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Abstract

Mathematical models can be used in medicine to provide a picture of a biological system, such as

cancer growth or response of the immune system.

In this master thesis we developed and investigated a mathematical model of coupled di�erential

equations, describing the dynamics and interaction of cancer cells, infected cells and T-cells. We

performed a mathematical analysis containing a numerical approach, �nding steady states and

their stability. We considered two cases, one where we assumed the elimination of cancer cells

and infected cells to be certain, and one where we assumed the elimination to be uncertain.

In the case of certain elimination, we found one stable steady state of the coexistence of cancer

cells and infected cells. At this stable steady state there was a low cancer burden and a low

infection burden, meaning that when elimination is certain the system will be attracted to this

state.

In the case of uncertain elimination, we found two stable steady states of the coexistence of

cancer cells and infected cells. At one stable steady state there was both a low cancer burden

and a low infection burden. At the other steady state there was both a high cancer burden and

a high infection burden. This suggests that either the cancer cells and infected cells will be in a

hibernation state, or there will be a full outbreak of cancer and infection.

Resume

Matematiske modeller kan bruges indenfor medicin, til at give et billede af et biologisk system.

Sådan et system kan være tumor vækst eller respons af immune systemet.

I dette speciale har vi udviklet og undersøgt en matematisk model bestående af koblede dif-

ferentialligninger, der beskriver dynamikken og interaktionen af cancerceller, in�cerede celler og

T-celler. Vi har lavet en matematisk analyse indeholdende en numerisk tilgang, fundet stationære

tilstande og deres stabilitet. Vi undersøgte to tilfælde, et hvor vi antog, at elimineringen af cancer

celler og in�cerede celler var sikker, og et hvor vi antog, at elimineringen var usikker.

I tilfældet af sikker eliminering fandt vi én stationær tilstand når cancerceller og in�cerede celler

eksisterede på samme tid. Ved denne stationære tilstand var der både en lav cancer byrde og

en lav infektions byrde, hvilket kan betyde at når elimineringen er sikker, vil systemet tiltrækkes

denne tilstand.

I tilfældet hvor elimineringen er usikker, fandt vi to stabile stationære tilstande, når cancerceller

og in�cerede celler eksisterede på samme tid. I den ene tilstand var der både en lav cancer byrde

og en lav infektions byrde, og i den anden tilstand var der både en høj cancer byrde og en høj

infektions byrde. Dette tyder på, at når elimineringen er usikker, vil systemet enten forholde sig

i en slags hviletilstand eller i et fuldt udbrud af cancer og infektion.
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1 Introduction

Cancer is one of the leading causes of death worldwide, and a�ects all people of all age groups

[1]. One of the hallmarks of cancer is chronic in�ammation [2], and many cancer patients die

with unresolved infections [3]. In�ammation is a result of the immune system recognizing and

acting on foreign pathogens presenting unknown antigens on their surface. Such pathogens can

be a virus or sick cells from within the body such as cancer cells [4].

The immune system consists of two parts, the innate immune response and the adaptive immune

response. The innate response is the �rst to react and �ght. If this part is unable to win and kill

the pathogen, it results in a chronic in�ammation, and the adaptive response is activated [4].

Cancer cells present antigens on their surface [5], which activates the immune system which tries

to �ght the cancer cells and thereby preventing tumor growth [4]. Similarly, a virus entering the

body also present antigens on their surface which activates the immune system trying to �ght the

infection [4]. In 2020 severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is currently

causing a global pandemic, and can cause severe health problems for people with an already

existence illness [6]. This raises the the question of what kind of dynamic there is in a system

where both cancer cells, infected cells and immune cells are present, and whether such a virus may

occupy the immune system, causing the cancer cells to escape the immune system and initiate

tumor growth.

Mathematical models, such as di�erential equations, have through the last century become an

important tool in medicine. A mathematical model can be used to describe a biological system

and the dynamic of such. Cancer cells and tumor growth is an example of a biological system.

Further, mathematical models can be used to describe the interaction and dynamics of several

populations in a biological system [7]. Such a biological system is the interaction between cancer

cells, infected cells, and the cells of the immune system, which is investigated in this master thesis.

The interaction and dynamics between tumor growth and the immune system are studied in a large

scale in studies such as [8, 9, 10], and so are the dynamics between infections and the immune

system in [6, 11, 12]. The model presented in this master thesis is based on the di�erential

equations performed by Kuznetsov et al. 2001 [8], investigating the dynamic and interaction

between cancer cells and e�ector cells of the immune system. In this master thesis these equations

are expanded adding an infection to the model, resulting in two coupled di�erential equations,

one for the cancer cells and one for the infected cells, in which the immune system response is

incorporated. Investigating this model we are interested in the dynamics and interaction between

cancer cells and infected cells, and the immune system.
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1.1 Research Question

As described above, the interest of this thesis is to investigate the dynamics of a biological envi-

ronment consisting of cancer cells, virus infected cells and T-cells of the immune system. I will

use a mathematical model of coupled di�erential equations to describe the biological system, and

through a mathematical analysis investigate the dynamics of the system, �nding the steady states

of the system and their stability.
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2 Methodology

This master thesis is a project performing a mathematical analysis of a system of ordinary di�er-

ential equations (ODEs). These ODEs describe the dynamics between cancer cells and infected

cells and in addition their interaction with the immune system. The overall question in this in-

vestigation was, how is the dynamic of the immune system, when both cancer cells and infected

cells are present. The ODEs of the model in this master thesis is based on the model presented

by Kuznetsov et al. [8], and expanded such that the system includes an infection.

In order to answer the research question this master thesis is built up of three main sections. The

�rst section contains the theory giving the knowledge relevant for the research question.

The theory section is based on books and articles giving the theoretical background. The database

PubMed was used to �nd articles of relevance. For this research relevant words were used such

as: mathematical analysis, modeling, immune system, cancer, infection, dynamics.

The second section contains the analysis of the mathematical model. This form of investigation of

a model was chosen based on the interest of the dynamics and interaction of both cancer cells and

the immune system, but also what happens when a virus is added to this type of model, and also

interacts with the immune system. The mathematical analysis includes both qualitative research

and a quantitative approach. The analysis of the model found expression for the steady states of

the model. In order to �nd the steady states explicitly and determine their stability a numerical

approach was performed.

For the numerical part of the analysis the program Maple was used for calculations, and for plot-

ting the functions and steady states. This can be seen in appendix (9.3) and (9.4). The online

program Geogebra was also used for plotting the functions, and creating the �gures presented in

the analysis.

The last section in this master thesis is the discussion. In this section the the results found in the

analysis are discussed. Further the model developed is discussed.
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3 Theory

In this section the theory of relevance in this thesis will be presented. In the �rst part of this

section the biology of relevance is introduced. This contains a brief introduction to the immune

system, and in addition the immune system and its interaction with cancer and infection.

In the second part of this section the mathematical theory used in this thesis will be presented.

Lastly an example of a mathematical model is reviewed.

3.1 The Biology

Cells are the building blocks of the body, and exist in many di�erent forms according to their

function. The interaction between di�erent cells plays a critical role in the normal development

of organs and their function. The term 'cell competition', which is a certain kind of interaction,

describes the existence of two groups of di�erent cell types in the same tissue. The competition

between two or more cell types includes the control of organ size development and control of cells

against pathogen events [13]. In the �ght against pathogens the body's own defence system plays

a critical part. This defence system is called the immune system [4].

3.1.1 The immune system

The immune system is the body's own defence system and consist of proteins, cells (leukocytes)

and organs. The immune system defends the host against infectious organisms, called pathogens.

Pathogens can be viruses or bacteria that invade the host, or they can be sick cells within the

host, such as disease causing cancer cells [4]. The cells of the immune system are found in the

bloodstream and lymph, and in tissue and organs in the body [14].

The blood in the body consists of red blood cells (erythrocytes), white blood cells (leukocytes),

and the cellsfragments (platelets) all in a liquid called plasma. All these cells come from the same

population of cells called multipotent hematopoietic stem cells which di�erentiate into di�erent

precursors of the blood cells. One type of precursors is the bone marrow lymphocyte precursor,

which gives rise to lymphocytes. Lymphocytes have the ability to travel through the bloodstream

and enter tissue or organs. This is called cell migration [4]. The majority of lymphocytes are

found in the primary lymphoid organs including the bone marrow and thymus. In these organs

the lymphocytes develop and mature into naive lymphocytes. The naive lymphocytes are acti-

vated in the secondary organs which include the lymph nodes, spleen and tonsils [14].

Leukocytes can be divided into two groups, myeloid cells and lymphoid cells. The Myeloid cells

include neutrophils, basophils, eosinophils, dendritic cells (DCs), mast cells, and monocytes which

can evolve to macrophages. The lymphoid cells include B lymphocytes (B-cells), T lymphocytes

(T-cells), natural killer (NK) cells, and plasma cells [14].

4
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The immune system is divided into two parts, the innate immune response and the adaptive im-

mune response [4], which work together, since cells of the innate immune response activate cells

of the adaptive response [14]. Cells included in the two parts of the immune system are given in

table (1).

The innate immune response

The innate immune system is the �rst to respond to foreign pathogens. The cells of the innate

immune system include monocytes, macrophages, NK cells, DCs, and neutrophil leukocytes [14].

These cells are not speci�c, but recognize general molecules, often called antigens, on invaders or

sick cells.

Monocytes circulate the bloodstream and are recruited to tissue as a consequence of infection or

injury. At the site of infection the monocytes di�erentiate into macrophages [15], which initiate

an in�ammatory response by phagocytosis of the foreign particle [3]. At the site of in�ammation

also neutrophils and DCs act as phagocytes [14]. NK cells have the ability to target and kill cancer

cells, and neutrophils can migrate through tissue to kill and destroy bacteria [15]. All of these cells

are recruited by increased expression of chemokine growth factors and cytokines [3]. There are

many di�erent types of cytokines divided into families as interleukines (IL), colony-stimulating

factors, interferons (IFN), tumour necrosis factors (TNF), chemokines and growth factors [4].

The aim of the cells of the innate immune response is to neutralize the in�ammation. If they

don't succeed in neutralization, a chronic in�ammation will persist [3].

The adaptive immune response

The adaptive part of the immune system is more slow, and comes into action up to 7 days later

than the innate response. The cells of the adaptive immune response consist mainly of lympho-

cytes [14] including B-cells and T-cells. The adaptive immune response is activated by DCs from

the innate immune response which are antigen-presenting, travelling to lymphoid organs activat-

ing naive lymphocytes [15].

The lymphocytes express certain receptors on their surface which can recognize antigens and bind

to these. This binding leads to activation of the lymphocytes, and as a result they undergo cell

di�erentiation. The B-cells di�erentiate into plasma cells which secrete antibodies (Ab) into the

bloodstream which can bind to antigens, and into memory cells recognising the antigen if it re-

turns [14].

The T-cells di�erentiate into cells including Cytotoxic T lymphocytes or killer cells (CD8+ T-

cells), which have the ability to directly kill cells not belonging to the host, and CD4+ T-cells

which are further classi�ed into regulatory T-cells (Tregs) and T helper cells (Th-cells). Some

T-cells also di�erentiate into T memory cells [15]. Th-cells help macrophages and NK cells by

secretion of di�erent cytokines. Tregs suppress certain B-cells and CD8+ T-cells to avoid attack

5
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of the hosts own proteins, and hence avoiding autoimmune diseases [14].

