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Abstract: Heterogeneity of stem cell clones provide a key ingredient in altered hematopoiesis and
is of main interest in the study of predisease states as well as in the development of blood cancers
such as chronic myeloid leukemia (CML) and the Philadelphia-negative myeloprofilerative neoplasms
(MPNs). A mathematical model based on biological mechanisms and basic cell descriptors such as
proliferation rates and apoptosis rates is suggested, connecting stem cell dynamics with mature blood
cells and immune mediated feedback. The flexible approach allows for arbitrary numbers of mutated
stem cell clones with perturbed properties. In particular, the stem cell niche provides a competition
between wild type and mutated stem cells. Hence, the stem cell niche can mediate suppression of
the wild type clones and up-regulation of one or more malignant clones. The model is parameterized
using clinical data to show typical disease progression in several blood cancers and the hematological
and molecular response to treatment. Intriguingly, occasional oscillatory cell counts observed during
treatment of CML and MPNs can be explained by heterogeneous stem cell clone dynamics. Thus, the
vital heterogeneous stem cell dynamics may be inferred from mathematical modeling in synergy with
clinical data to elucidate hematopoiesis, blood cancers and the outcome of interventions.

Keywords: hematopoiesis; blood cancer; mathematical modeling; stem cell dynamics; competition
dynamics; inflammation

1. Introduction

Hematopoietic stem cells reside in the bone marrow and are responsible for continuously replen-
ishing the blood cells; red blood cells, white blood cells, or platelets. The hematopoietic stem cells
possess the abilities of self-renewal and extensive proliferation which are essential for the maintenance
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of the formation of blood cells, hematopoiesis [1].
The proliferation rate for each of the 104 − 105 normal hematopoietic stem cells is about once per

every 25th to 50th week [2, 3]. Cell numbers are amplified through a sequence of maturation stages,
with estimated numbers of mitotic events being 31 [4]. As a result approximately one million new
mature blood cells are generated per second corresponding to 1011 mature blood cells daily which is
comparable to the number of stars in the Milky Way [5]. Evidently, a tight regulation of hematopoiesis
is crucial and disturbances to the regulation of the stem cell cycle may have severe consequences
[6]. Several hematopoietic diseases arise from mutations in the hematopoietic stem cells causing the
regulation of hematopoiesis to be disturbed. Such distortion may cause disturbances or uncontrolled
growth of dysfunctional blood cells resulting in diseases, e.g., blood cancer.

Approximately 175,000 Americans are each year diagnosed with myeloid malignancies, e.g., acute
myeloid leukemia (AML), myelodysplastic syndromes (MDS), chronic myeloid leukemia (CML) and
the Philadelphia-negative myeloprofilerative neoplasms (MPNs). MPNs develop slowly on a time scale
of 15–25 years whereas other leukemias, like AML and CML develop on a time scale of 1 year or even
on a shorter time scale [7].

MPNs associated with the Philadelphia-negative mutations are driven by the JAK2V617F (hence-
fort JAK2), MPL, CALR or TET2 mutations [8]. MPNs mutations relate to the diseases; essential
thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) [9]. The chronic
MPNs are characterized by excessive myeloproliferation, which cause disturbance of hematopoiesis
[10]. As a consequence, patients with MPNs have a high risk of thrombosis with cardiovascular compli-
cations and increased propensity to develop autoimmune and chronic inflammatory diseases [11–13].
Likewise, patients with chronic inflammatory disease have an elevated risk of an MPN disease and
other cancers [14, 15]. Moreover, MPNs may ultimately develop into AML which is a more rapidly
progressing disease with a poor prognosis [16].

1.1. Purpose of the present study

We present a proof of concept model referred to as the Multiple Clone Cancitis (MCC) model
allowing for few as well as multiple clones in a flexible mathematical framework. The MCC model
describes; the interaction of several types of competing stem cells in the bone marrow, whereof some
may be malignant, their mature offspring in the blood circulation, the amount of dead cells and the
activity of the immune system degrading the debris from the dead cells as well as the cytotoxic T-cell
response of the adaptive immune system (see Figure 1 for a conceptual diagram of the MCC model).

The model is a generalization of the model presented by Andersen et al. in 2017 [17], analyzed
in [18] and investigated using a reduction approach in [19], expanded to include the adaptive T-cell
response explicitly by Ottesen et al. in 2019 [20], and used for prediction of a randomized trial in Otte-
sen 2020 [21]. In contrast to its predecessors, the presented MCC model allows for multiple competing
clones and thereby enables reproduction of complex dynamics which its predecessors cannot account
for.

We use the properties of the micro-environment, i.e., the cell to cell inhibition and immunoediting,
to explain very different clinical observations in a diversity of hematopoietic disorders using the MCC
model. In particular, we focus on the MCC models ability to reproduce the clinical observations;

• Observed fast oscillations in cell count of time scale 1 month for MPN patients.
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Figure 1. Conceptual diagram for the Multiple Clone Cancitis model. The wild type
hematopoietic stem cells, denoted WSC (y0), have the possibility to mutate into mutated
stem cells denoted MSCs (y1, . . . , yn) and they have themselves the possibility of mutating
into possibly more aggressive stem cells such as malignant stem cells. The MSCs can either
arise from parallel or sequential mutations, illustrated in Figures S.1 and S.2, respectively.
The different mutations may cause the MSCs to respond differently to treatment. The dif-
ferent stem cells give birth to different mature blood cells, WSC to wild type mature cells
(z0) and for each of the n clones MSCs to mutated mature cells (z1, . . . , zn). Note that the
mutated mature cells are represented by the short hand notation MMCs in the diagram. The
intermediate steps represented by approximately 30 generations of proliferative progenitor
cells are not explicitly shown but are indicated by the ⊗ symbol. The presence of the mu-
tated cells may stimulate the immune response causing cell dead and thereby produce debris,
which further stimulates the immune response. The immune response may affect the micro-
environment in the bone marrow, which impacts the functioning of the hematopoietic stem
cells.

• Consequences of CHIP leading to good, fair, or poor responders to treatment.
• Observed cell count during hydroxyurea treatment of MPNs.
• Elimination, equilibrium, and escape phases related to immunoediting.
• Developed resistance to treatment.
• Observed slow oscillations in cell count of time scale 2–3 months for CML patients.

Mathematical modeling of the above mentioned bullets have, to our knowledge, not been investigated
before in a unified framework. By additionally including changes in the self-renewal rates the model
also explains the evolution of clones over a life span of a human. The structure of the MCC model is
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chosen deliberately to ensure that the MCC model inherits the previous findings of the Cancitis model,
e.g., observed non-oscillatory cell count progression and observed levels of cancer specific related
cytokines, c-reactive proteins, and lactic dehydrogenase. Hence, the MCC model provides an agile
model framework with the ability to unify all phenomena described.

