
4th September, 2020

M
A

ST
ER

 T
H

ES
IS

 IN
 C

O
M

PU
TE

R
 S

CI
EN

CE
/I

N
FO

R
M

A
TI

CS

author: Dragos ILIE

supervisor: Benedicte FLERON

A study on how to simplify
strong password creation
without sacrificing security

ABSTRACT

Within this thesis, I analyzed the password creation step that arises when users try
to create login credentials on an online platform, in order to find out a way to greatly
simplify said creation without reducing any aspect of its security potency. The thesis
started off with a recap of the most known security challenges that impose the creation
of strong passwords. The theories could be split into two perspectives and were mostly
part of the Security field, as well as the User Experience one, and they were used to
demonstrate why there is still room for improvement for the concepts and methods
used when it comes to authentication.

Existing solutions on the market were summarized, and a prototype was created to
illustrate another approach that has been thought of as a solution for the nuisance
of having to come up with and remember strong passwords (and thus violating user
experience values).

As the prototype was later validated through comparison to the existing solutions,
the result was successful into showing that the problem formulation can indeed be
answered, and it offered a practical display on how it can be achieved.

TABLE OF CONTENTS

1. INTRODUCTION...
1.1. PROBLEM INTRODUCTION...

1.2. PROBLEM FORMULATION...

1.3. RESEARCH QUESTIONS...

1.4. THESIS LIMITATIONS...

2. THEORY...
2.1. AUTHENTICATION...

2.1.1. Login system...

2.2. ATTACKS AGAINST PASSWORDS...

2.3. ENCRYPTION...

2.4. STRONG PASSWORDS, ROLE AND NECESSITY..

2.5. USABILITY IMPLICATIONS...

2.6. EXISTING PASSWORD SOLUTIONS...

3. PROTOTYPE...

4. VALIDATION OF PROTOTYPE...

5. DISCUSSION..

6. CONCLUSION...

7. REFERENCES...

1
1

1

1

2

2
3

3

4

8

10

13

15

16

20

22

23

23

Passwords or some sort of primitive form of authentication have been present in the
life of humans since the ancient times. They have always been used to confirm the
identity of the individual in order to give him access to secret or protected information,
belongings, rooms, gatherings, etc. that were not available to the regular citizens.
Thus, from the ancient civilizations, people have always felt the need to protect various
attributes for the sake of safekeeping, which makes it safe to say it is only natural
that in the digital world passwords be present in one way or another (Wikipedia 2020
- Password). But does a password provide the ultimate protection to its owner against
prying eyes? What happens when the password is overheard or intercepted by third
parties? Or even when it is too basic or common and it can simply be guessed?

In the IT world, the field of cyber-security is trying to provide a solution to these
issues: there are many cases in which corporate employees are following introductory
courses for security regulations in order to learn basic protection of their accounts
and, implicitly, the company’s property; they are taught not to write the passwords in
unprotected documents or on pieces of paper, they are taught not to click dubious links
or disclose their passwords to anyone, etc. (Usecure.io 2020). One of the approaches
that has become a rule in the recent years is to force the users to choose strong
passwords, complicated strings that are meant to discourage or greatly delay any theft
attempt; they achieve this by being much harder to guess by regular attacking tools that
informational thieves use. However, as the field of Usability is rapidly gaining ground
and all the tedious workload is being shifted towards the machines for the sake of
user-friendliness, why cannot machines be forced to accept the weak passwords from
users and edit them into strong ones? Having this concept in mind, I conducted a study
presented in this thesis in order to find out if this shift mentioned above is a viable
solution when it comes to creating passwords.

How can we shift the burden of creating and thus remembering strong passwords from the
users to the authentication system, without sacrificing security?

-	 Why do websites impose the use of strong passwords when creating an account?
-	 How are the strong passwords stored by the system, having security
considerations in mind?
-	 How successful are the solutions that already exist for password management?
-	 How can we reprogram an authentication system to generate content so that a
weak password is edited and stored as a strong password?
-	 Can the reprogramming be done while retaining all the security invulnerabilities
and without hindering the user in any way?

1.INTRODUCTION

1.1. PROBLEM INTRODUCTION

1.2. PROBLEM FORMULATION

1.3. RESEARCH QUESTIONS

1

This thesis will analyze the treatment that passwords receive from their inception to
their storing, as well as authentication, and wants to provide a prototype that will prove
the idea behind the problem formulation, that systems can take the weight of creating
strong passwords instead if the users. This thesis does cover neither the strategy of
launching said prototype on the market nor the actual launch, its aim is to show a
successful version of a prototype, in a controlled environment. It does not contain an
extensive session of security testing and the scenarios in which a hacker could launch
an attack on it have not all been exhausted. The prototype does not treat, nor protect
against other security flaws, such as SQL injection, XSS attacks, DOS attacks, etc.; it
strictly tries to provide an example of a solution for the problem formulation. The design
is not a defining priority in the creation of the prototype either.

When analyzing how the prototype could perform once integrated into a real-life
system, it is assumed that said system already contains modern security considerations,
so as not to rule out the prototype as faulty because of aspects that do not deal directly
with passwords.

Since the beginning of the internet, security developers have been engaged in a race
around the clock with the virtual information thieves (commonly known as hackers).
They would be responsible with testing the existing systems to make sure that they are,
if not impossible, extremely difficult and resource-consuming to penetrate, in order
to discourage any enthusiasts from trying to seize control over sensitive data. Along
with the evolution of the IT environment, gadgets and platforms, and for various other
reasons (user-friendliness, applicability into other fields – army, finance, healthcare
etc.), newer and more sophisticated technologies have risen in order to provide
functionality that in the past would had been placed within the Science-Fiction realm
(Augusto, J. 2010). However, as one can imagine, this rise in sophistication also made
way for a lot more opportunities of exploitation than before, which in turn made the job
of aforementioned security experts more crucial than ever.

Nowadays, within the field of cyber-security, which deals with making a system as
impenetrable as possible, 3 factors have been identified and derived as primary concerns
when it comes to designing a system: Confidentiality, Integrity, Availability (abbreviated
C.I.A.); besides these, the other factors are considered secondary (Stallings, W., &
Brown, L. 2018).

Confidentiality – the characteristic of a system to allow the protection of data
considered sensitive by its owner, as well as protecting the identity and privacy of users
on the world wide web;

Integrity – the characteristic of a system that ensures the data that needs to be
accessed by a user has not been tampered with/modified in any way, in order to spread
misinformation and alter choice outcomes amongst users;

Availability – the characteristic of a system that ensures the data is accessible to the

2. THEORY

1.4. THESIS LIMITATIONS 2

user at any time of choice and from any geolocation and platform, within the limits set
by the existing technology (Stallings, W., & Brown, L. 2018).

