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Abstract 

Self-emulsifying drug delivery systems (SEDDS) offer potential for overcoming the inherent 

slow dissolution and poor oral absorption of hydrophobic drugs by retaining them in a 

solubilised state during gastrointestinal transit. However, the promising biopharmaceutical 

benefits of liquid lipid formulations has not translated into widespread commercial success, 

due to their susceptibility to long term storage and in vivo precipitation issues. One strategy 

that has emerged to overcome such limitations, is to combine the solubilisation and 

dissolution enhancing properties of lipids with the stabilising effects of solid carrier 

materials. The development of intelligent hybrid drug formulations has presented new 

opportunities to harness the potential of emulsified lipids in optimising oral bioavailability for 

lipophilic therapeutics. Specific emphasis of this review is placed on the impact of 

solidification approaches and excipients on the biopharmaceutical performance of self-

emulsifying lipids, with findings highlighting the key design considerations that should be 

implemented when developing hybrid lipid-based formulations. 

 

 

 

 

Keywords: SEDDS; self-emulsifying lipids; solidification; lipid-based drug delivery system; 

lipid-based formulation; poorly water-soluble drugs; pharmacokinetics; bioavailability; oral 

delivery. 
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1. Introduction 

The emergence of lipid-based drug delivery systems (LBDDS) as a leading formulation 

strategy to improve the biopharmaceutical performance of hydrophobic drugs has been driven 

by their proven ability to mimic the postprandial (food) effect. LBDDS enhance drug 

solubilisation during gastrointestinal (GI) processing by creating a lipophilic 

microenvironment that restricts drug precipitation, while concurrently facilitating drug 

transport towards intestinal absorption sites [1-3]. In the GI tract, lipase-mediated hydrolysis 

of digestible lipid excipients stimulates the formation of colloidal vesicles rich in free fatty 

acids and glycerides, which may further retain drug molecules in the solubilised state prior to 

absorption [4]. In doing so, absorption across the intestinal epithelium increases significantly 

for highly permeable Biopharmaceutics Classification System (BCS) Class II drug molecules 

when formulated as LBDDS. 

The physicochemical properties and pharmacokinetic performances of LBDDS vary 

significantly depending on the composition, concentration and solubilisation mechanism of 

lipid excipients. Of specific interest to this review are self-emulsifying drug delivery systems 

(SEDDS) due to their commercial potential, versatility and capacity to vastly improve the 

pharmacokinetic profiles of poorly water-soluble drugs. SEDDS are typically composed of an 

isotropic mixture of lipids, surfactants and (optionally) co-surfactants and co-solvents, that 

form fine lipid-in-water emulsions upon dispersion and mild agitation within the GI tract [5]. 

In this review, the designation of the term SEDDS will refer to the complete subdivision of 

SEDDS; including self-microemulsifying drug delivery systems (SMEDDS) and self-

nanoemulsifying drug delivery systems (SNEDDS). The emulsification of lipids within the 

GI tract facilitates improved drug dissolution, by increasing the interfacial surface area 
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available for drug release and absorption [6, 7]. In addition, specific self-emulsifying lipids 

and excipients promote drug permeability across the intestinal epithelium, as well as 

lymphatic transport of drugs into the systemic circulation [8].  

Despite the ability of SEDDS to improve the oral absorption of hydrophobic drugs, their 

commercial success has been mostly limited to date [9]. Of the SEDDS currently marketed, 

the majority are composed of liquid formulations filled into either soft gelatine (Sandimmune 

Neoral®, Norvir®, Rocaltrol®, Convulex®) and hard gelatine capsules (Lipirex®, Gengraf®) 

[10]. The inability for the commercial success of SEDDS to fully reflect their therapeutic 

potential has been attributed to a number of factors, including limited stability and portability 

of liquid-SEDDS formulations, propensity for drug crystallisation and precipitation in vivo, 

low drug loading, poor in vitro-in vivo correlations (IVIVC) and costly manufacturing and 

distribution processes [11-14]. A common approach used to overcome these fundamental 

drawbacks is to transform liquid-SEDDS into solid dosage forms that impart 

physicochemical stability and reduce production costs while retaining, or optimising, the 

pharmacokinetic benefits associated with lipids. An array of solidification approaches can be 

utilised to develop solid-SEDDS, which can be categorised into those that; (i) emulsify in 

vivo, and (ii) are pre-emulsified and stabilised in vitro, allowing for emulsion redispersion 

within the GI tract. In doing so, a number of biopharmaceutical advantages can be imparted 

to the SEDDS formulation by solidification (Figure 1), including:  

(i) prolonged gastric residence: the time taken for gastric emptying and overall transit 

can be extended by solidifying liquid-SEDDS with various polymers, such as 

HPMC and microcrystalline cellulose, that exhibit favourable interactions with 

stomach epithelial cells [15, 16] or by incorporating floating excipients that enable 
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the formulation to remain buoyant within the gastric media. In doing so, the overall 

dissolution time and the time available for absorption is extended [17]. 

(ii) improved intestinal solubility: solidification of SEDDS can impart improved 

intestinal solubility through a number of mechanisms, including stabilising 

supersaturated drug states and modulating lipolysis of digestible lipids. For 

example, polymeric nanoparticles can be used as polymeric precipitator inhibitors 

(PPIs) that retain solubilised drug molecules in their supersaturated state in the 

small intestine [18], while also altering the activity of digestive enzymes, through 

changes in nanostructure and surface chemistry of the solid carrier material, to 

control the rate and extent of release of lipid digestion products. In doing so, the 

precipitation inhibition effect and solubilising mechanism of lipolysis products 

improve the intestinal solubility of encapsulated drug molecules [19, 20].  

(iii) improved drug permeability: SEDDS can be formulated with known solid-state 

intestinal permeation enhancers, such as chitosan and mucoadhesive polymers [21, 

22] to promote drug permeability across the intestinal epithelium. While little work 

has focused on forming solid-SEDDS for permeability enhancement, two studies by 

Kanuganti et al. [23] and Sermkaew et al. [24] have presented the ability to 

optimise intestinal drug permeation by combining liquid-SEDDS excipients with 

various silicates, which has highlighted the potential for solid-SEDDS to be used as 

delivery vehicles of BCS Class IV drug compounds. 
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Figure 1: Schematic representation of the potential biopharmaceutical benefits associated 

with solid-self-emulsifying drug delivery systems (solid-SEDDS), including extending 

gastric emptying and enhancing intestinal solubilisation by manipulating lipase-mediated 

hydrolysis and incorporating polymeric precipitation inhibitors (PPIs). 

The aim of this review is to elucidate and discuss the recent progress that has been made in 

designing and developing novel solid-SEDDS, while presenting opportunities and challenges 

that must be addressed to translate promising pre-clinical and clinical research into 

commercially viable drug formulations. Specific emphasis is placed on solidification design 

considerations that can influence the final physicochemical and biopharmaceutical 

performance of solid-SEDDS. This review primarily focuses on the transformation of liquid-
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SEDDS into solid dosage forms that are composed of nanostructured hybrid systems, which 

subsequently exist as free-flowing and compressible powders. The insights derived from the 

development of innovative solid-SEDDS systems have important implications for harnessing 

the full therapeutic potential of poorly water-soluble drug compounds, as well as the future 

design of next generation lipid-based drug delivery vehicles. 

2. Rationale for Transforming Liquid-SEDDS into Solid Dosage 

Forms 

Solidification of SEDDS affords a multitude of benefits compared to precursor liquid-

SEDDS, which can be summarised within the following categorical advantages; (i) improved 

drug solubilisation and dissolution, (ii) improved safety, (iii) controlled drug release, and (iv) 

industrial and commercial benefits (Figure 2). The following section highlights the various 

perspectives for converting liquid-SEDDS into solid dosage forms, specifically those that 

exist as free-flowing and compressible powders. Emphasis is placed on the biopharmaceutical 

performance of solid-state formulations with respect to their liquid lipid precursors, to 

highlight potential for use as oral delivery vehicles for challenging hydrophobic compounds.  
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Figure 2: Rationale for transforming liquid-SEDDS into solid dosage forms. 

