Cyclodextrin binding constants as a function of pH for compounds with multiple pKa values

Samuelsen, Lisa; Holm, René; Schönbeck, Jens Christian Sidney
Published in:
International Journal of Pharmaceutics

DOI:
10.1016/j.ijpharm.2020.119493

Publication date:
2020

Document Version
Peer reviewed version

Citation for published version (APA):
Samuelsen, L., Holm, R., \& Schönbeck, J. C. S. (2020). Cyclodextrin binding constants as a function of pH for compounds with multiple pKa values. International Journal of Pharmaceutics, 585(585), Article 119493. https://doi.org/10.1016/j.ijpharm.2020.119493

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy

If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work immediately and investigate your claim.

Cyclodextrin Binding Constants as a Function of pH for

Compounds with Multiple pK_{a} values

Lisa Samuelsen ${ }^{\text {a }}$, René Holm ${ }^{\text {a,b }}$, and Christian Schönbeck ${ }^{\text {a }}$

${ }^{a}$ Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000
Roskilde, Denmark; ${ }^{b}$ Drug Product Development, Janssen Research and Development, Johnson \& Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium
*Corresponding author: rholm@its.jnj.com

Abstract

Complex formation between cyclodextrins and ionizable guest molecules depends on pH . The neutral species of an ionizable guest molecule in general has the highest affinity for the cyclodextrin cavity, but ionized species will also be able to form complexes with cyclodextrins. This work presents a theoretical expression for the relationship between the stability constant and pH for interaction between neutral cyclodextrins and ionizable guest molecules with multiple $\mathrm{p} K_{a}$ values. Input parameters for the theoretical expression are $\mathrm{p} K_{a}$ values of the guest molecule and stability constants for the complex at specific pH values. The pH profile of the stability constant for a complex depends on the acidbase properties of the guest and the closeness of the $\mathrm{p} K_{a}$ values, and examples of pH profiles for polyprotic acids, bases and amphoteric guests are shown. Empirical data sets from the literature were used to confirm the accuracy of the theoretical expression, and Monte Carlo simulations were used to validate that the theoretical expression yield a good fit to empirical data. Lastly, an experimental protocol was suggested, and a freely available graphical user interface is presented to facilitate easy use of the theoretical expression.

Keywords: Distribution of species; Ionization; Hydrophobic interactions; Monte Carlo simulations; Drug Development; Graphical User Interface;

1. Introduction

Cyclodextrins (CDs) are well-known for their ability to form inclusion complexes (Loftsson and Brewster, 2012). Natural CDs consist of ($\alpha-1,4$)-linked glucopyranose units forming a cone-like structure with a hydrophilic outside and a more hydrophobic cavity (Loftsson and Brewster, 2010). Hydrophobic guest molecules will through non-covalent interactions be attracted to the hydrophobic cavity of the CD (Jansook et al., 2018), and industries like the pharmaceutical, food and cosmetic, use CDs as excipients in their products (Astray et al., 2009; Kurkov et al., 2011). One main advantage of CDs are their ability to improve the apparent physicochemical properties, e.g. solubility and stability, of the guest molecules without altering the original properties of the guest molecule (Loftsson and Brewster, 2010, 1996). This is extremely useful in the pharmaceutical industry, although it is not limited to this particular industry. The physicochemical properties of molecules are important in early stages of drug and formulation development (Bhattachar et al., 2006; Schönherr et al., 2015). Many potential drug molecules are hydrophobic compounds with low solubility, which exhibit poor bioavailability (Williams et al., 2013). Complex formation with CDs improves the apparent solubility without changing the hydrophobic nature of the potential drug, which ensures the ability of the drug to cross lipophilic barriers in the body.

Complex formation between CD and guest molecules is an equilibrium reaction. The stability constant for CD complexes are used to evaluate the complexation, and it is an important characteristic (Loftsson and Brewster, 2010). For example, during drug formulation an extended knowledge of the complexation is necessary to define an optimal robust formulation under all conditions of use.

However, in practice complex formation between CD and guest is often not the only equilibrium that must be considered. The acid-base equilibria is an important additional consideration because
many guest molecules are ionizable molecules, and their charge depends on the pH of the solution (Babic et al., 2007). There might be one or more relevant acid-base equilibria to consider when working with CD complexation. The stability constants for CD complexes with ionizable guest molecules depend on pH (Al Omari et al., 2008; Kuwabara et al., 2006; Samuelsen et al., 2019; Veiga et al., 1996; Zheng et al., 2013). The neutral and ionized version of the same molecule will have different affinities for the CD . The neutral species will in general have a higher affinity for the CD cavity, as it will be more hydrophobic, compared to the ionized form of the same molecule (Cirri et al., 2006). The difference in affinity is difficult to predict, but it depends on the hydrophilic character of the guest and the position of the ionizable group relative to where the complexation occurs (Astray et al., 2009).

