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ABSTRACT
The noble elements constitute the simplest group of atoms. At low temperatures or high pressures, they freeze into the face-centered cubic (fcc)
crystal structure (except helium). This paper investigates neon, argon, krypton, and xenon by molecular dynamics using the simplified atomic
potentials recently proposed by Deiters and Sadus [J. Chem. Phys. 150, 134504 (2019)], which are parameterized using data from accurate
ab initio quantum-mechanical calculations by the coupled-cluster approach at the single-double-triple level. We compute the fcc freezing
lines and find good agreement with the empirical values. At low pressures, predictions are improved by including many-body corrections.
Hidden scale invariance of the potential-energy function is established by showing that mean-squared displacement and the static structure
factor are invariant along the lines of constant excess entropy (isomorphs). The isomorph theory of melting [Pedersen et al., Nat. Commun.
7, 12386 (2016)] is used to predict from simulations at a single state point the freezing line’s shape, the entropy of melting, and the Lindemann
parameter of the crystal at melting. Finally, our results suggest that the body-centered cubic crystal is the thermodynamically stable phase at
high pressures.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0045398., s

I. INTRODUCTION
The thermodynamic and transport properties of condensed

matter systems are determined by their potential-energy functions.1

For a class of systems, the potential-energy function exhibits “hidden
scale invariance,”2 making the phase diagram effectively one dimen-
sional; thus, density and temperature collapse into a single parame-
ter.2–13 This scaling, referred to as density scaling, has been demon-
strated for simple model potentials,7,8,14–16 atomic liquids,17–22 and
molecular liquids.4–6,9,23 In this paper, we investigate the noble ele-
ments neon (Ne), argon (Ar), krypton (Kr), and xenon (Xe) using
a potential proposed recently from accurate ab initio calculations.24

We find that the energy surface obeys hidden scale invariance in the
investigated part of the phase diagram and show how this fact can be
used to predict the shape of the melting lines.25

Specifically, we investigate below the simplified ab initio atomic
potential (SAAP) recently suggested by Deiters and Sadus.24 This

potential is parameterized for the noble elements Ne, Ar, Kr, and
Xe from quantum-mechanical calculations using the coupled-cluster
approach26,27 on the coupled-cluster single-double-triple [CCSD(T)]
theoretical level.28 This approach is considered the gold standard of
quantum chemistry29 and has been shown to give accurate predic-
tion for the noble elements.27,30–33

We consider monatomic systems of N particles of mass m con-
fined to the volumeV with periodic boundaries with number density
ρ = N/V. Let R ≡ (r1, r2, r3, . . ., rN) be the collective coordinate
vector. The potential-energy function is the sum of pair-potential
contributions,

U(R) =
N

∑
i>j

v(∣ri − rj∣), (1)

in which the dimensionless SAAP pair potential ϕ(x) ≡ v(xσ)/ε is
given by
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ϕ(x) =
a0 exp(a1x)/x + a2 exp(a3x) + a4

1 + a5x6 . (2)

The six a parameters24 are determined by fitting to the results of the
above-mentioned ab initio calculations on dimers.26 In the simula-
tions reported below, the pair potential is truncated and shifted at
rc = 4σ. The truncation leads to tail corrections of the full poten-
tial.34 Pressure corrections are estimated to range from −0.3ε/σ3

to −0.1ε/σ3 depending on the state points (see the supplementary
material).

An advantage of the SAAP is that it is computationally efficient
and, at the same time, accurately represents the underlying ab initio
calculations.24 Figure 1(a) shows the SAAP of Ar (in MD units
defined by ε = σ = 1). The SAAP is compared to the Lennard-
Jones (LJ) pair potential 4[x−12

− x−6] (green dashed line; simula-
tion details for the LJ system can be found in Ref. 25). As noted by
Thiel and Alder,35 the LJ potential is very steep at short distances
[Fig. 1(b)] but overall describes well the SAAP, though being a bit
broader. In comparison, the exponential repulsive (EXP) pair poten-
tial 4 ⋅ 105 exp(−12x)11,12,16,36,37 (red dashed lines) approximates well
the SAAP at short distances. This is consistent with the interpreta-
tion of high-pressure compression experiments, the so-called shock
Hugoniots.35,38

Simulations were conducted using the RUMD software pack-
age v3.439 (the SAAP was implemented in v3.4 by hand but is now
included in v3.5). We studied systems of N = 5120 particles in an
elongated orthorhombic simulation cell. The box lengths in the y
and z directions are identical, while the box length in the x direction
is 2.5 times longer to accommodate the below described interface-
pinning simulations. More details of simulation algorithms are given
in the supplementary material.

In order to illustrate the theory, this paper starts by treating in
detail the case of argon (Secs. II–IV). Sections V–VII report the anal-
ogous results for neon, krypton, and xenon. Section VIII gives a brief
summary.

FIG. 1. (a) The solid lines show the SAAP pair potential for Ne (green), Ar (red), Kr
(magenta), and Xe (blue). For comparison, the dashed lines show the LJ (green)
and the EXP (red) pair potentials. (b) The pair potentials at short distances on a
logarithmic scale.