2.1 Improved Solubilisation and Dissolution 

Drug crystallisation and precipitation, after emulsification in the GI tract, are predicted to 

be the primary factors contributing to variable and unpredictable in vivo pharmacokinetics 

associated with conventional SEDDS [25]. Subsequently, low drug loading is recommended 

within liquid-SEDDS [26], since loading is controlled by the drug saturation solubility within 

the liquid lipid phase and should take into consideration the drug solubility during and after 

emulsification. Low drug loading is considered a key limitation for formulations of high dose 

BCS Class II and IV drugs, which has triggered recent advances in formulation technology to 

attribute focus to the fabrication of supersaturated SEDDS (super-SEDDS). In super-SEDDS, 

drug molecules are either (i) encapsulated within the lipid phase at a concentration above 

their equilibrium solubility [27-29] or (ii) formulated with excipients that generate 
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supersaturated drug solutions when dispersed in GI media [18, 29-32]. One approach to 

successfully fabricate super-SEDDS is to combine liquid self-emulsifying lipids with solid 

carrier materials, including porous colloids and PPIs. Various strategies have been 

successfully employed to fabricate solid-state super-SEDDS, with promising 

physicochemical and biopharmaceutical outcomes. These include: 

(i) Pre-loading porous carrier materials with lipophilic drugs prior to combining with 

liquid-SEDDS excipients. Poorly water-soluble drug nucleation and crystallisation 

is restricted when adsorbed in mesoporous materials, through spatial confinement, 

and therefore, the drug is retained in its molecularly dispersed/dissolved form [33]. 

A synergistic effect is achieved when self-emulsifying lipids are co-encapsulated 

within a porous material, since the lipids facilitate solubilisation during GI 

processing and drug diffusion [34-37]. Rao et al. [34] investigated the role of 

combining porous silica particles with self-emulsifying lipids in enhancing the drug 

loading of lovastatin. It was determined that pre-loading mesoporous silica with 

molecularly dispersed lovastatin from organic solvent, prior to forming hybrid 

structures with self-emulsifying lipids, facilitated a 3-fold improvement in drug 

encapsulation, compared to the precursor liquid-SEDDS formulation. The super-

SEDDS formulation retained lovastatin within a solubilised state during in vitro 

intestinal lipolysis studies and enhanced oral bioavailability of lovastatin 2.8-fold 

compared to crystalline drug. Further, in vivo pharmacokinetic studies highlighted a 

relationship between silica porosity and bioavailability, with an increase in silica 

specific surface area correlating to an increase in lovastatin bioavailability [34].  
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(ii) Stabilising supersaturated lipid phases with solid carriers. A number of techniques 

exist to encapsulate hydrophobic compounds within emulsified lipids at 

concentrations above their equilibrium solubility, including pH adjustment (limited 

to ionisable drugs) [38, 39] and subjecting lipids to heating and cooling cycles [40]. 

However, the thermodynamic instability associated with excess solute contained 

within the lipid phase triggers crystallisation upon changes in environmental 

conditions or during storage. Porous silica has been successfully employed to 

stabilise the supersaturated lipid phase, as exemplified by two recent case studies. 

Firstly, the water- and lipid-resistant weak base, albendazole, was supersaturated 

within dispersed lipid droplets via a pH adjustment method [29]. Secondly, 

ibuprofen was loaded within lipid at concentrations 4-fold greater than its 

equilibrium solubility, by heating the lipid solution at temperatures of up to 60°C 

[28]. In both scenarios, the supersaturated lipid was confined within porous silica 

matrices, resulting in super-SEDDS that spontaneously redispersed into submicron 

emulsion droplets and silica particles upon dilution within GI media. For both drug 

molecules, the porous silica matrix enabled drug molecules to be loaded within the 

SEDDS preconcentrate at a supersaturated concentration, which was retained during 

in vitro assessments. In doing so, this triggered enhancements in in vivo 

pharmacokinetics in comparison to the non-supersaturated formulations. It is 

important to note, that long-term stability studies are required to fully validate the 

ability for supersaturated solid-SEDDS to retain supersaturated drug molecules in 

their solubilised state during storage. 

(iii) Combining solid carriers with precipitation inhibitors and SEDDS excipients. An 

alternative form of multifunctional solid excipients that can be combined with lipids 
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for a synergistic effect are PPIs, such as Pluronics [18], cellulose derivatives [41], 

and polymeric nanoparticles (e.g. poly(lactic-co-glycolic) acid (PLGA) 

nanoparticles) [19]. PPIs stabilise the metastable saturated and supersaturated states 

of a wide range of lipophilic drugs when encapsulated within LBDDS [18]. 

Hydrogen bonding and/or hydrophobic interactions between drug molecules and 

polymers may increase the nucleation activation energy, leading to delayed crystal 

nucleation and growth [42]. This phenomenon is especially important for poorly 

soluble weak base drugs that exhibit pH-dependent solubility due to protonation in 

acidic environments. The ionisation of such compounds leads to drug 

supersaturation within the gastric environment, with drug solubility rapidly 

decreasing as the drug transits towards neutral conditions of the small intestine. 

Thus, the predisposition to intestinal precipitation significantly restricts the rate and 

extent of oral absorption. Subsequently, the efficacy of conventional SEDDS and 

LBDDS in delivering weak bases has been shown to be limited due to their inability 

to overcome equilibrium solubility discrepancies within the gastrointestinal tract 

[43]. However, multiple studies have demonstrated synergistic effects between solid 

PPIs and self-emulsifying agents in overcoming pH-provoked precipitation of 

poorly water-soluble weak bases [18, 20, 44-50]. Hydrophobic interactions between 

drug and PPIs restricts the conversion of the supersaturated drug molecule to the 

more thermodynamically stable crystalline state upon gastric emptying, allowing 

for increased drug loading within the formulation and facilitating a greater extent of 

drug dissolution upon reaching the primary site of absorption [37]. 

2.2 Controlled Drug Release & Delivery 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

14 

 

2.2.1. Multicomponent Release 

The synthesis of solid-SEDDS affords the potential to deliver drug compounds through 

multiple release mechanisms. This has important implications for the delivery of poorly 

water-soluble drugs, since such formulations ideally possess slow release kinetics to (i) 

prevent drug release during gastric transit, and (ii) sustain drug solubilisation throughout the 

GI tract (Figure 1) [51]. Drug release from emulsified lipids upon dilution in aqueous media 

is typically fast and diffusion- or digestion-dependent [52]. This can be regulated by varying 

emulsion droplet size, fatty acid chain length and digestibility of lipids, but finely regulating 

release kinetics from emulsified lipids has proven challenging [53]. In contrast, drug release 

from solid carriers is typically matrix- or erosion-dependent, which presents the ability to 

precisely fine-tune drug release kinetics based on various material characteristics [54]. 