Following these accepted security policies, passwords play a crucial and practical role
into protecting the data that is considered sensitive by the various parties connected
through the internet and, thus, one can say they contribute to implementing a lot of
the security policies presented above. Since studies about passwords show that they are
here to stay, with no viable replacement options found yet (Herley, C., & Van Oorschot,
P. 2012), the developers must try to keep them up to date with the latest trends and
discoveries in the hacking world and patch the password usage according to the most
recent vulnerabilities found.

According to Stallings, W., & Brown, L. (2018) and Wordfence (2020), the means of
authentication can be split into four main categories:

-	 “Something the individual knows” – passwords, PIN codes, or even answers to
preset questions;
-	 “Something the individual has” – these possessions are named tokens and they
can be both physical (e.g. smart cards) and virtual/digital (private keys, e.g. the digital
passport);
-	 “Something the individual is” – facial, fingertips, retinal scan recognition
systems;
-	 “Something the individual does” – voice, handwriting, walking pattern
recognition systems

These elements, when properly implemented, they provide a certain degree of security.
However, all of them have flaws: a password can be hacked, a key card can be stolen,
etc. In order to counteract these problems, multifactor authentication has been created,
and it can consist of implementations of 2 or more of the categories above. For instance,
the Danish NEMID system is a 2-factor authentication method (password and physical
token), internet banking is a 2-factor authentication (password and SMS systems).

However, as this thesis focuses on studying the passwords, the analysis disregards the
other categories and focuses on “something the individual knows”, mainly passwords.

From a strictly technical point of view and through a very simplified explanation, an
online platform with a credentials system in place works by following a certain number
of steps, which, amongst others, could be looked at from 2 different perspectives,
Identification and authentication. (Stallings, W., & Brown, L. 2018; Adams, A., & Sasse,
M. 1999).

Identification: the system uses the input from the user, which it adds in the database
under the table allocated for that purpose. The input fields may vary depending on what
the owner of the system wishes to register about its users, but it must contain, in one
form or another, a username and a password. Changing passwords can be considered a

2.1. AUTHENTICATION

2. Theory

2.1.1. Login system

3

subcategory of this process, because whenever the user decides to update his passcode,
the system follows the same steps as during the creation (the only difference is
replacing the value in the database instead of adding, with the preceding and the
anteceding steps being the same).

Authentication: after the account has been set up, whenever the user needs to log in,
he needs to provide the matching credentials in order to be identified as the owner
of the account. The system then takes the input given (in most cases a username
and password) and it compares it to the data from the database. If they match 100%,
then this means the user is genuine and is therefore granted access to the account
information.

Even though the system presented above is simplistic and of stock version (no security
implementations for passwords), it is safe to assume that when the login function had
been invented, the systems in place were more or less resembling the aforementioned
(Wordfence 2020). What determined the change along with the evolution of the systems
and their security, and what the improvements were, will be concluded at the end of
subchapter 2.2. Attacks against passwords.

As explained above, a lot of the companies keep sensitive information in databases,
stored on the online servers of their Internet Service Providers and Hosting Providers.
This information is crucial for one’s business, as it contains data that can cause a
disaster for the company if it leaks, especially in the case of corporations that are
responsible for protecting millions of usernames and passwords (CSOonline 2020). A
contributing factor to this kind of disaster is the use of master passwords, which will be
explained later on in this thesis.

(CSOonline 2020) shows through Figure 1 the most impactful breaches of the 21st
century. As it can be noticed, some important and famous brands/corporations in
various markets have been affected by the hackers, which only goes to show that
no business’ system is safe against threats if mismanaged, no matter the prestige
or popularity (Loo, A. 2008). An additional material supporting the claim of hacked
businesses and acting as an updated list is the one provided by (Informationisbeautiful
2020). They present all the breaches that have had more than 30.000 victims, starting
from 2009.

It is also curious to note that the data available spans from the 2000s and forward,
which implies that, before, the online platforms were not as spread, as sophisticated,
or purely the turnover was not attractive enough to actually be worth a deployment of
resources for a mass break-in (in these cases millions/hundreds of millions/billions of
accounts had been compromised at a time). An interesting aspect that is also worthy of
noting is that the attackers are of various backgrounds, which shows that they cannot be
categorized under one typology or another.

2.2. ATTACKS AGAINST PASSWORDS

42. Theory

Figure 1 - Biggest data breaches of the 21st century, taken from csoonline.com

As (CSOonline 2020) presents its data, there are a few conclusions that can be drawn:

- all attacks were successful, putting at risk all the 3 security considerations:
	 Confidentiality - people had their accounts compromised and data stolen;
	 Integrity - the accounts’ data was no longer reliable, could have been tempered 	
		 with;
	 Availability - since the accounts were broken, that means the perpetrator could 	
			 deny access to the actual user;

- in all attacks, the people’s identity was compromised, some had their financial

52. Theory

credentials discovered, and in 12 out of 15 cases, the password was present as stolen
data, which only proves it is one of the preferred targets of the perpetrators, being sold
on the black market along with the username. In addition to being sold for the benefit of
penetrating a certain user’s privacy and account, the passwords contributed statistically
to the improvement of the attacking tools by creating a precedent, a list that can be used
as a starting point for future attacks. Therefore, confronted with all these factors, it is
safe to assume that since the passwords offer so many advantages, they need to be very
well guarded.

There are many reasons why a leak can happen: a hacker penetrating the system,
a disgruntled employee with access to the database, physical hardware stolen,
mismanagement of the sensitive data within the company, badly planned risk
mitigation, not allocating enough resources to protect the important information, etc.
As Stallings, W. and Brown, L. (2018) tell us in their well-written book, there are many
types of attacks that can hit a system, some of which are directly focused on stealing
passwords from databases. I present some of the most popular below.

“Offline dictionary attacks” - also known as brute-force, these types of attacks
focus more or less on systematically guessing the password from a database. Hackers
find a way to infiltrate into the system by bypassing the security measures and they
end up getting ahold of the system password file. Countermeasures to this kind of
attack impose a tight control/preventing unauthorized access to the password file,
and upon intrusion detection, passwords must be reissued rapidly to mitigate the risk.
To put this in perspective, If the passwords were to be stored in plain text, as hinted
under subchapter 2.1.1 Login system, the hackers would use the username/password
combination to gain access. However, later in this thesis I will explain how encryption
stops the hackers in this particular situation.