1.2. Previous studies

As early as in 1970 Kennedy reported cyclic oscillations (period 35–40 days) in leukocyte counts
in CML during hydroxyurea therapy [22]. Chikkappa et al. confirmed the finding in 1976 (period 53–
69 days) and in addition similar oscillations were also observed in platelets, neutrophils, eosinophils,
basophils and reticulocytes which continued for a period after off anti-leukemic therapy [23]. In a
similar investigation from 1999 Fortin and Mackey estimated the period to 37–83 days [24]. Later
Hirrayama et al. found oscillations in platelets and white blood cells in a patient diagnosed with CML
(period 8 weeks corresponding to 244 days) [25]. More recently, Clapp et al. in 2015 and 2018
suggested such oscillations to be related to an inhibitory immune response by the amount of mature
cells in a modeling study [26, 27]. In 2019 Knauer et al. [28] used a mathematical model to achieve
oscillations with a 20 day period fitting data from a patient with cyclic neutropenia. Considering
patients with JAK2 positive MPNs (JAK2+ MPNs) faster oscillations (period 27 days on average)
have also been observed clinically by several studies [29–31].

Competition or selection of clones as a driver for cancer evolution has been of long term interest. In
this study we consider a clone as a group of cells having identical genome, i.e., DNA. Different clones
may arise from mutations altering the genome and hereby constituting another clone. Such mutated
cells may or may not be malignant and generally multiple sequential mutations are believed to take
place before malignant cells arise. The frequency of somatic mutations in the hematopoietic stem cells
increases many-folds with age; from an insignificant level for age less than 20 years to a frequency
around 10% at age above 70 [32]. Based on a meta study, Heuser et al. 2016 concluded that clonal
hematopoiesis of indeterminate potential (CHIP) is common and the frequency increases with age to
around 10% at age 70–80 [33]. Park et al. investigated the role of CHIP and its role for stem cell
transplantation [34]. Similar cytogenetic clonal evolution in relation to CML was detected by Cortes
et al. in 2004 over a span of different disease burdens [35].

Mutations may accumulate during growth, resulting in heterogeneous malignant cells referred to as
cancer heterogeneity [36]. Walter et al. reported that blood samples for AML patients may contain
persistent antecedent founding of a clone containing 182 to 660 somatic mutations. Subclones harbor-
ing up to hundreds of mutations may emerge or outgrow the founding clone [37]. Ding et al. attributed
relapse in AML treated patients to the existence of various clones which may lie latently, possible as a
small amount of cells [38]. Cancer heterogeneity affect the response to therapy and can present a great
challenge for cancer treatment [39]. Stiehl et al. investigated the role of heterogeneity of AML clones
and resistance to therapy using a mathematical model [40].

Clinical experiences show that therapy may work well on a subgroup having MPNs but not on
others for unknown reasons. These subgroups are denoted good and poor responders, respectively. A
third subgroup responds partially on the treatment, giving rise to coexistent equilibrium (or possibly
an coexisting oscillatory) states where malignant clones can coexist with healthy clones for long time.

The three Es of cancer immunoediting describe elimination, equilibrium, and escape phases in
cancer development [41]. In the presented work the three Es of immunoediting are related to CHIP as
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well as to the coexisting steady or oscillate states becoming resistant or gaining additional mutations
which are less immuno-suppressible.

2. Materials and methods

2.1. The Multiple Clone Cancitis Model

To understand complex systems it is preferable first to understand simple related systems which can
be done either by in vitro or in silico experiments. This approach holds for investigating cancers too,
where a single isolated or two competing cell types are often studied.

Inspired by clinical observations, the MCC model has been formulated in attempt to gain an under-
standing of the more complex dynamics such as resistance and oscillations.

The mutated stem cells (MSCs) include malignant as well as non-malignant stem cells. The malig-
nant stem cells share the characteristics of the wild type stem cells (WSCs) but may have acquired the
ability of ’indefinite’ self-renewal [42,43] and may ultimately suppress the production of healthy blood
cells [6]. The corresponding mature blood cells are shortly referred to as hematopoietic mature cells
consisting of both wild type mature cells and mutated mature cells whereof some may be cancerous
mature cells. Distortion in the number of mature blood cells may affect many vital functions such as
fighting off infections, preventing serious bleeding or causing thrombosis.

A conceptual diagram of the MCC model is depicted in Figure 1. The WSCs can self renew, differ-
entiate, die or mutate to MSCs with altered properties such as the malignant stem cells, which behave
similar to the WSCs. The hematopoietic stem cell niches provide negative feedback, restoring stem
cell numbers upon perturbations. Mature blood cells are the outcome of multiple mitosis events. For
brevity we omit intermediate maturation stages, normally represented by approximately 30 generations
of proliferative progenitor cells, and let the differentiation output of hematopoietic stem cells enter the
production of mature cells with a multiplication factor corresponding to the amplification of interme-
diate cell divisions. The apoptotic cells have to be cleared by immune cells which provide feedback
to the hematopoietic stem cell production. Prior to a malignant mutation, the model is calibrated such
that typical clinical values are reproduced, e.g., stem cell numbers, mature cell numbers, time for
restoration upon perturbation and well established life time of blood cells. Inflammation - a hallmark
of cancer - is known to provide further growth advantage to mutated cells, thus the stem cell niche and
the inflammatory level are included to investigate this effect [44].

The MSCs may share the characteristics of malignant stem cells and thereby cause cancer hetero-
geneity. Cancer heterogeneity are often believed to arise through a sequential mutation process, since
an aggressive malignant cell type is likely to arise only from such a sequence of mutations. A con-
ceptual diagram of sequential mutations is illustrated in Figure S.2 where the WSCs mutate into an
MSC line which then sequentially mutates further n times. Likewise, a conceptual model of paral-
lel mutations is illustrated in Figure S.1, where WSCs mutate multiple times in parallel into distinct
MSCs. Each cell after multiple mutations may be the result of the mutations arriving in any order, thus
resulting in cells with identical DNA. However, the phenotype of the cells may differ causing the cells
to function differently, i.e., having different RNA activities.

Note that in Figure 1, each hematopoietic cell line can either be the result of a sequential or parallel
mutation. Thus a very large class of mutational landscapes is possible due to these phenomena. In this
paper, we will mainly consider the two limits, either the WSCs mutate into different MSCs (parallel
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mutations), or the WSCs mutates into a single MSC line which initiate a sequence of mutations (se-
quential mutations). The last mutation scenario is considered to happen more frequently than the first,
but in reality, it is expected that an intermediate scenario is the most realistic one.

In simulations we may randomly choose an existing cell to mutate and randomly choose the type
of mutation in each sufficiently small time intervals. Doing a Monte Carlo simulation of such random
process gives information about mean and variation but less mechanistic insight. However, exhausting
simulation studies reveal that the points outlined in the present paper are robust with respect to which
type of mutation we choose. Thus we mainly discuss the deterministic sequential MCC model to ease
the explanatory insight gained.