After elimination of the pathogens, the activated immune cells from both the innate immune

response and the adaptive immune response, die by apoptosis - except from memory cells [14].

The innate immune system

Monocytes

Macrophages: phagocytosis

Natural killer (NK) cells

Neutrophil leukocytes

Dendritic cells (DCs)

The adaptive immune system

B lymphocytes (B-cells) Stemcells: Produce antibodies (Ab)

Memory cells.

T lymphocytes (T-cells) Cytotoxic T-cells (CD8+ T-cells)

CD4+ T-cells: T helper cells (Th-cells) and Regula-

tory T-cells (Tregs)

T memory cells

Table 1: Leukocytes included in the two parts of the immune system.

3.1.2 An immunoediting environment

The immune system's ability to look for and discover foreign pathogens is called immunosurveil-

lance. When the immune system monitors cancer cells, it is called cancer immunoediting and an

immunoediting environment [16].

Cancer immunoediting consists of three phases: elimination, equilibrium and escape. In the elim-

ination phase the innate and the adaptive part of the immune system is involved in recognizing

and �ghting the cancer cells killing most of these. But it is possible that some cancer cells are left

unnoticed, possibly for a long time. In the equilibrium phase these unnoticed cancer cells exist

in the body over a long time, keeping a small population of cancer cell at a equilibrium and in a

dormant stage. This equilibrium is a result of balance between cell growth and cell death. The

dormant stage may be a result of the tumor's inability to induce angiogenesis, or it may be the

immune system keeping the tumor at a dormant stage. In the last phase cancer cells escape the

immune system by genetic and epigenetic changes, letting the tumor grow unseen [16].
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3.1.3 Cancer and the immune system

Cancer is a major health problem in many parts of the world, and a�ects all age groups. Cancer

is not a single disease, but can originate in any organ in the body. This also makes curing cancer

depending on the type of disease and the extent of it [1]. Cancer is a long process involving

uncontrolled cell growth and proliferation, evasion from apoptosis and the immune system, and

the ability to metastasize [3].

Cancer cells express antigens unique to the tumor [5]. In an immunoediting environment the

immune system constantly controls the body looking for cancerous cells expressing antigens.

Macrophages are activated after engul�ng antigens from cancer cells, initiating an in�amma-

tory response. In�ammation is one of the hallmarks of cancer, and cancer patients with elevated

in�ammatory mediators have a poorer prognosis. A majority of cancer deaths are related to un-

resolved infections. Hence chronic in�ammation results in higher risk of tumor initiation [3].

After phagocytosis macrophages process and express antigens on their surface to Th-cells which

bind to the antigen and gets activated. The macrophages secrete IL-1 and TNF-α, and the acti-

vated Th-cells release IL-2 and IFN-γ which activates the CD8+ T-cell, such that other possible

existing cancer cells will be eliminated. The elimination occurs by the CD8+ T-cells inducing

apoptosis [14].

When NK cells enter the site of in�ammation they are stimulated by cytokines produced by acti-

vated macrophages, or by IL-2 and IFN-γ secreted by activated Th-cells. This stimulates the NK

cells to secrete toxic chemicals. Further these cytokines stimulates the NK cells to produce IFN-γ

which activates macrophages and other NK cells. This makes a loop of activation of NK cells and

macrophages [4].

NK cells are part of both the innate and adaptive immune response. Since NK cells are not

antigen-speci�c they can attack virus-infected cells and cancer cells without recognizing a speci�c

antigen [14]. Tregs regulate Th-cells which control the adaptive immunity by activating other

a�ecter cells such as macrophages, B-cells and CD8+ T-cells, and hence attacking cancer cells

[15]. CD4+ T-cells activates CD8+ T-cells [9] which have antitumor activity killing cancer cells

by direct cytotoxicity [3]. In order for tumor growth to happen, the cancer cells must escape the

immune system [15].

Cancer cells have the ability to downregulate receptors on their surface hence not presenting anti-

gens, making them invisible to the immune system. Another way cancer cells can escape the

immune system is through chronic in�ammation, where T-cells eventually lose their e�ectiveness,

called T-cell exhaustion [5]. Both NK cells and CD8+ T-cells become inactive after a certain

amount of encounters with tumor cells [9]

7
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The immune response in tumor development is both stimulatory and inhibitory [17]. In�am-

mation is a part of the immune response which is connected to tumor initiation, progression and

metastasis. It is the intracellular interactions and cytokine signalling of the immune system that

determines the role in tumor initiation [3]. For instance macrophages can be classi�ed into two

types: M1 which is immuno-enhancing, and M2 which is immunosuppressing [5]; they both have

the ability to kill cancer cells through phagocytosis, but they can also stimulate tumor develop-

ment through the expression of cytokines and chemokines [17]. Tregs can promote tumor growth

by reducing the immune response by CD4+ T-cells and CD8+ T-cells, by inhibiting the activation

of these e�ector immune cells preventing autoimmune diseases [3].

Other mechanisms that stimulation tumor initiation includes DNA damage by free radicals, pro-

motion of angiogenesis, suppression of antitumor immune activity and promotion of chronic in-

�ammation in the tumor environment [17].

3.1.4 Infections and the immune system

When the body is �ghting an infection, the symptoms of the disease is caused by the immune

system response. The most commen sign of infection is fever. Another response is the production

and release of neutrophils and monocytes. All of these responses are evoked by cytokines released

from activated macrophages and other cells [14].

There are many factors that in�uence the body's ability to resist an infection. A person's state

of mind or stress can reduce the resistance to both infections and cancer. It has been indicated

that physical exercise in�uences the body's resistance to infection and cancer both positive and

negative, for instance by regulating the number of circulating NK cells. The lack of sleep reduces

the activity of NK cells in the blood [14].

Viruses attack the body by entering a cell and killing it, and then move on to other cells. But

some viruses may hide inside other cells dormant for a long time before killing it. Further some

viruses have the ability to transform their host cell into cancer cells [14]. The human papilloma

virus (HPV) is such a type of virus, which among others can induce cervical cancer [1].

Since 2019 severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) has spread across the

globe, and resulted in a worldwide pandemic. The Coronavirus disease-2019 (COVID19) symp-

toms varies from patient to patient, but include fever, cough and shortness of breath. Many

people don't show any symptoms, while others with already severe illness can get pneumonia,

acute respiratory distress and may die after getting infected with this virus [6]. The amount of

symptoms may be related to the viral load [18].

It has been shown that the level of T-cell, especially CD8+ T-cells, is signi�cant decreased in

severe COVID19 patients compared to mild cases. Further the amount of Ab has showed to be

8
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signi�cantly higher in severe cases. In all, COVID19 impact di�erent biological mechanism, such

as elevated pro-in�ammatory levels and activation of immune cells [18]. Since cancer patients is

at high risk of infections, COVID19 may be more severe for these patients [19].

9
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3.2 The Mathematics

Over the last few decades mathematical models have become an important tool in medicine, and

understanding di�erent diseases and their development such as cancer cells and tumor growth

[7]. An ordinary di�erential equation (ODE) is an equation with only time as the independent

variable. A mathematical model can be a system of ODEs, which can be used to describe the

dynamic of a biological system. Such a model can be used to represent the growth of a cellular

population, and the interaction of a biological system, such as cell-cell interaction [15, 20, 21].

3.2.1 Mathematical models

If we consider the cells of the human body, we consider a biological system of a population. In

this system some cells will proliferate, some will be constant, and some cells will die [22].

Let P de�ne a population. Then there will be added an amount f to the population, and a

fraction q of the population will die ( 0 < q < 1). Further we let dP be a small change in the

population over a single day. Then we get a simple model

dP = fP − qP = (f − q)P

Further letting P (t) be the size of the population at time t, where t is one day, we get

dP = P (t+ 1)− P (t)

to be the di�erence in the population between two consecutive days. Whit this equation we can

rewrite

P (t+ 1) = P (t) + dP = P (t) + (f − q)P (t) = (1 + f − q)P (t)

and letting λ = 1 + f − q be the �nal growth rate, we get the �nal model of population growth to

be

P (t+ 1) = λP (t) (1)

The problem with this type of model is that it insinuates that the growth of a population is

exponential and without a bound [22].

In order to get a more realistic model, instead consider the change in population per individual,

or per-capita growth rate, dP/P . For small values of the population P , the per-capita growth rate

should be large, and for small population the per-capita growth rate should be small [22]. A

logistic model is given by one di�erential equation

dP

P
= rP

(
1− P

K

)

10
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The factor r is the proliferation rate or growth rate of the population, and K is the carrying

capacity, representing the limiting of resources and so the maximal size of P . All parameters in

this model are assumed to be positive [13].

When considering the interaction of two populations x and y, potentially cancer cells and cells

of the immune system, the dynamics of the competition can be evaluated using a Lotka-Volterra

model. This model is given by the system of two di�erential equations

dx

dt
= rxx

(
1− x+ axy

Kx

)
dy

dt
= ryy

(
1− y + ayx

Ky

)
Also in this system all the parameters are assumed to be positive. Again here ri, i = x, y is the

growth rate for the two populations respectively, and Ki, i = x, y represent the carrying capacity

of the two populations.

In this system the two populations are competing for the same limiting resources, which is rep-

resented by the competition coe�cient a. This coe�cient represents the e�ect of one population

against the other. If ax > 1 then cell population y is better at getting a resource of Kx than cell

population x. If ax = ay = 0 there is no direct competition. [13].

When working with ODE and models of such a mathematical analysis of the model can give

important information. Such an analysis includes determination of steady states and their stabil-

ity [23].

3.2.2 Steady states and stability

We de�ne a �rst-order autonomous di�erential system with two variables x and y as the two

equations given by

dx

dt
= f(x, y)

dy

dt
= g(x, y).

(2)

From this system we have the following de�nition.

De�nition 3.1 (Steady state). A steady state solution of the di�erential system (2) are the

solutions (x̄, ȳ) satisfying

f(x̄, ȳ) = 0 and g(x̄, ȳ) = 0 [23].

So in order to �nd the steady states of a system of two di�erential equations we must set each

equation equal to zero, and further solve for expressions for x and y. This will give the solutions

11
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satisfying the condition.

When considering ODE representing a biological system, for example the interaction between

cancer cells and cells of the immune system, such a steady state of a system is of interest since

it represents a certain event happening in the biological system. The zero solution (x̄, ȳ) = (0, 0)

is often a solution and represents total extinction of the two populations. On the other hand a

positive steady state, where both populations are positive, represents survival of both populations.

Negative steady states means negative populations size, and has no biological meaning [23].

When the steady states are identi�ed their stability can be determined. Such a determination can

tell whether a steady state is stable or unstable, and therefore if the system will be attracted to

the state or repel from it.

For determination of stability of the steady states the Jacobian matrix of system (2) is calculated.

The 2× 2 Jacobian matrix is de�ned as

J =

fx(x, y) fy(x, y)

gx(x, y) gy(x, y)


where fx is the derivative according to x, fy according to y and so on. The stability is determined

using the eigenvalues, λ, of the Jacobian matrix [23].