The stability constant will change as the experimental conditions change, e.g. the pH of the solution changes. During drug formulation, where the stability of a formulation must be guaranteed over a pH and temperature range, it is important to understand how the apparent stability will change. Also in the food industry, the effect of pH is important (López-Nicolás et al., 2009). It is possible to establish the effect of pH by conducting experiments to determine the stability constant in the entire range of interest, but this requires excessive experimentation, usage of compound and is time consuming (Ghasemi et al., 2011). Thus, one alternative is a combination of experimental determination and equilibrium theories to predict the stability constant for different pH ranges.

Understanding the interplay between the complexation equilibrium and acid-base equilibria can be used to optimize work with CDs. In this work, theoretical expressions for the relation between the stability constant and pH will be formalized. This work will serve as a framework for necessary considerations when working with CD equilibrium systems influenced by pH . Based on the theoretical expression, a graphical user interface was developed to facilitate easy use of the theoretical work.

2. Equilibria situations

Complex formation between CD and guest molecules (D) is an equilibrium reaction, and it can be written as a simple equilibrium diagram (Eq. 1).

$$
\begin{equation*}
C D+D \rightleftharpoons C D: D \tag{1}
\end{equation*}
$$

The equilibrium reaction can be described quantitatively in terms of the stability constant for the complex.

$$
\begin{equation*}
K=\frac{[C D: \text { Guest }]}{[C D][\text { Guest }]} \tag{2}
\end{equation*}
$$

The stability constant is used as an important characteristic during drug formulation, and thus it is essential to understand this value.

In solution, it is possible to have several equilibria simultaneously leading to complex equilibria diagrams. Many guest molecules are ionizable compounds, and the pH of the solution determines the distribution between the various species of the guest molecule, i.e. the guest molecule exists in different ionization states (e.g $\mathrm{H}^{+} \mathrm{D}^{-}$and D^{-}). In a simple example, the guest molecule has one $\mathrm{p} K_{a}$ value, and thus two ionization states (Eq. 3).

$$
\begin{equation*}
H D \rightleftharpoons H^{+}+D^{-} \tag{3}
\end{equation*}
$$

Both the ionized $\left(\mathrm{D}^{-}\right)$and neutral version (HD) of the guest can interact with the CD , though they will have different affinity for the CD cavity. It is possible to write up one equilibrium diagram, which explains the relation between all the different equilibrium reactions in the solution (Scheme 1). The equilibrium diagram shows that the acid base equilibria are linked to the CD complex equilibria.

Guest molecules can also have more than one $\mathrm{p} K_{a}$ value increasing the number of equilibria in the solution. Guest molecules that are either polyprotic acids, bases or amphoteric compounds may have more than two ionization states. Zwitterions are a special case, since they have internal charges, but a net charge of zero. In the relations to the theories presented in this work, it is fair to consider zwitterions as amphoteric compounds with one neutral state. Given that the differences between $\mathrm{p} K_{a}$ values are greater than four, stepwise dissociation can be considered (Eq. 4 and 5).

$$
\begin{align*}
& H_{2} D^{+} \rightleftharpoons H^{+}+H D \tag{4}\\
& H D \rightleftharpoons H^{+}+D^{-} \tag{5}
\end{align*}
$$

When two or more $\mathrm{p} K_{a}$ values are very close to each other, it is possible to have a more complex mixture of ionization states for the guest molecule (Fig. 1B).

The increasing number of equilibria will lead to a more complex equilibrium diagram when also considering the interaction with CDs (Scheme 2). An increasing number of $\mathrm{p} K_{a}$ values will lead to a further complication of the equilibrium diagram. In practice, when the $\mathrm{p} K_{a}$ values are far apart, it is possible to only consider two ionization states of the guest, as only two ionization states will be present simultaneously at a given pH value (Fig. 1A), whereas close $\mathrm{p} K_{a}$ values will show a more complex mixture of ionization states, where multiple species will be present simultaneously (Fig. 1B).

The distribution of species as a function of pH depend solely on the $\mathrm{p} K_{a}$ values of the guest, and it will look similar for polyprotic acids, bases and amphoteric molecules. The charges of the various species must be determined by looking at the structure of the molecule. The neutral species of guest molecule will generally have the strongest interaction with the CD , as it will be more hydrophobic (Cirri et al., 2006).

As demonstrated in Fig. 1, the closeness of the $\mathrm{p} K_{a}$ values determines the complexity of the distribution of species. Increasing the number of $\mathrm{p} K_{a}$ values increases the complexity, and even more so when the $\mathrm{p} K_{a}$ values are close to each other (Fig. 2). Depending on the $\mathrm{p} K_{a}$ values, it is possible to have pH values where multiple species of the molecule exist simultaneously. For cases where the $\mathrm{p} K_{a}$ values are close, multiple species co-exist, and thus several $\mathrm{p} K_{a}$ values will influence the stability constant simultaneously.

