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Abstract: Pesticides are heavily used in agriculture to protect crops from diseases, insects, and weeds.
However, only a fraction of the used pesticides reaches the target and the rest slips through the soil,
causing the contamination of ground- and surface water resources. Given the emerging interest in
the on-site detection of analytes that can replace traditional chromatographic techniques, alternative
methods for pesticide measuring have recently encountered remarkable attention. This review gives
a focused overview of the literature related to the electrochemical detection of selected pesticides.
Here, we focus on the electrochemical detection of three important pesticides; glyphosate, lindane and
bentazone using a variety of electrochemical detection techniques, electrode materials, electrolyte
media, and sample matrix. The review summarizes the different electrochemical studies and provides
an overview of the analytical performances reported such as; the limits of detection and linearity
range. This article highlights the advancements in pesticide detection of the selected pesticides
using electrochemical methods and point towards the challenges and needed efforts to achieve
electrochemical detection suitable for on-site applications.
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1. Introduction

Water is one of the cheapest, yet the most valuable natural resource on the planet. Around 75% of
the planet is covered with water and only 2% is fresh water that can be used by living organisms [1].
The freshwater percentage is subject to an ever-increasing pressure from heavy consumption, global warming,
and most importantly contamination. Contamination is introduced to the water body by several sources,
with agriculture being one of the main sources of pollution. Different chemicals are used in the agricultural
industry to increase the crop yield, such as fertilizers and pesticides [2]. The extensive use of these chemicals
has led to serious contamination issues in all the different water sources [3,4].

Applied fertilizers and pesticides can reach water sources either by surface run off or to
groundwater by leaching through the soil. Heavy rain or extensive irrigation processes can further
aggravate the leaching of contaminants to the groundwater [5]. Fertilizers and pesticides can cause
serious health problems when constantly consumed by humans. Nitrate can cause blue baby syndrome
and cancer [6] while some of the pesticides are classified to be carcinogenic [7]. Most of these chemicals
are very persistent and do not degrade over time, but may adsorb to the soil particles and leach slowly
to the groundwater causing continuous contamination [8–11]. Most chemical contamination cannot be
removed by physical filtration, but requires sophisticated water cleaning which eventually will drive
the water production cost to be higher than the price of the water, assuming that the contamination is
ever discovered [3,4,12].

Due to the current available technology, contamination can take up to several years before it is
discovered. Today, only snap shots of the real conditions are provided by the manual field sampling
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followed by the use of chromatographic methods, such as gas chromatography or high-performance
liquid chromatography coupled with mass spectroscopy [6,13]. Even though chromatography is
a very accurate, precise and selective technique, it is very expensive and time consuming and it
only provides data for the moment the sampling took place. Water sources are very dynamic
environments and contamination plumes can move from one location to another at relatively fast
rates, especially in surface waters. This makes the current sampling techniques ineffective and may
lead to potential hazardous water for the consumers. Continuous, automatic on-site measurements
may be an answer to this problem and can provide a more thorough picture of the actual situation
in the fields [14,15]. A technology that is growing to be a promising alternative suitable for such
measurements is electrochemical sensing [14].

Electrochemical sensing depends on measuring an electrical quantity, such as current, charge
or potential, as a result of the interaction between the targeted analyte and the sensing electrode.
A typical electrochemical cell is composed of three electrodes: working electrode, counter electrode and
a reference electrode. In voltammetric sensors, the reaction of interest usually occurs at the working
electrode whose potential is monitored against the reference electrode and the resulting current is
recorded between the counter electrode and the working electrode [16,17].

Electrochemical sensors were introduced in the 1960s by Clark and Lyons to measure glucose
concentration in blood using oxygen sensitive electrodes [18]. These electrodes were then iterated
and used in a variety of applications both for research and market purposes. The electrochemical
sensor found its main application in medical industry and had wide benefits in diagnostic tools at
the hospitals and as point-of-care devices [19]. One of the most famous applications of analytical
electrochemistry is the glucose sensor which was introduced in the 1980s [20,21].

Even though electrochemistry has been applied in different fields, its application in the
environmental sector is still limited. One of the electrochemical sensing applications common
in the environmental analysis is the ion selective sensor. This technique has its own strength in terms
of being able to selectively detect the targeted analyte [22]. However, the ion selective sensor needs
frequent maintenance and calibration which drives the operation cost high and limits the concept of
continuous measurements [23]. Even with this limitation, these sensors are still widely applied to
conduct field testing in chemicals such as nitrate, fluoride and pH. Nevertheless, there are no actual
sensors dedicated to measuring hazardous chemicals such as pesticides in water.