2.2. A quick guide to equations - the Multiple Clone Cancitis Model

The model equations arise from formulating the biological mechanisms in subsection 2.1 directly
into nonlinear, ordinary, differential equations. A differential equation is formulated for each of the
cell types; WSC (y0), MSC (y1,y2,...,yn) and their mature blood cell counterparts (z0, z1, . . . , zn), dead
cells (a) and the immune cells (s). The default parameters are listed in Table A1. Furthermore, a useful
scaling of each of the variables is introduced to bring the model into dimensionless form which is a
common approach for a mathematical analysis of such equations. The chosen scaling constants are
listed in Table A2.

In line with the biological knowledge, the mature blood cells, immune cells and dead cells quickly
equilibrate with the slower stem cell dynamics. This implies that the mature cells, dead cells and
immune cells can be explicitly expressed in terms of WSC and the n MSC types, thus the model is
reduced significantly from 2(n+1)+2 to n+1 equations. Note that n can can be chosen as any positive
integer and the model can therefore be used for any number of mutations. Let the dimensionless cell
types and time scale be denoted by Y0,Y1, . . . ,Yn and T , respectively. The resulting dimensionless
equations are (see Supplementary for derivation).

dY0

dT
= Φ0S Y0 − D0Y0 + Ξ0 (2.1a)

dYi

dT
= RiΦiS Yi − (Di + KiYi) Yi + Ξi, i = 1, ..., n, (2.1b)

with the immune cells, S , expressed as

S = J +

√√
J2 +

n∑
j=0

2B jY j. (2.2)

J is a parameter describing the inflammatory stimuli not caused by the mutated cells, e.g., exogenous
inflammatory stimuli. Increasing this value leads to an increased production of immune cells. Di

describes the death rate of cell type i and Ki is a death rate of the second order elimination of mutant
i due to activated immune clearance of the mutants by cytotoxic T-cells. Bi describes the balance
between loss of cells from the stem cell pools and elimination from the dead cell pool due to immune
cell clearance.

To maintain function, stem cells must interact with the stem cell niche. The stem cell niche uses
negative feedback mechanisms to stabilize wild type stem cells under normal circumstances, e.g., in
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absence of cancer mutants. When several stem cell types are present, there is a competition for space
and resources through the stem cell niche feedback (the Φ-function),

Φi =
1

1 +
∑n

j=0 Ci, jY j
, (2.3)

where the weighting coefficient Ci, j describes the inhibiting strength of cell type j onto cell type i for
i, j ∈ {0, 1, 2, . . . , n}.

A way to include the fact that cancer cells are less constrained by environmental signals than
hematopoietic stem cells is to enforce Φi > Φ0 for i = 1, . . . , n, i.e., large weighting coefficients imply
high niche feedback inhibition strengths. In the current work we are exploring the C-dependence on
the overall dynamics of cell populations. Finally, Ri denote the self renewal rates of the mutated cells
relative to the wild type.

Stochastic or continuous mutation processes between stem cell types are incorporated through Ξi.
Hence, the first mutant is initiated by a wild type mutation, while secondary mutations may happen
sequentially (the mutant mutates further), in parallel (a new mutation from the wild type cell pool), or
as a mixture of these, where any of the existing stem cells wild type or mutated ones may mutate. The
stochastic process is a scaled Poisson process but in the deterministic limit Ξi =

∑n
j=0(Mi, jY j − M j,iYi)

where Mi, j describes the rate that cell type j mutates into cell type i. For the parallel case the expression
for Ξi reduces to Ξ0 =

∑n
j=1 −M j,0Y0 and Ξi = Mi,0Y0 for i = 1, 2, . . . , n, while for the sequential case

the expressions are given by Ξ0 = −M1,0Y0 and Ξi = Mi,i−1Yi−1 − Mi+1,iYi for i = 1, 2, . . . , n where
Mn,n+1 = 0, i.e., the last mutation cannot initiate further differentiation.

By presenting the equations in dimensionless form as in (2.1), the death rates as well as the self
renewal rates for WSCs become normalized to 1, i.e., D0 = 1 and R0 = 1, respectively. Likewise, the
self niche feedback becomes 1, i.e., Ci,i = 1. The advantage in putting the equations in dimensionless
form is not only to ease the analysis, but also to make reliable simulations and promote insights.
However, the results of the in silico investigations are presented using the dimensional variables (y and
z) instead of the corresponding dimensionless ones (Y and Z), while the parameters will be listed in
dimensionless form.

2.3. In silico methodology

For the simulations we will investigate how clones with distinct micro-environment can give rise to
complex dynamics observed in clinical studies such as resistance and oscillations. The properties of
the micro-environment are modeled by the cell to cell inhibition (C) and immunoediting (K) and these
are the parameters of main interest in the simulations while keeping the remaining parameters fixed at
their default values listed in Table A3. In sections 3.7 and 3.1 we will also consider the effect of the
self renewal rate R.

The default parameter values for the models listed in Table A3 are for the JAK2+ MPNs [20] and
for each experiment, only the parameter values deviating from the default value will be reported.

At this point we emphasize that the structure of the model is independent of the specific blood
cancer that a given mutation may cause. However, the parameter values depend on the specific muta-
tions causing the cancer to develop. Thus, the model structure is general but the parameter values are
mutation-specific taking all involved clones into account.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7645–7670.
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3. Results

Before turning our attention to the results of the MCC model, we briefly outline the results for the
scenario with one or two clones which is described by the MCC models predecessors.

For the simple case of a single clone, the dynamical behavior of the model is simple - either the
cell number approaches the carrying capacity or the cell type goes extinct. The case of two competing
cell types, i.e., the wild type and one mutant, has been extensively studied in [18, 20] illuminating
cancer elimination, escape or equilibrium depending on the parameter values. No oscillatory dynamics
has been observed in the studies, only trajectories approaching steady state values. For JAK2+ MPNs
the parameter values were estimated to reproduce observed cell counts, see [17, 20]. Remarkably, the
immune response reproduces observed average values for cohorts.

Now we will present the simulations for the MCC model which allow for the number of clones to
exceed two and thereby enabling more complex dynamics than its predecessors can describe.

3.1. Additional mutation explains elimination, equilibrium and escape

The first investigation is for the case with two distinct MSCs present in the bone marrow in addition
to the WSC. The aim is to simulate a scenario where a less aggressive MSC is reduced by treatment
and thereby enabling a more aggressive MSC to initiate a fatal growth, i.e. wild type cells get extinct.

The two MSCs differ in their susceptibility to the immune response and by their self-renewal rates.
The second malignant cell line y2 is more aggressive as it has a lower susceptibility to the immune
response and a higher self-renewal rate. However, y2 is suppressed by the presence of y1, corresponding
to a scenario where y1 could be an earlier mutation with advantageous growth conditions due to the
lack of presence of additional mutations in the initial growth phase.