In a solution, many equilibria can be present simultaneously, and they will all affect the apparent stability constant. When the guest molecule is ionizable, the apparent stability constant will be a function of pH . This can be exploited to manipulate the apparent stability constant of the solution by changing the pH of the solution. Based on the equilibrium diagrams, it is possible to write theoretical expressions for the relation between the different stability constants and the pH of the solution. This insight can help formulation scientists define the most optimal and robust range for a formulation using CDs as a solubilizing excipient.

3. Theoretical relation between stability constant and equilibrium terms

3.1 Theoretical expression for stability constant as a function of pH

Previously, a theoretical expression for the stability constant, K_{B}, for the complexation between CD:guest as a function of pH was derived and presented (Samuelsen et al., 2019). The expression shows the correlation between $\mathrm{pH}, \mathrm{p} K_{a}$ and the stability constants for the complexation between CD and the charged and neutral species of guest molecule, $K_{i o n}$ and $K_{\text {neu }}$. However, the previous expression is limited to guest molecules with only one $\mathrm{p} K_{a}$ value. Potentially, the guest has multiple $\mathrm{p} K_{a}$ values, and all of the species will be able to form complexes to some extent. It is possible to write up an equilibrium diagram of how these species are linked.

The overall equilibrium for a reaction between CD and drug, D , can be written, and the stability constant, K_{B}, can be expressed in terms of the concentration of the reacting species.

145

150

155

$$
\begin{align*}
& C D+D \rightleftharpoons C D: D \tag{6}\\
& K_{B}=\frac{[C D: D]}{[D][C D]} \tag{7}
\end{align*}
$$

To exemplify, let us consider an amphoteric compound. An amphoteric compound consists of at least three species, and for each species, we can write up an equilibrium reaction for the complex formation with CD.

$$
\begin{align*}
& C D+H_{2} D^{+} \rightleftharpoons C D: H_{2} D^{+} \tag{8}\\
& C D+H D \rightleftharpoons C D: H D \tag{9}\\
& C D+D^{-} \rightleftharpoons C D: D^{-} \tag{10}
\end{align*}
$$

Each of the equilibrium has a corresponding stability constant.

$$
\begin{align*}
& K_{1}=\frac{\left[C D: H_{2} D^{+}\right]}{[C D]\left[H_{2} D^{+}\right]} \tag{11}\\
& K_{2}=\frac{[C D: H D]}{[C D][H D]} \tag{12}\\
& K_{3}=\frac{\left[C D: D^{-}\right]}{[C D]\left[D^{-}\right]} \tag{13}
\end{align*}
$$

The overall stability constant, K_{B}, can be expressed in terms of the individual equilibria.

$$
\begin{equation*}
K_{B}=\frac{[C D: D]}{[C D][D]}=\frac{\left[C D: H_{2} D^{+}\right]+[C D: H D]+\left[C D: D^{-}\right]}{[C D]\left[\left[H_{2} D^{+}\right]+[H D]+\left[D^{-}\right]\right)} \tag{14}
\end{equation*}
$$

This expression can be rearranged.

$$
=\frac{\left[C D: H_{2} D^{+}\right]}{[C D]\left[\left[H_{2} D^{+}\right]+[H D]+\left[D^{-}\right]\right)}+\frac{[C D: H D]}{[C D]\left(\left[H_{2} D^{+}\right]+[H D]+\left[D^{-}\right]\right)}+\frac{\left[C D: D^{-}\right]}{[C D]\left(\left[H_{2} D^{+}\right]+[H D]+\left[D^{-}\right]\right)}
$$

$$
\begin{equation*}
=\frac{\left[C D: H_{2} D^{+}\right]}{[C D]\left[\left[H_{2} D^{+}\right]\right.} \frac{\left[H_{2} D^{+}\right]}{\left[H_{2} D^{+}\right]+[H D]+\left[D^{-}\right]}+\frac{[C D: H D]}{[C D][H D]} \frac{[H D]}{\left[H_{2} D^{+}\right]+[H D]+\left[D^{-}\right]}+\frac{\left[C D: D^{-}\right]}{[C D]\left[D^{-}\right]} \frac{\left[D^{-}\right]}{\left[H_{2} D^{+}\right]+[H D]+\left[D^{-}\right]} \tag{15}
\end{equation*}
$$

Parts of this equation can now be substituted with the equilibrium constants in Eq. 11-13.

$$
\begin{equation*}
K_{B}=K_{1} \frac{\left[H_{2} D^{+}\right]}{\left[H_{2} D^{+}\right]+[H D]+\left[D^{-}\right]}+K_{2} \frac{[H D]}{\left[H_{2} D^{+}\right]+[H D]+\left[D^{-}\right]}+K_{3} \frac{\left[D^{-}\right]}{\left[H_{2} D^{+}\right]+[H D]+\left[D^{-}\right]} \tag{16}
\end{equation*}
$$

The fractions in equation 16 represents the dissociation degree of the drug species, α. The total concentration of the drug, C_{D}, is equal to the sum of the concentrations of the three species.