The environmental electrochemical sensing is an active subject where several studies have
been focusing on developing sensors that can target pesticide substances directly in the field.
Different methods have been tested and applied to achieve this goal such as immobilizing antibodies
or enzymes that have certain affinity towards the targeted pesticide at the electrode surface to enable
reaching low concentrations [24–26]. Molecular imprinted polymer (MIP) is one of the techniques
that is also being heavily explored. The technique uses the principle of creating a negative imprint
of the targeted molecule on the electrode surface to achieve better selectivity and sensitivity [27,28].
Another approach that has recently been gaining attention is to immobilize microorganisms on the
electrode surfaces and monitor the interaction between these organisms when they get in contact
with the targeted analyte [29,30]. An alternative method is to modify the electrode surfaces with
nanomaterials such as carbon nanotubes or manganese dioxide nanotubes which will result in
increased surface area, increased conductivity and hence better response [31,32]. In other cases,
applying nanomaterials with the opposite charge of the targeted analyte will result in attracting the
molecule towards the electrode surface, which will lead to enhanced performance [31].

In this report, the recent development in the electrochemical detection of three selected pesticides,
i.e., glyphosate, lindane, and bentazone, is reviewed. Lindane is banned from use in agriculture by
international conventions due to its high toxicity [33], whereas glyphosate and bentazone are two
of the most widely used pesticides frequently detected in ground water and surface water beyond
the regulatory limits set by the Environmental Protection Agency (EPA) [34]. The regulatory limit
of pesticides in drinking water is 0.10 µg/L which corresponds to 0.59 nM, 0.34 nM and 0.42 nM
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concentration for glyphosate, lindane, and bentazone, respectively. The chemical structures of the
three selected pesticides are shown in Figure 1.
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The focus of this review is limited to chemical and biosensors for analytical purpose and does
not include spectrometric, chromatographic, and chemiluminescence methods of analysis. Moreover,
electrochemical and photocatalytic redox reports aimed at environmental remediation and cleaning
purposes are also beyond the scope of this review.

2. Electrochemical Detection of Glyphosate

Glyphosate is one of the most commonly used pesticides in the world under the trade name
Roundup. Glyphosate prevents plants from producing proteins necessary for growth and in this
way kills weeds and grasses in competition with crops. Glyphosate and its degradation products are
associated with development of resistant weeds and microorganisms, in addition to causing toxic
effects in living organisms [35,36].

Glyphosate has been reported to be detected using bare and modified electrodes made
of gold [28,37–44], copper [45–47], carbon [48–54], mercury [55–57], and platinum [58,59].
Electrochemical methods, type of electrodes, analytical performance, measurement condition,
and sample matrix for glyphosate determination are summarized in Table 1.

The main challenge in the electrochemical detection of glyphosate is its poor electroactivity under
accessible potential window using conventional electrodes and media [51,54]. Thus, indirect ways of
detection were reported after converting into N-nitroso derivative which can easily be reduced and
determined at mercury electrodes [55,56]. The secondary amino group in glyphosate molecule can
easily be converted into N-nitroso group when treated with nitrous acid [57]. Using this approach,
it was possible to determine glyphosate at a detection limit of 0.20 µM in water [55] and 0.08 µM in
soil, water, and vegetables after sample preparation and derivatization in a column [56].

Molecularly imprinted polymer (MIP) is an attractive approach in electrochemistry since it allows
to specifically recognize target molecules in preference to other closely related compounds based on
shape, size, and functional groups [38]. As a result, gold electrodes modified with a molecularly
imprinted polymer were developed for glyphosate detection [28]. The electropolymerisation of
p-aminothiophenol-functionalised gold nanoparticles was conducted in the presence of glyphosate
template molecules. After extracting the template, cavities with a similar shape to glyphosate were
formed and allowed for the specific recognition of glyphosate that would bind to aniline moieties.
The detection of the bound glyphosate molecules was achieved by linear sweep voltammetry (LSV),
resulting in a linear range of 5.91 nM to 5.91 µM and a limit of quantification of 4.73 nM.



Sensors 2020, 20, 2221 4 of 16

Table 1. Overview of reports on electrochemical methods, measurement conditions, analytical performance and sample matrix for the determination of glyphosate.

Electrode Technique Medium pH Potential LOD Linear Range Matrix Reference

Anti-glyphosate-IgG magnetic beads Amperometry 0.10 M Citrate/PBS 5 −0.1 V vs. Ag/AgCl 0.03 nM 0.29 nM–5.90 nM Beer sample [60]
HRP/PDMA-PSS/Au Amperometry PBS −0.1 V vs. Ag/AgCl 0.59 nM 0.01–0.46 µM Spiked corn sample [44]
HRP/PDMA-PSS/Au Amperometry 0.10 M PBS 6.1 −0.28 V vs. Ag/AgCl 0.95 nM 0.01–0.47 µM [43]
SPE/Chi/CNO/TYR Amperometry 20.0 mM PBS 7 −0.2 V vs. Ag/AgCl 6.50 nM 0.02–10.0 µM Water and soil [61]
HRP/PDMA-PSS/Au Amperometry PBS 6.1 −0.28 V vs. Ag/AgCl 10.0 nM 1.50 nM–0.082 µM [40]