II. THE COEXISTENCE LINE OF ARGON
The Ar coexistence line between the liquid and the fcc

solid phases is determined as follows (the supplementary material
includes details of the pair potential and the simulation algo-
rithm): First, we use the interface-pinning method41–49 to compute
the solid–liquid chemical potential difference Δμ at temperature
T0 = 2ε/kB (287 K) for a range of fcc lattice constants correspond-
ing to different pressures. Δμ is computed from the thermodynamic
force on a solid–liquid interface in an equilibrium simulation with
an auxiliary potential that biases the system toward two-phase con-
figurations. To account for slow fluctuations of the solid–liquid
interface, two-phase simulations were eight times longer than the
bulk simulations. We find that the coexistence pressure (Δμ = 0) is
p0 = 22.591(4)ε/σ3 at T0 in which the number in parentheses indi-
cates the estimated statistical uncertainty on the least significant
digit. Other coexistence points are then determined by numerical
integration along temperatures on the coexistence line using the
fourth-order Runge–Kutta (RK4) algorithm.50 The required slopes
dp/dT are computed from isobaric simulations of a solid and a
liquid using the Clausius–Claypeyron relation:51 if ΔVm = V liquid
− Vsolid is the volume difference between liquid and solid and
ΔSm = (U liquid −Usolid + pΔVm)/T is the entropy difference, the local
slope is computed from51

dp
dT
=

ΔSm
ΔVm

. (3)

The RK4 algorithm requires four slope evaluations; thus, each inte-
gration step involves four simulations of a liquid and four simula-
tions of a solid. This recipe for computing solid–liquid coexistence
lines was suggested in Ref. 37. As a consistency check, we have con-
firmed that the gradient of the central difference of the computed
melting line agrees with ΔSm/ΔVm [Eq. (3)]. This technique is in
the class of Gibbs–Duhem integration methods suggested by Kofke.51

Details are provided in the supplementary material.
The coexistence line for Ar is shown as a black solid line in

Fig. 2(a) together with the empirical (experimental) values40 shown
with a red dashed line. The agreement is good; however, as seen in
the inset, the SAAP slightly overestimates the coexistence tempera-
ture at a given pressure. This may be due to the missing many-body
interactions of the SAAP. To investigate this, following the sugges-
tion by Deiters and Sadus,52 we apply a mean-field correction that
only depends on the average density of a bulk phase. For the cor-
rection of the coexistence pressure, we take the different densities of
the phases into account. Let ρ̄ = 2/(vs + vl) be the average density
between the two phases (where vs is the solid phase volume per par-
ticle) at a given coexistence point (TSAAP, pSAAP) computed with the
SAAP. The corrected state point is then

(Tcorr, pcorr) = (εcorrTSAAP, εcorrpSAAP
), (4)

in which

εcorr = 1 −
λνρ̄
εσ6 (5)

is an energetic correction parameter of the ε in Eq. (1), ν/εσ9

= 0.068 753 6 is the Axilrod–Teller–Muto parameter53 of Ref. 52,
and λ is a parameter obtained from analyzing two-body and three-
body simulation data.54 For simplicity, we set λ to unity. The blue
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FIG. 2. (a) The solid–liquid coexistence line of Ar in the pT-plane. The black
solid line is the melting temperature computed for the SAAP by first using the
interface-pinning method at T0 = 287 K and then using a fourth-order Runge–Kutta
integration of the Clausius–Clapeyron identity to determine remaining coexistence
points. The blue solid line is a mean-field correction taking into account the missing
many-body interactions of the SAAP (see the main text), and the red dashed line
is the empirical (experimental) melting line of Datchi et al.40 The black dot on the
y-axis is the gas–liquid critical point. The inset is a zoom-in on low pressures. (b)
The Ar phase diagram in the ρT-plane. The black solid lines are the boundaries of
the phases. The three black dots are the critical point and the triple points of the
liquid and solid phases, respectively. The green dots and dashed lines are empiri-
cal values. The blue and red dashed lines are a liquid and a solid isomorph based
on the SAAP, (see Sec. III). The statistical errors are small in comparison to the
thickness of the lines.

solid line on Fig. 2 shows the corrected melting line. The correc-
tion is small, but it explains the deviations from the experimental
melting line at low pressures [inset of Fig. 2(a)]. At high pressures,
however, the uncorrected melting line is better than the corrected
one. This suggests that many-body interactions are not important
at high pressures, or that the above correction is inaccurate.
For the remainder of the paper, we ignore many-body correc-
tions, but note that inclusion of many-body effects will give some
minor quantitative changes to our result. We also note that tail
corrections to the truncated potentials will play a role (see the
supplementary material). A study of these effects is left to future
studies.