This phenomenon was recently demonstrated by spray drying dispersed SEDDS stabilised 

by PLGA nanoparticles for the delivery of the model poorly water-soluble weak base drug, 

cinnarizine [20]. Cinnarizine was loaded within both the lipid and polymer phase in this spray 

dried solid-state hybrid formulation, resulting in dual release kinetics. That is, drug release 

during in vitro gastric dissolution was initially rapid, due to diffusion from the lipid droplets, 

followed by a slow secondary release phase from the polymeric nanoparticles. Furthermore, 

by stabilising lipid droplets within a nanostructured network, in vitro lipolysis kinetics were 

enhanced >2.5-fold compared to a submicron emulsion. By controlling cinnarizine release 

and lipolysis kinetics through this co-encapsulation approach, a >2.5-fold reduction in pH-

provoked precipitation was observed [20], which translated to a >2-fold enhancement in the 

area under the curve (AUC) following oral administration to rats, compared to two alternate 

LBDDS [44]. 
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2.2.2. Site-Specific Release 

The solidification of SEDDS introduces the ability for controlled and targeted release of 

encapsulated drug cargo by selecting suitable solid carriers that are responsive to changes in 

local environment. While this can also be achieved with liquid-SEDDS, the improved 

physicochemical stability of solid-SEDDS presents a more feasible approach to controlled 

release of drug compounds [55-57]. The most commonly employed approach is to 

encapsulate SEDDS within pH-responsive excipients, such as polymers [58, 59] and 

functionalised porous silica particles [60]. This strategy is of specific interest for the oral 

delivery of pH- and enzyme-sensitive macromolecules, such as proteins, peptides and nucleic 

acids. Toorisaka et al. [61, 62] recently harnessed this approach by confining insulin and 

emulsified lipids within a pH-responsive polymer shell via lyophilisation to restrict drug 

leakage during gastric dissolution and act as an enteric-coated SEDDS. In doing so, insulin 

was effectively protected from pH- and enzyme-mediated degradation within the gastric 

environment. The change in acidity during gastric emptying subsequently triggered the 

collapse of the polymeric shell and emulsification of insulin-loaded lipid droplets, facilitating 

greater oral absorption across the intestinal epithelium [61].  

2.3 Improved Safety 

2.3.1. Reduced Relative Surfactant Concentrations 

Since it is desirable to create micro/nano-sized emulsion droplets and micelles to increase 

the surface area to volume ratio, and thus increase lipase-mediated hydrolysis, high surfactant 

concentrations must be employed to sufficiently stabilise the high surface area lipid-in-water 

interface and ensure the drug remains in the dissolved state during storage and upon 
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administration [63, 64]. Subsequently, SEDDS formulations inherently contain large 

concentrations of surfactants (typically >30% w/w). While this serves as an effective means 

to overcome limitations associated with drug crystallisation and precipitation of poorly water-

soluble compounds, studies have demonstrated that high doses of surfactants can be poorly 

tolerated during chronic use [25]. However, stabilising the emulsification process with 

biocompatible [65] and/or biodegradable solid excipients [54], has demonstrated the ability to 

provide an equivalent or enhanced pharmacokinetic performance of SEDDS formulations at 

reduced surfactant dosing. This was demonstrated by Gao et al. [66, 67] whereby lower 

surfactant concentrations were used in combination with a solid PPI to reduce surfactant-

mediated side effects and rapid absorption of multiple poorly water-soluble drugs. In the 

liquid-SEDDS, the surfactant levels alone were too low to achieve adequate 

micellar/emulsion formation in order to solubilise the entire drug load. However, when 

combined with the HPMC, the drug compounds were sufficiently solubilised to allow for 

complete dissolution. In reducing surfactant concentration, the safety and toxicity concerns of 

conventional SEDDS can be overcome by replacing a significant proportion of surfactant 

content with solid stabilisers. The authors recommend employing Generally Recognised as 

Safe (GRAS) listed pharmaceutical- and food-grade excipients approved by the FDA, for the 

solidification of SEDDS to avoid toxicity concerns associated with other potential solid 

excipient candidates [68]. 

2.3.2. Improved Oxidative Stability 

SEDDS lipid excipients typically remain chemically stable when they are maintained in the 

original sealed packaging under recommended conditions of storage [9]. However, lipids and 

oils become prone to degradation through lipid peroxidation when exposed to air, light, water 
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moisture, changes in pH and heat [69]. The release of hydroperoxides and other volatile by-

products have a detrimental influence on SEDDS by; (i) reducing the physicochemical 

stability of the liquid-SEDDS [70, 71], (ii) chemically degrading encapsulated drug 

compounds [72, 73], and (iii) increasing the in vivo toxicity of the formulation [74]. 

Due to the harmful and undesirable side effects associated with lipid peroxidation, it is 

fundamental to preserve and protect all lipid excipients within SEDDS. Emerging studies 

performed by functional food scientists and engineers have shown the ability to prevent lipid 

degradation within LBDDS by transforming the liquid-LBDDS into a solid-state LBDDS 

[75-77]. Lipid oxidation kinetics are greatest at the lipid-in-water or lipid-in-air interface [78-

81]. Thus, physically shielding lipids from the water and air interfaces, by encapsulating 

lipids within solid-state matrices, restricts the rate and extent of lipid decomposition and 

therefore, preserves the integrity of the confined lipid species [82-86]. This has been achieved 

with various solid excipients, including proteins, such as caseins and soy protein [87-89], 

carbohydrates, including cellulose, starch and xanthan gum [90-92], and chemically inert 

colloids, such as silica and graphene oxide [93-97]. While much of this work has been 

performed to maintain the integrity of complex food-grade lipids, it is hypothesised that 

incorporating equivalent formulation design within SEDDS will impart physical and 

chemical stability, due to the reduced susceptibility for lipid oxidation in solid-SEDDS. 

2.4 Additional Industrial Perspectives 

From an industrial perspective, a number of considerations need to be built into the 

development of a new formulation irrespective of the dosage form and administration route. 

A patient centric design is normally used (i.e. what, from a patient perspective, would be a 

suitable dosage form and administration frequency? What would be a convenient packaging 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

18 

 

setting?).  For example, administering a liquid solution orally can be associated with an 

unpleasant taste, which may be relevant for paediatric patients. This may be circumvented by 

adsorbing the liquid excipients onto a solid carrier, producing a formulation that is easy to 

administer to children [98, 99]. Besides these very visible factors, other elements such as 

chemical and physical stability at ambient temperature may be important both for logistical 

reasons, but also for the benefit of the patient that hereby may avoid special storage 

conditions.  

Additionally, elements of packeting design, industrial processing, scalability, quality, ease 

of manufacturing, and the associated cost of goods are important. When lipids are solidified 

there is the possibility of producing a range of dosage forms, e.g. sachets, powder filled 

capsules, and tablets. These dosage forms can be produced on standard pharmaceutical 

processing equipment making the supply chain simpler and thereby cheaper. Further, 

solidification prevents direct contact between the LBDDS and the capsule, which may 

improve the compatibility and thereby enable improved industrial production [100]. 

Solidification of SEDDS can support the above factors in some cases and could therefore be 

applicable to development projects.  

3. Design Considerations for the Development of Solid-SEDDS 

Transforming liquid-SEDDS into solid dosage forms affords the ability to distinctly change 

and modulate the physicochemical properties and pharmacokinetic performance of 

encapsulated lipophilic drugs. Subsequently, considerable formulation design is required to 

obtain the desired biopharmaceutical performance of solid-SEDDS. This section highlights 

fundamental considerations that should be made when fabricating solid-SEDDS, including 

selecting the most applicable solidification approaches and excipients for the therapeutic 
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compound of interest. Critical analysis will be provided on the influence of material 

characteristics and interactions on the oral bioavailability of lipophilic compounds. 

3.1 Solidification Approach 

Different solidification techniques impart unique changes to the physicochemical properties 

in vivo performance of the SEDDS. Table 1 has been designed to aid researchers in selecting 

an appropriate technique to fabricate solid-SEDDS with desired properties for optimal 

biopharmaceutical performance. This section reviews each critical consideration required for 

selecting the most appropriate solidification approach, with respect to the form of precursor 

lipids, desired dosage form and drug loading, thermal stability of the formulation/therapeutic 

and potential interference on emulsification mechanisms.  

ACCEPTED MANUSCRIPT



ACCEPTED M
ANUSCRIPT

 

20 

 

Table 1: Considerations when selecting a technique to solidify SEDDS. 