Porous copper nanowires Amperometry 0.10 M PBS in 0.10 M
KCl 6.5 10.0 nM 0.01–5.0 µM Fresh Fruit, Vegetables [46]

Au Amperometry 0.10 M NaOH 0.30 µM 0.59–268 µM urine, serum [62]
NiAl-LDH/Pt Amperometry 0.10 M NaOH 12.8 0.49 V vs. SCE 1.0 µM 0.01–0.90 mM [59]
Au Amperometry 0.10 M NaOH 13 1.0 mV vs. SHE 1.89 µM 5.9 µM–1.06 mM Extracted river water [39]
Gold SPE Amperometry Tap water 0.78 V 2.0 µM 18–300 µM Ground water [37]
GCE/MWCNTs-HRP CV wide range buffer 4 −0.40 V vs. SCE 1.32 pM 0.10 nM–11.0 µM Maize kernels [51]
Cu/CPE, Cu/GCE CV 0.10 M PBS 6.5 0–0.59 mM [54]
Cu Coulometry 0.03 M PBS/Methanol 6.8 0.05 V vs. 0.59 µM 0.59–200.0 µM Tomato juice [47]
MIP/GNPs-PGE DPASV ABS 5.5 −0.90 V vs. Ag/AgCl 2.0 nM 0.024–1.04 µM Soil and human serum [52]

HMDE DPP 1.0 HCl −0.70 V vs. Ag/AgCl 0.08 µM 0.06–10.4 and
23.6–591.5 µM Water, soil, vegetable [56]

Dropping Mercury Electrode DPP 0.10 M HCl −0.80 V vs. SCE 0.20 µM 0.20–1.24 µM Tap water [55]
Cu-BTC MOF/ITO DPV 0.10 M PBS 5.5 0.10 V vs. SCE 0.14 pM 1.0 pM–10.0 µM Green vegetable [45]

HF-PGE/CuO/MWCNTs–IL DPV 0.10 PBS 7 0.65 V vs. Ag/AgCl 1.30 nM 5.0 nM–1.10 µM Soil and river water
sample [53]

MIPPy/Au DPV 0.10 M KCl 0.20 V vs. SCE 1.60 nM 0.03–4.73 µM Cucumber, Tap Water [38]
GCE/MWCNT/CuPc DPV 0.10 M PBS 7.4 −0.10 V vs. SCE 12.20 nM 0.83–9.90 µM [48]
Cu2+-Cu/GCE DPV ABS 6 −0.015 V vs. Ag/AgCl 0.19 µM 5.0–60.0 µM Drinking water [50]
Electro-aggregated silver carbonate
modified-Pt DPV and LSV 0.1 M Na2CO3 40.0 µM 0–3.80 mM [58]

MIP-MOF LSV 10.0 mM [Fe(CN)6]3–/4– 7.2 −0.05 V vs. SCE 4.73 nM 5.91 nM–5.91 µM Tap water sample [28]
PPY-MIP/Au and PPy-MIP/ZnO SWV LiClO4 0.50 V vs. SCE 0.10 pM 0.10 pM–100 µM [41]
PPY-MIP/Au SWV 0.01 M LiClO4 5 0.38 V vs. SCE 1.0 pM 0.10 pM–10.0 µM [42]
HMDE SWV 1.25 M HCl −0.70 V vs. Ag/AgCl 0.15 nM 0.30 nM–0.59 µM [57]

CPE SWV 0.20 M BR buffer 5 0.95 V vs. Ag/AgCl 2.0 nM 0.04–2.80 µM Milk, orange juice,
agricultural formulation [49]

Atemoya peroxidase immobilised on
modified nanoclay SWV 0.10 M PBS 7 −0.10 V vs. Ag/AgCl 0.18 µM 0.59–26.90 µM Spiked water [63]