III. HIDDEN SCALE INVARIANCE OF ARGON
The following gives a brief introduction to the theory of systems

with hidden scale invariance, known as isomorph theory,2,7,8,10,12

and applies it to the Ar parametrization of the SAAP.
Consider two same-density configurations Ra and Rb where

U(Ra) < U(Rb). (6)

If the energy surface is scale invariant, it follows that

U(λRa) < U(λRb), (7)

where λ determines the magnitude of an affine scaling of all parti-
cle positions (and thus also the change of density). Scale invariance
is trivial if U is a sum of inverse power-laws with the same expo-
nent, so-called conformal potentials.4,5,7,14,15,55 However, the SAAP,
LJ, and EXP potentials are not conformal. Nevertheless, depend-
ing on the state point in question, the above scaling can be a good
approximation for relevant configurations. In that case, we refer to
the scaling as hidden because it reflects an approximate property that
is not obvious from the mathematical expression for the potential-
energy function. From the definition of hidden scale invariance, it
may be shown that there are lines in the thermodynamic phase dia-
gram, referred to as isomorphs, along which structure, dynamics,
and certain thermodynamics quantities are invariant in “reduced”
units.2,8 These units are state-point dependent and defined from a
combination of particle mass m, the number density ρ, and the ther-
mal energy kBT.2,8 Isomorphs are defined as lines where the excess
entropy Sex is constant, i.e., an isomorph is a configurational adiabat.
Here, “ex” refers to the entropy in excess of the ideal gas entropy at
the same density and temperature,1,3,22,56

Sex(ρ,T) = S(ρ,T) − Sid(ρ,T). (8)

We note that the above equation in chemical thermodynamics is
referred to as the residual entropy57,58 and should not be confused
with the excess entropy defined in relation to ideal mixtures.3,59,60

Scaling by reference to the excess entropy was first suggested by
Rosenfeld3 and has recently gained renewed interest.13,20,56,57,61,62 As
mentioned, a configurational adiabat is referred to as an isomorph
for state points with hidden scale invariance, which implies invari-
ant reduced structure and dynamics (isomorph is the greek word for
same-shape). The slope of a configurational adiabat (and thus an
isomorph) in the double logarithmic temperature-density plane,

γ ≡
∂ lnT
∂ ln ρ

∣

Sex

, (9)

can be computed from the fluctuations of virial W and potential
energy U in the NVT (canonical) ensemble as8

γ =
⟨ΔWΔU⟩
⟨(ΔU)2⟩

. (10)

Here, ⟨⋯⟩ is the expectation value and Δ denotes the deviation
from the mean (in practice, ⟨⋯⟩’s are computed as time-averages).
The dashed lines in Fig. 2(b) show a liquid and a solid isomorph
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TABLE I. Thermodynamic data for SAAP estimated coexistence state points at the reference temperature T0 = 2ε/kB obtained by the interface-pinning method.41,42

ε/kB (K) σ (Å) p0 (ε/σ3) V l/N (σ3) V s/N (σ3) ΔVm/N (σ3) ΔSm/N (kB)

Ne 42.36 2.759 21.911(2) 0.934 82(2) 0.880 69(2) 0.054 128(8) 1.097 07(13)
Ar 143.5 3.355 22.591(4) 0.926 12(3) 0.874 89(3) 0.051 227(11) 1.085 15(13)
Kr 201.1 3.580 23.079(2) 0.919 99(2) 0.870 75(2) 0.049 2320(9) 1.073 43(16)
Xe 280.2 3.901 23.423(4) 0.916 23(3) 0.868 28(3) 0.047 951(7) 1.067 53(11)
LJ 20.8270(8) 0.940 160(8) 0.882 777(7) 0.057 388(7) 1.097 27(13)

computed by numerical integration of Eq. (9) using the RK4 method
from the reference state point (T0, ρ0) given in Table I.

Figure 3(a) shows that the liquid structure is indeed invariant
along the isomorph. This is done by investigating the static structure
factor

S(q) = ⟨∣ρq∣2⟩, (11)
where

ρq =
N

∑
n=1

exp(iq ⋅ rn)/
√
N. (12)

For a liquid, the structure factor depends only on the wave-vector
length denoted by q. Figure 3(b) shows S(q) for state points along
an isochore starting near the triple point. Figures 3(c) and 3(d)
show S(q) for the fcc solid along state points of an isomorph and
an isotherm, respectively. As for the liquid, the structure of the solid
is isomorph invariant to a good approximation. We note that the
long-wavelength (small q) limit of the structure factor does not scale
well [inset of Fig. 3(a)]. This limit is proportional to the isothermal
compressibility, which is not isomorph invariant even in reduced
units.18

Figure 4(a) shows that the dynamics is invariant along the liq-
uid isomorph. This is done by investigating the mean-squared dis-
placement and the diffusion coefficient (inset) computed from its
long-time limit (dashed line). Figure 4(b) shows the same along an
isochore.