(a) (b)

Figure 2. A scenario with WSCs (y0) and two MSCs (y1 and y2) where y2 is more aggressive
than y1, i.e., higher self-renewal rate (R2 > R1) and lower susceptibility to the immune re-
sponse (K2 < K1). Figure (a) depicts the scenario where y1 grows up to a non-fatal level until
it finds a co-existing steady state with y0 as the presence of y1 inhibits further growth of y2.
Figure (b) shows a virtual treatment targeting y1 by increasing K1 with onset at year 40 and
lasting afterwards, i.e., boosting the effectiveness of the immune response. The result is that
the more aggressive y2 is no longer inhibited by y1 and starts a fatal growth. The parameters
are listed in Table B1.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7645–7670.



7653

Figure 2a depicts the scenario where the MSCs reach a co-existing steady state with the WSCs.
The malignant cells, y2 cannot initialize a fatal growth as it is sufficiently suppressed by y1. Note there
is a non-fatal reduction in the WSCs which could lead to the onset of targeted treatment of y1, i.e.,
treatment that does only affect y1. This is exactly the scenario explored in Figure 2b, where the non-
fatal reduction in y0 triggers a treatment of the virtual patient which boosts the immune response to
y1 (increasing K1) at year 40. The treatment results in a reduction of the amount of y1, which initially
gives an improved prognosis as the amount of WSCs (y0) increases. However, the inhibiting effect for
the more aggressive malignant cells y2 wears off as the amount of y1 reduces, and a fatal malignant
growth of y2 begins.

3.2. Resistance causes fatal growth

The second simulation scenario explores the concept of resistance. At time t = 0 there is a WSC
line y0 and single MSC line y1. The two cell lines enter a co-existing steady state as the immune
surveillance keeps the malignant cell type at a non-fatal level. Thus, a fatal growth can initiate if y1

acquires a mutation making the mutated cells y2 less susceptible to the immune response.

(a) (b)

Figure 3. The figures illustrates a scenario for the MCC model with n = 2 and sequential
mutations. In (a) a malignant cell type y1 enters a co-existing steady state with the healthy
cells y0 due to the natural immune surveillance. The mutated cell type y1 does not gain
resistance. In (b) the malignant type y1 gains resistance and escape the immune surveillance,
i.e., cell type y1 transforms into the resistant cell type y2, and after 60 years of exposure, a
fatal growth initiates as a consequence. The parameters are listed in Table B2.

In Figure 3a the MSC line y1 does not gain resistance and the patient may live with a coexisting
steady state for the healthy and malignant cells. However, in Figure 3b the non-fatal malignant cell
type y1 gives rise to a resistant cell line y2 which initializes a fatal growth. This behavior resemble that
described by Shlush et al. in 2017 [45] and discussed by others in [46–48] where the basic idea is that
some malignant stem cells may survive treatment either due to previously developed resistance or for
other reasons thus causing a fatal relapse for some AML patients. A sustained remission is seen in less
than 35% of the young adults and 15% of older patients [48].

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7645–7670.
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3.3. Micro-environment causes oscillations in a heterogeneous clonal landscape

The stem cell pool can be highly heterogeneous [3] and we will investigate such a scenario where
circular inhibiting effects between the MSCs give rise to oscillations and possible complications of such
oscillations. At least three clones additional to the WSCs are needed to account for various observed
dynamic complexities. Oscillating cell numbers could possibly be explained by having three or more
malignant stem cells that inhibit each other.

𝑦!

𝑦" 𝑦#

Figure 4. Conceptual diagram of inhibiting effects for the experiments with three mutated
stem cell clones. The dashed green lines symbolize a low inhibiting effect whereas the solid
red lines symbolize a high inhibiting effect. The three clones exhibit circular inhibiting ef-
fects, which may give rise to oscillating cell numbers.

For the case n = 3 we could have that y1 is highly inhibited by y2 but only slightly inhibited by
y3. In addition y2 is not highly affected by the presence of y1 but is highly affected by the presence of
y3 and lastly y3 is highly affected by y1 but not much by y2. This specific form of inhibiting effect is
illustrated in Figure 4 and the corresponding trajectories are seen in Figure 5.

Figure 6a explores a similar scenario but where the WSCs are affected differently by the three types
of malignant cells, i.e., the WSCs are most inhibited by the presence of y3 and least inhibited by y1.
Hence, if the virtual patient receives targeted treatment then the outcome depends on the targeted clone.

3.4. Outcome of single cell type - targeted treatment depends on heterogeneous composition

The outcome of applying treatment in Figure 6a depends severely on which of the malignant cells
the intervention addresses. Targeted treatment of y1, y2 and y3 is depicted in Figure 6b–6d, respectively.

Figure 6b shows treatment targeting y1 which inhibits the WSCs the least of the existing MSCs.
The suppression of y1 may unintentionally improve the growth conditions for the more aggressive y3

and initiate a fatal growth. Figure 6c shows that treatment targeting y2 may increase the amount of
WSCs as the treatment of y2 improves the growth conditions for the less aggressive y1 which inhibits
the WSCs the least. Figure 6d shows that treatment targeting y3 results in a somewhat neutral outcome.

3.5. Hydroxyurea treatment results in oscillatory cell counts

The aim of the simulated study presented in Figure 7 is to model a scenario observed for patients
treated with hydroxyurea, namely a response having a fast drop followed by a rebound with oscillations
as seen in the clinic.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7645–7670.
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Figure 5. A scenario where three types of cancers compete and keep each other in check due
to the circular inhibiting effects illustrated in Figure 4. The circular inhibiting effects give
rise to oscillations. The parameter values and initial conditions are listed in Table B3.

Initially a fatal growth of a malignant cell type y1 starts increasing the total amount of blood cells
rapidly. This increase in cell counts triggers symptoms such as thrombosis and a targeted treatment for
y1 is initiated. The targeted treatment successfully reduces the amount of y1 and after the treatment,
y1 enters a cyclic state with the two less aggressive malignant types y2 and y3. The treatment initiates
a drop in the total amount of cells. After some time the total amount of cells increases and stabilizes
with oscillations at a non-fatal level.

3.6. Oscillations observed in clinical data - patient specific model calibration

As mentioned, the MCC model is not mutation specific, such as JAK2, and can model the faster
developing CML by changing the parameter values governing the micro-environment as an example.
Observed oscillations in white blood cells for CML and platelets for a JAK2+ MPN, are depicted in
Figure 8, after treatment onset with hydroxyurea. The data are from [22–25, 31], respectively. The
oscillations differ in period for the patients and the period of the oscillations in Figure 8 are reported
to be 35–40 days, 53–69 days, 37–83 days, and 244 days for CML, respectively, while it is 27 days for
MPNs.