$$
\begin{align*}
& C_{D}=\left[H_{2} D^{+}\right]+[H D]+\left[D^{-}\right] \tag{17}\\
& \alpha_{1}=\frac{\left[H_{2} D^{+}\right]}{C_{D}} \tag{18}
\end{align*}
$$

Similar, expression for α_{2} and α_{3} can be written. Thus, the expression in Eq. 16 can be further simplified.

$$
\begin{equation*}
K_{B}=K_{1} \alpha_{1}+K_{2} \alpha_{2}+K_{3} \alpha_{3} \tag{19}
\end{equation*}
$$

This overall equilibrium constant, K_{B}, is now expressed in terms of the equilibrium constant for each species and the dissociation degree. The dissociation degree is expressed in terms of the concentration of the species as given in Eq. 18. This can be rearranged.

$$
\begin{equation*}
1 / \alpha_{1}=\frac{C_{D}}{\left[H_{2} D^{+}\right]}=\frac{\left[H_{2} D^{+}\right]+[H D]+\left[D^{-}\right]}{\left[H_{2} D^{+}\right]}=\frac{\left[H_{2} D^{+}\right]}{\left[H_{2} D^{+}\right]}+\frac{[H D]}{\left[H_{2} D^{+}\right]}+\frac{\left[D^{-}\right]}{\left[H_{2} D^{+}\right]} \tag{20}
\end{equation*}
$$

The dissociation degree of the drug is linked to the drug equilibrium (Eq. 21).

$$
\begin{equation*}
K_{a 1}=\frac{\left[H^{+}\right][H D]}{\left[H_{2} D^{+}\right]}=\left[H^{+}\right] \frac{[H D]}{\left[H_{2} D^{+}\right]} \tag{21}
\end{equation*}
$$

By isolating the concentration of the drug species ([HD]/[$\left.\mathrm{H}_{2} \mathrm{D}^{+}\right]$) and using the definitions for $\mathrm{p} K_{a}$ and pH , the dissociation degree can be expressed in terms of pH and $\mathrm{p} K_{a}$.

$$
\begin{equation*}
1 / \alpha_{1}=1+10^{\left(p H-p K_{a 1}\right)}+\frac{\left[D^{-}\right]}{\left[H_{2} D^{+}\right]} \tag{22}
\end{equation*}
$$

Similar expression can be written for α_{2} and α_{3}.

$$
\begin{align*}
& 1 / \alpha_{2}=\frac{\left[H_{2} D^{+}\right]}{[H D]}+\frac{[H D]}{[H D]}+\frac{\left[D^{-}\right]}{[H D]}=10^{\left(p K_{a 1}-p H\right)}+1+10^{\left(p H-p K_{a 2}\right)} \tag{28}\\
& 1 / \alpha_{3}=\frac{\left[H_{2} D^{+}\right]}{\left[D^{-}\right]}+\frac{[H D]}{\left[D^{-}\right]}+\frac{\left[D^{-}\right]}{\left[D^{-}\right]}=10^{\left(\left(p K_{a 1}+p K_{a 2}\right)-2 p H\right)}+10^{p K_{a 2}-p H}+1 \tag{29}
\end{align*}
$$

By combining Eq. 19, 27, 28 and 29, it is possible to express K_{B} as a function of pH based on the
The last fraction in Eq. 22 can also be expressed in terms of pH and $\mathrm{p} K_{a}$. First, we consider the equilibrium between the two species $\mathrm{H}_{2} \mathrm{D}^{+}$and D^{-}.

$$
\begin{equation*}
H_{2} D^{+} \rightleftharpoons 2 H^{+}+D^{-} \tag{23}
\end{equation*}
$$

The equilibrium has a corresponding equilibrium constant.

$$
\begin{equation*}
K_{a 1} K_{a 2}=\frac{\left[H^{+}\right]^{2}\left[D^{-}\right]}{\left[H_{2} D^{+}\right]}=\left[H^{+}\right]^{2} \frac{\left[D^{-}\right]}{\left[H_{2} D^{+}\right]} \tag{24}
\end{equation*}
$$

Again, it is possible to isolate the concentration of the species and use the definitions of pH and $\mathrm{p} K_{a}$.

$$
\begin{align*}
& 2 p H=\left(p K_{a 1}+p K_{a 2}\right)+\log \frac{\left[D^{-}\right]}{\left[H_{2} D^{+}\right]} \tag{25}\\
& \frac{\left[D^{-}\right]}{\left[H_{2} D^{+}\right]}=10^{\left(2 p H-\left(p K_{a 1}+p K_{a 2}\right)\right)} \tag{26}
\end{align*}
$$

Now, it is possible to express the dissociation degree in terms of pH and $\mathrm{p} K_{a}$ values.

$$
\begin{equation*}
1 / \alpha_{1}=1+10^{\left(p H-p K_{a 1}\right)}+10^{\left(2 p H-\left(p K_{a 1}+p K_{a 2}\right)\right)} \tag{27}
\end{equation*}
$$

stability constants and the $\mathrm{p} K_{a}$ values.