The microscopic virial function is defined by

W(R) = −∑
i>j
∣ri − rj∣v′(∣ri − rj∣)/3, (13)

where v′ is the first derivative of the pair potential. The virial is
referred to as the “potential part of the pressure” since the pressure
p is given by the relation

pV = NkBT + W, (14)

where W = ⟨W(R)⟩. Systems with hidden scale invariance are some-
times referred to as “strongly correlating”7 because the fluctua-
tions of virial and potential energy are strongly correlated in the
NVT (canonical) ensemble. Figure 5 shows the Pearson correlation
coefficient R between W(R) and U(R) of the canonical ensemble,

R =
⟨ΔWΔU⟩

√
⟨(ΔW)2⟩⟨(ΔU)2⟩

, (15)

for the liquid (blue points) and the crystal isomorph (red points).
The correlation is strong as expected from the invariant structure
and dynamics (Figs. 3 and 4), and we find R > 0.94 for all investigated

FIG. 3. (a) The static structure factor, S(q), along the liquid isomorph of SAAP with
Ar parameters near the freezing line [blue dashed line in Fig. 2(b)]. The first axis
gives q in units of ρ1/3. The structure is invariant along the isomorph. The solid line
is a guide to the eye. The inset zooms in on S(q) for small q vectors, demonstrat-
ing that the isothermal compressibility is not isomorph invariant because S(0) is
not. (b) S(q) along the liquid isochore with the same density as the state point on
the isomorph with temperature T = 0.7ε/kB. (c) S(q) with the wave-vector q per-
pendicular to the (100) lattice plane of the fcc solid along isomorphic state points
[red dashed line in Fig. 2(b)]. The first two Bragg peaks are shown. (d) S(q) of the
fcc solid along the T = 0.7ε/kB isotherm for the same range of densities as the
isomorph. The statistical errors are small in comparison to the symbols for all the
shown data.
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FIG. 4. (a) Reduced-unit mean-squared displacement along the liquid SAAP iso-
morph of Ar near the freezing line [blue dashed line in Fig. 2(b)]. The collapse of
the data demonstrates that the dynamics is invariant along the isomorph. The inset
demonstrates isomorph invariance of the diffusion coefficient D in reduced plotted
as a function of the temperature. The reduced diffusion coefficient is computed
from the long-time limit of the reduced mean-squared displacement. (b) Reduced
mean-squared displacement along the liquid isochore with the same density as
the state point on the isomorph with temperature T = 0.7ε/kB. The statistical errors
are small in comparison to the thickness of the lines or symbols for all the shown
data.

state points. The correlation increases with increasing temperature
(and density). This is consistent with the fact that the structure is
more invariant on the high-temperature part of the configurational
adiabat (inset of Fig. 5).

FIG. 5. The Pearson correlation coefficient R between virial W and potential energy
U [Eq. (15)] along the liquid isomorph (blue points) and the solid isomorph (red
points) of SAAP with Ar parameters [Fig. 2(a)]. The solid lines are guides to the
eye. The correlation coefficient approaches unity with increasing temperature. The
inset shows the static structure factor S(q = 6.6ρ1/3) of the liquid as a function
of temperature along the isomorph. The inset demonstrates that the structure
becomes more invariant when the correlation coefficient is high.

If the pair potential is an inverse power-law (r−n), the iso-
morphs are given by ργ/T = const. in which γ = n/3.8,14 For this
reason, γ is referred to as the “density-scaling exponent.” In general,
γ is state-point dependent.7,8,63–65 It has been demonstrated that for
many systems with pair interaction, including the LJ and the EXP
systems, the exponent can be approximated by fitting an effective
(state-point dependent) inverse power-law to the pair potential as
some distance.66 For the dense phases (liquid and solid), this results
in the expression

γ(ρ, Sex) ≅ −
2
3
−

r
3
v(3)(r)
v(2)(r)

∣

r=Λ(Sex)ρ−1/3/σ
, (16)

where v(i)(r) is the ith derivative of the pair potential with respect
to r and Λ(Sex) is a free parameter for any given isomorph, expected
to be close to unity. Under the assumption that Λ is the same for
different isomorphs, γ is only a function of density to a good approx-
imation. Figure 6 shows the true γ of Eq. (9) (dots) and the γ esti-
mated from the pair interactions (solid lines) via Eq. (16), using
the Λ that yields the correct γ at the reference temperature T0. The
agreement is excellent. Thus, an isomorph can be computed from a
single reference state point by integrating Eq. (9) using Eq. (16) with
Λ determined at the reference state point by calculating γ from the
fluctuations via Eq. (10).