De�nition 3.2 (Eigenvector and eigenvalues). If A is a n × n matrix, v is a nonzero vector in

Rn, and λ is a scalar such that Av = λv, then v is called an eigenvector of A with eigenvalues λ

[22].

We note that we can not have the eigenvectors to be the zero vector [22].

The eigenvalues of the Jacobian matrix are found by solving

det(J − λI) = det

a11 − λ a12

a21 a22 − λ

 = 0

which gives the characteristic polynomial of J

(a11 − λ)(a22 − λ)− a12a21 = a11a22 − a11λ− a22λ+ λ2 − a12a21

= λ2 − λ(a11 + a22) + a11a22 − a12a21

= λ2 − Tr(J)λ+ det(J)

The eigenvalues are the zeros of the characteristic polynomial [23].

De�nition 3.3. Let A be a 2× 2 matrix, and let S = (x̄, ȳ) be a steady state.

If the eigenvalues of matrix A are nonpositive or have nonpositive real part then S is stable.

If the eigenvalues are positive or have positive real part then S is unstable.

If the eigenvalues are negative or have negative real part then S is asymptotically stable [23].
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In addition the eigenvalues have negative real part if and only if Tr(J) < 0 and det(J) > 0.

A steady state can be classi�ed as either a node or a saddle point by the values of the associated

eigenvalues.

• Node: The eigenvalues have the same sign, and the eigenvalues may be equal or distinct.

• Saddle: The eigenvalues have opposite sign.

Asymptotic stability can be determined by calculating the determinant and trace of the Jaco-

bian matrix [23].

Theorem 1. Assume the �rst-order partial derivatives of f and g are continuous in some open

set containing the steady state (x̄, ȳ) of system (2). Then the steady state is locally asymptotically

stable if

Tr(J) < 0 and det(J) > 0

where J is the Jacobian matrix evaluated at the steady state. In addition, the steady state is

unstable if either

Tr(J) > 0 or det(J) < 0 [23].

The stability of a steady state is of interest, since it can tell something about what will happen

to the population. A population may reach extinction if the zero solution is a stable steady state,

but may be able to survive and grow if the steady state is unstable. A stable steady state where

one of the values equals the carrying capacity and the other one equals zero, tells that only the

one population will survive [23].

3.2.3 Example: Predator-prey model

We consider a predator-prey model given by the two di�erential equations

dx

dt
= x

(
r − r x

K
− ay

)
dy

dt
= y(−b+ cx)

We assume all the parameters r,K, a, b, c to be positive. The �rst equation represents the prey, and

the second equation represents the predator. Without the predator the prey will grow logistically,

and without the prey the predator will be extinct. The term ay in the �rst equation represents

the per capacity loss of prey to predator, and the term cx in the second equation represents the

per capacity gain to the predator [23].

We �nd the steady states by solving the system

x
(
r − r x

K
− ay

)
= 0

y(−b+ cx) = 0.

13
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The solutions gives three steady states which we note by S1, S2 and S3

S1 = (x̄1, ȳ1) = (0, 0)

S2 = (x̄2, ȳ2) = (K, 0)

S3 = (x̄3, ȳ3) =

(
b

c
,
r(cK − b)
Kac

)
In S3 we must have Kac 6= 0, and further we see r(cK − b)/Kac = 0 ⇒ K = b/c, so we must have

K > b/c.

From these steady states we see that there are three possible outcomes in this system. In the �rst

steady state both populations will die. In the second steady state the prey will survive while the

predators will die. In the last steady state the populations coexist.

In order to further investigate these steady states their stability must be determined.

We de�ne the Jacobian matrix by �nding the derivatives

J =

r − 2rx

K
− ay −xa

yc cx− b


We evaluate each of the steady states by inserting them in the Jacobian matrix.

J(S1) =

r 0

0 −b

 , J(S2) =

−r −Ka

0 cK − b

 , J(S3) =

 − rb

cK
−ba
c

r(cK − b)
Ka

0


Firstly we consider J(S1). Here the eigenvalues are r and −b, where one is positive and the

other is negative. Since the eigenvalues have opposite sign S1 is a saddle point. Further we have

det(J(S1)) = −rb < 0, so from de�nition (3.3) the saddle point is unstable. This means that the

steady state where both populations reach extinction is not a stable condition, leaving an option

for both populations to grow back.

Considering J(S2) we have an upper triangle. The eigenvalues are −r which is negative and

cK − b. We see when K < b/c the eigenvalue is negative and S2 is a node. But if K > b/c the

eigenvalue cK − b is positive, and so S2 is a saddle point. Considering the determinant we get

det(J(S2)) = −r(cK − b). When K > b/c the determinant is negative and we get from Theorem

(1) that the steady state is unstable. But when K < b/c the determinant will be positive and we

then get from Theorem (1) that S2 is locally asymptotically stable, meaning that only the prey

survives. Overall the stability of this steady state depends on the values of the parameters in the

model.

For the last steady state S3 one eigenvalue equals zero, so we calculate the determinant of J(S3))

det(J(S3)) =
br(cK − b)

cK
.
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We see that if K < b/c the determinant will be negative and from Theorem (1) the steady state is

unstable. But if K > b/c the determinant will be positive and from Theorem (1) the steady state

S3 is locally asymptotically stable, meaning that both the prey and predator survives [23]. As

before the stability of this steady state depends on the values of the parameters on the model.
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4 The Model

The competition between two type of cells and their interaction with the immune system gives

rise to the model developed and analysed in this master thesis.

We let x and y be the density of two type of cells competing; x represent cancer cells and y

represent infected cells. We let ai be the intrinsic growth rate and Ki the carrying capacity for

x and y respectively. The parameter bi is the competition term between x and y for the same

resources.

We assume that the two type of cells in the absence of the other will growth logistically to Ki. We

always assume x(0) > 0 and y(0) > 0, and that the parameters a, K and b are positive. Then the

growth of the two di�erent cell types x and y is given by the system of two di�erential equations

dx

dt
= axx

(
1− x+ bxy

Kx

)
− rxpxTxx

dy

dt
= ayy

(
1− y + byx

Ky

)
− rypyTyy

(3)

The last term is the immune response eliminating x and y respectively. Here Ti describes the

number of speci�c immune cells for x and y respectively, and piri is the elimination rate ri of x

and y with probability pi by the immune cell [23, 22]. The immune system reduces the population

of x and y through the last term.

Considering the immune system the di�erential equations describing the rate of change of im-

mune cells (naive T-cells, Tn) is given by the di�erential equation

dTn
dt

= α− βxxTn − βyyTn − εTn (4)

where Tn denotes the amount of naive T-cells, α represents the constant source of naive T-cells,

and ε is the natural death of naive T-cells. The parameter βx is the rate of binding between cancer

cells and naive T-cells, and βy is the rate of binding between infected cells and naive T-cells.

The interaction between cancer cells and naive T-cells results in activation of the T-cells speci�c

for the cancer cells. The amount of cancer speci�c immune cells can be describe by the di�erential

equation

dTx
dt

= βxxTn − rx(1− px)Txx− dxTx (5)

where dx is the natural death rate. The parameter βx is the rate of binding between cancer cells

and immune cells, and rx(1 − px) is the rate rx of inactivation of immune cells by cancer with

probability (1− px).

Equivalent the interaction between infected cells and naive T-cells leads to activation of T-cells
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speci�c for the infected cells, and hence we have the equation corresponding to the amount of

infected speci�c immune cells given by the di�erential equation

dTy
dt

= βyyTn − ry(1− py)Tyy − dyTy (6)

where dy is the natural death rate. The parameter βy is the rate of binding between infected cells

and immune cells, and the term ry(1 − py) describes the rate ry of inactivation of immune cells

by infected cells with probability (1− py).

The rate of change of the immune cells and cancer- or infected speci�c immune cells occurs at such

a slow time, compared to cancer cells and infected cells, that we can apply a quasi-steady-state

approximation to the three di�erential equations (4), (5) and (6), and hence obtain a solution for

Tx and Ty. First consider equation (4)

0 = α− βxxTn − βyyTn − εTn

Tn(βxx+ βyy + ε) = α

Tn =
α

(βxx+ βyy + ε)

Then inserting this expression in (5) we get

0 = βxx
α

(βxx+ βyy + ε)
− rx(1− px)Txx− dxTx

Tx(rx(1− px)x+ dx) =
βxxα

(βxx+ βyy + ε)

Tx =
βxxα

(βxx+ βyy + ε)(rx(1− px)x+ dx)

and equivalent for Ty

Ty =
βyyα

(βxx+ βyy + ε)(ry(1− py)y + dy)

Inserting the expressions for Tx and Ty in (3) gives the �nal system given by two di�erential

equations

dx

dt
= axx

(
1− x+ bxy

Kx

)
− rxpxαβxx

2

(βxx+ βyy + ε)(rx(1− px)x+ dx)

dy

dt
= ayy

(
1− y + byx

Ky

)
− rypyαβyy

2

(βxx+ βyy + ε)(ry(1− py)y + dy)
.

(7)

4.1 Assumptions

The variable x represents the population of cancer cells, and the variable y represents the popu-

lations of infected cells. We always assume x(0) > 0 and y(0) > 0. Negative values of one or the

other would mean negative population size, and then the model would have no biological meaning.

The parameter a describes the growth rate or proliferation rate of the two populations of cells,

why we always assume this to be positive in order for new cells to develop. If this parameter is
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zero, no populations will evolve [22].

The carrying capacity K describes the maximum number of cells to be supported, hence this must

always be positive [22].

The parameter b is the competition term, and describes that cancer cells and infected cells are

competing for the same available resources. The parameter must either be positive, or zero if

there is no competition [13].

The parameter T describes the number of immune cells, which is activated in the presence of

cancer cells and/or infected cells. These activated immune cells are speci�c and includes NK cells

and CD8+ T-cells. This parameter is either positive, or zero if no immune cells are present.

The terms pr and r(1 − p) describes an e�ciency and a probability. The parameter r is always

positive, and for the parameter p we have 0 ≤ p ≤ 1 [8].

The results in the following analysis must be non-negative. Since x and y represents populations

of cancer cells and infected cells, complex and negative results has no biological meaning, and is

of no interest.

The parameters of the model are summarized in table (4) appendix (9.1).
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5 Analysis

In this section the model presented in section (4) will be analysed. In section (5.1) a stability

analysis of the model is giving, �nding expressions for the steady states and their stability as

possible. In section (5.2) a numerical approach of the results found in section (5.1) is giving,

�nding explicit values for the steady states and determination of their stability.

The results of the analysis will be presented and evaluated accordingly to their relevant biological

interpretation.

5.1 Stability analysis

In order to make the model a bit more simple, we are going to assume that x and y don't take

resources from each other, hence bx = by = 0, which means no direct competition. Then the

system simpli�es to

dx

dt
= axx

(
1− x

Kx

)
− rxpxαβx

2

(βxx+ βyy + ε)(rx(1− px)x+ dx)

dy

dt
= ayy

(
1− y

Ky

)
− rypyαβyy

2

(βxx+ βyy + ε)(ry(1− py)y + dy)

(8)

In order to �nd the steady states and their stability of system (8), we use the theory presented in

section (3.2). At a steady state we have

dx

dt
=
dy

dt
= 0

First we investigate the case where no cancer cells are present and no infected cells are present,

x = 0 and y = 0. In this case the steady state is at the origin, and we denote it S0 = (0, 0).