Abbreviations: ABS—acetate buffer solution; CPE-carbon paste electrode; Cu-BTC MOF/ITO—Cu-benzene-1,3,5-tricarboxylic acid-metal organic frameworks/Indium thin oxide;
Cu/CPE—Cu/carbon paste electrode; Cu/GCE-Cu/glassy carbon electrode; CV—cyclic voltammetry; DPASV—differential pulse anodic stripping voltammetry; DPP—differential pulse
polarography; GCE/MWCNTs-HRP—glassy carbon electrode/multi-walled carbon nanotubes-horseradish peroxidase; GCE/MWCNT/CuPc—glassy carbon electrode/multi-walled carbon
nanotubes/copper phthalocyanine; HMDE—hanging dropping mercury electrode; HRP/PDMA-PSS/Au—horseradish peroxidase/poly(2,5-dimethoxyaniline)-poly(4- styrene sulfonic
acid)/Au; HF-PGE/CuO/MWCNTs–IL—hollow fiber-pencil graphite electrode/copper oxide/multi-walled carbon nanotube-ionic liquid; LOD—limit of detection; LSV—linear sweep
voltammetry; MIP/GNPs-PGE—molecularly imprinted polymer/gold nanoparticles-pencil graphite electrode; MIP-MOF—molecularly imprinted polymer-metal organic framework;
MIPPy/Au—molecularly imprinted polypyrrole/Au; NiAl-LDH/Pt—NiAl-layered double hydroxide/Pt; PBS-phosphate buffer solution; PPY-MIP/Au—polypyrrole-molecularly imprinted
polymer/Au; PPy-MIP/ZnO—polypyrrole-molecularly imprinted polymer/zinc oxide; SCE—saturated calomel electrode; SPE—screen printed electrode; SPE/Chi/CNO/TYR—screen
printed electrode/chitosan/carbon nano-onions/tyrosinase; SWV—square wave voltammetry.
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A pencil graphite electrode was also modified with gold nanoparticles and doubly imprinted
nanofilm for the simultaneous determination of glyphosate and glufosinate using N-nitroso glyphosate
and glufosinate as template molecules [52]. This approach is reported to separate overlapping reduction
peaks for glyphosate and glufosinate by 265 mV enabling a selective determination for the pesticides.
The detection limit of the sensor was 2.0 nM and 1.0 nM for glyphosate and glufosinate, respectively,
in a linear range of 0.024–1.04 µM for glyphosate.

Zhang et al. [38] also developed a glyphosate moleculary imprinted polypyrrole-modified
gold electrode (MIPPy) by electropolymerizing glyphosate and pyrrole using cyclic voltammetry.
After polymerization, the embedded glyphosate molecule was extracted from the polypyrrole
membrane with an overoxidation method (see Figure 2). The imprinted modified electrode was
then successfully applied to determine glyphosate in cucumber and water samples using differential
pulse voltammetry (DPV) in 0.10 KCl solution. The sensor response was linear between 0.03 to 4.73 µM
and the calculated detection limit was 1.60 nM.
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Carbon is often used as a low-cost, versatile and easy-to-handle material for electrochemical sensing.
Several articles report the use of carbon as the working electrode for glyphosate detection [48–54].
Oliveira et al. [49] used a simple carbon paste electrode (CPE) for the oxidation of the isopropylamine
salt form of glyphosate. Cyclic voltammetry (CV) at the electrode in the presence of glyphosate in
buffer solution of pH 5 showed a clear oxidation peak at 0.95 V (vs Ag/AgCl). Under the optimum
conditions, it was possible to determine the pesticide in milk, orange juice and agricultural formulation
with a detection limit of 2.0 nM.

A pencil graphite-based electrode (PGE) modified with multi-walled carbon nanotubes-ionic
liquid (MWCNTs-IL) and copper oxide (CuO) nanoparticle composite was also utilized for glyphosate
sensing in soil and river water samples. The excellent electrical property of CuO and its complex
forming property with glyphosate coupled to the electrical conductivity and high surface area of
MWCNTs-IL attributed to the improved sensitivity and effectiveness of the electrode [53].

Similarly, a glassy carbon electrode modified with copper phthalocyanine/multi-walled
carbon nanotube(GCE/MWCNT/CuPc) film has been used for the determination of glyphosate by
electrochemical oxidation using DPV [48]. The authors reported that the strong interaction between
glyphosate and copper ions to form a stable complex contributed the indirect detection of glyphosate
at −50.0 mV vs. SCE based on Cu(I)/Cu(II) couple. Using this method, glyphosate was determined in
the concentration range of 0.83–9.90 µM, with a detection limit of 12.20 nM.

High performance liquid chromatographic method was coupled to a gold electrochemical detector
for the determination of glyphosate in environmental samples [39] and in urine and serum samples [62].
The detection principle is based on the current generated when carbohydrates, amino acids, amines,
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and sulfur compounds adsorb on gold and platinum electrodes under alkaline conditions. The current
for glyphosate is reported to result from the adsorption through the non-bonded lone pair of N-atom
on the oxide free gold surface of the electrode where it immediately oxidizes and adsorbed under
alkaline condition. This method was successfully applied for the determination of glyphosate at the
detection limit of 1.89 µM [39] and 0.30 µM [62].