“Specific account attack” - with this type of attack, the perpetrator supposedly knows
beforehand or has an easy time in guessing a specific username, then submits random
passwords until he succeeds in gaining access. A certain degree of acquaintance between
the victim and the attacker is useful, but not mandatory. A typical countermeasure
is locking the account after too many failed attempts or preventing further tries for
a specific amount of time. This countermeasure is also used as a defense mechanism
against denial of service attacks, since issuing too many iterations of a login procedure
on a system without a safety measure may lead to overloading and incapacitating said
system.

“Popular password attack” - can be considered a subset of the previous attacks and
consists of using popular passwords against a wide range of usernames. As users tend to
pick recognizable passwords (such as names of objects or persons), which in turn makes
the password easy to guess. To countermeasure this, systems could be put in place that
recognize the easily guessable passwords and force the user to pick something more
uncommon.

“Password guessing against a specific user” – as mentioned above, the perpetrator
can be familiar with the victim or he must gather knowledge about the victim’s habits,
preferences, names, etc. This specific case leads to an attack where the hacker can use

62. Theory

inside knowledge to gain the advantage; the knowledge can be either of the user or of
the system in place. Countermeasures for this include training the users into choosing
more difficult passwords and they are reinforced through applying certain triggers to
the system that stop the choices that are considered poor: passwords must be different
than usernames, they must contain lowercase and uppercase letters, numbers, special
characters, must have a specific length, etc. (The ones that fulfill all these terms are
known as strong passwords, which will be presented later).

“Exploiting user mistakes” – as explained above, strong passwords make for very
good repellants against attacks on one’s account. However, a downside of having to
deal with a strong password is the inclination of one’s owner to write it down, so as
to make it easier to remember. This immediately brings the risk of theft to a much
higher possibility, as the attacker can read the written password. The owner can also
communicate the password to other colleagues for sharing accounts, which in turn
leaves the exchange susceptible to eavesdropping. In addition, social engineering can
be used, through various methods (phishing, spear phishing, baiting, malware, etc.)
to trick the users into revealing their passwords to unknown parties by resorting to
emotionally appealing the human intellect (Erbschloe, M. 2020). Countermeasures
to these threats include carrying out internal trainings with the human factor of
the equation in which they are taught the dangers of these actions and why they are
considered reckless.

Figure 2 demonstrates hands down the dangers that the writing of passwords poses.
According to (Arstechnica 2020), during an interview of an employee from a French
television network, viewers were able to read a set of passwords belonging to the
internal accounts of the company (they can be seen in the top-left corner in the image).
This is a clear and applied example of the previous type of attack and why it should be
avoided.

“Exploiting multiple password use” – also known as a master password, it will be
analyzed later on. In this case, people who use the same password over different
platform make it a lot easier for attackers to penetrate the different systems accounts of
the same user. Countermeasures include forbidding users to pick similar passwords.

Figure 2 – Password leak, taken from arstechnica.com

72. Theory

To conclude all the information presented above, there are certain barriers that can
be posed between an attacker and the credentials’ virtual location. However, if they
were to be stored in their stock version (plain text) in the database, as presented in the
subchapter 2.1.1 Login system, it would mean the ideal scenario for the culprit, as he/
she would not have to fight any other defense mechanism that concerns the actual
password. So, in order to avoid this and to provide a better protection, the developers
had created encryption protocols which, when used, would store a scrambled version of
the original user input, rendering useless the skimming of the rows of the database by
the human eye. (Stallings, W., & Brown, L. 2018).

According to Wikipedia - Encryption (2020), encryption is the “process of encoding
information” and it has existed in form or another since the ancient times. It has been
used for both military applications and civilian, in the past, while nowadays, in the
digital era, it is also helpful under cryptography patronage, for security over the internet
for a plethora of fields (financial, medical, etc.). Its main use is to protect sensitive/
private information that is sent over unsecure channels or, as follows, to protect online
password storage. As the definition suggests, it deals with encoding information so
that a malicious individual cannot get ahold of the information, while the receiver can
decipher it successfully (Kessler, G. 2020).

However, for practical applications regarding password security, encryption translates
as hashing and it started out as a protection against hackers which would, when getting
access to a plain-text password file, download it and instantly gain access to all the
accounts listed. The developers’ answer to this threat was to create hashing algorithms,
which would take any string given as an input and release an output string of a certain
number of characters: for the sake of this explanation, let us assume 32 characters (Han
et al.,2014).

The innovation that this method brings to the table is that no matter the length of the
input, the output will contain the same number of characters; in addition, a string that
will be submitted through the hashing algorithm will always produce the same output
result, called hash. This, in turn, opens up the opportunity of being able to handle the
hashed version of the password for any of the steps (creation of account, credentials
change, user authentication), without even having to get in contact with the actual plain
text sensitive information, providing the developers with the foundation for the fight
against password theft (Wordfence 2020).

However, hashing algorithms are not flawless and the breakthrough that allowed
them to be useful in the first place is the key to their weakness: if an input string has
a unique corresponding output string regardless of the variables, then the solution to
hacking these hashes is to use tools that try every possible combination of strings until
their hash matches the one from the stolen database sector. This is a more appropriate
description of the Brute-force attacks mentioned in 2.2. Attacks against passwords and in
actuality all it does is to greatly delay the attackers in finding out the passwords, time
dependent on their hardware configuration and capabilities. Alternatively, since the
hashes are always the same, a collection of the most popular string combinations (words

2.3. ENCRYPTION

82. Theory

and such) and their hashes can be put in place, greatly reducing the time it takes to
guess the password, since the process now excludes the time required to create the
hashes and it simply skips to the comparisons. Such a collection of words is called a
Rainbow table and it is a very convenient method to crack hashes with no additional
security. In order to protect against these, the developers were forced to adopt salts in
the password handling (Wordfence 2020; Han et al., 2014).

Since the rainbow tables contain hashes of known strings/words, the solution is to make
said words adopt a random appearance. Therefore, simplistically put, a salt is a random
generated piece of text that is allocated before or after the initial password, with the
resulting combination being hashed afterwards. Since the salt is random, it renders the
rainbow table useless. Since the result is still hashed, it greatly reduces the brute force
attacks.