For determination of the stability of this steady state, S0, we calculate the Jacobian matrix of

system (8)

J =

 fx(x, y)
rxpxαβxx

2βy
(βxx+ βyy + ε)2(rx(1− px)x+ dx)

rypyαβyy
2βx

(βxx+ βyy + ε)2(ry(1− py)y + dy)
gy(x, y)


where

fx(x, y) = ax

(
1− x

Kx

)
− axx

Kx
− 2rxpxαβxx

(βxx+ βyy + ε)(rx(1− px)x+ dx)

+
rxpxαx

2β2x
(βxx+ βyy + ε)2(rx(1− px)x+ dx)

+
rxpxαβxx

2rx(1− px)

(βxx+ βyy + ε)(rx(1− px)x+ dx)2

gy(x, y) = ay

(
1− y

Ky

)
− ayy

Ky
− 2rypyαβyy

(βxx+ βyy + ε)(ry(1− py)y + dy)

+
rypyαy

2β2y
(βxx+ βyy + ε)2(ry(1− py)y + dy)

+
rypyαβyy

2ry(1− py)
(βxx+ βyy + ε)(ry(1− py)y + dy)2
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Calculating the Jacobian matrix at S0 we �nd

J(S0) =

ax 0

0 ay

 .

The eigenvalues of this matrix are λ1 = ax and λ2 = ay. In section (4.1) we assumed that ax and

ay are positive, and hence λ1 and λ2 are positive, which implies that the origin is an unstable

steady state. In addition since the eigenvalues have same sign the origin is a node.

This means that the total extinction of the cancer cells and infected cells is not a stable condition,

meaning that both populations have the option to grow back, if there is some disturbance to the

system.

For making further analysis a bit easier we simplify the model such that u = x/Kx, v = y/Ky

and τ = t/ax. Hence u is the ratio between the current cancer burden and the capacity, and v is

the ratio between the current infection burden and the capacity. We get the model

du

dτ
= u(1− u)− ϕxu

2

(u+ µv + δ)(ωxu+ 1)

dv

dτ
= ρv(1− v)− ϕyv

2

(u+ µv + δ)(ωyv + 1)

(9)

where

ϕx =
rxpxα

dxax
, µ =

βyKy

βxKx
, δ =

ε

βxKx
, ωx =

rx(1− px)Kx

dx
,

ρ =
ay
ax
, ϕy =

rypyαβyKy

βxKxdyax
, ωy =

ry(1− py)Ky

dy

5.1.1 Certain elimination

In the �rst approach we start by considering the case px = 1 and py = 1 such that ωx = 0 and

ωy = 0. This means that the elimination of cancer cells and infected cells by immune cells will

happen, the elimination is certain.

With these alterations we have the system

du

dτ
= u(1− u)− ϕxu

2

(u+ µv + δ)

dv

dτ
= ρv(1− v)− ϕyv

2

(u+ µv + δ)

(10)
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We �rst we consider the infection-free case such that v = 0, but where cancer cells is present

u > 0. Then we �nd the steady state by solving du/dτ = 0. We �nd an expression with u

u(1− u)− ϕxu
2

(u+ δ)
= 0

(1− u) =
ϕxu

(u+ δ)

(1− u)(u+ δ) = ϕxu

u+ δ − u2 − uδ = ϕxu

u2 + u(ϕx − 1 + δ)− δ = 0 (11)

The expression in (11) is a second degree equation. We de�ne it as

Pu(u) = u2 + ubu + cu (12)

where

bu = ϕx − 1 + δ

cu = −δ

We have bu > 0 if and only if ϕx + δ > 1. Applying Descartes rule of sign, equation (12) has

one sign change and hence one positive real root, and considering P (−u) equation (12) has one

negative real root.

We �nd the root discriminant

du = (ϕx − 1 + δ)2 − 4(−δ)

= (ϕx − 1 + δ)2 + 4δ

We see that du > 0 if and only if δ > 0, and since δ is assumed to be positive, the root discriminant

of equation (12) is always positive. We �nd the solutions to Pu(u), �nding the expressions for u

u− =
−(ϕx − 1 + δ)−

√
(ϕx + δ)2 + 1− 2(ϕx − δ)

2

u+ =
−(ϕx − 1 + δ) +

√
(ϕx + δ)2 + 1− 2(ϕx − δ)

2

These expressions gives two steady state Su+ = (u+, 0) and Su− = (u−, 0), where Su+ = (u+, 0)

is a positive solution and Su− = (u−, 0) is a negative solution. For biological purpose we will only

consider the positive solution.

Next we consider the case where no cancer is present u = 0, but an infection is present v > 0.

We considering dv/dτ = 0 and �nd an expression corresponding to a second degree equation with

variable v

Pv(v) = v2av + vbv + cv (13)
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where

av = ρµ

bv = ϕy − ρ(µ+ δ)

cv = −ρδ

Here av is always positive and cv is always negative. Further bv > 0 if and only if ϕy/ρ(µ+ δ) > 1,

and so applying Descartes rule of sign, there is one sign change in equation (13), and therefore

(13) has one real positive root and one real negative root. Here we �nd the root discriminant of

equation (13)

dv = (ϕy − ρ(µ+ δ))2 + 4ρ2µδ

Since ρ, µ and δ are assumed to be positive, we have av > 0 and cv < 0 and therefore dv > 0. We

�nd the solutions to Pv(v)

v− =
−(ϕy − ρ(µ+ δ))−

√
(ϕy − ρ(µ+ δ))2 + 4ρ2µδ

2ρµ

v+ =
−(ϕy − ρ(µ+ δ)) +

√
(ϕy − ρ(µ+ δ))2 + 4ρ2µδ

2ρµ

which gives two steady state, one positive Sv+ = (0, v+) and one negative Sv− = (0, v−). Also

here we are only interested in the positive steady state.

Next we assume that both cancer cells and infected cells are present such that u > 0 and v > 0.

We solve du/dτ = 0 and dv/dτ = 0 and �nd two expressions, one for v and and one for u

0 = u(1− u)− ϕxu
2

(u+ µv + δ)

(1− u) =
ϕxu

(u+ µv + δ)

(u+ µv + δ) =
ϕxu

(1− u)

v =
ϕxu

µ(1− u)
− (u+ δ)

µ

and

0 = ρv(1− v)− ϕyv
2

(u+ µv + δ)

(u+ µv + δ) =
ϕyv

ρ(1− v)

u =
ϕyv

ρ(1− v)
− (µv + δ)

We de�ne these expressions as

fu(u) =
ϕxu

µ(1− u)
− (u+ δ)

µ

fv(v) =
ϕyv

ρ(1− v)
− (µv + δ)

(14)
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We note u = fv(v) = fv(fv(v) and v = fu(u) = fu(fv(v).

In order to �nd the number of possible solutions to these equations we solve fu(u) = v and

fv(v) = u

u =

ϕy

(
ϕxu

µ(1− u)
− (u+ δ)

µ

)
ρ

(
1−

(
ϕxu

µ(1− u)
− (u+ δ)

µ

)) − (µ( ϕxu

µ(1− u)
− (u+ δ)

µ

)
+ δ

)

u+

(
ϕxu

(1− u)
− u− δ

)
+ δ =

ϕyϕxu

µ(1− u)
− ϕy(u+ δ)

µ(
ρ−

(
ρϕxu

µ(1− u)
− ρ(u+ δ)

µ

))

ϕxu

(1− u)
=

ϕyϕxu− ϕy(u+ δ)(1− u)

µ(1− u)(
ρµ(1− u)− ρϕxu+ ρ(u+ δ)(1− u)

µ(1− u)

)
ϕxu

(1− u)
=

ϕyϕxu− ϕyu+ ϕyu
2 − ϕyδ + ϕyuδ

(ρµ− uρµ− ρϕxu+ ρu− u2ρ+ ρδ − uρδ)

ϕxu(ρµ− uρµ− ρϕxu+ ρu− u2ρ+ ρδ − uρδ) = (1− u)(ϕyϕxu− ϕyu+ ϕyu
2 − ϕyδ + ϕyuδ)

Cross multiply, expanding both sides and collecting the powers we get a third degree equation for

u

uϕxρµ− u2ϕxρµ− u2ϕ2
xρ+ u2ϕxρ− u3ϕxρ+ uϕxρδ − u2ϕxρδ

= ϕyϕxu− ϕyu+ ϕyu
2 − ϕyδ + ϕyuδ − u2ϕyϕx + u2ϕy − u3ϕy + uϕyδ − u2ϕyδ

0 = uϕxρµ− u2ϕxρµ− u2ϕ2
xρ+ u2ϕxρ− u3ϕxρ+ uϕxρδ − u2ϕxρδ − ϕyϕxu

+ ϕyu− ϕyu2 + ϕyδ − ϕyuδ + u2ϕyϕx − u2ϕy + u3ϕy − uϕyδ + u2ϕyδ

0 = u3(ϕy − ϕxρ) + u2(ϕyϕx − ϕxρµ− ϕ2
xρ+ ϕxρ− ϕxρδ − 2ϕy + ϕyδ)

+ u(ϕxρµ− ϕyϕx + ϕy − 2ϕyδ + ϕxρδ) + ϕyδ

Similarly we can �nd a third equation for v

0 =v3(ϕyρµ− ϕxρ2µ) + v2(2ϕxρ
2µ− ϕxρ2δ + ϕyρδ − ϕyρµ− ϕxϕyρ+ ϕyρ+ ϕ2

y)

− v(ϕxρµ− 2ϕxρ
2δ + ϕyρδ − ϕxϕyρ+ ϕyρ)− ϕxρ2δ

Hence we have found two third degree polynomials

Qu = u3(ϕy − ϕxρ) + u2(ϕyϕx − ϕxρµ− ϕ2
xρ+ ϕxρ− ϕxρδ − 2ϕy + ϕyδ)

+ u(ϕxρµ− ϕyϕx + ϕy − 2ϕyδ + ϕxρδ) + ϕyδ

Qv = v3(ϕyρµ− ϕxρ2µ) + v2(2ϕxρ
2µ− ϕxρ2δ + ϕyρδ − ϕyρµ− ϕxϕyρ+ ϕyρ+ ϕ2

y)

− v(ϕxρµ− 2ϕxρ
2δ + ϕyρδ − ϕxϕyρ+ ϕyρ)− ϕxρ2δ

(15)

Since both of these polynomials are of degree three they have at most three roots over C. Further

they have at most nine common roots, and therefore intersects at most nine times [24]. Then
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solving fu(u) = fv(v) = 0 can give up to nine steady states, Suvi = (ui, vi), i = 1 . . . 9.