However, a recent study [37] showed the possibility of glyphosate determination amperometrically
at screen printed gold electrode without the need to any surface modification, sample preparation,
chromatographic separation or pH adjustment. In this report, glyphosate showed an oxidation peak
around 0.78 V in a normal water medium and it was possible to establish a linear curve between
2.0–300 µM with a detection limit of 1.60 µM. Even though the limit of detection is not low enough to
meet legal requirements, this report is an interesting attempt to develop a functional sensor towards
real application.

Electrochemical methods based on biosensors have also been described for glyphosate
determination [40,44,51,60]. One such sensor was constructed by immobilizing the enzyme
horseradish peroxidase (HRP) electrostatically onto a rotating gold disk electrode modified with
poly(2,5-dimethoxyaniline)-poly(4-styrenesulfonic acid) (PDMA-PSS) nanoparticles. This biosensor
was successfully used for glyphosate analysis on spiked corn samples within a concentration
range of 0.012–0.46 µM and a detection limit of 0.59 nM [44]. In a similar principle,
a horseradish peroxidase-based biosensor was investigated without the rotating disk arrangement.
Measurements were conducted in a cell containing phosphate buffer solution and 0.70 M H2O2.
The measuring principle was dependent on the principle of glyphosate inhibiting the signal obtained
from H2O2. The detection limit was reported to be 0.01 µM [40].

An electrochemical immunoassay with antibody-modified magnetic particles was used to
provide selective detection of glyphosate. Anti-glyphosate-IgG modified magnetic beads (MBs)
and HRP-conjugated-glyphosate (tracer) were used in the immunoassay and the current was monitored
as a function of the reduction of the enzymatic product tetramethylbenzidine in the presence of
glyphosate. This way, it was possible to obtain a calibration curve in the range between 0.29 nM and
5.90 nM [60].

In another study [51] graphite-epoxy electrode modified by depositing multi-walled carbon
nanotubes and horseradish peroxide (GE/MWCNTs-HRP) using electrophoresis was reported for
measuring glyphosate. The measurement with this sensor was conducted in an electrolyte solution
and depended on inhibition of the H2O2 reduction at the electrodes in the presence of glyphosate.
The detection limit of this sensor was reported to be 1.32 pM.

3. Electrochemical Detection of Lindane

Lindane is an organochlorine insecticide used against insects that compromise fruit and vegetables.
It is also used in formulations of lotions and shampoos to treat lice and scabies [64]. The mechanism
of action of lindane is that it gets absorbed in the exoskeleton of parasites and leads to paralysis and
death [65]. Exposure to lindane has been shown to elicit immunotoxic, reproductive, and developmental
problems in laboratory animals, aquatic organisms, and humans [65–67]. The degradation products
of lindane are also toxic, even though it is not easily degradable and is known to have a strong
persistence in the environment. As a result, it tends to bioaccumulate and has been detected in human
blood, breast milk, and adipose tissue from samples taken around the world [67]. Its well-established
neurotoxicity, carcinogenicity, and consequent health risks led to a worldwide ban of lindane by
the Stockholm Convention in 2007 [68,69]. In fact, some countries are still using it for economic
reasons [30,64]. Further, it is still found in ecological niches such as water bodies and in crops,
resulting in major environmental problems [68].

Electrochemical methods of analysis are not widely available for lindane due to its poor
aqueous solubility and high negative reduction potential. However, some attempts have
been reported to electrochemically reduce it in a completely organic [70–74] or mixtures of
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aqueous-organic [32,64,67,75–77] media. Various electrode materials were employed for the reduction
including bare and modified carbon [32,64,70,71,73,75–77], silver [67], platinum [74], and copper [27].

A polarographic study of lindane at a mercury coated platinum electrode in dimethyl sulfoxide
showed only a single reduction peak at −1.50 V vs. SCE and it has been concluded that the reduction
takes place through a six-electron transfer process to form benzene. Though no other intermediate
chlorinated compounds were detected in either type of reduction [74]. However, it has been known
that certain metals, such as cobalt can catalyze a stepwise dechlorination (i.e., progressive chlorine
loss) of lindane and other organohalides [78].

A direct reduction of lindane at a glassy carbon cathode in dimethylformamide (DMF) containing
tetra-n-butylammonium tetrafluoroborate (TBABF4) exhibited two cathodic peaks at −1.40 V and
−2.10 V. The first cathodic peak being attributed to the reduction of lindane itself, whereas the second
peak is due to the reduction of chlorobenzene that is derived from lindane. This revealed that lindane
undergoes a six-electron reduction process that affords benzene as a major product along with small
amounts of chlorobenzene [67,71].

Another report investigated the reduction of lindane at silver electrodes in various reaction media [67,69].
A combination of one- and two-electron processes has been proposed to account for benzene as the major
product. Dechlorination is essentially complete in DMF and in mixtures of water with DMF, CH3CN,
and ethanol, whereas some chlorobenzene was detected in pure ethanol and CH3CN.