Technique Key concept/ 
process 

Primary 
approach 

Form of 
precursor 
liquid-

SEDDS 

Physical form of 
resulting 
product 

Possible thermal 
stability issues? 

Max. 
reported 
drug load 

(% w/w) 
[9] 
 
 

Max. 
reported 
lipid load 

(% w/w) 
[9] 
 
 

Best 
suited for 
what drug 

dose/ 
potency? 

Rate of self- 
emulsification 
upon oral 

administration 

Control over 
solidification 
conditions 

References 
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-e

m
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if
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d

 

li
p

id
s 

Physical 

adsorption to 
solid carriers 

Adsorption of 

SEDDS to the 
solid carrier via 
mixing with a 
blender. 

X X X X Powder or 

granules 

 10 80 Low dose, 

high 
potency 

++ + [28, 101-103] 

 

Hot/melt 

granulation/ 
extrusion 

High shear 

mixing of SEDDS 
and a solid 
carrier. Followed 
by optional 

forcing through a 
die. 

X  X  Granules 

(agglomerates) 
which can be 
extruded into 
pellets of different 

shapes and sizes 

X 

(during high shear 
mixing and if 
using molten 
SEDDS) 

80 50 Low-

medium 
dose 

++ ++ [104-108] 

Freeze 
drying 

Sublimation of 
the aqueous phase 
from frozen 

SEDDS stabilised 
by a carrier 
material. 

X X X X Powder or 
granules 
(porous 

agglomerates)  

X 
(<0°C to freeze, 
consider using a 

cryoprotectant) 

50 60 Low dose, 
high 
potency 

+++ ++ [109-112] 

Spray drying Evaporation of 
solvent from 

atomized spray of 
SEDDS 
(stabilised by a 
solid material) at 

high temperature. 

X X X X Powder or 
granules 

(porous and 
spherical 
particles)  

X 
(short exposure to 

high temperature 
- max 220 °C) 

50 60 Low dose, 
high 

potency 

+++ +++ [20, 113-120] 
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3.1.1. Form of precursor lipids 

The primary approach for solidification of liquid-SEDDS is dependent on the form of the 

precursor SEDDS and can be classified into the following two categories which have been 

schematically illustrated in Error! Reference source not found.: 

(i) Solidification of liquid-SEDDS excipients which self-emulsify in vivo. The primary 

objective of this solidification approach is to produce a solid dosage form that 

retains the GI self-emulsification properties of the encapsulated lipids [121, 122]. 

The most commonly employed techniques to achieve this are adsorption onto a 

porous solid carrier and melt/granular extrusion using a polymeric solid carrier [12]. 

Since the aim is not necessarily to enhance the pharmacokinetic properties of the 

formulation, it is important to consider the impact of solidification on the 

solubilisation capacity and dissolution mechanism of the formulation. A multitude 

of studies have demonstrated reduced in vitro dissolution [123, 124] and oral 

bioavailability [125, 126] of drugs when formulated as solid-SEDDS compared to 

their precursor liquid-SEDDS counterpart. This suggests more extensive design 

considerations are required when solidifying liquid-SEDDS to maintain or enhance 

in vivo drug absorption.  

(ii) In vitro stabilisation of dispersed SEDDS that spontaneously re-emulsify in vivo. 

The solidification of pre-dispersed emulsions presents an alternate way of 

delivering SEDDS orally. Solidifying dispersed liquid-SEDDS offers the ability to 

finely tune the physicochemical and solubilisation properties of the formulation, 

through intelligent material design. The solidification of dispersed SEDDS 

stabilized with a solid carrier, typically in the form of Pickering emulsions, via 
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either spray drying or freeze drying, produces particles with complex internal 

nanostructures which impart improved in vivo oral drug delivery performance 

compared to the liquid precursor emulsion. The performance is improved through 

rapid re-emulsification, rapid digestion, controlled release and specific solid carrier 

interactions [127]. Freeze drying and spray drying are the two key techniques used 

to solidify Pickering emulsions and have been directly compared in two studies 

[109, 110]. Singh et al. [110] compared the influence of freeze dried and spray 

dried solid-SEDDS on the in vitro dissolution and in vivo oral bioavailability of 

valsartan. The spray dried SEDDS exhibited superior characteristics in terms of 

particle size uniformity, particle flow properties and rapid GI processing, as well as 

minor improvements in pharmacokinetic performance (~5% higher oral 

bioavailability), which indicates the importance of selecting the most appropriate 

dehydration method for stabilization of emulsified lipids. 

 

Figure 3: The two approaches to solidify liquid-SEDDS, (i) solidification of liquid-SEDDS 

excipients, or (ii) stabilisation of dispersed emulsions/micellar systems. 

3.1.2. Solid Dosage Form 
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Solid-SEDDS in the form of powders or granules are appealing as they are generally 

compatible with pre-existing tabletting or capsule filling procedures and equipment [128]. 

The pre-requisite for solid-SEDDS powders and granules to be compressed into tablets and 

filled into capsules is flowability [129]. Free-flowing powders can be achieved through 

careful selection of a solid carrier/tabletting excipient or through subsequent granulation of 

the powder with a binder [12]. Powders are typically fabricated utilising physical adsorption 

onto carriers, freeze drying or spray drying, whereas granules are fabricated using hot/melt 

granulation. Granules can be further modified to form solid-SEDDS pellets with desired 

shapes and sizes through the use of extrusion and spheronisation [130]. If desired, these 

pellets can be subsequently coated with polymeric or enteric coatings to impart specific 

release properties.  

3.1.3. Thermal Stability of Therapeutic Molecules and Lipid Excipients 

The thermal stability of SEDDS excipients is vital for solidification techniques which 

involve heating or cooling of the formulations. Elevated temperatures can cause the 

degradation of active ingredients and oxidation of lipids, resulting in inefficient drug loading 

and undesirable degradation products [131]. In addition, the thermal stress induced by 

freezing can destabilise SEDDS formulations, resulting in particle aggregation and poor re-

dispersibility [132]. Such effects have been observed during hot melt extrusion [133, 134] 

and freeze drying of SEDDS formulations [109]. 

Surasarang et al. [134] observed that up to 97% of albendazole was degraded when 

attempting to fabricate an amorphous solid dispersion using hot melt extrusion, compared to 

no degradation when using spray drying. Degradation occurred during extrusion due to heat 

exposure and shear stress over a longer residence time (13 min). No degradation occurred 
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during spray drying, as the time in which the drug is exposed to high temperatures was very 

short and reduced the risk of thermal degradation. In addition, heat accelerates the oxidation 

of some lipid excipients, which can be minimised by the use of saturated fatty acids or the use 

of antioxidants [135]. To avoid thermal degradation of active ingredients during 

solidification, the required temperature, residence time and thermal stability of the excipients 

must be considered when selecting a suitable solidification method. 

Bamba et al. [136] reported the de-stabilising effect of the freeze/thaw process on 

nanoemulsions, resulting in significant coalescence of the emulsion droplets. A slower 

cooling rate and the use of a cryoprotectant was found to mitigate the de-stabilising stresses 

induced by freezing. Yasmin et al. [37] demonstrated the benefits of cryoprotectants for the 

solidification of liquid-SEDDS by freeze drying, for preventing irreversible aggregation and 

allowing re-dispersion in water. For these reasons, cryoprotectants are used extensively in the 

freeze drying of SEDDS [111, 112].  