For compounds with more than two $\mathrm{p} K_{a}$ values, a similar approach can be used to further complicate the equilibrium diagram (Scheme 3), which complicates the expression in Eq. 19. For each additional pK_{a} value, a new term $\mathrm{K}_{\mathrm{x}} \alpha_{\mathrm{x}}$ must be added to the equation for the overall stability constant.

$$
\begin{equation*}
K_{B}=K_{1} \alpha_{1}+K_{2} \alpha_{2}+K_{3} \alpha_{3}+K_{x} \alpha_{x}+\cdots \tag{30}
\end{equation*}
$$

The total concentration of drug, C_{D}, also changes based on the number of $\mathrm{p} K_{a}$ values. The number of species is equal to the number of $\mathrm{p} K_{a}$ values plus one, and the total concentration of the drug can be written.

$$
\begin{equation*}
C_{D}=\left[H_{y} D^{(y-1)+}\right]+\cdots \tag{31}
\end{equation*}
$$

Where y is the number of $\mathrm{p} K_{a}$ values of the drug, and the term must be written for all species. Similar, equivalent number of expressions can be written for the dissociation degree α_{1-4}.

3.1.1 Examples of the overall stability constant as a function of pH for acids, bases and amphoteric compounds

The distribution of species as a function of pH will look similar for polyprotic acids and bases and amphoteric compounds, but this is not the case for the overall stability constant as a function of pH . All species of the guest molecule is expected to interact with the CD in a solution, though the stability constant must be expected to be highest for the interaction between CD and neutral species. Thus, it follows the acid-base properties of the guest is important for the pH profile of the overall stability constant. To exemplify this, the overall stability constant as a function of pH was calculated considering three cases; 1) acidic guest (Fig. 3AB), 2) basic guest (Fig. 3CD), and 3) amphoteric guest (Fig. 3EF). For the three cases, two different set of $\mathrm{p} K_{a}$ values will be used; 3.0,
7.0 and 11.0 or $4.0,5.0$ and 6.0. The stability constants were chosen to illustrate difference between the acid-base properties and the closeness of $\mathrm{p} K_{a}$ values. The further apart the $\mathrm{p} K_{a}$ values are the more defined plateaus can be identified for the overall stability constant (Fig. 3ACE), whereas closeness of the $\mathrm{p} K_{a}$ values resulted in fewer plateaus. The example demonstrates that the pH profile for the overall stability constant can be quite complex. It depends on acid-base properties of the guest, the number and closeness of the $\mathrm{p} K_{a}$ values and the stability constant for each of the species.

With the information provided in Fig. 3, a formulation scientist working with a CD based formulation would have a strong tool as a support to identify the pH range that would lead to the most robust formulation. For a formulation scientist the purpose of using CDs is most often to increase the apparent solubility of a formulation as well as ensuring high stability. The optimal pH range must guarantee a robust stability constant, i.e. one the does not change much with small changes in pH , and a high solubility, which depends on the $\mathrm{p} K_{a}$ value of the guest. As an example, for acidic compounds like the ones presented in Fig. 3A, the formulation will be robust in the ranges $\mathrm{pH}>2,4-6,8-10$ and <12. The solubility of the guest will increase with the ionization. The optimal pH range with respect to solubility will be a trade off between having a high stability constant and an ionized species. For the compounds presented in Fig. 3E and 3F, it is clear that closeness of the $\mathrm{p} K_{a}$ values matters for the optimal range, so for a compound in Fig. 3E, it is easier to define a robust range than for a compound like the one in Fig. 3F.

3.1.2 Cases from the literature

In previous work, a theoretical expression for the overall stability constant as a function of pH for CD complexes was derived for guest molecules with only one $\mathrm{p} K_{a}$ value (Samuelsen et al., 2019). A
good agreement was seen between empirical data and the theoretical expression. Guest molecules with more than one $\mathrm{p} K_{a}$ values is not uncommon, though few studies have reported the stability constant at several pH values for this type of guest molecules. Thus, it is difficult to obtain relevant data set to confirm the theoretical expression.

Sildenafil forms inclusion complexes with $\beta-C D$ (Al Omari et al., 2006). Sildenafil is an amphoteric compound which has two pharmaceutical relevant $\mathrm{p} K_{a}$ values of 7.10 and 9.84 (Al Omari et al., 2006). Sildenafil is considered neutral around pH 8.5 , but charged species will exist simultaneously (Fig. 4). The apparent stability constant is determined at five different pH values, and as expected the neutral form of the molecule has the largest stability constant. Based on the data points, it is possible to find K_{1}, K_{2} and K_{3}, and thus plot the overall stability constant as a function of pH , and compare this theoretical expressions to the data points (Fig. 5). K_{l-3} are the stability constants for the binding between CD and each of the individual species, and they are found by identifying the pH range where the molecule predominantly exists as one species. K_{l} must be determined in the pH range $0-5, K_{2}$ at approximately pH 8.5 and K_{3} in the range $\mathrm{pH} 12-14$. There is a good agreement between data points and the theoretical expression.