Kumaravel et al. [64] developed electroanalytical sensor using cellulose acetate modified glassy
carbon electrode(CA/GCE) and used for the direct reduction of lindane in aqueous-alcoholic medium.
The reduction potential of lindane on this modified electrode appeared at −1.50 V. The peak current at
the electrode was linear from 50 to 180 µM with a detection limit of 9.18 µM. The analytical utility of the
proposed method was evaluated by analyzing commercial lindane lotion and drinking water samples.

Fayemi et al. [76] also evaluated sensors based on PANI/Zn, Fe(III), and Nylon 6,6/MWCNT/Zn,
and Fe(III) oxides nanofibers for the electrochemical reduction of lindane. The dynamic range for the
lindane determination was demonstrated between 9.90 pM and 5.0 µM with the lowest detection limit
of 32.0 nM obtained at Nylon 6,6/MWCNT/Fe3O4.

A non-enzymatic detection method of lindane by using CuO–MnO2 hierarchical
nano-microstructures modified electrode was developed [32]. Cyclic voltammetric responses at
the electrode was followed before and after the addition of lindane which the presence of lindane
showed a distinct peak at −1.5 V (vs Ag/AgCl) in 60:40 methanol–water containing 0.05 M TBAB.
At optimum conditions, the method enabled the detection of lindane in the concentration range of
1.0–700 µM at a detection limit of 4.80 nM.

Similarly, the catalytic effect of α-MnO2 nanostructures for the reduction of lindane was
investigated. At the modified electrode a good linearity was established in the range of 1.10 to
510 µM with a detection limit of 114 nM. The proposed lindane sensor was also successfully employed
for the determination of the pesticide in tap water samples [75]. In another study, NiCo2O4 was used
as electrode modifier and employed for the detection of lindane in 0.05 M TBAB solution in 60:40 (v/v)
methanol–water medium. The practical utility of the method was evaluated by analyzing spiked tap
water sample in aqueous-alcohol mixture. The modified electrode exhibited the sensing abilities in the
concentration range of 10.0–170 µM with a lower detection limit of 3.60 µM [77].

An indirect reduction of lindane at vitreous carbon disk electrode was reported using
9,10 diphenylanthracene (DPA) as electrochemical mediator. In DMF solution, DPA showed
an irreversible reduction peak at −1.79 V (vs Ag/AgCl) that shifted by 30.0 mV and a significant increase
in peak current in the presence of lindane. The proposed mechanism (Figure 3) of mediated reduction
is believed to occur by the rapid reaction of the DPA anion radical with lindane and the initial electron
transfer is followed by further reduction so that the lindane undergoes an overall 6-electron (6e-)
reduction by reaction of the DPA anion radical with intermediates [70]. Under optimum conditions,
it was possible to determine lindane in the range 40.0–1000 µM.
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of Lindane [70].

A potentiometric approach was also demonstrated at a multi-walled carbon nanotubes modified
copper electrodes [27]. After grafting the nanotubes to the electrode, the surface was further modified
by molecular imprinting of lindane as the template. The developed method enabled the detection of
lindane at a lowest limit of 1.0 nM. In general, most of the lindane detection methods have employed
voltammetric techniques, however, one study reported lindane detection using electrochemical
impedance spectroscopy (EIS) as the transduction method. The biosensor itself was based on the
activity of Steptomyces strain M7, which utilizes lindane as the carbon source for growth. The biosensor
reached a detection limit of 0.03 µM [30]. Table 2 summarizes electrochemical methods and main
performance characters reported for the determination of lindane at different electrodes.
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Table 2. An overview of electrochemical techniques, performance characters, medium of measurement and sample matrix for the determination of lindane.

Electrode Technique Medium Potential LOD Linear Range Matrix Reference

PANI-microbial biosensor Amperometry 0.40 V 6.90 nM 0.02–1.72 µM [29]

α-MnO2-NW/GCE Amperometry/DPV 0.05 M TBAB solution in
60:40 methanol–water −1.45 V vs. Ag/AgCl 114 nM 1.10–510 µM Spiked tap water [75]

Vitreous carbon CV, SWV 0.1 M of TBAB in ethanol −2.0 V vs. Ag/AgCl 50.0 nM [73]

CA/GCE CV, DPV 0.05 M TBAB 60:40
methanol–water −1.50 V vs. Ag/AgCl 37.0 µM 50.0–1000 µM Lindane lotion [64]

Silver CV

ACN, DMF, EtOH,
ACN–H2O, DMF–H2O,
EtOH–H2O 0.050 M
TBABF4

−0.89 V–−1.65 V vs. SCE [67]

CuO–MnO2 DPV 0.05 M TBAB solution in
60:40 methanol–water −1.50 V vs. Ag/AgCl 4.80 nM 1.0−700 µM Tap water [32]

