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Abstract

In this study, essential oil extracted fr@gagrus coronatgeeds (SCEO) was evaluated for
antibacterial and antibiofilm activities agairStaphylococcus aureus addition, Galleria
mellonellamodel was used as am vivo infection model. SCEO was mainly composed by
fatty acids (89.79%) and sesquiterpenes (8.5%). ma@r components were octanoic acid,
dodecanoic acid, decanoic acid greudesmol. SCEO showed bactericidal activity (madim
bactericidal concentration from 312 to 12h@/mL) against all teste®. aureusclinical
isolates, which showed distinct biofilm-forming anaultiple drug resistance phenotypes.
SCEO weakly reduced biomass but remarkably dealeasdl viability in pre-formed
biofilms of S. aureusisolate UFPEDA-02 (ATCC-6538). Electron microscopgalysis
showed that SCEO treatments decreased the numbleactérial cells (causing structural
alterations) and lead to loss of the roughnessiennultiple layers of the three-dimensional
biofilm structure. In addition, overproduction ofapolymeric matrix was observed. SCEO
at 31.2 mg/kg improved the survival &. mellonelalarvae inoculated with UFPEDA-02
isolate and reduced the bacterial load in hemolyaopdh melanization. In conclusion, SCEO
is an antibacterial agent agaistaureusstrains with different resistance phenotypes diid a
to disturb biofilm architecture. Our results shoWWED as a potential candidate to drug

development.

Keywords:Staphylococcus aureuantibiofilm; antibacterial activity; volatile oil



44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

1. Introduction

Antimicrobial resistance is one of the most seripublic health problems, especially
in developing countries where infectious diseaddkrepresent a major cause of human
mortality [1]. Staphylococcus aureus highlighted as one of the major human pathogleres
to its high ability to produce virulence factorathmediate evasion of immune system and
host tissue damage [2-4]. Diseases caused.byureusinvolve skin infections (boils,
folliculitis, and abscesses) and diseases withtgreseverity such as pneumonia, meningitis,
osteomyelitis, endocarditis, bacteremia, and sefsi$]. In addition, the widespread and
indiscriminate use of antibiotics has caused se&kegiressure favoring the development of
resistant strains, such as methicillin-resis@naureufMRSA) and other multidrug resistant
phenotypes. MRSA is associated with high rates aidity and mortality [5—7].

As other bacteria$. aureusften survive by adhering to surfaces on which toegn
complex structures called biofilms [2]. Biofilms earconglomerates of microbial cells
protected by self-synthesized extracellular polghadde matrices. Bacterial biofilms are one
of the most common causes of persistent infectnmhrapresents a major health problem, as it
plays an important role in nosocomial infectionsewrhformed in internal medical devices
such as implanted catheters, artificial heart \@ho¥ bone and joint prostheses [8, 9]. The
ability of S. aureugo form biofilms in implanted medical devices i3 important virulence
factor for this pathogen [9]. Biofilm producer stra usually exhibit increased resistance to
antibiotics and are responsible for persistentcitndas [8, 10].

The failure of the antibiotics currently used iaating infections caused by multidrug
resistant microorganisms has driven the searchdarcompounds and alternative treatments,
particularly those involving plant-derived produstgh as essential oils, flavonoids and other

secondary metabolites [11-13]. Essential oils angtures of odoriferous and volatile
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compounds that have been widely reported as anmbivied agents [12, 14]. One example of
essential oil bearing plant Byagrus coronatdMartius) Beccari (Arecaceae, Arecoideae),
popularly known as “licuri” or “ouricuri” [15].

Syagrus coronatas an edible oil crop known to produce high amoonbils, with
potential use for various purposes [16, 17]. Inithaid, it has a number of applications in folk
medicine including snakebites, ocular inflammatjomg/coses, wound healing, and spinal
pain treatment [18]. Various biological activitibave been reported f&. coronataseed oil,
including antibacterial and insecticidal propertigs, 19]. In addition, it has shown
moisturizing property [20].