To compare model output with data the outputs have been normalized to achieve the means and the
amplitudes of the data. The linear drift seen in Figure 8b is artificial imposed on the model output to
make the periods comparable. However, the deterministic model struggles to reproduce the irregular-
ities of the measured oscillations, e.g., those in Figure 8a. For the data fits we have chosen Mi, j = 0
corresponding to ignoring additional mutations during the relatively short time spans considered.

3.7. Inhibiting and stimulating properties generate severe clonal evolution

A common understanding is that an aggressive malignant cell type arises from a sequence of muta-
tions where the fitness of the malignant type increases with the number of mutations. We will explore
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(a) (b)

(c) (d)

Figure 6. A scenario where three malignant cell types compete and inhibit each other. Their
mutual inhibitions are illustrated in Figure 4. In (a) the virtual patient receives no treatment
and oscillatory cell counts are observed. The malignant cells affect the WSCs differently, in
particular the WSCs are less affected by the presence of the first malignant cell y1 and more
affected by the third malignant cell y3. In (b)–(d) a simulated scenario where a virtual patient
receives a treatment targeting a single malignant cell type is depicted. The treatment refers
to lowering the self-renewal rate Ri for cell type i at year 30. In (b) the first malignant cell
type y1 is affected by the treatment, in (c) it is y2, while in (d) it is y3 which is affected by the
treatment. The parameters are listed in Table B4.

both a deterministic and stochastic scenario depicted in Figures 9a and 9b, respectively. In the deter-
ministic scenario the fitness of the malignant daughter clone increases in each mutation by an increase
in the self-renewal rate and an inhibiting effect on the mother cell line. The result is a step-wise reduc-
tion in the amount of WSCs as depicted in Figure 9a.

In the stochastic scenario we have two cell lines present y0 and y1 at time t = 0. During the simu-
lation they are both allowed to mutate. Each time a mutation happens, the daughter cells will have the
parameters of the mother cell but inhibiting effect (C), self-renewal rate (R) and T-cell specific death
rate (K) are sampled from log-normal distributions with the parameter values of the mother cells as
mean values. Hence, the daughter cells have the possibility of becoming either more aggressive or less
fit than the mother cells. The new clone will have the possibility to mutate itself and thereby enabling
the simulation to have a mixture of the sequential and the parallel aspects. The outcomes of the de-
terministic and the stochastic approach are analogues despite the variability in the stochastic approach
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Figure 7. The malignant cell line y1 initiates a fatal growth but receives targeted treatment
after 3.5 years. The treatment initially gives a drop in the total amount of cells but after
some time the total amount increases and starts to fluctuate at a slightly higher level. The
parameters are listed in Table B5.

and they illustrate how the healthy cells are step-wise out-competed due to the clonal evolution.

4. Sensitivity, robustness and correlations

A sensitivity analysis of the parameters used for Figure 5 is provided in Supplementary section
S.2. The sensitivity was performed for the non-default parameter values K and C with a 10% change.
Perturbing the parameter values by 10% did not change the qualitative behavior of the system, i.e., os-
cillations were still observed for the perturbed parameter values. However, the amplitude and frequency
of the oscillations did change as a consequence of the perturbation of the parameters as illustrated in
Figures S.3 and S.4 and quantified in Table 1.

Moreover, the sensitivity analysis revealed an inverse correlation between K and C such that increas-
ing K by 10% and lowering C by 10% has almost identical simulation outcome. These observations
align with the model understanding as a decrease in K and an increase in the cells inhibitory effect will
promote growth, thus giving larger oscillations whereas an increase in K and a decrease in the cells
inhibitory effects will decrease the growth potential thus making the amplitude smaller.

Table 1. Relative percentage change in mean, amplitude and frequency when the parameters
K and C are changed ±10% for the allele burdens depicted in Figure S.4. The perturbed
parameter is indicated by the subscript ±10%.

parameters C,K C,K+10% C,K−10% C+10%,K C−10%,K
mean 0.164 −9% 11% 3% −1%
amplitude 0.188 −40% 36% 26% −46%
frequency 0.033 Hz 6% −22% −22% 6%
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(a) (b)

(c) (d)

(e)

Figure 8. Observed oscillations in peripheral white blood cells and platelets (red circles
with dashed lines between data points) adapted from [22–25,31], respectively. Panels (a)–(d)
correspond to patients having CML and treated with hydroxyurea, whereas (e) is for a patient
having JAK2+ MPN and also treated with hydroxyurea. The periods of the oscillations are
reported to be 35–40 days, 53–69 days, 37–83 days, 244 days, and 27 days, respectively.
The model (red solid lines) replicates the periods for various sets of parameters. Non-default
parameters are listed in Tables B6–B10.
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(a) (b)

Figure 9. Depicts a scenario where a non-fatal malignant cell mutates to an aggressive malig-
nant cell type through a sequence of mutations. (a) illustrate the outcome of the deterministic
approach where the self renewal rates increase with each mutation. The parameters are listed
in Table B11. Panel (b) is a realization of the corresponding model with stochastic mutation
rate. Each time a mutation happens the daughter cells will have the parameters of the mother
cell but inhibiting effect (C), self-renewal rate (R) and T-cell specific death rate (K) are sam-
pled from log-normal distributions with the parameter values of the mother cells as mean
values. Hence the daughter cells have the possibility of becoming either more aggressive or
less fit than the mother cell. The new clone will have the possibility to mutate itself and so
on.

5. Discussions

The presented work builds on previous models by allowing for the emergence of multiple popula-
tions of wild-type stem cells to mutated stem cells, which interact with each other as well as indirectly
via the stem cell niche and the innate and adaptive immune response. A simulation study is described,
exploring model dynamics under a minimal number of different parameter combinations focusing on
the niche feedback inhibitions and the strength of the adaptive immune response. The different in sil-
ico scenarios encompass competition between clones of haematopoietic stem cells, wild-type ones and
malignant ones, including during treatment with hydroxyurea, in a heterogeneous mixture of multiple
clones. Findings are related back to various clinical and experimental observations. The model pre-
dictions show agreement between model predictions and observations of white blood cell and platelet
counts, JAK2 allele burden, and cytokine counts in patients with haematologic malignancies. This is
in favor of the validity of the model.

5.1. Elimination, equilibrium and escape

The most common telling is that if a driver mutation happens then the malignant cell type increases
sigmoidally while the healthy cell type decreases in concert as illustrated in Figure 2a. The healthy
cell type does not need to go extinct as the two cell types may coexist and they may even coexist at
a non-fatal level for the virtual patient, see Figure 2a. The healthy cell type may also coexist with a
heterogeneous cancer, i.e., multiple malignant clones, as illustrated in Figure 5.