For determination of the stability of the steady states found above, we calculate the Jacobian

matrix of system (10)

J =

1− 2u− 2ϕxu

u+ µv + δ
+

ϕxu
2

(u+ µv + δ)2
ϕxu

2µ

(u+ µv + δ)2

ϕyv
2

(u+ µv + δ)2
ρ(1− v)− ρv − 2ϕyv

(u+ µv + δ)
+

ϕyv
2µ

(u+ µv + δ)2


(16)

Evaluating the steady state Su+ we �nd

J(Su+) =

d(Su+)
ϕx(−(ϕx − 1 + δ) +

√
du)2µ

(1 + δ − ϕx +
√
du)2

0 ρ

 (17)

where

d(Su+) = ϕx + δ −
√
du −

2ϕx(−(ϕx − 1 + δ) +
√
du)

(1 + δ − ϕx +
√
du)

+
ϕx(−(ϕx − 1 + δ) +

√
du)2

(1 + δ − ϕx +
√
du)2

The eigenvalues of this matrix are d(Su+) and ρ. The parameter ρ is always positive. The value

of d(Su+) depends of the values of the parameters, but we have

d(Su+) > 0 if and only if ϕx + δ +
ϕx(−(ϕx − 1 + δ) +

√
du)2

(1 + δ − ϕx +
√
du)2

>
√
du +

2ϕx(−(ϕx − 1 + δ) +
√
du)

(1 + δ − ϕx +
√
du)

and

d(Su+) < 0 if and only if ϕx + δ +
ϕx(−(ϕx − 1 + δ) +

√
du)2

(1 + δ − ϕx +
√
du)2

<
√
du +

2ϕx(−(ϕx − 1 + δ) +
√
du)

(1 + δ − ϕx +
√
du)

Evaluating the steady state Sv+ we �nd

J(Sv+) =

 1 0

ϕy(−(ϕy − (ρ(µ+ δ))) +
√
dv)

2

(ρ(µ+ 3δ)− ϕy +
√
dv)2µ2

d(Sv+)

 (18)

where

d(Sv+) =
ϕy − δρ−

√
dv

µ
− 2ϕy(−(ϕy − ρ(µ+ δ)) +

√
dv)

(ρ(µ+ 3δ)− ϕy +
√
dv)µ

+
ϕy(−(ϕy − ρ(µ+ δ)) +

√
dv)

2

(ρ(µ+ 3δ)− ϕy +
√
dv)2µ2

The eigenvalues of this matrix are 1 which is always positive, and d(Sv+). The values of d(Sv+)

depends on the values of the parameters, but as before we have

d(Sv+) > 0 if and only if
ϕy − δρ−

√
dv

µ
+
ϕy(−(ϕy − ρ(µ+ δ)) +

√
dv)

2

(ρ(µ+ 3δ)− ϕy +
√
dv)2µ

>
2ϕy(−(ϕy − ρ(µ+ δ)) +

√
dv)

(ρ(µ+ 3δ)− ϕy +
√
dv)µ

and

d(Sv+) < 0 if and only if
ϕy − δρ−

√
dv

µ
+
ϕy(−(ϕy − ρ(µ+ δ)) +

√
dv)

2

(ρ(µ+ 3δ)− ϕy +
√
dv)2µ

<
2ϕy(−(ϕy − ρ(µ+ δ)) +

√
dv)

(ρ(µ+ 3δ)− ϕy +
√
dv)µ
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5.1.2 Uncertain elimination

In the next approach we assume px < 1 and py < 1, such that the elimination of cancer cells and

infected cells by immune cells is no a certain event. We �nd expressions for the steady states of

system (9).

First we consider the infection-free case where only cancer is present, such that v = 0 and u > 0

and consider du/dτ = 0

u(1− u)− ϕxu
2

(u+ δ)(ωxu+ 1)
= 0

(1− u) =
ϕxu

(u+ δ)(ωxu+ 1)

(1− u)(u2ωx + uωxδ + u+ δ) = uϕx

−u2ωx − uωxδ − u− δ + u3ωx + u2ωxδ + u2 + uδ + uϕx = 0

u3ωx + u2(ωxδ + 1− ωx)− u(ωxδ + 1− δ − ϕx)− δ = 0 (19)

The expression in (19) is a third degree equation, hence the total number of roots in this equation

is at most 3 over C. We de�ne it as

h(u) = u3a1 + u2b1 + uc1 + d1 (20)

where

a1 = ωx

b1 = ωxδ + 1− ωx

c1 = −(ωxδ + 1− δ − ϕx)

d1 = −δ

We note that a1 > 0 and d1 < 0, and b1 > 0 if and only if ω−1
x + δ > 1, and c1 > 0 if and only if

ωx + δ−1(1− ϕx) > 1. We get the following conditions

If b1 ≥ 0 and c1 ≥ 0 one sign change (21)

If b1 ≥ 0 and c1 ≤ 0 one sign change (22)

If b1 < 0 and c1 > 0 three sign change (23)

If b1 ≤ 0 and c1 ≤ 0 one sign change (24)

Then applying Descartes rule of sign, if condition (21), (22) or (24) holds, equation (20) has one

or zero positive real roots. And if condition (23) holds, equation (20) has three or one positive

real roots [25].

Similarly considering

h(−u) = (−u)3a1 + (−u)2b1 + (−u)c1 + d1 = −u3a1 + u2b1 − uc1 + d1
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From this equation we get the following conditions

If b1 > 0 and c1 ≥ 0 two sign change (25)

If b1 > 0 and c1 ≤ 0 two sign change (26)

If b1 ≤ 0 and c1 ≥ 0 zero sign change (27)

If b1 ≤ 0 and c1 < 0 two sign change (28)

Applying Descartes rule of sign, if condition (27) holds, equation (20) has zero negative real roots.

If condition (25), (26) and (28) holds, equation (20) has two or zero negative real roots [25].

Since we are only interested in the positive roots, we �nd that equation (20) has at most three real

roots. Hence we �nd at most three steady states Su1 = (u∗1, 0), Su2 = (u∗1, 0) and Su3 = (u∗2, 0),

where u∗1, u
∗
2 and u

∗
3 are positive real roots of equation (20).

Next we consider the cancer-free case where only an infection is present, u = 0 and v > 0.

We consider dv/dτ = 0 and �nd an expression with v

ρv(1− v)− ϕyv
2

(µv + δ)(ωyv + 1)
= 0

ρ(1− v) =
ϕyv

(µv + δ)(ωyv + 1)

(ρ− ρv)(v2µωy + vµ+ vδωy + δ) = ϕyv

−v2ρµωy − vρµ− vρδωy − ρδ + v3ρµωy + v2ρµ+ v2ρδωy + vρδ + ϕyv = 0

v3ωyρµ+ v2(ωyδρ+ ρµ− ωyρµ)− v(ωyδρ+ ρµ− δρ− ϕy)− ρδ = 0 (29)

The expression in equation (29) is a third degree equations. We de�ne it as

h(v) = v3a2 + v2b2 + vc2 + d2 (30)

where

a2 = ρµωy

b2 = ρµ+ ρδωy − ρµωy

c2 = −(ρµ+ ρδωy − ρδ − ϕy)

d2 = −ρδ

and we note that b1 > 0 if and only if ω−1
x + δ > 1, and c1 > 0 if and only if ωx + δ−1(1−ϕx) > 1.

Applying Descartes rule of sign, equivalent as equation (20), equation (30) has at most three

positive real roots [25]. Therefore we �nd at most three steady states Sv1 = (0, v∗1), Sv2 = (0, v∗2)

and Sv3 = (0, v∗3), where v∗1, v
∗
2 and v∗3 are positive real roots of equation of (30).
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Now we assume that both cancer cells and infected cells are present, such that u > 0 and v > 0.

We solve du/dτ = 0 �nding an expression for v

u(1− u)− ϕxu
2

(u+ µv + δ)(ωxu+ 1)
= 0

(1− u) =
ϕxu

(u+ µv + δ)(ωxu+ 1)

(u+ µv + δ) =
ϕxu

(1− u)(ωxu+ 1)

µv =
ϕxu

(1− u)(ωxu+ 1)
− (u+ δ)

v =
ϕxu

µ(1− u)(ωxu+ 1)
− (u+ δ)

µ

and solve dv/dτ = 0 �nding an expression for u

ρv(1− v)− ϕyv
2

(u+ µv + δ)(ωyv + 1)
= 0

ρ(1− v) =
ϕyv

(u+ µv + δ)(ωyv + 1)

(u+ µv + δ) =
ϕyv

ρ(1− v)(ωyv + 1)

u =
ϕyv

ρ(1− v)(ωyv + 1)
− (µv + δ)

We de�ne the expression for u and v as g1(u) and g2(v) such that

gu(u) =
ϕxu

µ(1− u)(ωxu+ 1)
− (u+ δ)

µ

gv(v) =
ϕyv

ρ(1− v)(ωyv + 1)
− (µv + δ)

(31)

We note that u = gv(gu(u)) and v = gu(u) = gu(gv(v)). Solving these will give the last steady

states. This will be done on the next section.

5.2 Numerical approach

In this part of the analysis we are going to investigate the results found in section (5.1.1) and

(5.1.2) using numerical values for the parameters. The parameters of the model are summarized

in table (4) appendix (9.1). In table (5) and (6) in appendix (9.2) values of the parameters are

given from di�erent articles. The articles which investigate infected cells, describe cells infected

with COVID19. In order to perform a numerical approach of the mathematical model in (10), we

choose the values for the parameters to be

ax = 1.5, Kx =
1

2.17× 10−8
, βx =

1

1.3× 10−7
, dx = 0.12, rx = 0.14, px = 0.9997, rx(1− px) =

1

1× 10−7

and the parameters for the infected cells to be

ay = 8.57, Ky = 109, βy = 1.26× 105, dy = 0.65, rypy =
1

4.88× 10−8
, ry(1− py) =

1

3× 10−7
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further we chose α = 1.3× 104 and ε =
1

2.4× 10−2
.

Then we get the parameter values given in table (2). With these chosen values we can �nd

the steady states explicitly.

Parameter Value

ϕx 10108.078

ωx 3.842× 1015

ϕy 9.712× 1010

ωy 5.128× 1015

µ 0.355

ρ 5.713

δ 1.175× 10−13

Table 2: The table shows values for the simpli�ed model.

5.2.1 Certain elimination

At �rst we are going to consider the case of certain elimination, px = 1 and py = 1, and the

results found in section (5.1.1). The calculations for the explicit values are done in maple, and

the calculations can be found in appendix (9.3).

We �rst consider the infection-free case where only cancer cells are present, u > 0 and v = 0. We

looked at du/dτ = 0 and found a second degree equation for u given in equation (11). Solutions

to this equation corresponds to the solutions to Pu1(u) = Pu2(u) where Pu1(u) and Pu2(u) are

de�ned as

Pu1(u) = u2 + u(δ − 1)− δ

Pu2(u) = −uϕx

We �nd the steady state by solving Pu1(u) = Pu2(u), see appendix (9.3). We �nd one positive

steady state, which correspond to the steady state Su+ . We �nd the values for this steady state

to be

Su+ = (1.163× 10−17, 0)

In this steady state their is a very low cancer burden. Figure (1) shows the two functions Pu1(u)

and Pu2(u) and their intersection corresponding to the positive steady state.