Instead of comparing the theoretical expression to the empirical data, which requires empirical stability constants at specific pH values, another approach is to fit the data to the theoretical expression and estimate K_{l-3}. A Monte Carlo analysis was performed to estimate the uncertainties on the three parameters K_{l-3}. Based on the empirical data from Al Omari et al (2006), 1000 simulated data sets were generated assuming normal distribution. The 1000 simulated data sets were fitted to the theoretical expression to obtain best-fit parameters for K_{l-3} and their standard deviation. The results showed a large uncertainty in estimation of especially K_{1} and K_{3} (Fig. 6). The estimated parameters were $30 \pm 19 \mathrm{M}^{-1}, 159 \pm 17 \mathrm{M}^{-1}$ and $41 \pm 23 \mathrm{M}^{-1}$. Both variance in data and between data
and model were considered, and this variance describes the behavior of all data points. Uncertainty

3.3 Protocol for experiments needed and presentation of GUI

Experimental determination of the stability constant ensures exact knowledge of the stability constant for specific experimental conditions. However, experiments can be expensive and time
consuming, and thus alternatives such as combination of experiments and theoretical models may improve the efficiency. The alternative must be cheaper, faster and easy to use in order to have an impact. Based on the theoretical models presented in this work, we have developed a graphical user interface, which can help users estimate the overall stability constant for a CD:guest interaction as a function of pH , and thereby support identification of robust pH ranges for a given CD based formulation.

In order to estimate the overall stability constant as a function of pH , several inputs, based on empirical data, are needed. The inputs needed are the $\mathrm{p} K_{a}$ values of the guest molecule and the stability constants for each of the interaction between the various species of guest and CD. Often, the $\mathrm{p} K_{a}$ values are estimated or determined during early drug discovery, and these values are known prior to CDs being considered as a formulation strategy. The $\mathrm{p} K_{a}$ values can be determined by potentiometry, spectrophotometry, solubility, NMR, liquid chromatography, electrophoresis or calorimetry (Reijenga et al., 2013). When initiating a formulation strategy with CDs, the stability constant must be measured. The stability constant for various species of guest and CD can be determined by phase-solubility, NMR or calorimetry among others (Loftsson and Brewster, 1996). The stability constant should be measured in conditions closely matching the final formulation conditions, e.g. same buffer and tonicity adjuster, if possible. Simulations showed that careful considerations should be made when deciding the number of data points and at what pH values to determine the data points. The optimal solution is to determine the data points as close to the pH , where only one species exist, as possible, and ensuring a low variance in each data point. The alternative is having a larger number of data points (above 14) evenly distributed in the entire pH range, but ensuring low variance of the data points around the non-linear part of the curve. By determining the stability constant at suitable pH values, it will be possible to use the theoretical
expression presented in this work. If this is done early in the formulation process, it can be used as a valuable tool to further optimize the drug formulation.

To exemplify, the fisetin:CD complex is used as an example. In order to get the overall stability constant as a function of pH for fisetin: CD , the three $\mathrm{p} K_{a}$ values must be determined. The $\mathrm{p} K_{a}$ values are $8.87,10.31$ and 13.20 , and four different species of the molecule will exist depending on the pH , and thus four stability constants must be determined. Based on the $\mathrm{p} K_{a}$ values, it is possible to plot the distribution of species as a function of pH . This is a helpful tool to identify at which pH values the stability constants should be determined. The stability constant should be measured at the pH values where only one species of the molecule predominantly exists, i.e. for fisetin that would be $\mathrm{pH} 6,9.5,11.8$ and 14 . Based on the seven inputs; three $\mathrm{p} K_{a}$ values and four stability constants, it is possible to use the theoretical expression to estimate the overall stability constant as a function of pH .

To assist with the calculations, a graphical user interface was developed, and it can be found in Supplementary Information. The graphical user interface was developed in python using the 'tkinter' package, and is available in Supplementary Information as a python-file or an executablefile. It is a simple user interface, which allows the user to plot the overall stability constant as a function of pH (Fig. 9). The user chooses the number of $\mathrm{p} K_{a}$ values in a dropdown menu, and a number of entry fields are available according to the inputs needed to perform the calculations. The function is plotted based on the user's input. The plot of the overall stability constant as a function of pH can be saved on the user's computer as a png- or tiff-file by pressing the save icon. By clicking on the graph, the exact coordinates will be displayed.