Figure 3 displays a flowchart on how salting the passwords works. Therefore, using the
newly gathered information on how encryption works, along with the examples from
the above figure, the updated version of the authentication system presented at 2.1.1.
Login system will have the following schematic representation (Wordfence 2020):

When creating the account:
1.	 A new user chooses the desired password, in this case “Apple”;
2.	 The system generates a random text, called salt, in this case “yrtZd”;
3.	 The system concatenates the password and the salt, in this case resulting 		
“AppleyrtZd”;
4.	 The system uses the hashing algorithm on the combined string and ends up with
a specific hash;
5.	 The system stores the hash from point 4, along with the salt in the specific
database. It is important to note that if the salt were to be thrown away, the
authentication would be impossible, since the salt is randomly generated.

Figure 3 – Password hashing with salt, according to wordfence.com

92. Theory

When authenticating:
1.	 The same user as in the creation process wishes to login. He inserts his password,
in this case “Apple”;
2.	 The system, knowing the username, retrieves the salt along with the hash from
the database. Note that it is not the original password’s hash, but the original password
+ salt combination’s;
3.	 The system concatenates the inputted password with the retrieved salt, in this
case “AppleyrtZd”;
4.	 The system hashes the string from point 3;
5.	 The system compares the string from point 4 to the hash retrieved from the
database. If the match is positive, then the passwords are identical, so the user is valid
and therefore granted access. A good observation is that this system does not even need
to handle the plain text password at any point, which is what a good system should do,
for a security and privacy point of view.

Because of this, the hacker’s attack strategy has to change from the previous approach.
He now must concatenate the salt to any string he might attempt to submit. This
renders the rainbow tablet useless and also hinders the brute force attack, since longer
strings make up for longer permutations of characters, thus longer cracking time.

As concluded by the previous subchapters, cracking a password cannot be avoided, but it
can be delayed in such a way that the amount of time taken to crack it heavily outweighs
the benefits, in order to discourage any eventual attacker.

Wordfence (2020) argues that since the hardware is evolving and the most modern
GPUs can process string combinations at a much greater pace than when the salts
were created, passwords need to be reinforced in some way. A password 9 characters
long consisting of a combination of numbers and lowercase letters will give out
101,559,956,668,416 possible passwords (36 to the power of 9). Following suit, a password
made out of 1 and 0, measuring 4 digits will give out 16 combinations (2 to the power of
4). Lastly, same 4-digit password consisting of lowercase, uppercase letters, numbers
and 10 symbols will yield 26,873,856 combinations.

As Han et al., (2014) also present, the important conclusion that needs to be drawn
from these calculations is that combinations of various characters from the keyboard,
along with a healthy length of the password, can lead to improving the security in a
radical manner. In addition, to back this claim from a research point of view, there are
a lot of papers that study the importance of strong passwords and this only shows how
important this actual topic is. However, as Lisa et al., (2010) tell us, “Computer security
experts recommend the use of strong passwords, but do not necessarily agree on their
exact characteristics. However, the majority of strong password recommendations
do include the combination of letters, numbers, and symbols or special characters “.
This shows that the experts slightly differ in approaches, which means that the field
is under rapid development and no consensus has been reached yet. The same authors
mention that “Last, users should change their passwords on a regular basis, with
recommendations ranging anywhere from 30 to 120 days”, recommendation that is

2.4. STRONG PASSWORDS, ROLE AND NECESSITY

102. Theory

completely overlooked in other studies of the same field. In their study, Komanduri et
al., (2011) consider different levels of entropy (unpredictability) when studying the effect
on password selection on users’ behavior.

Figure 4, containing data gathered in 2012, shows the amount of time it would take
computers from that year to crack passwords made up using different rules (Inetsolution
2020). To put the year factor into context, the table below presents three measurement
tools from actual times which show how the hacking technique of brute-force attacks
has improved over the years.

Figure 4 – Password cracking time, taken from inetsolution.com

112. Theory

The table above uncovers a very interesting and unique view. Naturally, according to the
theory presented until now, a combination of uppercase, lowercase letters, numbers and
special characters of more than 10-15 letters should be relatively safe against cracking.
However, since the password cracking tools got improved, it is no longer considered
safe practice to use the aforementioned combination. Because of habit, people tend to
use passwords tricks that they can relate to (such as replacing “O/o” with “0”, “a” with
“@”, etc.), or use letters that are close to the keyboard to make up for missing password
length; more will be explained later in this thesis.

Therefore, as the second half examples show, using combinations that form no apparent
word is beneficial. Coincidentally, the last example, which contains only lowercase
English words and the “ “ special character is rated amongst the toughest to crack,
even though, theoretically, it does not respect almost any of the rules. This could be
called a contradiction, an exception to the rule, and it happens because apparently the
extreme length of the password makes up for not adhering to almost any of the practices
considered safe.

Password
Time to crack

(My1login 2020)
Time to crack

(Randomize 2020)

Time to crack
(Online Domain

Tools 2020)

“password”
Less than a second, the
password is comprised
of a very common word

1.:13 minutes 0 seconds

“P@s$w0rD”

Less than a second,
since the password
is a very common

combination of
characters

24 days, 20 hours Around 1 minute

“P@
s$w0rDasd”

3.46 seconds, since
the password is a very
common combination
of characters, followed

by a combination of
characters close on the

keyboard layout

57377 years, 10 months Around 2 years

“CerP*%204”
12 centuries, very

good combination of
characters

6 years, 5 months Around 2 hours

“earth is a
planet like
mars and
jupiter”

10 thousand trillion
years

6.725539236313682e+51
years

About 116
octillion years

122. Theory

As a note, it can be deduced from the calculators above that there is no specific
consensus between the security experts, no accepted rule that can always act as a
guiding constant. However, before drawing any long-lasting conclusions, one must
always consider the parameters that have been set when creating the calculators, like
hardware and such other conditions (Ntantogian et al., 2019).

As the explanations from previous subchapters prove, strong passwords are the way
to go when discussing the protection that the encryption offers. However, as a lot
of studies and surveys show, users are not always “on board” when it comes to the
password regulations, and even after they have been presented with the risks (e.g. in
introductory courses on security in corporations), some of them still fail to adhere to the
rules. They disregard the protocols, they write the passwords down, communicate them
to others, do not pick the best character combinations, etc. (Shay et al., 2010). According
to Dell’Amico et al., (2010), people have tried finding a common ground between using
and remembering strong passwords, which clearly demonstrates the hard time the users
have when it comes to strong passwords, a clear violation towards user-friendliness.
They give example of a practice in recent years where users create strong passwords by
remembering the acronyms and punctuation of quotes: ‘For example, the phrase “Alas,
poor Yorick! I knew him, Horatio” becomes “A,pY!Ikh,H”.’ However, this practice is
being countered by hackers, who are trying to import collections of said quotes into their
dictionaries.