Galleria mellonella larvae (waxmoth) is an alternative model that la#isacted
attention due the methodological simplicity andatglity in the evaluation of infections
caused by different human pathogens, in the disgavienew virulence genes, as well as in
the evaluation of toxicity and efficacy of antinobial agents [21-23].

In the present studfs. coronateseed essential oil (SCEQO) was evaluated for antidbi
and antibiofilm activity againss. aureusandG. mellonellawas used as an vivo infection

model.

2. Material and methods

2.1. Plant material

Seeds 06. coronatavere collected at the Catimbau National Park re@givARNA do

Catimbau, Pernambuco, Brazil - 8° 30' 57" S, 37°520 W) in December 2015. They were

dried at 30 °C in an open and airy area for threeks. The taxonomic identification of the

plant was performed by Dr. Alexandre Gomes da Silvahe herbarium of thénstituto



94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

Agronémico de PernambudctPA). The voucher specimen was deposited undentimeber
86,950. The access was recorded (AFD8A80) in @iitema Nacional de Gestdo do

Patrimoénio Genético e do Conhecimento TradicioAakociadqSisGen).

2.2. Extraction of S. coronata essential oil (SCEO)

The dried seeds (200 g) were powdered and esseoilialvas obtained by
hydrodistillation method for 4 h in a modified Cenger-type apparatus. The SCEO layer was
separated from the hydrolate (aqueous layer), dnved anhydrous sodium sulfate, and stored
in a hermetically sealed amber-glass vial at -2Q8@ required for analysis. The percentage
yield of essential oil was taken as the ratio betwthe weight of oil obtained and the weight

of seed powder. The whole procedure was repedtietes.

2.3. Gas chromatographic (GC) analyses

SCEO was esterified by acid catalysis with borafiutride (BF3) [24]. GC was
performed using a Thermo Fisher Scientific (Walthavd, USA) Trace GC Ultra gas
chromatograph equipped with a flame ionization dere(FID), a split/splitless injector and a
Hamilton Bonaduz (Switzerland) HB-5 fused silicgitlary column (30 m x 0.25 mm; film
thickness 0.25 um). The oven temperature was hel@ &C for 2 min and then increased at 4
°C/min to 230 °C. The injector and detector werth lmoaintained at 250 °C, and the essential
oil solution and esterified fractions were injectedthe splittess mode. Each analysis was
carried out in triplicate.

GC coupled to mass spectrometry (GC-MS) was cargatl using an Agilent

Technologies (Palo Alto, CA, USA) series 5975C qupdle analyzer equipped with an
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Agilent J & W nonpolar DB-5 fused silica capillapplumn (60 m x 0.25 pm i.d.; film
thickness 0.25 um). The oven temperature was hed@ &C for 3 min, then increased at 2.5
°C/min to 240 °C and subsequently held for 10 niihe helium carrier gas flow was
maintained with a constant pressure of 100 kPatlanthjector was operated at 250 °C in the
split mode (1:20). The detector temperature was®28@he ionization potential was 70 eV,
and mass spectra were scanned in the range 20425 mrate of 0.5 scans/s [25].

Individual components of SCEO were initially iddiail according their Retention
Indices (RI), obtained by co-injection of oil sampland @Cszy n-alkanes, calculated
according to the equation of van Den Dool and Kfa®] and compared with the literature
[27]. The acquired mass spectra were matched Wwikbet stored in the library of the GC-MS
system (MassFinder 4 comprising NISTO8 MS Librangd &Viley Registry of Mass Spectral
Data, 9th Edition) and with other published dat&e Tcomposition of essential oil was

expressed as percentages of total peak area adeddny GC-FID.