FIG. 6. The blue dots show the density-scaling exponent γ of SAAP with Ar param-
eters along the liquid isomorph. The blue solid line is the estimate of γ based on
using Eq. (16) with Λ(Sex) = 1.047. The Λ value is chosen to give the correct γ
at the reference temperature T0 = 2ε/kB (indicated with an arrow). The agreement
is good for all the investigated state points. The open circles are values from the
empirical argon EOS obtained by Tegeler et al.67 The green dashed line is the
predictions of Eq. (16) for the LJ potential, and the green + symbols are the expo-
nents computed in simulations at the state points of the liquid isomorph of the LJ
potential. The red dashed line and +’s are the same for the EXP potential. The
LJ potential gives the best description at low temperatures and the EXP at high
temperatures. This is in agreement with the fact that the LJ pair potential gives a
good description at low energies, while the EXP potential gives a good description
at high temperatures (see Fig. 1). The inset shows γ as a function of T along the
liquid isomorph at high temperatures. At temperatures above T = 21ε/kB = 3000 K,
the exponent goes below 2.3. This suggests that the stable crystal phase of argon
is bcc at high temperatures, similar to what is observed for the EXP potential.37
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In this paper, we investigate the fcc solid noting, however, that it
is well known that noble elements can form other crystal struc-
tures such as hexagonal closed packing (hcp) at higher pressures
than investigated here.68 At very high pressures (high densities
and temperatures), the density-scaling exponent γ decreases and
approaches that of the EXP potential. As such, the pair potential
becomes long ranged compared to the interparticle distance. When
γ < 2.3, it is expected that the body-centered cubic (bcc) crystal
becomes thermodynamically stable compared to the closed packed
crystals (fcc and hcp).15,17,69 Hoover and co-workers15 explained
the fcc–bcc–fluid triple point for many metals by the fact that the
effective pair potential becomes soft. It was recently shown that
the EXP pair potential has a fcc–bcc–fluid triple point37 located
where γ = 2.33(3).70 Since the noble-elements’ SAAP is approxi-
mated by the EXP potential at high densities, we expect that these
elements have an fcc–bcc–fluid triple point where γ ≃ 2.3. For
Ar, we estimate the fcc–bcc–fluid triple point to be at T = 21ε/kB
= 3000 K (see the inset of Fig. 6). Belonoshko and co-workers argued
that this triple point exists for Xe, based on theoretical calcula-
tions and re-interpretations of experiments.71,72 The experiments
presented in Ref. 73 were, however, unsuccessful in detecting such
a triple point. We note that γ for the LJ potential is 4 in the high-
pressure limit, and thus, an fcc–bcc–fluid triple point is not expected
to exist.74 The LJ potential, however, does not describe the noble ele-
ments at high pressures since it is too harsh. Moreover, we note that
the EXP high-pressure limit of the pair interactions also suggests a
re-entrance temperature above which no crystalline phase is stable
(see T⋆ in Ref. 70).

The density-scaling exponent γ can be determined from ther-
modynamic data as the ratio between the excess pressure coefficient
βex
V ≡ (∂W/∂T)V/V and the excess isochoric heat capacity per

volume cex
V ≡ (∂U/∂T)V/V ,8

γ =
βex
V

cex
V

. (17)

These two thermodynamic quantities are usually not directly avail-
able from experiments. Using standard thermodynamic relations, γ
can be rewritten, however, as

γ =
γG − kB/cV
1 − 3kB/2cV

, (18)

where

γG =
∂ lnT
∂ ln ρ

∣

S
=
αKT

cV
(19)

is the thermodynamic Grüneisen parameter,38,75–77 cV is the iso-
choric heat capacity, α is the thermal expansion coefficient, and KT
is the isothermal bulk modulus. Within the Dulong–Petit approxi-
mation, cV ≃ 3kB, one finds (compare Ref. 78)

γ ≃ 2γG − 2/3. (20)

The value of the thermodynamic Grüneisen parameter is γG
= 2.913,79 near the gas–liquid–solid triple point of Ar. This cor-
responds to γ = 5.1, which is in good agreement with the value
obtained by the SAAP (Fig. 6). Amoros et al.79 noticed that γG is
only a function of density to a good approximation. This is explained
by the fact that Λ in Eq. (16) is close to unity for all Sex, making γ

and γG functions solely of the density. Thus, γG is also only a func-
tion of density. This is only expected to be true in dense phases,
i.e., for the liquid and the solid. In the gas limit, only temperature is
expected to be relevant, as illustrated for the EXP potential in Ref. 16.
The reason is that the typical collision distance of gas particles only
depends on the temperature. In Fig. 6 (open circles), we compare
the γ along the liquid isomorph of the SAAP potential to that of
the empirical equation of state (EOS) obtained by Tegeler et al.67

(this EOS is implemented into the CoolProp software library by Bell
et al.80). The agreement is good.

To summarize, we have established that (i) the SAAP gives
a good representation of Ar, (ii) the SAAP posseses hidden scale
invariance near the coexistence line in both the liquid and solid
phases, and (iii) the isomorphs can be computed from a reference
coexistence point by means of Eq. (16) and Eq. (9).

Next, we apply the isomorph theory of the melting line25 to
SAAP argon.

IV. THEORY OF THE MELTING LINE
Using the LJ system as an example, Ref. 25 showed how the

freezing and melting lines, as well as the variation of several prop-
erties along these lines, can be calculated from simulations carried
out at a single coexistence state point by knowing the solid and liq-
uid isomorphs through this state point. In particular, the coexistence
pressure as a function of temperature, pm(T), can be computed from
the liquid and the solid isomorphs through a reference state point on
the coexistence line with temperature T0. This leads25 to

pm(T) = [C1(T) + C2(T) + TĈ3]/C4(T), (21)

in which

C1(T) = UI
s (T) − [T/T0]UI

s (T0) −UI
l (T) + [T/T0]UI

l (T0),

C2(T) = NkBT ln(V(0)s /V
I
s (T)) −NkBT ln(V(0)l /V

I
l (T)),

Ĉ3 = p0[V(0)l − V(0)s ]/T0,

(22)

and

C4(T) = [V I
l (T) − V

I
s (T)]. (23)

Here, the superscript “I” indicates values along the isomorphs, the
“0” indicates values at the reference state point, the subscript “s”
indicates the solid value, and the subscript “l” indicates the liquid
value. In Fig. 7(a), we test the prediction of the melting theory for
Ar using the liquid and solid isomorphs defined by the reference
temperature T0 = 2ε/kB [shown in Fig. 7(b)].