If the healthy cell line has entered such a coexisting state a treatment of one malignant cell type
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may leave room for the most fit of the remaining clones to increase vitally. We consider three clones, a
healthy cell type and two malignant cell types, the second more aggressive than the first and examine
the result of treatment which leads to an increase in the T-cell related death rate of the malignant clone.
In case of no treatment the first malignant clone may raise to a level causing complications, e.g., risk
of thrombosis, but without eradicating the normal cell type while the second malignant clone persists
at an insignificant level (Figure 2a). If instead the first malignant clone is suppressed by treatment, the
second and more aggressive malignant clone may bloom if it is insensitive to the treatment, thereby
suppressing the healthy cells (Figure 2b). Hence, the treatment initiates a fatal development for the
patient, who may had preferred to live with the risk of thrombosis.

In earlier studies, it is found that coexistence of clones being possible only for equal parameter
values for the self-renewal rate of stem cells (R) [28]. We disprove this since we have shown that
co-existence can occur for different values of R, as illustrated in Figure 2a. Moreover, the simulation
shows that the clone with highest self-renewal rate (R) does not need to become the dominating clone
if an earlier arrived clone has a sufficient suppressing niche feedback effect on the first one (high C
value).

5.2. Resistance

A similar outcome results if the clone becomes resistant or less sensitive to the immune surveillance
over time, illustrated by Figure 3. Notice, the developed resistance or decreased sensitivity to the
immune response will cause the aggregated cell count to increase toward a fatal level, as illustrated by
the Brachiosaurus shaped development shown in Figure 3. Thus, the model explains the three Es of
cancer immunoediting, elimination, equilibrium, and escape phases. First cancer grows exponentially
but then the immune system becomes activated and initiates a defense, leading to stagnation of the
cancer burden at a plateau. After a while either some of the malignant cells become resistant to the
immune response or an additional mutation occurs resulting in a less immune-sensitive clone emerge.
In both cases the immuno-insensitive clone starts to grow exponentially which is interpreted as the
cancer escaping the immune response [41].

5.3. Oscillatory cell counts caused by micro-environment

Medical action to changes in levels of clones may also be subject to caution. Consider three clones
in addition to the normal clone as is the common idea of CHIPs where the number of cells of each
clone may oscillate as illustrated in Figure 5. Assume that the three malignant clones have the same
parameter values (but a little higher self-renewal than the normal clone to suppress it slightly) except
for their mutually inhibitory effects; malignant clone 2 possesses a raised inhibition of malignant clone
1, malignant clone 3 has a raised inhibition of malignant clone 2, and malignant clone 1 imposes
a raised inhibition of malignant clone 3 compared to the rest of the inhibitions (circular inhibition,
see conceptual diagram in Figure 4). The number of cells of each malignant clone may oscillate, as
illustrated in Figure 5. If in addition, some of the malignant clones have increased inhibition onto the
normal clone, then oscillations in the normal cell counts will be more pronounced.

Figure 5 shows such an example, where the third malignant clone has a slightly increased inhibition
of the normal clone. Depending on the values of the parameters, the oscillations and their mean may
be more or less pronounced as illustrated in Figure 6. The period of the normal clone oscillating and its
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amplitude comes from the dominating malignant clone period and amplitude. If the patients blood is
screened for specific mutations using NGS some of the clones may have common mutations. Thus one,
two, or three of the malignant clones in said example may be registered as the same mutation, e.g., the
different clones may all have the JAK2 mutation and thus only differ due to apparently ’insignificant’
differences. In Figure 6a the sum of the clones is shown as an example and we may imagine that all
three mutations may be classified as the JAK2 mutation. In a clinical setting such measurement may be
taken rarely, e.g., each third month, every sixth month, yearly or not at all. To reliably observe periodic
oscillations at least 3–5 measurements during such period are necessary otherwise measurements will
be considered as ’random’ fluctuations.

For the three species Lotka-Volterra equation (generalized logistic growth) global stable steady
states of one, two or three (co-existing) species may occur. However, periodic solutions [49–51] or
even heteroclinic orbits may exist [52, 53] and for five species chaotic solutions exist [54]. Thus,
oscillation dynamic of the current model is not surprising. However, another possible explanation for
the observed oscillations could be that it is due to time delay.

For simplicity consider a single-type malignant stem cell pool. From Murray [55] we have that the
steady state of the delay logistic equation with delay T is locally asymptotic stable if 0 ≤ ryT < π

2 and
unstable if ryT > π

2 . Murray proved that for ryT = 2.1 (> π
2 ) a periodic solution with period P ≈ 4.54T

exist. If the hydroxyurea induced oscillation with period P ≈ 100 days is observed, corresponding to a
time delay T ≈ 25 days, then ry <

π
50 ≈ 0.064 per day holds in the case of MPNs, CML and in AML.

Hence, such time delay would hardly cause oscillatory behavior.

5.4. Targeted treatment

Continuing with the complex scenario of four clones of which three are malignant and one of the
malignant clones possess a slightly elevated inhibitory effect on the normal clone, we return to the
treatment discussion. We consider a hypothetical treatment which reduces the self-renewal rate for
one clone only, yielding enormous differences in treatment outcome, depending on which clone the
treatment targets. In Figures 6b,c, and 6d the self-renewal of clone 1, 2, and 3 is reduced at year 30.
If malignant clone 1 is affected by the treatment, the malignant clone 3 expands resulting in a fatal
eradication of the normal clone. If the malignant clone 2 is suppressed by treatment then the malignant
clone 1 increases slightly but the normal clone almost recover fully resulting in a bearable coexisting
steady state. If malignant clone 3 is reduced by the treatment, the outcome is neutral as the oscillations
stops but the allele burden is unchanged for the patient. This coexisting steady state does have less
functional cells and relatively many malignant cells. By changing parameter values the level of cells in
the steady state may be adjusted. The relatively high number of malignant cells increase the probability
of getting more aggressive mutations. For a given probability (it is a Poisson process) the numbers of
such are proportional to the number of mother cells. If the number of malignant cells, for some reasons
is elevated by a factor k then the number of more aggressive additionally mutation per time increases
by the same factor [56]. A reduction in the number of normal cells may cause reduced transport of
oxygen and carbon dioxide by red blood cells throughout the body.

We emphasize that the model accounts for the apparently paradoxical effect of treatment, namely,
how eradication of a clone may stimulate the growth of another, more fatal, one.
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5.5. Calibration to data

In clinical practice roughly half of all MPN-patients receiving treatment are characterized as good
responders and the rest as poor responders when ignoring those taken off the treatment due to adverse
events. [56] This phenomenon of good versus poor responders is not well understood but the multiple
clone approach gives a plausible hypothesis. The multiple discoveries of visible oscillations in cell
numbers over time support the hypothesis: Cyclic oscillations with period 35–40 days in leukocyte
counts in CML during hydroxyurea therapy have been reported [22], similar oscillations with a period
of 53–69 days were observed in platelets, neutrophils, eosinophils, basophils and reticulocytes too and
continuing for a period after anti-leukemic therapy in [23]. In [24] oscillations with a period of 37–83
days were estimated, whereas [25] found oscillations with period of 244 days in platelets and white
blood cells in a patient diagnosed with CML. All of these periods can be explained by the model,
noticing that the time-scale results from the physiological parameters, which differ from mutation to
mutation and thus from diagnosis to diagnosis, and in [29–31] faster oscillations with period 27 days
have been observed clinically for JAK2+ MPNs. The MCC model accurately reproduces all these
clinical observations as illustrated in Figure 8. Additional support for such oscillations comes from the
fact that CHIPs have been observed in a number of studies [32, 33, 37, 38].