2.4. Phenotypic characterization of S. aureus sBai

2.4.1. Antibiotic susceptibility profile

Twenty S. aureusclinical isolates (Table 2) were obtained from tBellection of
Microorganisms of theDepartamento de Antibidticosf the Universidade Federal de
PernambucoUFPEDA, WDCMO0114), BrazilS. aureusclinical isolates susceptibility was
determined according to Kirby Bauer's disk diffusiiechnique [28] using the antibiotics:
oxacillin, ciprofloxacin, nitrofurantoin, amikacigentamicin, clindamycin, chloramphenicol,
tetracycline, and trimethoprim. Antibiotic suscéygtty was interpreted according the Clinical

and Laboratory Standards Institute [31].



144 The multiple antibiotic resistance (MAR) index wealculated using the formula
145  MAR= x/y; wherex is the number of antibiotics to which the isoldemonstrated resistance
146  andy is the total number of antibiotics tested [29].

147

148  2.4.2. Evaluation of S. aureus biofilm formation

149

150 Biofilm formation was evaluated and quantified gsia microtiterplate test [30].
151  Briefly, it was added 20 pL of the bacterial suspen (1.5 x 18 CFU/mL), 20 pL of Milli-Q
152  water and 160 uL of brain heart infusion broth (Bl each well of the plate. After 24 h of
153  incubation at 37 °C, the non-adhered cells wereokam, and the biofilm was washed three
154  times with saline solution (0.9% NaCl). Biofilms mgeheat-fixed at 60 °C for 1 h and then
155  stained with 0.4% (w/v) crystal violet for 15 mih30 °C. Finally, the plate was washed four
156  times with water and the biofilm was resuspendeth wihanol for 30 min. The optical
157 density (OD) was measured at 570 nm. The biofilmdpction was classified according to
158  Stepanovic et al. [30].

159

160  2.5. Determination of minimal inhibitory (MIC) ardctericidal (MBC) concentrations

161

162 Minimal inhibitory concentration (MIC) were detemmeidd by broth microdilution
163 method. Initially, overnight bacterial culture wasepared on Mueller Hinton Agar
164 (MHA) plates. The, a bacterial suspension at 1.8>xaBU/mL was prepared in saline
165  solution (0.9% NaCl). SCEO (0.039-10,000 pg/mL5% dimethyl sulfoxide, DMSD
166  was serially diluted in microplates containing MaelHinton Broth (MHB). Each well
167 received 10 pL of bacterial suspension, exceptvibs used as sterility control. In

168  negative control, it was us&d DMSQ The plates were incubated at 37 °C and, after 24
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h, wells received 20 pL of 0.01% (w/v) resazurifugon to follow bacterial growth (i.e.
change of blue to pink color). After 24-h incubatiohe MIC was defined as the lowest
SCEO concentration that inhibited bacterial growBlspension from wells before the
addition of resazurin were transferred to MHA péagend incubated for other 24 h. MBC
was determined as the lowest SCEO concentratiatabprevent bacterial growth. The
MIC 5 and MIGo were determined as the MIC values that inhibi%%hd 90% of thé&.

aureusisolates (n = 20).

2.6. Biofilm eradication assays: Quantification laibfilm biomass and viability of biofilm

cells

The biofilm eradication ability of SCEO was evakdtaccording to Zimmer et al.
[32]. For this assay, th8. aureudJFPEDA-02 (ATCC-6538) strain was selected duetgo i
source (wound) and high biofilm production abilitfhe biofilm was formed according
previously described and, after 24 h of incubatr87 °C, planktonic cells were removed
and the SCEO diluted in BHI broth was added aediifit concentrations (156, 312, 624 and
1,248 ug/mLn 5% DMSO). The plate was incubated again at 37 adter 24 h the wells
were washed three times with saline solution (ON&€l). Adherent biofilms were heat-fixed
at 60 °C for 1 h and then stained with 0.4% (wkystal violet for 15 min at 30 °C. Finally,
the plate was washed four times with water andstamed biofilm was solubilized in ethanol
for 30 min. The absorbance (570 nm) was measuradcdmycin (1 pg/mL) was used as
antibiotic control.