Not only is the pressure variation along the melting line pre-
dicted but so are the variations of a number of other properties
along the freezing and melting lines—again using only information
obtained by simulations at the reference state point. The density of
the liquid on the freezing line, ρl, is given by

ln ρl(T) = ln ρIl (T) + (Wm(T) −WI
(T))/(∂W/∂ ln ρ)T , (24)

where Wm = pm/ρl − kBT is the virial at melting. The density of the
solid, ρs, has an analogous expression. The theoretical prediction is
shown in Fig. 7(b) as dots. The prediction is good, though devia-
tions are noted at low temperatures. Similar deviations (but small)
are seen also for the LJ system.25 The deviation from the theory are
not unexpected since R [Eq. (15)] is lower near the triple point.

J. Chem. Phys. 154, 134501 (2021); doi: 10.1063/5.0045398 154, 134501-6

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 7. Applying the melting theory of Ref. 25 to SAAP argon. The prediction is
made from the reference state point with temperature T0 = 2ε/kB indicated by
arrows. (a) shows the melting line in the pressure-temperature diagram, (b) shows
the melting and freezing lines in a temperature-density diagram. The inset of (b)
shows the potential energy per particle along the liquid (blue) and solid (red) iso-
morphs. The statistical errors are small in comparison to the thickness of the lines
and symbols for all the shown data.

Figure 8(a) shows the entropy of fusion ΔSm per particle along
the coexistence line (solid line). The theoretical prediction, shown as
red dots, is quite good. For comparison, we note that the hard-sphere
picture predicts a constant entropy of fusion. Figure 8(b) shows the
Lindemann parameter of the fcc crystal,

δL = [ρ/4]1/3
√
Δr2/6, (25)

where

Δr2
= ⟨∣ri(0) − ri(t →∞)∣2⟩ (26)

is the root-mean-squared displacement of particles in the crystal at
long times82 (⟨u2

⟩ = Δr2/3 in Ref. 82). The +’s in the inset show the
Lindemann parameter along the ρ = 1.14 isochore. The dashed line
is a linear fit that yields ∂δL/∂T|ρ = 0.0365kB/ε needed in the the-
oretical prediction.25 The theoretical predictions are good for both

FIG. 8. (a) The entropy of fusion per particle ΔSm/N in units of kB. The solid line is
the simulation result for SAAP argon, the dots mark the prediction of the isomorph
theory, and the horizontal dotted line is the entropy of fusion of hard-spheres.81 (b)
The Lindemann parameter δL of the fcc crystalline solid at melting. The solid line is
δL along the SAAP coexistence line, and the dots are the theoretical prediction of
the isomorph theory. The prediction is made only using information at the reference
state point (T0 = 2ε/kB). The×’s are the Lindemann parameter along the isomorph.
As expected from the isomorph theory, it is near invariant (red dashed line). The
inset shows the simulation data needed for determining dδL/dT |ρ = 0.0365 at the
reference temperature, which is used for the isomorph-theory prediction.25

ΔSm and δL; however, they both become less accurate at low temper-
atures. This is related to the relatively poor prediction for the solid
density near the triple point [Fig. 7(b)].

V. COEXISTENCE LINES OF NEON, KRYPTON,
AND XENON

The solid–liquid coexistence lines of Ne, Kr, and Xe are com-
puted in the same way as for Ar. Figures 9(a)–9(c) show the results.
For reference, the light gray lines in each panel show the Ar coex-
istence line [Fig. 7(a)] and Fig. 9(d) shows results for the LJ model.
The dotted red lines are empirical coexistence lines.68,83 The SAAP
potential systematically slightly overestimates the coexistence tem-
perature at a given pressure. This is likely due to missing many-body
interactions, as discussed for the case of Ar.

J. Chem. Phys. 154, 134501 (2021); doi: 10.1063/5.0045398 154, 134501-7

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 9. The solid–liquid coexistence lines in the pressure-temperature plane of (a) neon, (b) krypton, (c) xenon, and (d) the LJ model. For reference, each figure shows the
coexistence line of SAAP Ar as gray lines [see Fig. 2(a)]. The dots represent solid and liquid isomorphic state points (generated from the reference state point at T0 = 2ε/kB),
and the green dashed line is the theoretical prediction of the isomorph theory (see below). Empirical melting lines are shown as red dotted lines.68,83 The statistical errors
are small in comparison to the thickness of the lines and symbols for all the shown data.

Deiters and Sadus investigated the gas–liquid coexistence lines
for the SAAP potentials of the noble elements.52 Here, we com-
pute the coexistence between the liquid and the face-centered cubic
(fcc) solid. In all, this information allows one to compute the

gas–liquid–fcc triple points (Table II). The triple-point tempera-
tures of the elements are very similar, ranging from 0.642 51(35)ε/kB
for Xe to 0.660 54(5)ε/kB for Ne. This is not surprising, given the
similar shapes of the pair potentials (Fig. 1). However, the SAAP

TABLE II. Thermodynamic data for the SAAP triple points and corresponding empirical values.