In the clinic we observe strong fluctuations in JAK2 allele burden data and leukocyte data from
MPN-patients treated with hydroxyurea. These fluctuations are typically not pronounced until after
one year after treatment onset. The typical transient is a steep decay in allele burden (the fraction of
malignant mature cell count) and total cell count followed by relapse toward the levels before treatment.
After such transient the JAK2 allele burden may partly decay, stagnate, or even increase but in a
fluctuating way. The MCC model can reproduce such observations as illustrated in Figures 6 and 7.
The model illustrates the current clinical experience and knowledge that treating a blood cancer may
introduce oscillatory cell counts.

5.6. Clonal evolution

The MCC model may also explain the paradigm of a mutational evolution landscape as a sequential
cascade of mutations. First one not very harmful mutation (possible as a result of a sequence of
mutations) capable of surviving occurs. Next, an additional mutation (or sequence of such) occurs
resulting in a more competitive clone, which more or less out-competes the first clone. These mutated
stem cells may mutate further resulting in more and more harmful clones. In each step the preceding
clone is inhibited and the normal cell type become more and more inhibited by the resulting clone
after each additional mutation as illustrated in Figure 9a, where for simplicity only the self-renewal
is increased in each mutational step. In Figure 9b, a stochastic simulation of a scenario reveals the
same overall outcome, namely that the WSCs are stepwise outcompeted by increasingly aggressive
mutations.

6. Conclusion and future work

In conclusion, the MCC model contributes to a better understanding and explanation of several ob-
servations in patients with myeloid cancers, including the previously observed (before the interferon-
era and treatment with tyrosine kinase inhibitors) slow oscillations in cell counts of time scale 2–3
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months for some CML patients. Similarly, the MCC model may explain the increased risk of throm-
bosis in MPNs despite cytoreductive therapy by demonstrating fast oscillations in cell counts of time
scale 1 month for some MPN patients. Importantly, in the context of ”Tumor Immune Surveillance”
the different phases of immunoediting , elimination, equilibrium and escape, are explained in the model
as well.

The model also suggests an evolution of CHIP towards the development of overt MPNs and the
development of MPNs in the biological continuum from the early cancer stages towards the advanced
myelofibrosis stage and ultimately leukemic transformation. Indeed, all these scenarios, being likely
driven by chronic inflammation and inflammatory cytokines with increasing genomic instability and
formation of subclones over time are explained in the model. Thus, most observations are a conse-
quence of the model independent of whether one assumes sequential, parallel, or stochastic mutations.
Finally, the large class of phenomena explained by the model and its ability to reproduce clinical data
serve as a strong support for the validity of the model.

As a perspective for future studies, targets for therapeutic control by combination of drugs might be
added to the model and an optimal control strategy might then be proposed to qualitatively study the
behavior of the population of clones, with an objective of eradication or containment.
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Int., 113 (2016), 317.

34. D. S. Park, A. A. Akuffo, D. E. Muench, H. L. Grimes, P. K. Epling-Burnette, P. K. Maini, et al.,
Clonal hematopoiesis of indeterminate potential and its impact on patient trajectories after stem
cell transplantation, PLoS Comput. Biol., 15 (2019), e1006913.

35. J. Cortes, M. O’Dwyer, Clonal evolution in chronic myelogenous leukemia, Haematol./Oncol.
Clin. North Am., 18 (2004), 671–684.

36. A. Schuh, J. Becq, S. Humphray, A. Alexa, A. Burns, R. Clifford, et al., Monitoring chronic
lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal
evolution patterns, Blood, 120 (2012), 4191–4196.

37. M. J. Walter, D. Shen, L. Ding, J. Shao, D. C. Koboldt, K. Chen, et al., Clonal architecture of
secondary acute myeloid leukemia, N. Engl. J. Med., 366 (2012), 1090–1098.

38. L. Ding, T. J. Ley, D. E. Larson, C. A. Miller, D. C. Koboldt, J. S. Welch, et al., Clonal evolution
in relapsed acute myeloid leukaemia revealed by whole-genome sequencing, Nature, 481 (2012),
506–510.

39. K. H. Allison, G. W. Sledge, Heterogeneity and cancer, Oncology, 28 (2014), A11.

40. T. Stiehl, N. Baran, A. D. Ho, A. Marciniak-Czochra, Clonal selection and therapy resistance in
acute leukaemias: mathematical modelling explains different proliferation patterns at diagnosis
and relapse, J. R. Soc. Interface, 11 (2014), 20140079.

41. G. P. Dunn, L. J. Old, R. D. Schreiber, The three es of cancer immunoediting, Ann. Rev. Immunol.,
22 (2004), 329–360.

42. R. J. Jones, S. A. Armstrong, Cancer stem cells in hematopoietic malignancies, Biol. Blood
Marrow Trans., 14 (2008), 12–16.

43. A. J. Mead, A. Mullally, Myeloproliferative neoplasm stem cells, Blood, 129 (2017), 1607–1616.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7645–7670.



7666

44. B. Craver, K. Alaoui, R. Scherber, A. Fleischman, The critical role of inflammation in the patho-
genesis and progression of myeloid malignancies, Cancers, 10 (2018), 2–18.

45. L. Shlush, A. Mitchell, L. Heisler, S. Abelson, A. Trotman-Grant, J. Medeiros, et al., Tracing the
origins of relapse in acute mueloid leukemia to stem cells, Nature, 547 (2017), 104–108.

46. B. Jonas, On the origin of relapse in AML, Sci. Transl. Med., 9(398) (2017), 1–2.

47. B. Jonas, Stem cells make leukemia grow again, EMBO J., 36(18) (2017), 2667–2669.

48. L. MacPherson, M. Dawson, Survival of the fittest: Darwinian selection underpines chemotherapy
resistance in AML, Cell Stem Cell, 21 (2017), 291–292.

49. J. Hofbauer, J.-H. So, Multiple limit cycles for three dimensional Lotka-Volterra equations, Appl.
Math. Lett., 7 (1994), 65–70.

50. M. L. Zeeman, Hopf bifurcations in competitive three-dimensional Lotka-Volterra systems, Dyn.
Stab. Syst., 8 (1993), 189–216.