The viability of cells within biofilms exposed SCEAas assessed using MTT (3-(4,5-
dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazoliuntdimide) assay [33]. Biofilms were grown

as described above and, after 24 h, it was exptuséide SCEO (156, 312, 624 and 1,248
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png/mLin 5% DMSO). After the incubation period, the contehtvells was removed and the
remaining biofilm was washed two times with saliMelT solution at 0.3 mg/mL (200 uL)
was added to each well and incubated for 90 mBv&C. The wells were then washed once
with saline and the purple formazan crystals wéssalved with 200 uL of DMSO for 20 min
and then the absorbance at 540 nm was measuredomgoin (1 pg/mL) was used as

positive control.

2.7. Scanning electron microscopy (SEM)

Biofilm was grown and treated with SCEO (312 and @g/mLin 5% DMSO) in 96-
wells microtiter plates containing a piece of Pammd™ slide in each well (Nalge Nunc
International, USA). After 48 h of incubation at 92, the slide pieces were fixed and stored
in 2.5% (v/v) glutaraldehyde at -20 °C until mia@opy analysis. The samples were washed
with 100 mM cacodylate buffer pH 7.2 and dehydratedincreasing concentrations of
acetone. The slides were dried by the,Gstical point technique (CPD 030 Balzers,
Liechtenstein), fixed on aluminum stubs, coverethvgold film and examined in a JEOL

JSM-6060 microscope. Vancomycin (1 ug/mL) was wsedntibiotic control.

2.8. In vivo assays using Galleria mellonella

2.8.1. Survival assay

Galleria mellonella larvae (200 mg) were randomly distributed in g®up =

10/group) and infected with 10 of S. aureusJFPEDA-02 (ATCC-6538) suspension (110

CFUl/larvae) injected into the last left proleg. &f2 h incubation at 37 °C, larvae received a
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single dose of 1QL of S. coronataessential oil solutions at MIC or 2xMIC (that resdl in
doses of 15.6 mg/kg or 31.2 mg/kg, respectively) toe plates were re-incubated at 37 °C.
Larvae infected withS. aureusand inoculated with vehicle (PBS) were used astipesi
control, while uninfected larvae also treated withicle were taken as negative control.

Mortality rates of each group were observed dailgirdy 5 days.

2.8.2. Early melanization assay

The effect of SCEO in the production of melaninuoed byS. aureusnfectionwas
measured as previously described by Scorzoni ef34]. with modifications. The larvae
(n=10/group) were infected witB. aureug1x1®® CFU/larva) and immediately treated with
SCEO (15.6 or 31.2 mg/kg). Larvae infected andt&ckavith vehicle (PBS) were used as
positive control while larvae inoculated only witbhicle composed the negative group. After
1 h and 3 h of incubation, the hemolymph of fouvd@ from each group was collected by
cutting them with a scalpel blade through the ckpfzaidal direction and squeezing. The
obtained hemolymph was diluted in cold PBS andni@anin production was detected by

measuring the absorbance at 405 nm.

2.8.3. Bacterial load in hemolymph

To evaluate the effect of SCEO in bacterial loadhemolymph, the larvaen(=
10/group) were infected witls. aureus(1x1® CFU) and treated with essential oil (31.2
mg/kg) as described in section 2.8.1. The hemolyofdive larvae was collected daily for 3
days, serially diluted in PBS and 4 pL of eachttluwas plated on MHA. After incubation

for 24 h at 37C, the number of CFU/mL was determined.
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2.9. Statistical analysis

All assays were performed in triplicate in at letwgbd independent experiments.
Statistical analyses were performed by one-wayyaislof variance (ANOVA). All
analyses were carried out using GraphPrism, vergioDifferences were considered
significant atp < 0.05.Differences in the survival d&. mellonellalarvae were determined

using the Kaplan-Meier method and log-rank test wsesl to compare survival curves.