Ttp (ε/k) Ttp (K) ρs (σ−3) ρs (g/cm3) ρl (σ−3) ρl (g/cm3) ρg (σ−3)

Ne SAAP empirical 0.650 54(5) 27.558(2) 0.952 39(5) 1.519 37(8) 0.825 92(16) 1.317 6(3) 0.004 21(25)
0.579 77a 24.56 0.905 14 1.444 0.782 28 1.248

Ar SAAP empirical 0.646 79(34) 92.80(5) 0.949 53(5) 1.667 72(9) 0.825 32(35) 1.449 6(6) 0.004 25(25)
0.584 04 83.81 0.924 07 1.623 0.802 80 1.410

Kr SAAP empirical 0.645 77(54) 129.85(9) 0.947 50(2) 2.873 53(6) 0.826 24(26) 2.505 8(8) 0.003 51(28)
0.575 73 115.78 0.931 83 2.826 0.808 18 2.451

Xe SAAP empirical 0.642 51(35) 180.02(10) 0.945 34(4) 3.471 25(15) 0.823 78(15) 3.024 88(55) 0.004 38(11)
0.575 94 161.37 0.925 66 3.399 0.837 70 3.076

LJ 0.694b 0.96 0.84

aEmpirical data are taken from Ref. 85.
bLJ data are taken from Ref. 84.
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triple-point temperatures are 10%–12% above the empirical values,
and the SAAP triple-point densities of the solids are 2%–5% higher
than the empirical values. These systematic deviations are likely due
to the missing many-body interactions, as discussed for the case of

FIG. 10. (a) Fit of the Simon–Glatzel equation [Eq. (27); dashed lines] to the SAAP
solid–liquid coexistence line (dots) of Ne (green), Ar (red), Kr (purple), and Xe
(blue). The reference state point (T0, p0) is indicated with arrows. The parameters
in Eq. (27) are given in Table III. (b) Residuals using T0 as the reference temper-
ature (indicated with arrows). (c) Residuals using pref = 0 and with the reference
temperature T ref as a fitting parameter (T ref ≅ T tp is indicated with arrows). The
parameters for Eq. (27) are given in Table IV. The statistical errors are small in
comparison to the thickness of the line or symbols for all the shown data.

TABLE III. Parameters of the Simon–Glatzel equation [Eq. (27)] of SAAP coexistence
state points using T ref = T0 and pref = p0 as the reference state point. The fit is shown
in Fig. 10(a).

T0 (K) p0 (GPa) a (GPa) c

Ne 84.72 0.610 10 0.751 1.4983
Ar 286.98 1.184 98 1.436 1.5473
Kr 402.16 1.396 45 1.681 1.5699
Xe 560.37 1.526 07 1.824 1.5924

argon. The triple-point temperature of the LJ model is above that of
the SAAP potential, 0.694ε/kB,84 which is possibly an effect of the
broader range of attraction of the LJ pair potential compared to that
of the SAAP (see Fig. 1).

As an aside, we investigate the validity of the Simon–Glatzel
equation for the coexistence pressure,86

pSG(T) = pref + a[[T/Tref]
c
− 1]. (27)

We first use Tref = T0 and pref = p0. Figure 10(a) shows fit to the
SAAP coexistence lines where the a and c parameters are deter-
mined by least-squares fitting (see Table III). The accuracy of the
fit is within a few MPa [Fig. 10(b) shows the residuals]. The triple
point temperature is often used when fitting empirical data. Table IV
gives parameters using pref = 0 and Tref as a third fitting param-
eter (in addition to a and c). The accuracy of the fit is compati-
ble for the two approaches [Figs. 10(b) and 10(c)]. With the lat-
ter procedure, the reference temperature is almost identical to the
triple-point temperature: Tref ≅ Ttp (since the triple point pres-
sure is nearly zero for the relevant pressure scale). Table IV com-
pares the SAAP parameters with parameters from empirical data.
The agreement is in general good. The a parameter and Tref of
the SAAP fit are systematically lower than the parameters deter-
mined from the empirical data. This is likely due to the missing
many-body interactions of the SAAP, as discussed for the case
of Ar.

TABLE IV. Parameters for the Simon–Glatzel equation [Eq. (27)] of SAAP coexis-
tence state points and empirical data using the triple-point temperature as reference:
T ref = T tp. For the SAAP results, T ref is treated as a fitting parameter and pref = 0.