51. M. L. Zeeman, P. Van Den Driessche, Three-dimensional competitive Lotka-Volterra systems with
no periodic orbits, SIAM J. Appl. Math., 58 (1998), 227–234.

52. R. M. May, W. J. Leonard, Nonlinear aspects of competition between three species, SIAM J. Appl.
Math., 29 (1975), 243–253.

53. M. E. Gilpin, Limit cycles in competition communities, Am. Nat., 109 (1975), 51–60.

54. J. Huisman, F. J. Weissing, Biological conditions for oscillations and chaos generated by multi-
species competition, Ecology, 82 (2001), 2682–2695.

55. J. D. Murray, Interdisciplinary applied mathematics, in Mathematical biology, 3rd edition,
Springer, New York, 2003.

56. R. K. Pedersen, T. A. Knudsen, Z. Sajid, J. Gudmand-Hoeyer, V. Skov, L. Kjær, et al., Data-driven
analysis of JAK2V617F kinetics during interferon-alpha2 treatment of patients with polycythemia
vera and related neoplasms, Cancer Med., 9 (2020), 2039–2051.

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7645–7670.



7667

A. Default parameters

Table A1. Default parameters for the Cancitis models and i = 1, 2, . . . , n.

Parameter Value Unit Parameter Value Unit
r0 8.7 · 10−4 day−1 dzi 0.01 day−1

ri 1.3 · 10−3 day−1 c00 5.6 · 10−5 −

a0 1.1 · 10−5 day−1 c0i 5.4 · 10−5 −

ai 1.1 · 10−5 day−1 ci0 5.2 · 10−5 −

A0 3.6 · 109 − cii 5.0 · 10−5 −

Ai 3.6 · 109 − es 2 day−1

dy0 2 · 10−3 day−1 ea 1.6 · 105 day−1

dyi 2 · 10−3 day−1 rs 3 · 10−4 day−1

dz0 0.01 day−1 I 7 day−1

Table A2. Dimensionless scaling constants.

Scaling constants

s̄ =
dy0 + a0

r0
ā =

es

rs
s̄ t̄ =

1
dy0 + a0

ȳi =
1
cii

z̄i =
aiAi

ciidzi

Table A3. Default dimensionless parameter values for the MCC models. In the table i, j ∈
{0, . . . , n} and k ∈ {1, . . . , n}.

Parameters
R0 1 Rk 1.49
Di 1.00 Ci,i 1
C0,k 1.08 Ck,i 0.93
K0 0 Kk 0.10
J 0.76 Mi, j 0
B0 0.06 Bk 0.07

B. Non-default simulation parameters

Table B1. None-default parameter values and initial conditions used for the experiment
depicted in Figure 2. At year 40 K1 is change due to treatment to K1 = 4.00.

Parameters Initial conditions
K1 2.00 Y0 0.56
C12,C21 5.00 Y1 0.50 · 10−4

R1 1.40 Y2 0.50 · 10−6
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Table B2. Parameter values used for the in silico investigation depicted in Figure 3.

Parameters Initial conditions
K1 2.00 Y0 0.56
M21 1.00 · 10−4 Y1 0.50 · 10−4

Y2 0.00

Table B3. None-default parameter values used for the experiment depicted in Figure 5. .

Parameters Initial conditions
C1,2,C2,3,C3,1 6.80 Y0 0.56
K1, K2, K3 1.4 Y1 2.00 · 10−4

Y2 1.00 · 10−4

Y3 0.50 · 10−4

Table B4. Parameters used for the experiment depicted in Figure 6. At year 30 a targeted
treatment is initiated reducing the self-renewal rate of the targeted cell type from default 1.49
to 0.8.

Parameters Initial conditions
K1, K2, K3 1.00 Y0 0.56
C1,2,C2,3,C3,1 4.80 Y1 2.00 · 10−4

C0,1 0.50 Y2 1.00 · 10−4

C0,3 1.50 Y3 0.50 · 10−4

Table B5. Parameters used for the experiment depicted in Figure 7. At year 3.5 a targeted
treatment is initiated increasing the immune surveillance from default 0.1 to 1.1.

Parameters Initial conditions
K2, K3 1.1 Y0 0.56
C0,1,C0,2,C0,3 0.53 Y1 5.00 · 10−4

C1,2,C2,3,C3,1 5.8 Y2 5.00 · 10−4

Y3 5.00 · 10−3

Table B6. Parameters used for the experiment depicted in Figure 8a.

Parameters Initial conditions
n 5 Y0 0.56
Ri 2.2 Y1 7.50 · 10−3

Ki 2.4 Y2 1.50 · 10−3

C1,2,C2,3,C3,4,C4,5,C5,1 9.31 Y3 5.00 · 10−4

C1,3,C2,4,C3,5,C4,1,C5,2 8.32 Y4 5.00 · 10−4

C1,4,C2,5,C3,1,C4,2,C5,3 4.65 Y5 5.00 · 10−4
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Table B7. Parameters used for the experiment depicted in Figure 8b.

Parameters Initial conditions
n 4 Y0 0.56
Ri 2 Y1 2.50 · 10−3

Ki 3 Y2 5.00 · 10−4

Ci, j 0.73 Y3 5.00 · 10−4

C1,2,C2,3,C3,4,C4,1 10.24
C1,3,C2,4,C3,1,C4,2 11.26

Table B8. Parameters used for the experiment depicted in Figure 8c.

Parameters Initial conditions
n 4 Y0 0.56
Ri 2 Y1 2.50 · 10−3

Ki 3.5 Y2 5.00 · 10−4

Ci, j 0.73 Y3 5.00 · 10−4

C1,2,C2,3,C3,4,C4,1 9.31
C1,3,C2,4,C3,1,C4,2 9.31

Table B9. Parameters used for the experiment depicted in Figure 8d.

Parameters Initial conditions
n 3 Y0 0.56
Ri 1.26 Y1 2.00 · 10−3

Ki 1.26 Y2 1.00 · 10−3

C0.1 0.29 Y3 5.00 · 10−4

C1,2,C2,3,C3,1 6.31
D0 0.95
Ci, j 0.73

Table B10. Parameters used for the experiment depicted in Figure 8e.

Parameters Initial conditions
n 3 Y0 0.56
Ri 1.26 Y1 2.00 · 10−3

Ki 1.26 Y2 1.00 · 10−3

C0.1 0.29 Y3 5.00 · 10−4

C1,2,C2,3,C3,1 5.31
D0 0.95
Ci, j 0.73
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Table B11. Parameters used for the experiments depicted in Figure 9a.

Parameters Initial conditions
R1 1.1000 R5 1.3900 Ki 1 Y0 0.56
R2 1.1700 R6 1.4600 Ci, j for j > i 3.2 Yi for i > 0 0.56
R3 1.2400 R7 1.5300 C j,i for j > i 1.1
R4 1.3100 R8 1.6000 Mi 10−8
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