3. Results and discussion

3.1. Chemical composition of SCEO

The hydrodistillation of5. coronataseeds allowed to obtain the essential oil withdyiel
of 0.41+0.1%. The SCEO components detected by GCaW& GC/FID are presented in
Table 1. A total of 11 volatile constituents wedentified, corresponding to 98.63% of the
total oil, being most of them fatty acids (89.79%)d sesquiterpenes (8.5%). The most
abundant components were octanoic acid, dodecawid; decanoic acid angeudesmol.
Previous studies have reported tBatcoronataoils are dominated by free carboxylic acids,
accounting for approximately 80% of the total cosipon, and octanoic acid has been

reported as the major volatile componen&otoronatail [15, 16, 19].

3.2. Phenotypic characteristics of S. aureus isdat
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The twentyS. aureustlinical isolates were from several sources sigleaheter tip,
purulent exudate, bone fragment, surgical wound fanmdan lesions (Table 2). The results
showed that 13 strains were resistant to oxadhd classified as MRSA [35]. In fact, 11
MRSA clinical isolates were multidrug resistant tagy showed resistance to at least 3
antibiotics while 1 MSSA was a multidrug resistattain (Table 3). Microtiterplate assay
revealed that 13 clinical isolates were strong iloofproducers, 6 strains were moderate

biofilm producers, while one strain was a weak ibioproducer (Table 2).

3.3. SCEO is a bactericide agent against S. aureus

SCEO showed antimicrobial efficacy against all ctelé isolates ofS. aureus
including those with biofilm-forming and multiplerw resistance phenotypes. The MIC
values for the oil ranged from 15&)/mL to 625ug/mL (Table 3). The MBC values were
equal to or 2-fold higher than each respective Mi@hging from 312 to 125@g/mL,
indicating the bactericidal effect of the dilhe MICso and MIGy corresponded to 312 and
625 ug/mL, respectively. Essential oils from plants suckCaryophyllus aromaticys
Cinnamomum zeylanicyniEugenia uniflora Rosmarinus officinalisVernonia polyanthes
andBaccharis dracunculifolishave been shown to be effective against clingallaies ofS.
aureus with MIC ranging from 0.25 to 56 mg/mL for MRSA@ 0.25 to 50.8 mg/mL for
MSSA [36].

The main constituents of SCEO are medium chairy atids, which have previously
been identified as bioactive components againgebacand yeasts, tending to be more active
against gram-positive bacteria than gram-nega®e B8]. For example, the octanoic acid,

the major component of SCEO, has antibacterial gnegs against a range of gram-positive
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and gram-negative pathogens; dodecanoic and decacas have been also reported as

antimicrobial agents [39, 40].

3.4. SCEO effects viability of eradicates S. autdafim

The effect of SCEO on the biomass and viabilitypformed biofilm was evaluated
using the strong biofilm produc&:. aureusstrain UFPEDA 02 (ATCC-6538). SCEO showed
a slightly effect on biofilm matrix; significant deiction was observed only with 312 and 624
ug/mL concentrations (Figure 1). These findings waneilar to vancomycin results, used as
antibiotic control. On the other hand, SCEO wa dblsignificantly decrease cell viability
inside of the biofilm structure at all tested camications. Bacterial cell viability decreased
more than 50% when the biofilm was submitted to Ithwest concentration (156g/mL,
corresponding to 0.5xMIC), while minimal viabilityas detected when the biofilms were
exposed to the highest concentrations (624 andB1ug4mL, corresponding to 2xMIC and
4xMIC 2) (Figure 1). Although the cell viability wastrongly reduced in the treatment at
1248 pg/mL, there was no significant reduction iofim biomass, which can be due to a
defensive response of the bacterial cells to tigé loil concentration before they became
inviable. Vancomycin showed low effect against biaeteria within the biofilm, confirming
that planktonic bacterial susceptibility to antiiiis may not correspond to a good prediction
for bacteria in biofilm lifestyle. This may repregea key point in the failure of antimicrobial
treatment in the clinical routine as well as in tbealuation and development of new
antimicrobial agents [41, 42].