4. Conclusions

The interaction between ionizable guest molecules and neutral CDs is affected by the pH of the solution. During drug formulation, the stability constant is an important parameter in optimization of final formulation, and the boundaries of a formulation must be evaluated over a pH range. In this work, theoretical expressions for the overall stability constant for CD complexes as a function of pH were derived for cases where the guest molecule has multiple $\mathrm{p} K_{a}$ values. The theoretical expression was validated by comparing with empirical data sets found in the literature. The inputs in the theoretical expression are $\mathrm{p} K_{a}$ values and experimentally determined stability constants at specific pH values. A graphical user interface was developed to facilitate easy use of the theoretical expression.

Funding source

This work was funded by Roskilde University in collaboration with Janssen Research and Development.

References

Al Omari, M.M., El-Barghouthi, M.I., Zughul, M.B., Davies, J.E.D., Badwan, A.A., 2008. Comparative Study of the Inclusion Complexation of Pizotifen and Ketotifen with Native and Modified Cyclodextrins. J. Solution Chem. 37, 249-264. https://doi.org/10.1007/s10953-007-9234-2

Al Omari, M.M., Zughul, M.B., Davies, J.E.D., Badwan, A.A., 2006. Sildenafil/cyclodextrin complexation: Stability constants, thermodynamics, and guest-host interactions probed by 1 H NMR and molecular modeling studies. J. Pharm. Biomed. Anal. 41, 857-865.
https://doi.org/10.1016/j.jpba.2006.01.055

Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., Simal-Gándara, J., 2009. A review on the use of cyclodextrins in foods. Food Hydrocoll. 23, 1631-1640. https://doi.org/10.1016/j.foodhyd.2009.01.001

Babic, S., Horvat, A.J.M., Pavlovic, D.M., Kaštelan-Macan, M., 2007. Determination of pKa values of active pharmaceutical ingredients. Trends Anal. Chem. 26, 1043-1061. https://doi.org/10.1016/j.trac.2007.09.004

Bhattachar, S.N., Deschenes, L.A., Wesley, J.A., 2006. Solubility: it's not just for physical chemists. Drug Discov. Today 11, 1012-1018. https://doi.org/10.1016/j.drudis.2006.09.002

Cirri, M., Maestrelli, F., Corti, G., Furlanetto, S., Mura, P., 2006. Simultaneous effect of cyclodextrin complexation, pH , and hydrophilic polymers on naproxen solubilization. J. Pharm. Biomed. Anal. 42, 126-131. https://doi.org/10.1016/J.JPBA.2005.11.029

Ghasemi, J.B., Salahinejad, M., Rofouei, M.K., 2011. Review of the quantitative structure-activity relationship modelling methods on estimation of formation constants of macrocyclic compounds with different guest molecules. Supramol. Chem. 23, 614-629. https://doi.org/10.1080/10610278.2011.581281

Guzzo, M.R., Uemi, M., Donate, P.M., Nikolaou, S., Machado, A.E.H., Okano, L.T., 2006. Study of the complexation of fisetin with cyclodextrins. J. Phys. Chem. A 110, 10545-10551. https://doi.org/10.1021/jp0613337

Jansook, P., Ogawa, N., Loftsson, T., 2018. Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 535, 272-284. https://doi.org/10.1016/j.ijpharm.2017.11.018

Kurkov, S. V, Ukhatskaya, E. V, Loftsson, T., 2011. Drug/cyclodextrin: beyond inclusion complexation. J. Incl. Phenom. Macrocycl. Chem. 69, 297-301. https://doi.org/10.1007/s10847-010-9756-x

Kuwabara, T., Shiba, K., Nakajima, H., Ozawa, M., Miyajima, N., Hosoda, M., Kuramoto, N., Suzuki, Y., 2006. Host-Guest Complexation Affected by pH and Length of Spacer for Hydroxyazobenzene-Modified Cyclodextrins. J. Phys. Chem. A 110, 13521-13529. https://doi.org/10.1021/jp063892j

Loftsson, T., Brewster, M.E., 2012. Cyclodextrins as Functional Excipients: Methods to Enhance Complexation Efficiency. J. Pharm. Sci. 101, 3019-3032. https://doi.org/10.1002/jps. 23077

Loftsson, T., Brewster, M.E., 2010. Pharmaceutical applications of cyclodextrins: basic science and product development. J. Pharm. Pharmacol. 62, 1607-1621. https://doi.org/10.1111/j.20427158.2010.01030.x

Loftsson, T., Brewster, M.E., 1996. Pharmaceutical Applications of Cyclodextrins. 1. Drug Solubilization and Stabilization. J. Pharm. Sci. 85, 1017-1025. https://doi.org/10.1021/js950534b

López-Nicolás, J.M., Rodriguez-Bonilla, P., Méndez-Cazorla, L., García-Carmona, F., 2009. Physicochemical Study of the Complexation of Pterostilbene by Natural and Modified Cyclodextrins. J. Agric. Food Chem 57, 5294-5300. https://doi.org/10.1021/jf900285e

Reijenga, J., van Hoof, A., van Loon, A., Teunissen, B., 2013. Development of Methods for the Determination of pKa Values. Anal. Chem. Insights 8, 53-71. https://doi.org/10.4137/ACI.S12304

