α1

α1 + 1− T (1− C) +
u2α2

α2 + 1− T C
)

(1− T − f−1)fT (C.26)

Ṫ = 0 has two solutions: T ∗f = 1− f−1 and

T ∗o = 1 + α1α2
u1(1− C) + u2C

u1α1(1− C) + u2α2C
(C.27)

Since C ∈ [0, 1], and all parameters are positive, T ∗o > 1 and hence not feasible. Thus, in a scenario with equal
fitness, the sign of Ṫ only changes at T ∗f = 1− f−1.

For f1 6= f2, the sign of Ṫ is determined by g1(T )(1 − C) + g2(T )(C), from which a function Cnull(T ) can
be defined:

Cnull(T ) =
g1(T )

g1(T )− g2(T )
(C.28)

Ṫ = 0 for all (T,C) = (Tn, Cnull(Tn)) and hence Cnull(T ) is a nullcline for T . In the two single-clone steady
states, we find Cnull(1− f−1

1 ) = 0 and Cnull(1− f−1
2 ) = 1.

Observe that
Cnull(T ) −→

g1(T )→g2(T )
±∞ (C.29)

and thus the Cnull(T ) is undefined for T = T± and the nullclines do not cross, as expected from the analysis of
steady states above.
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Figure A3: Phase plane illustration of two Ċ-nullclines. The
figure illustrates a particular choice of parameters such that the two
roots of g2(T ) − g(1) = 0, T±, are both between 0 and 1. The
particular choice of parameter for the figure were ρ1 = 0.529, ρ2 =
0.627, α1 = 0.008, α2 = 0.079, u1 = 0.113 and u2 = 0.038.
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