NiCo2O4/GCE DPV 0.05 M TBAB solution in
60:40 (v/v) methanol–water −1.50 V vs. Ag/AgCl 5.90 µM 10.0–170 µM Tap water [77]

Streptomyces strain M7
biosensor EIS 0.03 µM [30]

MWCNT-MIP-Cu Potentiometry 0.10 nM 1.0 nM–1.0 mM water, fruits and
vegetables [27]

GCE/PANI-ZnO,
GCE/PANI-Fe3O4,
GCE/Nylon
6,6/MWCNT/ZnO,
GCE/Nylon
6,6/MWCNT/Fe3O4

Concentration

SWV 60:40 methanol/water
containing 0.05M TBAB −0.80 V vs. Ag/AgCl 32.0 nM 9.90 pM–5.0 µM Tap waters [76]

vitreous carbon SWV 0.10 M Bu4NBF4 in DMF
((DPA as mediator) −1.73 V vs. Ag/AgCl 40.0–1000 µM [70]

GCE 0.10 M TBABF4 in DMF −1.40 V vs. Ag/AgCl [71]

Hg/Pt 0.10 M TBAB in DMSO −1.52 V vs. SCE Sewage sludge,
soil [74]

Abbreviations: ACN—acetonitrile; CA/GCE-cellulose acetate/glassy carbon electrode; CV—cyclic voltammetry; DMF—n,n-dimethylformamide; DMSO—dimethyl sulfoxide;
DPA—9,10-diphenylanthracene; DPV-differential pulse voltammetry; EIS—electrochemical impedance spectroscopy; GCE—glassy carbon electrode; GCE/Nylon 6,6/MWCNT—glassy
carbon electrode/nylon 6,6/multi-walled carbon nanotubes; GCE/PANI—glassy carbon electrode/polyaniline; LOD—limit of detection; MWCNT-MIP-—multi-walled carbon
nanotube-molecularly imprinted polymer; PANI—polyaniline; SCE—saturated calomel electrode; SWV—square wave voltammetry; TBAB—tetraethylammonium bromide;
α-MnO2-NW/GCE—α-manganese oxide nanowire/glassy carbon electrode.
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4. Electrochemical Detection of Bentazone

Bentazone is a selective pesticide acting as a photosynthetic electron transfer inhibitor to control
sedges and broad-leaf weeds in corn fields, rice paddies, and other intensive crops [79,80]. Thus,
selective crops like beans, maize, pepper and rice can survive the exposure to the pesticide [81,82].
Deposition from aerial applications, leaching, or run-off from agricultural lands [83] together with its
low soil sorption and high water solubility led to bentazone contamination of ground- and surface
water [80]. Hence, it has been reported as one of the most important contaminants in terms of frequency
of detection and maximum concentration in surface freshwater and groundwater [79]. For example,
in Denmark, it was one of the pesticides detected in 49.5% of the groundwater monitoring wells in the
period 1990–2015 [84].

Ingestion of higher doses of bentazone through, e.g., drinking water may lead to acute toxic symptoms
like vomiting, irregular breathing and irritation of the skin and eyes. However, repeated exposure to
bentazone may lead to effects on reproductivity, mutagenicity, carcinogenicity, and organ toxicity [85].

Electroanalytical techniques have been used for the determination of bentazone at different electrodes
with or without surface modification [31,86–93]. Overview of the electrochemical methods of analyses
for bentazone determination is summarized in the Table 3. The use of a bare glassy carbon electrode
for the determination of bentazone in commercial herbicides has been reported [86]. Using square wave
voltammetry (SWV), a linear calibration plot was obtained between 15.0 and 22.60 µM of bentazone with
a detection limit of 10.0 µM. The mechanism of bentazone oxidation is proposed to proceed on the nitrogen
atom of the tertiary amine and corresponds to a one-electron transfer followed by slow chemical dimerization
step of the resulting products [86,89], which also get adsorbed and lead to severe electrode surface fouling.
This strong adsorption of redox products means that reusing the sensors is not an option, which eliminates
the possibility of continuous on-site use. This issue has been suggested to be overcome by adding triton
surfactant to the sample to avoid some of the adsorption [86].

Similarly, an amperometric detection coupled to a flow injection analysis(FIA) system at a glassy
carbon electrode has been proposed by Cerejeira et al. [93]. Analysis of bentazone in estuarine
waters was performed by means of calibration curves over the concentration range 2.50 to 50.0 µM at
an oxidation potential of 1.10 V in acetate buffer solution (ABS) of pH 4.5.

In another report, a glassy carbon electrode modified with a film of polyaniline-carbon
nanotubes-cyclodextrin (PANI-β-CD-MWCNT) was used for the detection of bentazone [31].
The electrode was employed for the direct oxidative determination of bentazone in pure and natural
water samples by cyclic voltammetry in the range of 10.0–80.0 µM, with a detection limit of 1.60 µM.