For convenience purposes and to combat the strong password challenge, since the reflex
is to avoid frustration, the user’s intellect has subconsciously devised some attempts
to make the password selection easier: they would use known words and replace the
needed characters within them (practice proved unsafe in 2.4. Strong passwords, role
and necessity) or they would use master passwords.

A master password is essentially a password that is used in an unchanged from across
multiple platforms; it can either be strong or weak, but it must be consistent in its
format and it must unlock access for the same individual to multiple accounts (Wash et
al., 2016). Since the credentials used in unlocking said accounts rely on a username and
password, and not more than once, platforms ask for the email as a username, it is ok
to assume that the practice of making use of master passwords is a bad approach. Since
the backend of systems is hidden, for security purposes, a user can only trust that the
developers have protected it against the latest security breaches and, what is more, the
system is under constant update against the exploits that have not yet been discovered.
This might be true for big corporations, but not so much in case of small businesses
whose website the user is actively using.

Well, judging by the risks and procedures presented in this thesis, if an attacker gets
ahold of a user’s credentials and the password is a master one, then it is risk-free to
assume that the hacker will gain complete access over all accounts registered to the
specific username/email address. If the concept of the master password is followed
throughout its definition, then even the email address lead in the process will be
accessible using the same password, which can rapidly turn into a costly loss of

2.5. USABILITY IMPLICATIONS

132. Theory

information for the user. Therefore, with this explanation in mind, one can only assume
that the use of master passwords is greatly discouraged because of security purposes.

On one side, this failure of compliance from the user makes the job of the developers
much more tedious and their effort futile, and on the other side, it exposes their
sensitive information to high risks, as some say that the path to breaching a system
is still the human component from the equation, as it is considered the weakest link.
Schneier, B. (2004) states ‘... security is only as good as its weakest link, and people are
the weakest link in the chain.’; Loo, A. (2008) concurs “In most systems, the weakest
components are the end users, particularly when they are accessing the corporation’s
databases with wireless facilities at home.”.

A good approach to understanding why this happens would be to look at it from another
perspective: this bad habit is not embraced by security experts, but the users should
not be labelled as “enemies” (Adams, A., & Sasse, M. 1999). From a cognitive point
of view, the human memory is somehow limited when it comes to memorizing the
overly complicated passwords (Wiedenbeck et al., 2005), especially since nowadays a
lot of platforms use personal accounts. The passcode’s format is not helping, since the
ones that are truly secure are composed of a string that has no meaning, contributing
to the forgetfulness manifested by the user. If they were to respect the full security
considerations, it would result in them forgetting the passwords that they rarely use or
even the ones they use more often, in case of a very complex string of characters (Shay
et al., 2010). In turn, this would lead to an emotional trigger which would make the
users feel frustrated and annoyed. Therefore, it is safe to state that the matter of strong
passwords turns into a Usability versus Security paradox: it is hard to uphold security
without sacrificing usability and the other way around (Dell’Amico et al., 2010).

Researchers, though, have recognized the importance of incentivizing the user and
this is why they have carried out studies about motivating them. Adams, A., & Sasse,
M. (1999) identified that the users do not put a lot of effort into the security of their
accounts and, even if they are aware of the security considerations, most of them lack
motivation and they see authentication as a gate towards their end goals, a gate through
witch they should pass as fast as possible and without much stress. Same authors even
composed a set of “recommendations” to help the security experts in addressing the
users. Other researchers concluded that the reasons why people are not keen to respect
the security policies are those of social and psychological nature (Sasse et al., 2001).
However, newer studies (Yıldırım, M., & Mackie, I. 2019) show that the users can be
persuaded to obey the security policies if the systems support them throughout the
way: “Most systems that impose password restrictions offer their users password advice
about creating passwords”. As such, there already are some solutions in place, that are
not fault free though, as it will be shown in the next subchapter.

As Yıldırım, M., & Mackie, I. (2019) conclude, if the system works with the user instead
of imposing a certain rule, the outcome is more likely to be favorable and people would
listen to certain policies without that much struggle; they just need a motivating factor.

142. Theory

2.6.EXISTING PASSWORD SOLUTIONS

Thankfully, to address the challenge of users not respecting the password security
guidelines, the IT developers have come up with a few fixes. In an attempt to appeal to
the cognitive function of the users, some websites use passwords meters with colors
representing weak (red), medium (orange) and strong (green) passwords. However, this
meter is for advising purposes and it can be ignored by users. Other developers created
algorithms that can allocate random passwords to the user, which are very safe indeed.
The downfall of this approach, as explained in subchapter 2.2. Attacks against passwords,
is that users will write this kind of password down, as it would be very inconvenient and
not productive enough to remember. (Yıldırım, M., & Mackie, I. 2019)

Figure 5 contains the backend of the popular content management system Wordpress
which illustrates the fixes presented above (both the random password generator and
the password meter). The figure is a screenshot taken from the backend dashboard.

A third option that the developers went for is the creation of so-called password
managers. According to Li et al., (2014), a password manager is a software whose
purpose is to generate and store secure passwords for its users. The initial breakthrough
is that a password manager works like a vault that can be open with a single password.
Inside the vault there are all the passwords that the user needs for his various online
accounts. Therefore, it takes away the cognitive limitation of the user by relieving him
from having to create and remember difficult passwords. They can be built into the
browser (e.g. Google Chrome™), standalone applications (e.g. LastPass™, DashLane™),
or they can act as browser extensions (e.g. LastPass™).

Even though password managers could be viewed as improvements, studies show that
users do not prefer them and that they do not come without flaws

Oesch, S., & Ruoti, S. (2019). published a paper which presents security vulnerabilities

Figure 5 – Developer ideas to improve friendliness in password creation, taken from (Wordpress
2020)

152. Theory

that join the password managers (e.g. network injections). In addition, the way the
passwords are stored presents flaws: they are decrypted for use with a key derived from
the main password; since the main password must be stored in the database, this opens
up ways of attacks as the ones mentioned under 2.2. Attacks against passwords. If the
main password were to fall to unwanted parties, then all the passwords that a user needs
would be compromised. The risk of this is immense. Therefore, to track back to the
general security considerations, it is beneficial to use a strong password. Which, in turn,
given the negligent use of passwords explained in subchapter 2.5. Usability implications
can lead to mismanagement or even forgetting. It is easy to see why this becomes a
vicious circle.