The SEM analysis revealed untreatedaureusbiofiim as aggregates composed by
cells with preserved structure (Figure 2A). No regable alterations were observed in

biofilm treated with vancomycin (Figure 2B). SCE@adtments with MIC, 312i1g/mL
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(Figure 2C), and supra-MIC, 624)/mL (Figure 2D) concentrations decreased the nummbe
live cells in biofilms and led to loss of the roumgiss in the multiple layers of the three-
dimensional structure of bacterial biofilm. SCEO 3t2 pg/mL caused alteration in the
cellular structure o86. aureugFigure 2C), which may be related to the bacteaicattion of
the oil. Another effect induced by SCEO $ aureusbiofilms was the overproduction of
exopolymeric matrix (Figure 2D), which can be a tpotive mechanism against the
aggression caused by the treatment [43—-45]. THisnd@orroborates with those reported in
Figure 1. The maintenance of the three-dimensiomatkix architecture (with dense areas,
pores and channels) is crucial to determine the ofdife in biofilm due to its influence on
factors such as diffusion of nutrients, oxygenjdeal products, and motility [46, 47]. The
biofilm eradication ability of the major componemmisSCEO was already reported. Hogan et
al. [48] demonstrated that application of ML:8, @mulsion based on octanoic acid, reduced
S. aureusbiofilm viability in more than 97% after 24 h treaéntin vitro. Hess et al. [49]
showed that dodecanoic acid was also able to retheeviability of biofilm cells ofS.

aureus however, it did not reduce the biofilm biomass.

3.5. SCEO reduces the deleterious effects of uaunfection in G. mellonella

Based on the MIC values, we selected two conceoiatof SCEO to evaluate its
antimicrobial action usings. mellonellalarvae. The inoculation of SCEO at 15.6 mg/kg or
31.2 mg/kg did not change the survival raté&soimellonellalarvae. In additionis. mellonella
larvae exposed to SCEO developed the pupal stageeisame time period than untreated
larvae. These data show that SCEO showed no tpxacthis insect.

The survival rate of5. mellonellalarvae was reduced by infection wigh aureus

UFPEDA-02, resulting in the death of all larvaeSidays. This effect was inhibited when the
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larvae was treated with a single SCEO dose of 8ig&g, which resulted in survival rate of
60% in 4 days after infection. The mortality ratedase of 15.6 mg/kg was not significantly
different to that of the untreated group (Figure.3Aiming to investigate if the mortality rate
was related to antibacterial activity of SCEO, th&cterial survival in hemolymph was
evaluated. The hemolymph of larvae infected vBthaureusexhibited increased levels of
bacterial load, approximately, 6, 8, and 9 log GRUAn 1 2" and & days post-infection,
respectively. These values were reduced in tredtmigin SCEO at 31.2 mg/kg to 4, 5, and 5
log CFU/mL 1, 2, and 3 days post-infection, respety (Figure 3B).

We also analyzed the effect of SCEO at 31.2 mgikgelanin production, employing
a model of acute infection by inoculating the la&vavith a high-density inoculum.
Melanogenesis is an essential compone@.ahellonellammune response against microbial
infection [50]. However, the overproduction of tipggment has been associated to death
induced by microorganisms [51]. The melanin in hgmmph significantly increased after 1
and 3 h of infection witls. aureusut SCEO was able to reduce larvae melanizationced
by S. aureusnfection in both periods (Figure 3C). These resatirroborate with the benefic

effects of this oil in infected larvae.

4. Conclusion

This work demonstrated that SCEO is an antiba¢tagant againsg. aureusstrains
with different resistance phenotypes. In additibwe, oil was able to disturb biofilm formed by
a strong biofilm producer isolate, and this anfilbno activity was probably associated to the
decrease of viability of cells inside the biofilin.vivo antibacterial activity of SCEO against
S. aureusimproved survival ofG. mellonellalarvae and this fact indicates SCEO as a

potential candidate to drug development for treatnoéS. aureusnfections.
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Figure captions

Figure 1. Effect of theSyagrus coronatassential oil (SCEO) on biomass and cell viability
S. aureusJFPEDA-02 biofilm. Biomass was quantified using thierotiterplate method (OD

570 nm) and viability was determined by MTT asd@ip (540 nm). (*) p<0.05; (**) p<0.01.