Samuelsen, L., Holm, R., Lathuile, A., Schönbeck, C., 2019. Correlation between the stability
constant and pH for β-cyclodextrin complexes. Int. J. Pharm. 568, 118523. https://doi.org/10.1016/j.ijpharm.2019.118523

Schönherr, D., Wollatz, U., Haznar-Garbacz, D., Hanke, U., Box, K.J., Taylor, R., Ruiz, R., Beato, S., Becker, D., Weitschies, W., 2015. Characterisation of selected active agents regarding pKa values, solubility concentrations and pH profiles by SiriusT3. Eur. J. Pharm. Biopharm. 92, 155-170. https://doi.org/10.1016/j.ejpb.2015.02.028

Veiga, F., Teixeira-Dias, J.J.C., Kedzierewicz, F., Sousa, A., Maincent, P., 1996. Inclusion complexation of tolbutamide with β-cyclodextrin and hydroxypropyl- β-cyclodextrin. Int. J. Pharm. 129, 63-71. https://doi.org/10.1016/0378-5173(95)04243-1

Williams, H.D., Trevaskis, N.L., Charman, S.A., Shanker, R.M., Charman, W.N., Pouton, C.W., Porter, C.J.H., 2013. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 65, 315-499. https://doi.org/10.1124/PR.112.005660

Zheng, Y., Dong, L.-N., Liu, M., Chen, A., Feng, S., Wang, B., Sun, D., 2013. Effect of pH on the Complexation of Kaempferol-4'-glucoside with Three β-Cyclodextrin Derivatives: Isothermal Titration Calorimetry and Spectroscopy Study. J. Agric. Food Chem. 62, 244-250. https://doi.org/10.1021/jf404320w

Figure legends

Scheme 1. Equilibrium diagram for CD interaction with ionizable guest molecule HD.
Scheme 2. Equilibrium diagram of interaction between $C D$ and amphoteric guest with three ionization states

Scheme 3. Equilibrium diagram for interaction between CD and amphoteric guest molecule with four ionization states.

Figure 1. Distribution of species for an amphoteric molecule with three ionization states; $\mathrm{DH}^{+}, \mathrm{D}$ and D^{-}. The distribution depends on the $2 \mathrm{p} K_{a}$ values; (A) 3.0 and 9.0 , (B) 4.5 and 6.0.

Figure 2. Distribution of species for a molecule with five ionization states. The distribution depends on the $4 \mathrm{p} K_{a}$ values: 2.0, 5.5, 9.0 and $12.5(\mathrm{~A})$ or $3.5,4.5,5.0$ and $8.0(\mathrm{~B})$.

Figure 3. Overall stability constants pH profile for acidic (A, B), basic (C, D) and amphoteric (E, F) guest molecule with the same set of $3 \mathrm{p} K_{a}$ values; $3.0,7.0$ and $11.0(\mathrm{~A}, \mathrm{C}, \mathrm{E})$ or $4.0,5.0$ and 6.0 (B, D, F). The empirical stability constants were set to $12000 \mathrm{M}^{-1}, 9000 \mathrm{M}^{-1}, 6000 \mathrm{M}^{-1}$ and $3000 \mathrm{M}^{-1}$.

Figure 4. Distribution of species in sildenafil, when the $\mathrm{p} K_{a}$ values are 7.10 and 9.84.

Figure 5. The apparent stability constant $\left(\mathrm{M}^{-1}\right)$ as a function of pH based on the theoretical expression and empirical data for sildenafil and $\beta-\mathrm{CD}$ (Al Omari et al., 2006). $K_{1}=17 \mathrm{M}^{-1}, K_{2}=$ $150 \mathrm{M}^{-1}, K_{3}=42 \mathrm{M}^{-1}, \mathrm{p} K_{a l}=7.10, \mathrm{p} K_{a 2}=9.84$.

Figure 6. Fitting of the apparent stability constant $\left(\mathrm{M}^{-1}\right)$ as a function of pH based on empirical data for sildenafil and $\beta-\mathrm{CD}$ (Al Omari et al., 2006). The $\mathrm{p} K_{a}$ values for sildenafil 7.10 and 9.84 was used.

Figure 7. Distribution of species for fisetin based on the $\mathrm{p} K_{a}$ values $8.87,10.31$ and 13.20.

Figure 8 . The apparent stability constant $\left(\mathrm{M}^{-1}\right)$ as a function of pH for fisetin based on the $\mathrm{p} K_{a}$ values 8.87 and 10.31 , and $K_{l}=900 \mathrm{M}^{-1}, K_{2}=702 \mathrm{M}^{-1}$ and $K_{3}=240 \mathrm{M}^{-1}$. This is a predicted curve based on knowing K_{l} and K_{3}, and estimating a suitable value for K_{2}.

Figure 9. Graphical user interface developed for easy application of the theoretical expression described in this work.