Next we consider the cancer-free case, where u = 0 and v > 0. In equation (13) we found

a second degree equation for v. The solutions to this equation correspond to the solutions to
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(a) The intersection (1.163× 10−17, 0).
(b) Zoomed in at the intersection (1.163× 10−17, 0).

Figure 1: The �gure shows the function Pu1(u) as the green graph, and Pu2(u) as the red graph and their positive

intersection. To the right is zoomed in near the origin.

Pv1(v) = Pv2(v), where these two functions are de�ned by

Pv1(v) = v2ρµ+ v(ρ(δ − µ))− ρδ

Pv2(v) = −vϕy

We �nd the solutions by solving Pv1(v) = Pv2(v), see appendix (9.3). We �nd one positive solution

to these equations corresponding to the solution Sv+. With the chosen parameter values we get

the steady state

Sv+ =
(
0, 6.915× 10−24

)
At this steady state there is a very low infection burden. Figure (2) shows the two functions

Pv1(v) and Pv2(v) and their intersection corresponding to the steady states Sv+. At the �gure to

the left, the graph for the function Pv2(v) is very close to the y-axis, and at the �gure to the right,

the graph for the function Pv1(v) is very close to the x-axis.

(a) Pv1(v) and Pv2(v).
(b) Intersection (0, 6.91 ∗ 10−24).

Figure 2: The �gure shows the function Pv1(v) as the blue graph, and Pv2(v) as the red graph and their

intersection. To the right is zoomed in near the origin. The graphs intersect in (0,−4.782×1010 and (0, 6.915∗10−24).

Next we consider the case where both cancer cells and infected cells are present such that u > 0

and v > 0. This case is given by the equations in (15). These are two third degree equations, and
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their functions are shown in �gure (3). We evaluated these functions to intersect at most nine

times.

(a) The graph given by Qu. (b) The graph given by Qv.

Figure 3: The �gure shows the function Qu to the left, and the function Qv to the right.

By inserting the chosen parameter values, and solving the system Qu = Qv = 0 we �nd one

positive intersection, hence one positive steady states Suv = (1.163× 10−17, 6.916× 10−24). The

steady state is shown as a yellow point in �gure (4). At this steady state there is both a very low

cancer burden and a very low infection burden.

Figure 4: The positive steady states Suv = (1.163× 10−17, 6.916× 10−24) shown as a yellow dot.

In all we have found the steady states Su+, Sv+ and Suv. For evaluation of the steady states

we determine the stability of the steady states. Therefore we calculate the Jacobian matrix of

system (10) using the chosen parameter values. The calculation for the matrix is done in maple,
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see appendix (9.3). The Jacobian matrix is calculated as

J =

 mu
3592.876u2

(u+ 0.355v + 1.175× 10−13)2

9.712× 1010v2

(u+ 0.355v + 1.175× 10−13)2
mv


where

mu = 1− 2u− 20216.1556u

u+ 0.355v + 1.175× 10−13
+

10108.078u2

(u+ 0.355v + 1.175× 10−13)2

mv = 5.713− 11.427v − 1.942× 1011v

u+ 0.355v + 1.175× 10−13
+

3.452× 1010v2

(u+ 0.355v + 1.175× 10−13)2

We now evaluate each of the steady states by inserting their values in the Jacobian matrix. This

calculation is done in maple, see appendix (9.3).

We �rst evaluate the steady state Su+ = (1.163× 10−17, 0). The Jacobian matrix for this steady

state is

J(Su+) =

−0.999 0.0000352

0 5.713


The eigenvalues of J(Su+) are λ1 = −0.999 and λ2 = 5.713. Since these have opposite sign, the

steady state is a saddle point. And since one eigenvalue is positive the steady state is unstable.

In this steady state we have a low cancer burden. This can be interpreted as the cancer is at a

dormant stage, and a small disturbance in the system, such as a mutation of the cells, could lead

to cancer growth and tumor initiation.

Next we evaluate the stability of the steady state Sv+ =
(
0, 6.915× 10−24

)
. We �nd the Ja-

cobian matrix of this steady state

J(Sv+) =

 1 0

3.361× 10−10 −5.713


The eigenvalues of J(Sv+) are λ1 = 1 and λ2 = −5.713. These eigenvalues have opposite sign,

one is positive making the steady state unstable, and so the steady state is an unstable saddle.

At this steady state there is a low infection burden. Since it is unstable a small disturbance of

the system could make an infection evolve and move the system away from the steady state.

The last steady state we evaluate is Suv = (1.163 × 10−17, 6.916 × 10−24) which is a steady

state where both cancer cells and infected cells are present, both at a very low amount. We �nd

the value of the Jacobian matrix of the steady state

J(Suv) =

 −0.999 0.0000352

3.361× 10−10 −5.713


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We further calculate the determinant and trace of the Jacobian matrix

det(J(Suv)) = 5.713

Tr(J(Suv)) = −6.713

Since the determinant is a positive value, and the trace is a negative values, the steady state Suv

is an asymptotically stable steady state. This means that when a low burden of cancer cells and

infected cells are present, the two type of cells are coexistence and stable, and the system will be

attracted to this steady state.

5.2.2 Uncertain elimination

Next we are going to consider the case of uncertain elimination, px < 1 and py < 1, and the results

found in section (5.1.2). The calculations are done in maple, and is found in appendix (9.4).

We �rst consider the infection-free case where v = 0 and u > 0. We found the expression given

in equation (19), which is a third degree equation for u. The solutions to the equation (19),

corresponds to the solutions to Hv1(v) = Hv2(v) where Hv1(v) and Hv2(v) are de�ned by

Hu1(v) = u3ωx + u2(ωxδ + 1− ωx)− u(ωwδ + 1− δ)− δ

Hu2(v) = −uϕx

With the chosen parameter values, we solve Hv1(v) = Hv2(v), see appendix (9.4), and �nd three

positive solutions, corresponding to the steady states

Su∗1 = (1.217× 10−17, 0)

Su∗2 = (2.514× 10−12, 0)

Su∗3 = (0.999, 0)

Figure (5) show the two graphs for Hu1(v) and Hu2(v) and their intersections.

At the two steady state Su∗1 and Su∗2 there is a very low cancer burden, and at the steady state

Su∗3 there is a very high cancer burden.

Next we consider the cancer-free case, where u = 0 and v > 0. In this case we found the

expressions in equation (29). The expression is a third degree equation for v, and solutions to the

equation equal solutions to Hv1(v) = Hv2(v), which are given by

Hv1(v) = v3ωyρµ+ u2(ωyδρ+ ρµ− ωyρµ)− v(ωyδρ+ ρµ− δρ)− δρ

Hv2(v) = −uϕy

The two graphs are showed in �gure (6).
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(a) The two graphs Hu1(v) and Hu2(v).
(b) The positive intersection Su∗

1
, Su∗

2
and Su∗

3
.

Figure 5: The �gure to the left shows Hu1(u) as the green graph, and Hu2(u) as the red graph and their

intersections. To the right there is zoomed in at the intersection Su∗
1
and Su∗

2
.

(a) The graph by Hv1(v). (b) The graph by Hv2(v).

Figure 6: The �gure shows Hv1(v) and Hv2(v).

Solving Hv1(v) = Hv2(v) we �nd three positive values for v and hence three positive steady states

Sv∗1 =
(
0, 6.915× 10−24

)
Sv∗2 =

(
0, 9.325× 10−6

)
Sv∗3 = (0, 0.999)

At the two steady states Sv∗1 and Sv∗2 there is a very low infection burden, and at the steady state

Sv∗3 there is a very high infection burden.

The last case we consider is the case where both cancer cells and infected cells are present,

such that u > 0 and v > 0. In this case we found the two expression given in (31) de�ned by

gu(u) =
ϕxu

µ(1− u)(ωxu+ 1)
− (u+ δ)

µ

gv(v) =
ϕyv

ρ(1− v)(ωyv + 1)
− (µv + δ)
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By using the chosen parameter values, and solving gu(u) = v and gv(v) = u we �nd three positive

solutions, and therefore three positive steady states

Su∗v∗1 =
(
1.217× 10−17, 6.917× 10−24

)
Su∗v∗2 =

(
2.514× 10−12, 1.548× 10−22

)
Su∗v∗3 = (0.999, 0.999)

These three steady states are shown in �gure (7) as three yellow points. The �gure to the left

shows all three steady states, where the two steady states Su∗v∗1 and Su∗v∗2 are very close to each

other. The �gure to the right shows the two steady states Su∗v∗1 and Su∗v∗2 .

(a) The three positive steady states Su∗v∗
1
, Su∗v∗

2
, Su∗v∗

3
. (b) The two positive steady states Su∗v∗

1
and Su∗v∗

2
.

Figure 7: The �gure shows the three positive steady state Su∗v∗
1
, Su∗v∗

2
, Su∗v∗

3
shown as yellow dots.

For the evaluation and determination of the stability of the steady states found above, we �nd

the Jacobian matrix of system (9), see appendix (9.4) for calculations.

We �nd

Jp =

 Jp1
3592.876u2

m2 · n1
9.712× 1010v2

m2 · n2
Jp2


where

Jp1 = 1− 2u− 20216.156u

m · n1
+

10108.078u2

m2 · n1
+

3.882× 1019)u2

m · n21

Jp2 = 5.713− 11.427v − 1.942× 1011v

m · n2
+

3.452× 1010v2

m2 · n2
+

4.980× 1026v2

m · n22
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and

m = u+ 0.355v + 1.175× 10−13

n1 = 3.840×15 u+ 1

n2 = 5.128× 1015v + 1

First we determine the stability of the infection-free case, where we found three positive steady

states

Su∗1 = (1.217× 10−17, 0)

Su∗2 = (2.514× 10−12, 0)

Su∗3 = (0.999, 0)

For the �rst steady state Su∗1 = (1.217× 10−17, 0), we �nd the Jacobian matrix

J(Su∗1) =

−0.957 0.0000368

0 5.713


The eigenvalues of this matrix is λ1 = −0.957 and λ2 = 5.713. We have one positive eigenvalue

and one negative eigenvalue, and therefore the steady state Su∗ is an unstable saddle point. In

this steady state we have a very low cancer burden, which could mean that the cancer is at a

dormant stage. Since the steady state is unstable, a disturbance in the system could lead to tumor

growth. Such a disturbance could be a mutation of the cancer cells, or the cancer cells escaping

the immune system initiating tumor growth.

For the next steady state Su∗2 = (2.514× 10−12, 0), we �nd the Jacobin matrix

J(Su∗2) =

0.955 0.340

0 5.713


We further calculate the determinant det(J(Su∗2)) = 5.458. Since the determinant is a positive

value, the steady state is unstable. And the eigenvalues have same sign, so the steady state is an

unstable node. Also at this steady state there is a vry low cancer burden, meaning that a tumor

could be at a dormant stage as described above.

The last steady state in the infection-free case is Su∗3 = (0.999, 0), which is a state with a very

high cancer burden, which could mean a fully evolved cancer. We �nd the Jacobian matrix of the

steady state

J(Su∗3) =

−1 9.356× 10−13

0 5.713


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Here we have the eigenvalues are λ1 = −1 and λ2 = 5.713, they have opposite sign, and therefore

the steady states is a saddle, and since one eigenvalue is positive the steady state is unstable.