Figure 2. SEM images of biofilms formed Wy. aureusJFPEDA-02. (A) Untreated biofilm.
(B) Biofilm treated with vancomycin at 1 pg/mL. (8)ofilm treated withSyagrus coronata
essential oil (SCEO) at 312 pg/mL. Arrows pointlcelith altered structure. (D) Biofilm
treated with SCEO at 624 pg/mL. The asterisks atdicverproduction of exopolymeric

matrix.

Figure 3. Effects of SCEO orGalleria mellonellalarvaeinfected withS. aureusJFPEDA-
02. (A) Survival curves of uninfected insects teghtvith PBS as well as infected insects
treated with PBS (control) or SCEO at 15.6 and 3hdkg. (B) Bacterial load and (C)
melanization in larvae uninfected treated with P&S well as insects treated with PBS

(control) or SCEO at 31.2 mg/k€) p<0.05 (**) p<0.01.



Table 1. Constituents oSyagrus coronata seed essential oil (SCEO).

N°  Compound RI Content (as % of total oil)

Determined Literaturé

1  Octanoic acid 1195 1167 46.77 £1.85
2  Decanoic acid 1378 1364 20.93£0.29
3 trans-Caryophyllene 1421 1417 0.41 +0.05
4 Viridiflorene 1497 1496 0.53 +£0.09
5 &-Cadinene 1525 1522 0.44 +0.06
6  Dodecanoic acid 1573 1565 22.09 £3.51
7  Caryophyllene oxide 1586 1582 0.61 +0.23
8  Ethyl dodecanoate 1595 1594 0.34 £0.06
9  y-Eudesmol 1634 1630 4.26 +0.41
10 B-Eudesmol 1653 1649 0.41+0.04
11 oa-Eudesmol 1656 1652 1.84 +0.61
Total 98.63

2Constituents listed in order of elution on a notap®B-5 column;’Retention indexes
(RI) calculated from retention times in relatiorsexies of G-Czpn-alkanes on a 30 m

DB-5 capillary column{Values taken from Adams (2007).



Isolate Source Phenotypic evaluation Crystaleti@dssay

Table 2. Isolation source, phenotypic evaluation and bioformation ability ofS. aureus isolates used in this study.



Colony color Colony consistency QR Biofilm formation
UFPEDA-02(ATCC-6538) Human lesion Almost black Dry 1.47+0.12 +++
UFPEDA-659 Catheter tip Red Crystalline 0.59+0.13 ++
UFPEDA-662 Catheter tip Almost black Rough 1.22+0.08 +++
UFPEDA-670 Catheter tip Red Crystalline 0.52+0.03 ++
UFPEDA-671 Bone Fragment Almost black Dry e Rough 1.03+0.15 +++
UFPEDA-672 Bone Fragment Almost black Rough 1.14+0.08 +++
UFPEDA-674 Purulent exudate Bordeaux red Crystalline 0.62+0.09  ++
UFPEDA-679 Surgical wound Black Rough 0.77+0.07 ++
UFPEDA-683 Purulent exudate Almost black Rough 1.06£0.19 +++
UFPEDA-689 Purulent exudate Black Rough 1.22+0.11 +++
UFPEDA-691 Catheter tip Red Rough 0.45+0.06 ++
UFPEDA-699 Catheter tip Red Crystalline 1.01+0.15 +++
UFPEDA-700 Diabetic foot ulcer Bordeaux red Crystalline 1.02£0 +++
UFPEDA-705 Surgical wound Black Rough 1.49+0.18 +++
UFPEDA-709 Purulent exudate Red Crystalline 1.31+0.09 +++
UFPEDA-718 Tracheal secretion Red Crystalline 0.38+0.05 +
UFPEDA-726 Nasal secretion Red Crystalline 1.18+0.12 +++
UFPEDA-731 Surgical wound Almost black Rough 0.58+0.05 ++
UFPEDA-733 Bone Fragment Bordeaux red Crystalline 1.28+0.16 + ++
UFPEDA-802 Nasal secretion Red Dry 1.14+0.2 +++




(+++) Strong biofilm forming strain. (++) Moderabeofilm forming strain. (+) Weak biofilm forming istin.