3.1.4. Drug and Lipid Loading Implications on the Required Dosage 

The required dose of a drug compound is one of the major limiting factors to the use of 

solid-SEDDS. Typical drug loading levels of less than 10% w/w are achieved for SEDDS, 

which is dictated by the solubility of the drug in SEDDS [137]. Consequently, it is essential 

to select a solidification approach that retains maximum drug loading within the solid-

SEDDS formulation, in its dissolved form. The inclusion of additional solid excipients to 

solidify SEDDS further dilutes the drug load, limiting solid-SEDDS to highly potent and low 

dose drug molecules (e.g. <10 mg dose) [138]. Yasmin et al. [109] compared freeze drying 

and spray drying methods for the model drug, celecoxib, when solidifying dispersed SEDDS 

stabilized by porous silica particles [35, 139]. Both drying methods resulted in porous, free-
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flowing powders; however, only the freeze-dried formulation possessed a 100% lipid 

encapsulation efficiency, which translated to higher drug loading compared to the spray dried 

solid-SEDDS. 

3.2 Solidification Excipients 

The selection of carrier excipients for the solidification of SEDDS has fundamental 

implications for the resulting physicochemical properties and pharmacokinetic performance 

of the formulation. Consequently, care should be taken when choosing an appropriate 

excipient for the therapeutic of interest. A multitude of solid carrier excipients have 

demonstrated the potential to be successfully combined with SEDDS to improve the 

pharmacokinetic performance of lipophilic drugs. The most commonly employed categories 

of excipients and their associated advantages and disadvantages are shown in Figure 4. 

Previous reviews have extensively introduced the properties of these excipients [1, 127], and 

therefore, this will not be the focus here. Rather, emphasis will be placed on providing an in-

depth analysis of the influence of solid carrier properties on their interactions with lipid 

molecules, with reference to how this impacts drug solubilisation and absorption. 
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Figure 4: Categorical overview of the various solid carrier excipients applicable for 

solidification of SEDDS, with corresponding advantages and limitations. Abbreviations: GI: 

gastrointestinal; NPs: nanoparticles; PLGA: poly(lactic-co-glycolic) acid; PVA: polyvinyl 

alcohol. 

3.2.1. Influence of Lipid-Solid Carrier Interactions on Lipid Digestion 

Lipid hydrolysis is a fundamental in vivo process that has the potential to exert a positive or 

negative effect on the GI solubilisation of lipophilic drugs confined within digestible lipids, 

depending on the saturation solubilities of the drug molecules within the various lipid species 

[140]. The processing of lipids is initiated within the stomach, where digestive enzymes 

hydrolyse the ester group of glycerides to form free fatty acids and monoglycerides [141]. 

Gastric and pancreatic lipases, the primary digestive enzymes, are surface active enzymes 

that require an interface to undergo a conformational change into their active form [142]. 

This occurs due to the presence a polypeptide loop that protects the mostly hydrophobic 

active site from the aqueous environment, until weak adsorption onto a liquid-in-liquid or 

solid-in-liquid interface triggers this lid domain to open, exposing the catalytic domains 

[143]. The interfacial activation mechanism establishes the potential to modulate lipase 

activity through colloidal and interfacial engineering of the lipid-in-water interface [144, 

145]. A proven approach to alter the bioaccessibility of lipid to digestive enzymes, is to 

formulate lipids with solid carriers with varying surface chemistry and nanostructure [146, 

147].  

Solid carrier excipients manipulate GI lipolysis via three main mechanisms (Figure 5);  
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(i) Modulation of the lipid-in-water interfacial surface area. Since lipid digestion is an 

interfacial process, varying the surface area accessible to lipase enzymes triggers a 

change in lipid digestion kinetics. Adsorption of liquid-SEDDS excipients onto 

porous solid carriers can significantly manipulate the interfacial surface area of 

lipid, compared to conventional emulsion droplets. This has been shown 

extensively by confining digestible triglycerides within mesoporous silica particles 

[145-151], whereby the lipid-in-water interfacial area is relative to the lipid loading 

and relative porosity of the particles. A 4.5-fold improvement in lipolysis kinetics 

was observed when medium chain triglycerides were encapsulated within 

hydrophilic porous silica particles compared to a submicron emulsion, due to a 5.1-

fold increase in interfacial surface area [146]. In doing so, this triggered a 

substantial increase in rate and extent of lipid colloidal phases formed within the 

aqueous environment [149]. However, when colloidal particles have been utilised to 

stabilise emulsified lipids, an interference effect has been observed, since the 

particle stabilisers physically shield the lipid-in-water interface from digestive 

enzymes [19]. Tan et al. [150] investigated the susceptibility for porous silica 

nanoparticles to inhibit lipase activity when partially stabilising lipid phases at 

various concentrations. It was determined that porous silica particles acted as a 

competitive lipase inhibitor when co-dosed with SEDDS excipients, since the 

particles weakly adsorb to the lipid-in-water interface and thus, sterically hinder 

lipases ability to access the lipid substrate. This is in contrary to the mechanism of 

enhancement observed for porous silica particles when a three-dimensional hybrid 

matrix structure is formed. Alternate particles that have shown to restrict lipase 
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bioaccessibility when used as stabilisers include polymeric nanoparticles [19, 152], 

clay platelets [153] and carbohydrate nanocrystals [154-160]. 

(ii) Provision of a solid-in-water interface for interfacial activation/deactivation. 

Encapsulating lipid species within solid excipients introduces the ability for lipase 

to adsorb to bare solid surfaces and thus, the solid carrier acts as a substrate-enzyme 

immobilisation support. The surface chemistry of the solid carrier controls the 

orientation and confirmation of enzyme molecules, which can exert a positive or 

negative effect on lipase activity [161]. This was recently probed by utilising time-

of-flight secondary-ion mass spectrometry (ToF-SIMS) to distinguish the 

orientation of lipase at various silica surfaces [162]. It was found that hydrophilic 

silica surfaces weakly adsorb pancreatic lipase molecules in their active 

conformation, whereas lipase adsorbs more extensively to hydrophobic surfaces 

restricting conformational changes and the opening of the lid domain protecting the 

active site. This correlated strongly to in vitro lipolysis findings, whereby a >3-fold 

enhancement in lipase activity was observed when digestible lipids were adsorbed 

into hydrophilic porous silica, compared to hydrophobic silica [163]. 

(iii) Triggering the release/retention of lipid digestion species. Lipid digestion species, 

specifically fatty acids and monoglycerides, are surface-active products that adsorb 

to the lipid-in-water interface due to their amphiphilic nature [164-166]. 

Consequently, lipase reactions are considered a self-limiting processes, as lipase-

mediated hydrolysis products ‘poison’ the substrate interface leading to a reduction 

in lipid bioaccessibility and digestion kinetics [164, 165]. Solid carriers can 

manipulate this self-limiting process by controlling the rate and extent of lipolysis 
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product partitioning towards the aqueous phase through electrostatic and 

agglomeration interactions [144]. This was highlighted recently by comparing 

hybrid particles composed of submicron lipid droplets and either negatively- or 

positively-charged PLGA nanoparticles [19]. Lipid hydrolysis kinetics were 2-fold 

greater for hybrid particles composed of negatively-charged PLGA nanoparticles, 

compared to positively-charged particles, due to the electrostatic repulsion present 

between the particle surface and fatty acids. This interaction facilitated the prompt 

expulsion of fatty acids into the aqueous phase, and thus, reduced the interference 

of digestion products at the lipid-in-water interface. In contrast, an electrostatic 

attraction was apparent between positively-charged PLGA nanoparticles and fatty 

acids, leading to their retention within the solid phase and interference with lipase 

action. This reduction in aqueous phase partitioning of lipid digestion products has 

been shown to correlate with a reduction in aqueous solubilisation for the model 

drug, coumarin 102, when formulated with a range of solid-SEDDS [167]. 

 

Figure 5: Schematic representation of the mechanisms for controlling gastrointestinal 

lipolysis through colloidal engineering with solid excipients. Lipase-mediated digestion can 

be controlled by (i) manipulating the surface area  (SA) of the lipid-in-water interface and 
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thereby, altering the bioaccessibility of lipid [146]; (ii) orientating lipase molecules on 

surfaces for optimal activity [162]; and (iii) triggering the release or retention of lipid 

digestion products through electrostatic interactions with the solid carrier [149, 167].  