A study conducted by Jevtic et al. [89] presented a way to measure bentazone in water using
unmodified boron-doped diamond (BDD) using DPV. The measurements were conducted in the
presence of a supporting electrolyte, Britton–Robinson (B–R), and a modified pH sample of 4. The limit
of detection using this method was reported to be 0.50 µM.

We recently reported electrochemical determination of bentazone using a simple home-made
screen-printed carbon electrode (SPE) and successfully applied to quantify bentazone in spiked ground
and lake water samples. A simple low-cost fabrication process was followed to produce the electrodes
which can be used repeatedly without significant activity loss. Square wave voltammetric (SWV)
method was used to plot the calibration curve and quantify bentazone based on its oxidation without
the need for electrode modification. The calibration plot was linear in the range 0.19–50.0 µM with
a detection limit of 34.0 nM [90].
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Table 3. An overview of different electroanalytical techniques, measurement conditions, analytical performance and electrode material used for the determination
of bentazone.

Electrode Technique Medium pH Potential LOD Linear Range Matrix Reference

GCE FIA/Amperometry ABS 4.5 1.10 V vs. Ag/AgCl 1.0 µM 2.50–50.0 µM estuarine water [93]

MWCNT-IL/RGO/SiC/CILE Continuous
Coulometric FFT CV 0.05 M PBS 4.5 0.70 V 0.25 nM 1.0–150 nM [88]

PANI-β-CD/fMWCNT CV PBS 6 0.85 V vs. Ag/AgCl 1.60 µM 10.0–80.0 µM River water [31]
PANI-CPE CV 0.05 M PBS 6.9 [92]
BDD DPV B-R 4 1.07 V vs. Ag/AgCl 0.50 µM 2.0–100 µM River water [89]
GCE DPV 0.20 M ABS 3.4 0.94 V vs. Ag/AgCl 10.0 µM 15.10–2.30 µM Basagran [86]
β-CD-GCE DPV 0.10 M BR 6 0.93 V vs. Ag/AgCl 2.0–14.0 mM [91]
poly-n-AcMnODEAETPc-GCE SWV 0.10 M PBS 5 0.80 V vs. Ag/AgCl 0.25 µM 50.0–750 µM [87]

SPE SWV 0.10 M PBS 7 0.71 V 34.0 nM 0.19–50.0 µM Ground and
lake water [90]

Abbreviations: ABS—acetate buffer solution; BDD—boron doped diamond; B-R—Britton-Robinson; CV—cyclic voltammetry; DPV—differential pulse voltammetry; FIA—flow injection
analysis; GCE—glassy carbon electrode; LOD—limit of detection; MWCNT-IL/RGO/SiC/CILE—multi-walled carbon nanotube-ionic liquid/reduced graphene/silicone carbide/carbon ionic
liquid electrode; PBS—phosphate buffer solution; PANI-β-CD/fMWCNT—polyaniline-β-cyclodextrine/functionalized multi-walled carbon nanotube; PANI-CPE—polyaniline-carbon
paste electrode; poly-n-AcMnODEAETPc-GCE—poly-n-manganese acetate octakis-(2-diethyaminoethanethiol)phthalocyanine-glassy carbon electrode; SPE—screen printed electrode;
SWV—square wave voltammetry; β-CD-GCE—β-cyclodextrine-glassy carbon electrode.
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5. Future Perspective

The security trend, internet of things and market trends present a pressing need for a technology
that can be reliable, fast and accurate in providing data on demand and alert in case of an incident. Thus,
in-situ monitoring and point-of-care testing is highly needed in biomedical, pharmaceutical, industrial,
and environmental analyses, where no pre-treatment before use or cleaning between measurements
is required [94].

Electrochemical measuring technology appear to promise a strong option that can meet the market
demand. However, the theoretical background of analytical electrochemistry strongly recommends
introducing a supporting electrolyte to the sample of interest. Such a requirement for sample
pre-treatment is considered one of the limiting factors for moving this technology to the field
application level. However, environmental samples such as surface and groundwater, the amount of
natural salts and nutrients could play an important role of being a replacement for artificial electrolytes
and sample treatment. The other argument against utilizing electrochemistry for contamination
detection will be the interference from other compounds that co-exist in the site. Using biologically
functionalized electrodes in the fields may be the appropriate choice in this matter, but it may pose
a risk of introducing more contamination to the environment in addition to the inherent poor stability
of biomolecules. This may be overcome by maturing the molecular imprinted techniques, which is
a strong candidate that can function without biological modification and has the potential to achieve
the desired selectivity. Moreover, the development of material science and nanotechnology will offer
a broad choice of novel materials for electrode fabrication or modification to meet the current challenges
in the real continuous monitoring of pollutants.
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