In all we have found that in the positive steady states where only cancer is present all are unstable

steady states. This means that the system will repel from these steady states.

The next three steady states are the cancer-free cases, where only an infection is present. In

this case we found three positive steady states

Sv∗1 =
(
0, 6.915× 10−24

)
Sv∗2 =

(
0, 9.325× 10−6

)
Sv∗3 = (0, 0.999)

The �rst steady state we evaluate is Sv∗1 =
(
0, 6.915× 10−24

)
, and we �nd the Jacobian matrix

J(Sv∗1 ) =

 1 0

3.361× 10−10 −5.713


The eigenvalues of this matrix are λ1 = 1 and λ2 = −5.713. These eigenvalues have opposite

sign why this steady state is a saddle. Further the steady state is unstable since one eigenvalue

is positive. At this steady stage we have a very low infection burden, but the steady state is

unstable, and therefore an infection can evolve, moving the system away from the steady state.

Next we consider the steady state Sv∗2 =
(
0, 9.325× 10−6

)
and �nd the Jacobian matrix

J(Sv∗2 ) =

 1 0

16.074 5.713


The eigenvalues for this matrix is λ1 = 1 and λ2 = 5.713. Both eigenvalues are positive and

therefore have same sign, meaning that the steady state is a node. Further we calculate the deter-

minant det(J(Sv∗2 )) = 5.713 and the trace Tr(J(Sv∗2 )) = 6.713. Both of these values are positive,

which means that this steady state is unstable. Also at this steady state, we have a very low

infection burden. Since the steady state is unstable a disturbance in the system can make the

system repel away from this steady state.

The last steady state is Sv∗3 = (0, 0.999), and we �nd the Jacobian matrix

J(Sv∗3 ) =

 1 0

0.000149 −5.713


The eigenvalues for this matrix is λ1 = 1 and λ2 = −5.713. These eigenvalues have opposite sign

making the steady state a saddle point, and since one eigenvalue is positive the steady state is
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unstable. At this steady state we have a very high infection-burden, meaning an infection is at its

highest. But since the steady state is unstable, the system will be repelled away from this steady

state.

In all we have found that in the three cancer-free cases, all the steady states Su∗ , Sv∗1 , Sv∗2 are

unstable steady states, and the system will be repelled from these steady states.

The last three steady states we evaluate are the cases where both cancer cells and infected cells

are present. The steady states are

Su∗v∗1 = (1.217× 10−17, 6.916× 10−24)

Su∗v∗2 = (2.514× 10−12, 1.548× 10−22)

Su∗v∗3 = (0.999, 0.999)

We �rst consider the steady state Su∗v∗1 = (1.217× 10−17, 6.916× 10−24), where both cancer cells

and infected cells is at a low burden. We �nd the Jacobian matrix of this steady state

J(Su∗v∗1 ) =

 −0.955 0.0000368

3.361× 10−10 −5.713


We further calculate the determinant det(J(Su∗v∗1 )) = 5.458 and the trace Tr(J(Su∗v∗1 ) = −6.669.

We �nd that the determinant is positive, and the trace is negative, and therefore this steady state

is an asymptotically stable steady state. At this steady state the cancer cells and infected cells

coexist, and the system will be attracted to this steady state.

The next steady state we evaluate is the steady state Su∗v∗2 = (2.514 × 10−12, 1.548 × 10−22).

In this steady state we have a low cancer burden, and a low infection burden, but slightly more

then in the previous steady state. We �nd the Jacobian matrix of the steady state

J(Su∗v∗2 ) =

 0.955 0.340

3.361× 10−10 −5.713


The eigenvalues have opposite sign, one is positive and one is negative, making this steady state

an unstable saddle. Since the steady state is unstable, the system will be repelled from this steady

state. Since the steady state Su∗v∗1 is very close to the steady state Su∗v∗2 the system will repel

from Su∗v∗2 and be attracted to Su∗v∗1 .

The last steady state we evaluate is the steady state Su∗v∗3 = (0.999, 0.999). At this steady

state we have both a high cancer burden, and a high infection burden. For this steady state we

�nd the Jacobian matrix

J(Su∗v∗3 ) =

 −1 5.092× 10−13

0.0000103 −5.713


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Both the eigenvalues are negative and therefore we calculate the determinant and the trace of the

steady state. We �nd det(J(Su∗v∗3 )) = 5.713 and Tr(J(Su∗v∗3 )) = −6.713. We �nd the determi-

nant to be positive and the trace to be negative, meaning that this steady state is asymptotically

stable, and the cancer cells and infected cells are coexistence. Since this steady state is stable,

the system will we attracted to this steady state, with high burden of both type of cells.

In the three steady states where both cancer cells and infected cells are present, we have found

two stable steady states, Su∗v∗1 , Su∗v∗3 , and one unstable steady state, Su∗v∗2 . The three steady

states are their stability are shown in �gure (8).

Figure 8: The three positive steady state Su∗v∗
1
, Su∗v∗

2
, Su∗v∗

3
shown as green dots.
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6 Discussion

In this master thesis we developed and studied a mathematical model consisting of two coupled

di�erential equations describing the dynamics between cancer cells, infected cells and cells of the

immune system. The aim of this master thesis was to study this mathematical model which

included to �nd the steady states of the model and determine their stability. Through these

�ndings we determine the dynamics of the model when only cancer cells are present and interacting

with the immune system, when only infected cells are present and interacting with the immune

system, or when both cancer cells and infected cells are present and interacting with the immune

system.

In the analysis section (5) we investigated two approaches, one qualitative and one quantitative.

6.1 Stability analysis

In the �rst part of the stability analysis, section (5.1), we studied the model without any numerical

values.

First we considered the case of certain elimination, px = 1 and py = 1. We were able to �nd

expressions for the two positive steady states Su+, where only cancer cells are present, and Sv+,

where only infected cells are present, derived from two second degree equations. Further we were

able to �nd that when both cancer cells and infected cells are present the system consists of two

third degree equations, and therefore there will be at most nine steady states, Suvi = (ui, vi), i =

1 . . . 9. We were unstable to �nd exact expressions for these steady states.

Further we were able to �nd exact expressions for the Jacobian matrix of each of the steady states

Su+ and Sv+, but not for the steady states Suvi = (ui, vi), i = 1 . . . 9.

In the second part of the stability analysis we assumed that elimination of the cancer cells and

infected cells by the immune system was uncertain, px < 1 and py < 1. In this case we considered

both the infection-free case and the cancer-free case. In both these cases we found a third degree

equation for u and for v, and therefore at most three positive steady states in both cases. We

were unable to �nd explicit expressions for the steady states.

In the case where both cancer cells and infected cells are present we found two functions, one

containing u and one containing v. We were unable to �nd an exact number of steady states for

these functions.

Further in the uncertain elimination case we were unable to determine the stability of the steady

states found in this section. This led to the motivation of a numerical approach to the analysis.
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6.2 Numerical approach

Choosing numerical values for the parameters of the model, we were able to �nd the steady states

explicitly. The steady states and their stability is given in table (3).

Steady state Stability

Certain elimination, px = 1 and py = 1

Su+ = (1.163× 10−17, 0) Unstable

Sv+ = (0, 6.915× 10−24) Unstable

Suv = (1.163× 10−17, 6.916× 10−24) Stable

Uncertain elimination, px < 1 and py < 1

Su∗1 = (1.217× 10−17, 0) Unstable

Su∗2 = (2.514× 10−12, 0) Unstable

Su∗3 = (0.999, 0) Unstable

Sv∗1 = (0, 6.915× 10−24) Unstable

Sv∗2 = (0, 9.325× 10−6) Unstable

Sv∗3 = (0, 0.999) Unstable

Su∗v∗1 = (1.217× 10−17, 6.917× 10−24) Stable

Su∗v∗2 = (2.514× 10−12, 1.548× 10−22) Unstable

Su∗v∗3 = (0.999, 0.999) Stable

Table 3: The table shows the steady states and their stability.

First we considered the case of certain elimination, such that the event of immune cells killing

cancer cells and infected cells will happen.

In the infection-free case, we found one positive steady state Su+. This steady state has a very

low cancer burden which could be interpreted as a tumor at a dormant stage. The steady state

showed to be unstable, so the system will repel from this steady state.

In the cancer-free case we found one positive steady state Sv+. This steady state has a very small

amount of infection cells, and is an unstable steady state. Therefore the system will also repel

from this steady state.

In the case where both cancer cells and infected cells were present, we found one steady state

Suv. In this steady state there is both a low cancer burden and a low infection burden. This

steady states showed to be an asymptotically stable steady state, meaning that the system will

be attracted to the steady state. This implies that when elimination of cancer cells and infected

cells is certain the system will be at a low burden of both cancer cells and infected cells.

In our second attempt we assumed the the elimination by the immune cells was uncertain, px < 1
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and py < 1. We �rst considered the infection-free case and found three positive steady states

Su∗1 , Su∗2 and Su∗3 . In the two �rst steady states there is a low cancer burden, and in the last

steady state there is a very high cancer burden. All of these steady states showed to be unstable,

meaning that the system will be repelled from these steady states.

In the cancer-free case we found three positive steady states Sv∗1 , Sv∗2 and Sv∗3 . In the two �rst

steady states there is a very low infection burden, and in the last steady state there is a very high

infection burden. All of these steady states showed to be unstable, and therefore the system will

repel from these cases.

In the last case where both cancer cells and infected cells are present we found three positive

steady states Su∗v∗1 , Su∗v∗2 and Su∗v∗3 . At the steady states Su∗v∗1 and Su∗v∗2 there is a very low

cancer burden and a very low infection burden. At the steady state Su∗v∗3 there is a very high

cancer burden and a high infection burden. We found that the steady states Su∗v∗1 and Su∗v∗3 are

stable steady states, and that the Su∗v∗2 is an unstable steady state. This means the the system

will be attracted to either the case of low burden of both cancer cells and infected cells, or the

case with high burden of cancer cells and infected cells. If the system is near the steady state

Su∗v∗2 , it is also close to the stable steady state Su∗v∗1 and will be attracted to this stable steady

state.

The results found in the analysis shows that when only cancer cells or infected cells are present,

the steady states are all unstable and therefore the system will repel from these steady states. We

found no stable steady states in these cases, and therefore no case the system will be attracted to.

When adding cancer cells or infected cells to the system, we were able to �nd steady states which

are stable, meaning that the system will be attracted to one of these stable steady states, and the

cancer cells and infected cells coexist. One stable steady state had both low cancer burden and

low infection burden, and another had both high cancer burden and high infection burden. This

could indicate that when elimination of cancer cells and infected cells are uncertain, the system

will either go into a sort of hibernation state or into a full outbreak of cancer and infection. Which

of the stable steady states the system will be attracted to depends on the amount of cancer cells

and infected cells present in the system.

6.3 The model

The model analysed in this master thesis was presented in section (4), and was based on a list

of assumptions. One assumption was about the immune cells in the model. Modelling the im-

mune system we only considered activated T-cells. The immune system consists of many di�erent

types of cells acting in the immune response having a wide range of functions, contributing to the

response against cancer and infections. But the model we developed only contained one type of
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cells from the immune system. The model could be expanded incorporating other cells from the

immune system. Unni et al. [7] present a model of four di�erential equations containing both

tumor cells, NK cells, DCs and CD8+ T-cells.