By forming solid-SEDDS it is possible to finely tune the digestibility of lipids, which can 

correspond to a change in the oral bioavailability of encapsulated drug molecules. It is 

important to note that conventional in vitro lipolysis protocols overlook intragastric lipolysis 

and only mimic the intestinal phase of digestion, despite gastric processing accounting for 

~5-30% in vivo lipolysis [168, 169]. Furthermore, gastric lipase exhibits significantly 

different interfacial activity compared to pancreatic lipase and exposure to gastric conditions 

and transport can facilitate considerable changes to solid-SEDDS structure, surface chemistry 

and stability, which can subsequently (i) alter the lipid:solid carrier microenvironment and 

interaction with pancreatic lipase [170-174], (ii) activate pancreatic lipase [175, 176], and 

(iii) alter the solubilisation of poorly water soluble drugs [168, 177]. Consequently, the 

authors propose that future studies assessing in vitro performance of solid-SEDDS utilise a 

dynamic, two-phase in vitro lipolysis model that simulates both the gastric and intestinal 

phases of digestion [178]. This will eliminate the need to make poorly supported assumptions 

on the influence of gastric conditions on the solid-SEDDS structure and chemistry. 

3.2.2. Influence of Lipid-Solid Carrier Interactions on Drug Dissolution and 

Absorption 

Partitioning of solubilised poorly water-soluble drug molecules towards the aqueous phase 

requires the lipid component of solid-SEDDS to either (i) desorb from the solid carrier and 

partition towards the aqueous phase, or (ii) be hydrolysed to facilitate the release of lipid 

digestion products (for SEDDS containing digestible lipids); or alternatively, the solid carrier 
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to be solubilised within the GI tract. Thus, the affinity between the solid carrier and lipid 

species directly influences the solubilisation and absorption of encapsulated drug molecules 

within solid-SEDDS. This can be impacted by various solid carrier properties, including 

aqueous solubility, hydrophobicity, electrostatic interactions, propensity to aggregation and 

porosity [179], all of which are reviewed in the section below. 

  3.2.2.1. Impact of Solid Carrier Solubility 

A study performed by Kang et al. [180] systematically analysed the impact of solid carrier 

physicochemical properties on the in vivo bioavailability of flurbiprofen, when formulated 

with self-emulsifying lipids. Solid-SEDDS were prepared by spray drying liquid-SEDDS 

with water-soluble (polyvinyl alcohol, PVA; Na-CMC) and water-insoluble carriers (fumed 

silica particles, Aerosil 200; and, magnesium stearate) at a ratio of 1:1. The extent of in vitro 

flurbiprofen dissolution after 60 minutes, when administered with water-soluble solid-

SEDDS, was 1.6-2.5 times lower than that of water-insoluble solid-SEDDS and was 

comparable to the pure drug. However, analysis of the dissolution kinetics highlighted a 

sustained-release mechanism for both systems, whereby the rate of dissolution was linearly 

proportional to time. This indicated that PVA and Na-CMC retarded emulsification or release 

of the drug into the lipid phase, leading to a controlled release mechanism. Since this study 

did not compare the solid-SEDDS with the precursor liquid-SEDDS, it was difficult to 

estimate the influence of PVA and Na-CMC on SEDDS performance. However, 

physicochemical analysis of the solid-SEDDS revealed that PVA and Na-CMC solid-SEDDS 

were composed of a core-shell structure, whereby the solid component encapsulated the lipid 

phase. Since PVA and Na-CMC do not exert rapid dissolution kinetics in aqueous media 

[181, 182], it is stipulated that the rate of flurbiprofen dissolution was controlled by the rate 
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of solid carrier erosion/dissolution, which triggered the release and emulsification of the drug 

loaded lipid phase. In vivo assessments demonstrated that the sustained release mechanism of 

PVA and Na-CMC solid-SEDDS facilitated 4.4- and 11.1-fold enhancements in the AUC, 

respectively, compared to the pure drug [180]. 

Additional studies combining alternative water-soluble polymers, such as HPMC and 

synthetic poloxamers with liquid-SEDDS, have confirmed this controlled release mechanism 

for water-soluble solid-SEDDS [32, 115, 183]. Unlike water-insoluble polymers that exert 

dispersion- and diffusion-dependent release mechanisms, drug release from water-soluble 

polymeric carriers has been confirmed to be erosion-dependent [180]. Thus, it is possible to 

manipulate drug dissolution kinetics based on the propensity for the solid matrix to erode, 

swell or dissolve in the aqueous media. This was demonstrated by Yi et al. [184], who 

compared the in vitro dissolution rates of nimodipine in solid-SEDDS stabilised with HPMC 

of various viscosities. As expected, an increase in polymer viscosity correlated with a 

decrease in the rate of nimodipine release, due to the inhibition of drug diffusion through the 

denser HPMC matrix and a reduced rate in polymer erosion and dissolution [184].  

The unique ability for water-soluble solid excipients to control drug dissolution based on 

changes in degradation and solubilisation rates poses opportunities for the use of alternate, 

novel excipients with promising drug delivery characteristics. Porous carbonate salts, 

specifically calcium carbonate and magnesium carbonate, have been successfully and safely 

applied as drug delivery vehicles for poorly water-soluble compounds [185-188], but have 

yet to be solely formulated with self-emulsifying lipids (at the time of review). Porous 

carbonate salts rapidly dissolve within aqueous media, especially under acidic conditions 

within the gastric environment [189, 190], which can facilitate fast and complete 
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emulsification of encapsulated lipids. Subsequently, this proposed solid-SEDDS is 

hypothesised to overcome incomplete lipid/drug release from solid carriers, making the entire 

pay load available for absorption. Furthermore, carbonate salts are commonly employed as 

antacids due to their propensity to neutralise stomach acid [127], which can be exploited to 

overcome pH-sensitivity or precipitation concerns for key therapeutic compounds. However, 

design considerations are required for carbonates, since dose dumping and precipitation prior 

to reaching the absorptive site of the small intestine may restrict the biopharmaceutical 

performance of such solid-SEDDS, especially for compounds with limited solubilities in 

acidic media [127].  

  3.2.2.2. Impact of Solid Carrier Surface Chemistry 

Surface chemistry regulates the affinity between lipid components and the solid carrier 

within solid-SEDDS, which subsequently alters the partitioning and emulsification kinetics of 

the lipid phase. This was clearly highlighted by Weerapool et al. [191] who compared the 

influence of particle wettability on the in vitro dissolution of nifedipine from solid-SEDDS, 

by employing hydrophilic (Aerosil 200) and hydrophobic porous silica particles (Aerosil 

R972) with similar nanostructures as the solid carrier. Particle hydrophobicity controlled the 

physicochemical properties of the fabricated hybrid particles, whereby hydrophilic porous 

silica formed free-flowing powders in contrast to the viscous oleogels formed upon sorption 

of lipids to the hydrophobic porous silica particles. The affinity between the lipid excipients 

and solid carrier was substantially greater for hydrophobic silica particles, which was 

evidenced by only 33% nifedipine dissolution in simulated gastric fluid being observed, 

compared to 80% for hydrophilic silica particles. Thus, the strong hydrophobic interactions 

between lipid and the hydrophobic surface retarded lipid diffusion and partitioning towards 
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the bulk dissolution media [163, 191]. While exploiting this mechanism may serve as a 

suitable approach to sustain the in vivo solubilisation of lipophilic drugs and thereby increase 

their residence time within the GI tract, formulating lipids and lipophilic drugs with 

hydrophobic porous particles has proven to be a challenging task due to associated 

incomplete drug release issues [146, 192, 193]. 