(Alkaldi, N., & Renaud, K. 2016) present a paper which deals with the usage and
popularity of password managers (even though it focuses on smartphones, the point
stands across devices). The survey carried out within it mentions that the password
managers are not as widespread as it would be desired and gives as reasons: “Poor
advertisement and a failure to reassure potential users about the trustworthiness of
these applications could well explain the poor uptake of these tools. Moreover, the
analysis reveals that designers should pay more attention to the user experience”.
Ayyagari et al., (2019) conclude that “our study indicates that perceived vulnerability
and perceived severity of password loss encourages the use of password managers.
However, trust and ease of use resulted in counterintuitive findings”.

Based on all this research, it is clear that the existing solutions are, at best, mitigating
the risk, not eliminating it, while password managers are far from perfect and they are
not popular amongst users.

This thesis and, by extension, this prototype, aims to explore the password creation
process in the hopes of finding a solution for the existing problems which were
presented in the previous chapter.

While examining the issues at hand, my idea was to force the burden of creating a strong
password from the user’s mind to the login system, as it is clear that strong passwords
are a hassle and are not exactly user friendly. So, the purpose was to alter a login system
in a manner that no matter the password chosen by the user, the system would handle
it in such a way that it would pass as a strong password in the database. Since the user
did not know how the system was designed, a critical requirement was for him to be able
to login with his chosen password, no matter how weak, Obviously, this kind of attempt
came with some challenges of its own:

-	 For the solution to be viable, the password security policies must not have been
inferior in any way to what had already existed;
-	 The missing text required for the password to pass as a strong one must
have been created in a structural manner, so that it could be retrieved during the
authentication phase (as explained in subchapter 2.2. Attacks against passwords);
-	 The system must have considered best/worst case scenarios and have viable
solutions for both.

3. PROTOTYPE

16

How the prototype works

In order to achieve a successful result, I had to keep in mind that the users would insert
weak passwords as input, and I would have no way of knowing which input was missing
in order to make it a strong password. I also needed to know that the generated text
should be random. With these considerations, I turned my attention to the salt, which
is a randomly generated string, that is kept in the database. The first step was to strip
the salt of the letters and then use the string of digits resulted to generate the missing
input for the weak password. Starting from backwards, I took the digits in groups of 2
and 3 and I turned them one at a time into the corresponding ASCII character (e.g. “a”
in decimal ASCII code is “97”). The algorithm would then manipulate the string more
than once, in order to accommodate for any of the missing characters, whichever they
may be. (The parameters in this case at least were 1 number, 1 uppercase, 1 lowercase,
1 special character, with minimum 15 characters). After the characters were generated,
they would be added to the back of the weak password. During authentication, the weak
password would overgo the same treatment, since the salt is in the database and it would
yield the same result, allowing the user to authenticate with a weak password.

It is important to note that since it is randomly generated, the minimum characters
number could me bigger, and in case the salt would not be long enough, more
mathematical operations could follow, like checking for the salt times 2, etc. Much more
complicated equations can be added to the algorithm, ensuring that the hackers could
not, in any way, find out the algorithm and thus facilitating their work. One option could
be, for instance, incorporating the weak password’s ASCII codes to the algorithm (since
that’s hidden, it would make for a very good defense). The separate document attached
to this thesis will give an insight and a better understanding into how the code works.

Figure 6 – The ASCII table, taken from google.com

173. Prototype

The interface

The solution that I came up with is a prototype written in HTML, PHP and MYSQL. The
system encompasses a simple login environment accessible from a web browser. HTML
is used to display the signup form, PHP is used to take the credentials, handle them in
the background for both creation and authentication, and MYSQL is used to access the
database in which the credentials are stored. The prototype uses the exact steps that
were described under 2.2. Attacks against passwords.

Figure 7 shows the interface of the prototype. The main page consists of 2 simple forms
that require a username and password (one for signing up, one for logging in) – they
are displayed on the left. The right panel shows what the authenticated user sees: his
credentials and a button allowing him to log out, as well as information only visible to
the logged in users.

Figure 7 – The prototype’s interface

The functionality

Figure 8 – Prototype’s database Entity-Relationship model

183. Prototype

Figure 8 describes the table “users2” necessary for the demonstration: “id” is the
id column for the Primary Key; “user” corresponds to the username; “pass” is the
password column; “salt” is the necessary salt.

For the sake of demonstrating how the prototype works, the following screenshots of
the database will store a password that is not hashed, for the result to be understandable
enough. In addition, the parameters of defining a strong password will be at least
1 lowercase and at least 1 uppercase letters, at least 1 number and at least 1 special
character, with no less than 10 characters in length. A password to satisfy these needs is
“CerP*%204h”, which I will call given password.

Figure 9 is a screenshot of the database taken to better demonstrate the functionality of
the prototype:

-	 First scenario:
input – given password, result stored - given password (CerP*%204h);
-	 Second scenario:
Input – given password without special characters, stored result - “CerP204h#J”;
-	 Third scenario:
Input - given password without numbers, stored result - “CerP*%h8E[“;
-	 Fourth scenario:
Input - given password no uppercase, stored result – “er*%204hUI”;
-	 Fifth scenario:
Input – given password no lowercase, stored result – “CP*%204aV@”;
-	 Sixth scenario:
Input – letter “C”, stored result – “C]7xMO]$BB”;

Mention 1: all instances can login with the username and the input password,
demonstrating that the prototype is successful.

Mention 2: if the input field is left blank, the credential creation process will not iterate.

Mention 3: all the stored results are marked as “strong passwords” when using the
measurement tools presented at 2.4. Strong passwords, role and necessity, proving the

Figure 9 – Table entries

193. Prototype

prototype security considerations are not inferior to the already existing methods.
To sum up, this prototype allows the usage of weak passwords and handles them in
such a way that the result stored in the database is that of a strong password. When
authenticating, the user will type in his easily remembered password and the system
will handle it under the same conditions as in the creation step, so the user will have no
problem accessing the account, as long as the passwords match.

The prototype that I have presented along with the improvements that it brings into the
field can be looked at from two perspectives: the security and the usability.

Security

When considering the encryption aspect, the prototype’s passwords that are stored in
their hashed version in the database are not inferior in any way to the old fashioned
method, since strong passwords are agreed upon as containing a variety of characters
of a specific length, which both storing methods do that. As mentioned in the previous
chapter, all the passwords comprised in the testing are marked as “strong” when
subjected to the same type of measurements as the user created strong passwords.