The novelty of the model studied in this master thesis is that it does not only consider the case of

either cancer cells and immune cells, or the case of infected cells and immune cells, but considers

all three type of cells in a system of two coupled di�erential equations, where an additional term

of the immune response is incorporated. In this sense the dynamics and interaction of the system

can be studied.

The model presented and analysed in this master thesis is based solely on the cells interacting

without treatment. An extension of the model including treatment could be of interest in future

studies. The dynamics of a system of cancer cells and a treatment using a mathematical model

is a widely studied �eld. Sahoo [26] studied a mathematical model, based on a Lotka-Volterra

predator-prey model, of CAR T-cell therapy which is a targeted immunotherapy, in the treatment

of solid tumors in an in vitro system. In addition they applied their model to in vivo human

data. Unni and Seshaiyer [7] studied the interaction between tumor growth and the immune

system, and the e�ect of antitumor vaccination and immunotherapy along with chemotherapy.

Liu and Yang [27] studied the dynamics of cancer cells and healthy cells, and the dynamics with

radiotherapy followed by chemotherapy. Adding such a treatment to the model could be of interest.

The values chosen for the parameters in the model developed in this master thesis were cho-

sen from di�erent articles. The model contains many di�erent parameters, and therefore many

values which each chosen di�erently could give a di�erent outcome. Using in vivo human data

from cancer patients and patients with an infection, the values for the parameters could be se-

lected more carefully. This would give a more realistic view of the situation for the individual

patient. In this sense the model could be used in a speci�c situation customized to the patient

according to the type of cancer and the exact type of infection.
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7 Conclusion

In this master thesis we developed a mathematical model consisting of two coupled di�erential

equations. These equations describe the dynamics and interactions of cancer cells and infected

cells, and activated T-cells from the immune system. The novelty of this model was the combined

interaction between these three type of cells, giving in two di�erential equations. For the study of

the model we performed an analysis which included both a qualitative and a quantitative approach.

In both of these approaches we considered both the case of certain elimination of cancer cells and

infected cells by the immune cells, and the case of uncertain elimination.

First in the analysis of certain elimination, we considered the infection-free case and found one

positive steady state. Then we considered the cancer-free case and found one positive steady

state. Lastly in the case where both cancer cells and infected cells are present we found that the

system could have at most nine steady states. We were unable to determine the stability of the

steady states found in this case.

Second in the analysis of uncertain elimination, we found in the infection-free case that the system

could have at most three positive steady states. Also in the cancer-free case we found that the

system could have at most three positive steady states. In the case where both cancer cells and

infected cells are present we found two expressions one for the cancer cells and one for the infected

cells, but we found no expressions for the steady states.

Due to the limits of the �rst analysis, we were motivated to investigate the model using values for

the parameters. Therefore we performed a numerical approach, and found the steady states and

there stability explicitly.

In the numerical approach we �rst considered the case of certain elimination. In the infection

free case where only cancer is present, we found one positive steady states. In the cancer-free

case where only an infection is present we also found one positive steady state. These two steady

states showed to be unstable. In the case where both cancer cells and infected cells are present we

found one steady state. At this steady state there is both a low cancer burden and a low infection

burden, due to the certain elimination. This steady state showed to be stable, why the system

will be attracted to this state.

Next in the numerical approach we considered the case of uncertain elimination. We found three

steady states in both the infection-free case and in the cancer-free case. All of these steady states

showed to be unstable. In the case where both cancer cells and infected cells are present we found

three steady states. One of these steady states were unstable, and two of the steady states were

stable and therefore the cancer cells and infected cells coexist.

In one of the stable steady states there is a low cancer burden and a low infection burden. In

the other stable steady state there is a high cancer burden and a high infection burden. Then
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when the elimination is uncertain the the system will either be at the low burden case in a sort

of dormancy, or it will be at the high burden case with a full blown cancer and infection.
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9 Appendix

9.1 A

Parameter, i = x, y Discription

ai Intrinsic growth rate.

Ki Carrying capacity.

bi Competition factor.

Ti Number of speci�c immune cells.

pi Probability that the immune system eliminate cancer cells or infected

cells.

1− pi Probability that the immune system fails in eliminating cancer cells

or infected cells.

ripi Elimination rate of cancer cells and infected cells by immune cells

with probability pi.

ri(1− pi) Elimination rate of immune cells by cancer cells and infected cells

with probability 1− pi.

α Constant source of immune cells.

βx Rate of binding of cancer cells and immune cell.

βy Rate of binding of infected cell and immune cell.

ε Natural death rate of immune cells.

dx Natural death rate of cancer speci�c immune cells

dy Natural death rate of infection speci�c immune cells

Table 4: Models parameters. All parameters are assumed to be non-negative.
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9.2 B
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Articles Parameters

ax Kx βx dx rxpx rx px rx(1− px) α ε

Jafari et al. [28] 1.05 0.0022 0.03 0.12 0.015

Gil et al. [29] 0.01 d 1012 c 10−12 d 5× 10−11 cd 10−13 cd 3× 105d 10−3 d

Makhlouf et al. [9] 4.31× 10−1 d 1.02× 10−9 c 1.1× 10−7 cd 4.12× 10−2 1.1× 10−7 cd 3.42× 10−6 cd 7.5× 108 cd 1.2× 10−7 d

Unni and Seshaiyer [7] 4.31× 10−1 d 2.17× 10−8 c 1.0× 10−6 c 4.12× 10−2 d 3.5× 10−6 c 1.0× 10−7 cd 4.8× 102 c 2.4× 10−2 c

Gurcan et al. [10] 0.18 d 5.0× 106 c 0.1045 d 0.0412 d 4.401× 10−8 cd 3.422× 10−9 cd

Khajanchi et al. [30] 0.18 d 1.0× 10−6 c 0.412 d 2.2× 10−8 cd 1.3× 104 cd

Pillis et al. [31] 5.14× 10−1 d 1.02× 10−9 c 1.1× 10−7 cd 4.12× 10−2d 3.50× 10−6 1.0× 10−7 cd 1.30× 104 cd

Kuznetsov et al. [32] 0.18 d 2.0× 10−9 c cm 1.3× 10−7 dc cm 7.2 d 0.9997 0.00216 d 1.36× 104 dc cm 0.0412 d

Pillis et al. [33] 1.5 1 1 0.5 1 0.33 0.2

Kuznetsov et al. [8] 0.187701546 531.8980644 0.138698686 0.998200283 0.000249618 0.195030254 0.591000768

Table 5: In this table numerical values for the cancer cells from selected articles are shown. If βx

is not given, it is interpreted as the growth rate of immune cells. c: cells−1; d:day−1

Articles Parameters

ay Ky βy dy rypy ry(1− py) α ε

Almocera et al. [18] 1.62 109 0.96 0.6 4.88× 10−8 2× 105 2× 10−1

Ghosh, I. [34] 0.52 d 0.65 d 5.74× 10−4 cd 3× 10−7 d 0.1 1 cd

Hernandez-Vargas et al. [12] 8.57 1.26× 105 1.89× 106 106

Table 6: In this table numerical values for the infected cells from selected articles are shown. If

βy is not given, it is interpreted as the growth rate of immune cells. c: cells−1; d:day−1

51



(3)(3)

(4)(4)

(1)(1)

(2)(2)

(5)(5)
We define the second degree equation for u, as two equal equations:
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(12)(12)

(16)(16)

(10)(10)

(11)(11)

(9)(9)

(8)(8)

(6)(6)

(15)(15)

(14)(14)

(17)(17)

(7)(7)

(13)(13)

Solving these equations and finding u:

We find one positive solution for u, corresponding to the steady state S_u+

We define the second degree equation for v, as two equal equations:

Solving these equations and finding v:

We find one positive solution for v, corresponding to the steady state Sv+.

For determination of the stability of the steady states we find the Jacobian matric of the system with px=
1 and py=1, which is given by

The solutions to the system corresonds to the solutions found above:
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(22)(22)

(6)(6)

(23)(23)

(21)(21)

(20)(20)

(26)(26)

(18)(18)

(19)(19)

(24)(24)

(25)(25)

We find the Jacobian mtrix

We evaluate the steady states.
The Jacobian matrix of the steady state S_u+:

4.713432263
The Jacobian matrix of the steady state S_v+:

Considering the functions found when u>0 and v>0.
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(28)(28)

(18)(18)

(6)(6)

(27)(27)

We find the solutions to the system:
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(6)(6)

(33)(33)

(31)(31)

(32)(32)

(30)(30)

(29)(29)

(18)(18)

(27)(27)

We find one positive solutions with biological meaning, S_uv:

Evaluating the steady state S_uv

5.712768112
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(5)(5)

(2)(2)

(4)(4)

(1)(1)

(3)(3)
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9.4 C2
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(9)(9)

(19)(19)

(13)(13)

(10)(10)

(16)(16)

(7)(7)

(8)(8)

(18)(18)

(15)(15)

(17)(17)

(12)(12)

(14)(14)

(6)(6)

(11)(11)

We define the third degree equaiton for u as two equal functions:

Solving these equations we find the values for u:

We find three positive solutions corresponding to a steady states S_u1*, S_u2*, S_u3*

We define the third degree equaiton for v as two equal functions:

Solving these equations we find the values for v:

We find three positive solutions, corresponding to the steady state S_v1*, S_v2*, S_v3*:

We define the functions where u>0 and v>0:
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(24)(24)

(25)(25)

(20)(20)

(21)(21)

(22)(22)

(23)(23)

Solving these equations we find values for u and v:

We find three positive steady state S_u*v*1, S_u*v*2, S_u*v*3
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(20)(20)

(26)(26)

(29)(29)

(28)(28)

(27)(27)

For determine the stability of the steady states we find the Jacobian matrix of the system given by

The solutions to this system corresponds to the solutions found above:
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(31)(31)

(33)(33)

(20)(20)

(30)(30)

(35)(35)

(38)(38)

(34)(34)

(36)(36)

(37)(37)

(32)(32)

For determination of the stability of the steady states we calculate the Jacobian matrix of dup and dvp:
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(44)(44)

(41)(41)

(45)(45)

(40)(40)

(51)(51)

(49)(49)

(46)(46)

(20)(20)

(43)(43)

(39)(39)

(42)(42)

(48)(48)

(47)(47)

(52)(52)

(50)(50)

We evaluate the steady states.
The steady state S_u1*:

4.758097769
The steady state S_u2*

5.457579192

6.668568898
Teh steady state S_u3*

4.713333333
The steady state S_v1*

The steady state S_v2*

5.713226566

9.4 C2 December 28, 2020

62



(60)(60)

(55)(55)

(64)(64)

(61)(61)

(56)(56)

(53)(53)

(63)(63)

(20)(20)

(62)(62)

(59)(59)

(58)(58)

(54)(54)

(57)(57)

(65)(65)

6.713226566
The steady state S_v3*

The steady state S_u*v*1

5.457579001

The steady state S_u*v*2

The steady state S_u*v*3

5.713315704
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