Investigations using aluminosilicates as adsorbents for the solidification of SEDDS have 

further highlighted the influence of surface chemistry on the affinity between lipids and the 

solid carrier. Smectite clay materials possess unique and complex surface chemistries, 

whereby octahedral metal oxide sheets are sandwiched between two tetrahedral silica sheets 

[194]. Owing to isomorphic substitution of some lattice cations for cations of lower valency, 

these materials carry a permanent negative platelet face charge, as well as a pH-dependent 

platelet edge charge due to lattice discontinuities and formation of exposed edge hydroxyl 

groups [195]. Due to this unique structure, smectite materials are capable of pH-dependent 

anion- and cation-exchange, which renders their use as adsorbents for lipids and charged drug 

molecules challenging. 

Neusilin® US2, a specialised, pharmaceutical-grade amorphous magnesium aluminosilicate 

composed of mesoporous spherical granules (average particle size 44-177 µm, specific 

surface area 300 m2/g, average pore size 5-6 nm) [127], has been one of the most extensively 

explored solid carriers for SEDDS due to its high adsorptive capacity and excellent tabletting 

properties [12, 124, 196, 197]. However, Van Speybroeck et al. [125] highlighted the 

challenges associated with adsorbing SEDDS within Neusilin® US2. In vitro drug 

solubilisation under digesting and non-digesting fasted-state intestinal conditions was ~35% 

lower for Neusilin® US2 solid-SEDDS compared to the original liquid-SEDDS for both long- 
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and medium-chain SEDDS; leading to ~50% reduction in in vivo oral bioavailability of 

danazol. Further probing of the mechanisms involved in Neusilin® US2 solid-SEDDS 

indicated that drug molecules did not interact with the solid surface, but rather incomplete 

desorption of lipids from Neusilin was observed, leading to reduced SEDDS emulsification 

within the aqueous phase [126]. Specifically, larger emulsion droplets were formed for solid-

SEDDS, which was attributed to the lower relative concentration of the surfactant Cremophor 

EL® within the aqueous phase. Thus, adsorptive interactions between SEDDS excipients and 

Neusilin® US2 was shown to be discriminatory, based on the affinity between key SEDDS 

species and the aluminosilicate surface [125, 126].  

Studies performed by Dening et al. [119, 167, 198] further confirmed the high affinity 

between various lipid species and smectite clay materials. Novel solid-SEDDS were 

developed by spray drying dispersed submicron lipid droplets stabilised by montmorillonite 

and laponite. While it was expected that solidification with such solid carriers would result in 

equivalent or improved biopharmaceutical performance, in vivo pharmacokinetics of several 

lipophilic drugs demonstrated a reduction in oral absorption [119]. Further examination of the 

release mechanisms in clay-lipid hybrid materials confirmed lipid and drug desorption was 

incomplete, due to the ability for clay materials to adsorb and retain various lipid species. 

After 60 min in vitro intestinal lipolysis, it was found that between 55-90% of all lipid 

species remained adsorbed within montmorillonite and laponite matrices. Free fatty acids 

were found to have the greatest affinity for the clay particles, which was hypothesised to be 

due to attractive electrostatic interactions between the positively-charged platelet edges and 

negatively-charged fatty acids [198]. Additional studies demonstrated that nanostructured 

clay particles (when dosed without lipid) adsorb 25-80% of emulsified lipid species from the 

aqueous phase of simulated intestinal fluid, under both digesting and non-digestion 
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conditions. In vitro drug dissolution correlated with these observations for clay-lipid hybrid 

particles, whereby aqueous partitioning of poorly water-soluble drug molecules was 

proportional to lipid partitioning [167]. Thus, while smectite clays are commonly considered 

as excellent candidates for the solidification of liquid-SEDDS due to their high adsorptive 

capacities, mesoporosity and good tabletability, selective design considerations are required 

to overcome limitations associated with lipid and drug retention [127]. 

  3.2.2.3. Impact of Solid Carrier Porous Nanostructure 

Chavan et al. [199] recently investigated the influence of porous nanostructure of solid-

SEDDS on the oral bioavailability of celecoxib. This was achieved by physically adsorbing 

SEDDS (composed of a 10:45:45% v/v mixture of Capryol 90: Tween 20: Transcutol HP, 

with Soluplus as a precipitation inhibitor) onto hydrophilic porous silica particles with 

varying surface areas, particle sizes and pore structures. Specifically, micronised silica 

(Sylysia 350; surface area: 300 m2/g, average particle size: 3.9 µm) was compared to two 

different types of fumed silica (Aerosil 300; surface area 300 m2/g, average particle size: 50-

500 nm; and, Aerosil 200; surface area 200 m2/g, average particle size: 50-500 nm). 

Physicochemical investigations of the three solid-SEDDS revealed that Sylysia 350 

maintained a greater surface area post-lipid adsorption, due to the formation of smaller 

agglomerates, compared to the Aerosil solid-SEDDS. In vitro dissolution kinetics of 

celecoxib directly correlated with the surface area (and agglomerate size) of solid-SEDDS, 

whereby an increase in surface area (and decrease in agglomerate size) increased the rate and 

extent of drug dissolution. That is, an increase in surface area and reduction in agglomerate 

particle size increases the contact area and accessibility for dissolution media to diffuse into 

the porous structures, and thus, trigger the release of lipid excipients and drug molecules. 
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Furthermore, the mesoporous structure of Sylysia 350 was hypothesised to allow continuous 

ingress of dissolution media into the core of the hybrid particles, which was likely prohibited 

by the small, restrictive pores (< 7 nm) that can form within Aerosil agglomerates [146, 199]. 

Subsequently, the dissolution efficiencies for each solid-SEDDS were Sylysia 350 (13.5%) > 

Aerosil 300 (2.4%) > Aerosil 200 (0.9%).  These findings were supported by Agarwal et al. 

[124] who demonstrated that griseofulvin dissolution correlated with an increase in carrier 

particle surface area for various silica and silicate solid-SEDDS. Dissolution was found to be 

dependent on the pore length and drug nucleation at the lipid/adsorbent interface [124]. 

So far, studies focused on investigating the role of porous nanostructure on solid-SEDDS 

pharmacokinetic performance have utilised porous carriers with poorly defined pore sizes and 

structures. Porous excipients with random pore sizes and structures, such as Aerosil fumed 

silica, are the most commonly employed carriers for solid-SEDDS due to their approval for 

use as pharmaceutical excipients. While this is a key consideration when selecting a solid 

excipient, the mechanistic insights that can be derived regarding the lipid: solid carrier 

interaction are limited. To this extent, opportunities exist to further probe the mechanisms 

that control in vitro drug dissolution from nanostructured solid-SEDDS by incorporating 

SEDDS within solid carriers with well-defined porous architectures, such as mesoporous 

silica nanoparticles. Quan et al. [122] successfully demonstrated the ability to enhance oral 

bioavailability of fenofibrate when combining SBA-15 mesoporous silica particles, composed 

of hexagonal structured and uniformly-sized pore networks, with SEDDS. By extending this 

work to include particles with various pore sizes and structures it will be possible to 

determine the role of microporosity, surface morphology and pore curvature on the 

mechanism of lipid and drug diffusion. 
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3.3 Therapeutic Compound 

3.3.1.  Drug-Solid Carrier Interactions 

Whilst research into solid-SEDDS has progressed over the last decade, many studies 

neglect to compare the in vitro and/or in vivo performance of solid-SEDDS with the original 

liquid-SEDDS to gauge the impact of solidification. Of the studies that do compare liquid- 

and solid-SEDDS, data is often conflicting, with some studies demonstrating an equivalent 

performance and others showing significant differences in biopharmaceutical performance. In 

several cases, an inferior performance of solid-SEDDS relative to liquid-SEDDS has been 

observed [125, 126, 200] and this can be attributed to a variety of factors, including SEDDS-

carrier interactions (see Section 3.2.2) as well as drug-carrier interactions. 