Table 3. Antibiotic resistance profile d. aureus isolates and antibacterial activity 8fagrus coronata essential oil (SCEO).

Clinical isolate Susceptibility profile MAR SCEO activity
MIC(pg/mL) MBC
UFPEDA-02 Susceptible 0 312 312
UFPEDA-659 CFO,0XA, NAL 0.15 312 312
UFPEDA-662 AMP, CFO, OXA, NAL 0.2 625 625
UFPEDA-670 AMP, CFO, OXA, NAL, CIP, CLI, TRI 0.35 312 625
UFPEDA-671 AMP, CFO, OXA, NAL, CIP, AMI, GEN, CLI, CLO, TET, RI 0.55 312 312
UFPEDA-672 AMP, CFO, OXA,NAL, CIP, NIT, CLI, TRI 0.4 156 312
UFPEDA-674 AMP, NAL, CLI, TET 0.2 312 625
UFPEDA-679 AMP, CFO, OXA, CFL, CFZ, NAL, VAN, AMI, CLI 0.45 625 625
UFPEDA-683 AMP, OXA, CFL, CFO, CFZ, CPM, CRX, CTX, NAL, CIP,AN, AMI, GEN, CLI, CLO, TRI 0.8 625 1250
UFPEDA-689 AMP, CFZ, NAL, GEN, CLI, CLO, TET, TRI 0.4 625 625
UFPEDA-691 NAL, CIP, CLO 0.15 156 312
UFPEDA-699 AMP, NAL, CLI, CLO 0.2 156 312
UFPEDA-700 AMP, CFO, OXA, CIP, TET 0.25 312 156
UFPEDA-705 AMP, OXA, CFL, CFO, CPM, CRX, NAL, NIT, GEN 0.45 312 312
UFPEDA-709 AMP, CFO, OXA, NAL, CLI, TET 0.3 625 625
UFPEDA-718 AMP, NAL, CIP 0.15 312 312
UFPEDA-726 AMP, CFO, OXA, CIP, GEN, CLO, TRI 0.35 312 312
UFPEDA-731 AMP, CFO, OXA, CFL, CFO, CRX, NAL, CIP, GEN, CLI,L©, TRI 0.6 312 312
UFPEDA-733 AMP, NAL, CIP, CLO 0.2 625 625
UFPEDA-802 AMP, OXA, CFL, CFO, CFZ, CPM, CRX, CTX, NAL, CIP,M , GEN, CLI, CLO, TET, 0.8 625 625

AMP: ampicillin. OXA: oxacillin. CFL: cephalothirCFZ: cefazolin. CPM: cefepime. CFO: cefoxitin, CTegfotaxime. CRX: cefuroxime. IMI:
imipenem. MER: meropenem. NAL: nalidixic acid. ClBiprofloxacin. NIT: nitrofurantoin. AMI: amikacinGEN: gentamicin. VAN:

vancomycin. CLI: clindamycin. CLO: chloramphenic®ET: tetracycline. TRI: trimethoprim. MAR: multiglantibiotic resistance index. MIC:



5  minimum inhibitoryconcentrationMBC: minimum bactericidal concentratiomhe MICso and MIG, of SCEO were 312 and 62&/mL,

6 respectively.
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Highlights

» Essentia oil extracted from Syagrus coronata seeds (SCEO) was obtained.

» SCEO showed bactericida activity (MBC from 312 to 1250 ug/mL) against S
aureus.

» SCEO decreased cell viability in pre-formed biofilms of S. aureusisolate.

» SCEO improved the survival of G. mellonela larvae inoculated with S, aureus.
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