When considering password complexity, the system’s worst-case scenario was that
the password input during the account creation phase would be nonexistent, in which
case the algorithm would come up with a strong password; that has been dealt with by
imposing a minimum number of characters. Consequently, if this minimum number of
characters were 1, it would become risky for the user since the hacker could simply guess
the password by typing in 1 character. Depending on the number of attempts registered
by the countermeasure (explained in subchapter 2.2 Attacks against passwords), the
attacker would have a number of chances (in that case 5) out of 94 single character tries.
Since this may be considered by some a big risk, increasing the minimum number of
characters can exponentially lower the probability of guessing the right password. If it is
increased to 2, then the number of chances is 5 in 8742 possible solutions (94 times 93;
mathematical formulas of combinations and permutations). The number of minimum
characters can be increased at will.

Some might argue that the code that handles the passwords can be broken. However,
if it is compiled in the same instance as the pre-existent common database insertion
process, it is as safe as its predecessor.

Some might also argue that this approach will reduce the character search range for the
hackers. However, if they were to get ahold of the hashes from the database, they would
face a complex password which would require a long time to crack, as its predecessor.
It would be highly unlikely for them to catch on what the prototype does, since no
give away would get them “out of the dark”; seeing that the only requirement was a
minimum number of characters, they would most likely think the opposite, that they
are facing an unsecure system, which would render their brute force techniques useless.
In the worst-case scenario where a hacker would actually catch on what the prototype

4. VALIDATION OF PROTOTYPE

20

does, there is an immense number of ways to handle a password to make it stronger,
which would, if anything, delay them even further.

In addition, since the prototype’s algorithm is not limited by one solution, it can be
re-written to handle the strengthening of the weak password in multiple ways. If this
is the case, integrating instances of the prototype to different web platforms which
result in strong passwords, but different combinations of the missing characters (apart
from the user input), can lead to the obsoletion of master passwords. In practice: a user
could use a weak password everywhere, but since the algorithm is doing the same thing
differently, the user ends up with different passwords in databases. If the hacker breaks
one of the databases, the rest of the accounts are still safe.

Usability

One of the important accomplishments of this idea translated into a prototype is the
release of the cognitive burden from a user when creating an account. Since the system
does all the hard work for the user, the latter is no longer inconvenienced by having to
remember tricky passwords. This allows him to feel at ease, knowing that his chosen
familiar password is not weak anymore. From my point of view, this is a great example
of user-friendliness expressed with the help of technology.

To back up the studies proving that password managers are not popular among
users (subchapter 2.6. Existing password solutions), an argument against using
password managers can be made. They act as intermediaries between users and their
authentication objectives and while they for sure contribute to the convenience of not
having to remember overly complicated passwords to feel safe, they gather all the secret
codes in one place; for some people, this can create an anxiety feeling.

In addition, an intermediary means another link in the chain of users’ data protection.
As Loo, A. (2008) states, “The strength of a computer system’s security is always
measured by its weakest component”, one can argue that a poorly built password
manager can create more problems than it solves. In case of well-designed software,
why complicate the chain with another link when it can be completely overlooked? All
these aspects can be solved by using the prototype.

Looking at the prototype versus password managers sequence of actions with a GOMS
mindset (Card et al., 1983), it is clear that the prototype provides a much higher
efficiency, removing steps from the process and thus shortening the time needed for the
user to retrieve the password and insert it into the corresponding field.

Prototype: user opens website -> user inserts weak, but convenient password -> user
logs in;

Password manager: user opens password manager -> user logs in, searches for the
password needed -> user opens website -> user must type in secure password (may lead
to errors) -> user logs in.

Note: the actual GOMS test has not been conducted, as there are different password
managers and the objective was not to single one out. However, it is clear from the

214. Validation of prototype

example above the efficiency of the prototype. If the test were to be conducted, it
would result further proof on time saved, as the use of the password managers require
overwhelmingly more keyboard and mouse usage.

As another argument in favor of using the prototype, not having to rely on too many
tools to ensure the effectiveness of the objective may offer the users the satisfaction of
owning their own actions, which leads to a cognitive impression of fulfillment.

The discussion points that will occur in this chapter treat both the impressions while
working on this thesis, as well as what future could bring for this idea.

Throughout the thesis I have put belief into my idea, partly motivated by the fact that it
is a current issue that affects a lot of people, me included. While doing the research for
the theory and the prototype creation, I tried to create scenarios in which my prototype
would fail and how to fix those in a secure manner, so as not to defeat the purpose of
this thesis. However, given the time constraints, I feel like I was not able to create a
perfect and fully operational model, but I am positive that this idea can set a solid basis
for work that could greatly improve the user friendliness or password creation in the
time to come. Therefore, an extensive testing session of my solution might provide the
researchers with flaws. In any case though, since the prototype is just for showcase, to
provide an applied perspective upon the idea, if it proves itself to be a failure, then there
are different approaches that can be tried, starting from the same foundation as this
thesis. As some of the studies presented in the thesis show, passwords have been viewed
with great interest over the years and since the IT field is rapidly evolving, more and
more people will engage with studying this concept. This, in turn, will hopefully lead to a
possible breakthrough in the security of internet authentication.

When it comes to the aspect of motivating the user to use strong passwords, the idea
behind the thesis, as well as the prototype, solve a great number of reasons identified
by researchers as the main demotivators (“identity issues”, “social issues”, “double
binds”, etc. - Sasse et al., 2001), as it would simply overlook those innate fears, fears
that a system cannot possess.

Regarding future implementations, if this solution ever ends up out of the controlled
environment, I think a thorough informational campaign must be carried out in order
to inform users that the system is still safe, regardless of dropping the visible strong
password requirements. This must be done in a careful manner that does not give the
attackers anything to work with.

5. DISCUSSION

22

From the beginning of this thesis I set out to answer the question:

How can we shift the burden of creating and thus remembering strong passwords from the
users to the authentication system, without sacrificing security?

I started off by analyzing passwords, what they are used for, how they are created, how
they are stored and all the security implications of these actions. I researched different
aspects about passwords and what actions/reactions they caused: how the rapid
development of the IT field made them susceptible to attacks and how one could protect
against these attacks. I tried to build a systematic approach on how they work and then,
I moved on to the main actor in the problem formulation, the password’s strength. I
explained with solid examples why the systems need them, what they imply, and, from a
usability point of view, why they are not the easiest solution to work with.

Then, I presented existing solutions for passwords and I introduced a basic login system
prototype to show that it is possible to shift the burden of creating and remembering
strong passwords from the user to the authentication system, without sacrificing
the security considerations when it comes to storing passwords. I am aware that the
prototype does not integrate all the features that protect against all known security
flaws and they need to be integrated should the prototype be successful, however that is
not the focus of the study.