Tref (K) a (GPa) c

Ne SAAP 27.75 0.1409 1.4989
empirical, Ref. 83 24.55 0.1286 1.4587

Ar SAAP 92.91 0.2501 1.5487
empirical, Ref. 68 83.81 0.2245 1.5354

Kr SAAP 129.64 0.2835 1.5713
empirical, Ref. 68 115.77 0.2666 1.4951

Xe SAAP 179.45 0.2966 1.5942
empirical, Ref. 68 161.40 0.2594 1.4905
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VI. HIDDEN SCALE INVARIANCE OF NEON, KRYPTON,
AND XENON

Figure 11(a) shows the density-scaling exponents of the ele-
ments along the liquid isomorphs plotted as functions of the tem-
perature. At low temperatures, near the triple point, the exponents
are 5.6± 0.3. This value is close to that of the LJ potential.7 For SAAP,
γ decreases at higher temperatures and densities as for the LJ model;
however, the γ variation is larger for the SAAP elements, and γ even-
tually goes below the LJ infinite-temperature limit of 4. Thus, we
conclude that the LJ potential is insufficient in describing the con-
figurational adiabats of the noble elements. The γ’s decrease with
increasing atomic number. The value of γ can be estimated from the
pair potential, and the decrease of γ with increasing atomic number
is directly related to the softness of the pair interaction: the softer
pair interactions of Xe explain why its γ is lower than that of Ne.
Figure 11(b) shows the density-scaling exponents γ of the elements
along the solid isomorphs. The conclusions are the same as for the
liquids.

Figure 12(a) shows the Pearson correlation coefficients R
between the virial W and the potential energy U [Eq. (15)]. The

FIG. 11. The density-scaling exponents γ of (a) the liquid isomorphs and (b) the
solid isomorphs for the SAAP elements: Ne (green solid line), Ar (red solid line),
Kr (violet solid line), Xe (blue solid line), and LJ (green dashed line). The statistical
errors are small in comparison to the thickness of the line or symbols for all the
shown data.

FIG. 12. Pearson correlation coefficient R between the virial W and the potential
energy U [Eq. (15)] for the SAAP elements: Ne (green solid line), Ar (red solid line),
Kr (violet solid line), Xe (blue solid line), and LJ (green dashed line). R is computed
along the liquid (a) and solid (b) isomorphs. The fact that R is close to unity implies
that the potential-energy function has hidden scale invariance at the state points
in question.8 The statistical errors are small in comparison to the thickness of the
lines for all the shown data.

correlation coefficient is close to unity, R > 0.92, demonstrating
that the potential-energy function has hidden scale invariance. Thus,
the structure, dynamics, and certain thermodynamics quantities
are expected to be approximately isomorph invariant (in reduced
units). This was demonstrated for Ar above, and we find simi-
lar results for the three other elements (results not shown). The
WU-correlation coefficient R for SAAP is somewhat smaller than
that of the LJ potential [green dashed line in Fig. 12(a)]. Fig-
ure 12(b) shows that R > 0.98 for the isomorphs of the solid
phases.

VII. ISOMORPH THEORY OF THE SOLID–LIQUID
COEXISTENCE LINE FOR NEON, KRYPTON,
AND XENON

Figures 13(a)–13(c) show the theoretical prediction of the coex-
istence region’s boundaries in the density–temperature plane as
green dashed lines. The agreement is quite good, though with some
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FIG. 13. Full curves show the solid–liquid coexistence region in the density–temperature plane of (a) SAAP neon, (b) SAAP krypton, (c) SAAP xenon, and (d) the LJ model.
For comparison, the gray lines delimit the coexistence region of SAAP Ar [see Fig. 2(b)]. The dots are solid and liquid isomorphic state points of the reference temperature
T0 = 2ε/kB. The green dashed line is the theoretical prediction of the isomorph theory.25 The prediction is excellent at high densities but less so at low densities near the
triple point. The statistical errors are small in comparison to the thickness of the lines and symbols for all the shown data.

deviations at lower temperatures near the triple point temperature.
For these temperatures, the density of the solid isomorphs is sev-
eral percent lower than the density of melting. These deviations may
come from the fact that only the first-order terms in the Taylor

FIG. 14. The entropy of fusion ΔSm of (a) Ne, (b) Kr, (c) Xe, and (d) LJ. The black
solid lines are the ΔSm ’s of the SAAP coexistence line, and the green dashed lines
are the predictions of the isomorph theory.

expansion were included in the analysis.25 We leave this for future
investigations.

Figures 14(a)–14(c) show the entropy of fusion (ΔSm) for: Ne,
Kr, and Xe, respectively. The accuracy is comparable to that of Ar
but slightly worse than that of the LJ model [Fig. 14(d)]. For com-
parison, we note that hard-sphere based melting models predict ΔSm
to be constant. Thus, the theoretical predictions of the isomorph
framework are encouraging.

VIII. CONCLUSION AND OUTLOOK
In summary, we have investigated the solid–liquid coexistence

of Ne, Ar, Kr, and Xe using the SAAP. We conclude that the iso-
morph theory of melting, which has no free parameters except those
determined by simulations at the reference temperature, gives accu-
rate predictions for the coexistence line and of variations of prop-
erties along this line. An obvious question is how well the iso-
morph melting theory describes molecular fluids. As a possible start-
ing point, Hellmann provided an analytical potential for the CO2
molecule based on accurate ab initio dimer calculations.87 Empiri-
cal data suggest that the isomorph theory applies to molecular sys-
tems,5,9,55,64,88,89 but the isomorph theory of melting25 has not yet
been tested for such systems.
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SUPPLEMENTARY MATERIAL

The supplementary material contains details about the simula-
tion algorithms, raw data, and additional figures.
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