Studies by Williams and colleagues [126] explored the potential mechanisms behind the 

inferior performance of solid-SEDDS prepared using Neusilin US2 via physical mixing in 

comparison to liquid-SEDDS. Incomplete drug release/desorption was observed for all four 

model drugs (danazol, fenofibrate, cinnarizine and mefenamic acid) encapsulated within 

solid-SEDDS. Interestingly, drug ionisation tendency was observed to significantly influence 

desorption. For the weak base cinnarizine, desorption from solid-SEDDS was greater in 

simulated gastric fluid (SGF; pH 1.2) than in simulated intestinal fluid (SIF; pH 6.5). In SGF, 

surface silanols of Neusilin (pKa 3.5) and basic cinnarizine molecules (pKa 7.5) are both 

protonated, and electrostatic repulsion enhances drug desorption from solid-SEDDS under 

these conditions. In contrast, however, Neusilin silanols are ionised in SIF at pH 6.5 and may 

electrostatically interact with positively charged cinnarizine molecules, thus retarding drug 

release. Further investigations regarding the influence of aluminosilicate surface chemistry on 

drug dissolution were performed by Krupa et al. [201], whereby ibuprofen loaded solid-

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

40 

 

SEDDS were fabricated with Neusilin® US2 and amino-functionalised Neusilin® SG2. When 

formulated with equivalent SEDDS concentrations, the extent of in vitro drug dissolution was 

~1.4-fold greater for Neusilin® US2 solid-SEDDS, compared to Neusilin® SG2 solid-

SEDDS. The reduced dissolution induced by amino-functionalised Neusilin® SG2 was 

attributed to attractive electrostatic interactions between ionised ibuprofen carboxylic acid 

groups and amine groups on the aluminosilicate surface, leading to a higher affinity between 

drug molecules and the solid carrier [201]. These studies therefore highlight the potential 

issue of electrostatic or ion-exchange interactions between inorganic silica-based carrier 

materials and basic drugs.  

Studies by Dening et al. [119] observed similar results when comparing a control lipid 

solution formulation with its corresponding solid-SEDDS using Aerosil 300 silica 

nanoparticles and montmorillonite clay for the poorly soluble weak base, blonanserin. Whilst 

the silicon dioxide-based solid-SEDDS was able to preserve the in vitro and in vivo 

performance of the simple lipid solution, the montmorillonite-based solid-SEDDS 

significantly decreased in vitro drug solubilisation 3-fold and in vivo bioavailability 6-fold, 

due to cation-exchange interactions between blonanserin and montmorillonite. Since the 

silica system performed well, it would appear that the issue of ion-exchange interactions with 

basic drug molecules may be unique to silicate-based materials such as Neusilin and 

montmorillonite, and caution should therefore be exercised when using silicates to solidify 

SEDDS of weak base drugs.  

4. Future Perspectives for the Successful Development of Solid-

SEDDS 
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The development of solid-SEDDS has significantly advanced the therapeutic and 

commercial potential of SEDDS. Solid-SEDDS are considered state-of-the-art delivery 

vehicles for poorly water-soluble drugs and afford considerable advantages over alternative 

liquid-LBDDS due to improved stability and drug loading, precise dosing, ease of handling 

and storage and improved patient compliance [202]. While increasing attention has been 

attributed to developing solid-SEDDS, little work has focused on the key formulation 

characteristics that influence in vivo drug absorption. Furthermore, few studies have focused 

on comparing solid-SEDDS delivery performance to the precursor liquid-SEDDS. 

Subsequently, in depth systematic analyses of the mechanistic interactions between drug 

molecules, solid carriers and lipid excipients are required to optimise in vivo absorption of 

drug molecules confined within solid-SEDDS and uncover their full therapeutic potential.  

Firstly, this can be achieved by comparing and contrasting the solubilisation behaviour and 

in vivo pharmacokinetics of various drugs encapsulated within liquid- and solid-SEDDS. 

Secondly, to investigate and probe the interactions within solid-SEDDS on the nanoscale, it is 

suggested that a range of powerful physicochemical, surface sensitive and biophysical 

analysis techniques are used to elucidate the optimal parameters that facilitate improved 

biopharmaceutical performance for given therapeutics. Proposed analysis techniques useful 

for deriving structure-activity relationships for solid-SEDDS include, but are not limited to: 

(i) Waveguide evanescent-field microscopy: utilising label-free surface sensitive 

microscopy techniques, such as waveguide microscopy, introduces the ability for 

sub-molecular interactions to be probed at high resolution [203]. Thus, the key 

biophysical interactions that control drug solubilisation and dissolution can be 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

42 

 

monitored at a single emulsion droplet level, which will facilitate improved 

predictability of solid-SEDDS performance in the bulk phase. 

(ii) Nano-Infrared (nano-IR): nano-IR allows for direct measurements of sample 

absorption, with submonolayer precision of <10 nm [204], by combining resonance 

enhanced atomic force microscopy with infrared spectroscopy. In doing so, spectra 

obtained correlates closely to that of bulk IR spectra and can provide key insights 

into the drug:lipid:solid carrier interaction prior to, during and after in vitro 

assessments, such as dissolution and lipolysis [198]. 

(iii) Time-of-flight secondary ion mass spectrometry (ToF-SIMS): analysis of molecular 

fragmentation using ToF-SIMS allows for highly sensitive detection and in situ 

mapping of molecular associations within solid-state pharmaceuticals [205]. By 

sputter/depth profiling solid-SEDDS matrices, it is possible to obtain a three-

dimensional cross-section that provides qualitative information regarding the spatial 

distribution of drug and lipid within the solid carrier [206]. Furthermore, ToF-SIMS 

has been used extensively to probe protein interactions, conformation and 

orientation within solid-state systems [207-209], which can be further harnessed to 

probe the lipid digestion mechanism within solid-SEDDS [162, 163]. Insights into 

the spatial arrangement and lipase interactions within solid-SEDDS will facilitate 

improved understanding of the dissolution mechanisms, affinity between drug, lipid 

and solid carrier, and will enable further optimisation of such formulations, by 

developing methods to evenly distribute drug molecules within the solid and lipid 

phases. 
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By combining these characterisation techniques with conventional in vitro and in vivo 

pharmaceutical assessments, it will be possible to derive structure-activity relationships that 

aid as a predictive tool for designing solid-SEDDS with optimal delivery performance for the 

therapeutic of interest. Furthermore, the improved understanding of drug: lipid: solid carrier 

interactions gained from these investigations will lead to improved pharmacokinetic 

performance and stronger in vitro-in vivo correlations when lipophilic drugs are encapsulated 

within solid-SEDDS. 

5. Conclusions 

Solid-SEDDS have emerged as a promising approach to harness and couple the 

solubilisation capacity of SEDDS with the stabilising effect of solid excipients for 

overcoming key limitations associated with liquid-SEDDS. The formation of solid-SEDDS 

has introduced the ability to finely manipulate the physicochemical properties and delivery 

mechanisms, so that the solubilisation capacity and pharmacokinetic performance of poorly 

water-soluble drugs can be optimised. However, several studies have demonstrated that solid-

SEDDS provide an inferior in vivo pharmacokinetic profile relative to the original liquid-

SEDDS. Despite this, the performance of solid-SEDDS is typically significantly improved 

relative to crystalline drug material. Thus, the benefits attributed to formulating SEDDS as a 

solid dosage form need to be weighed against any potential decrease in biopharmaceutical 

performance that solidification brings on an individual basis. By continuing to explore and 

develop innovative synthesis techniques and formulation excipients, as well as advancing 

current characterisation and assessment methodologies, more insightful understanding of the 

mechanisms that control dissolution of lipophilic drugs will be granted, which will allow for 
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the full therapeutic potential of a wide range of challenging bioactive compounds to be 

discovered. 

Table 1: Considerations when selecting a technique to solidify SEDDS. 
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