As a last step of this thesis, I created a specific chapter which dealt with validating my
prototype against the existing methods. Given the flaws that were presented through
theory, these methods are far from perfect and there is still room for improvement,
which is why the researchers will surely still continue in this direction.

With this, I conclude that the problem formulation and the associated research
questions presented in chapter 1. Introduction have been answered in a satisfying manner
through the use of theoretical and practical knowledge put forth in their respective
chapters.

(Adams, A., & Sasse, M. 1999). Users are not the enemy. Communications of the ACM,
42(12), 40–46. https://doi.org/10.1145/322796.322806

(Alkaldi, N., & Renaud, K. 2016). Why do people adopt, or reject, smartphone password
managers? In EuroUSEC ‘16: the 1st European Workshop on Usable Security Internet
Society. https://doi.org/10.14722/eurousec.2016.23011

(Arstechnica 2020) Hacked French network exposed its own passwords during TV
interview. Arstechnica homepage. Visited 28.08.2020
https://arstechnica.com/information-technology/2015/04/hacked-french-network-
exposed-its-own-passwords-during-tv-interview/

6. CONCLUSION

7. REFERENCES

23

(Augusto, J. 2010). Past, present and future of ambient intelligence and smart
environments. 67, 3–15. https://doi.org/10.1007/978-3-642-11819-7_1

(Ayyagari et al., 2019). Why Do Not We Use Password Managers? A Study on the
Intention to Use Password Managers. Contemporary Management Research, 15(4),
227–245. https://doi.org/10.7903/cmr.19394

(Card et al., 1983). The psychology of human-computer interaction. Erlbaum

(CSOonline 2020). The biggest data breaches of the 21st century. CSOonline homepage.
Visited 26.08.2020
https://www.csoonline.com/article/2130877/the-biggest-data-breaches-of-the-21st-
century.html

(Dell’Amico et al. 2010). Password Strength: An Empirical Analysis. 1–9. https://doi.
org/10.1109/INFCOM.2010.5461951

(Erbschloe, M. 2020). Social engineering: hacking systems, nations, and societies. CRC
Press.

(Han et al., 2014). Password Cracking and Countermeasures in Computer Security: A
Survey

(Herley, C., & Van Oorschot, P. 2012). A Research Agenda Acknowledging the Persistence
of Passwords. IEEE Security & Privacy, 10(1), 28–36. https://doi.org/10.1109/MSP.2011.150

(Inetsolution 2020). Complex passwords are harder to crack, but it may not matter.
Inetsolution homepage. Visited 30.08.2020
https://www.inetsolution.com/blog/june-2012/complex-passwords-harder-to-crack,-
but-it-may-not

(Informationisbeautiful 2020). World’s biggest data breaches and hacks.
Informationisbeautiful homepage. Visited 30.08.2020
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-
hacks/

(Kessler, G. 2020). An overview of cryptography. Garykessler homepage. Visited
28.08.2020
https://www.garykessler.net/library/crypto.html

(Komanduri et al., 2011). Of passwords and people: measuring the effect of password-
composition policies. 2595–2604. https://doi.org/10.1145/1978942.1979321

(Li et al., 2014). The Emperor’s New Password Manager: Security Analysis of Web-based
Password Managers. USENIX Security Symposium.

(Lisa et al., 2010). AN EMPIRICAL STUDY OF USER AUTHENTICATION: THE
PERCEPTIONS VERSUS PRACTICE OF STRONG PASSWORDS. Issues in Information
Systems, 11(1), 256–265.

247. References

(Loo, A. 2008). The myths and truths of wireless security. Communications of the ACM,
51(2), 66–71. https://doi.org/10.1145/1314215.1314227

(My1login 2020). How secure is your password? My1login homepage. Visited 30.08.2020
https://www.my1login.com/resources/password-strength-test/

(Ntantogian et al., 2019). Evaluation of password hashing schemes in open source
web platforms. Computers & Security, 84, 206–224. https://doi.org/10.1016/j.
cose.2019.03.011

(Oesch, S., & Ruoti, S. 2019). That Was Then, This Is Now: A Security Evaluation of
Password Generation, Storage, and Autofill in Thirteen Password Managers.

(Online Domain Tools 2020) Password checker online. Online domain homepage. Visited
30.08.2020
http://password-checker.online-domain-tools.com/

(Randomize 2020). How long to hack my password? Randomize homepage. Visited
30.08.2020
https://random-ize.com/how-long-to-hack-pass/

(Sasse et al., 2001). Transforming the “Weakest Link” — a Human/Computer Interaction
Approach to Usable and Effective Security. BT Technology Journal, 19(3), 122–131.
https://doi.org/10.1023/A:1011902718709

(Schneier, B. 2004). Secrets and lies: digital security in a networked world (Paperback
ed.). Wiley.

(Shay et al., 2010). Encountering stronger password requirements: user attitudes and
behaviors. 1–20. https://doi.org/10.1145/1837110.1837113

(Stallings, W., & Brown, L. 2018). Computer security: principles and practice (Fourth
edition, global edition.). Pearson.

(Usecure.io 2020). Security training topics for 2020. Usecure homepage. Visited
26.08.2020
https://blog.usecure.io/12-security-awareness-topics-you-need-to-know-in-2020

(Wash et al., 2016). Understanding Password Choices: How Frequently Entered
Passwords Are Re-used across Websites. SOUPS.

(Wiedenbeck et al., 2005). Authentication using graphical passwords: effects of
tolerance and image choice. 93, 1–12. https://doi.org/10.1145/1073001.1073002

(Wikipedia 2020 - Encryption). Encryption. Wikipedia homepage. Visited 27.08.2020
https://en.wikipedia.org/wiki/Encryption

(Wikipedia 2020 - Password). Password. Wikipedia homepage. Visited 26.08.2020
https://en.wikipedia.org/wiki/Password

257. References

(Wordfence 2020). Password authentication and password cracking. Visited 27.08.2020
https://www.wordfence.com/learn/how-passwords-work-and-cracking-passwords/

(Wordpress 2020) Software tool, downloaded from the Wordpress homepage. Visited
31.08.2020
https://wordpress.org/download/

(Yıldırım, M., & Mackie, I. 2019). Encouraging users to improve password security and
memorability. International Journal of Information Security, 18(6), 741–759. https://doi.
org/10.1007/s10207-019-00429-y

267. References

