
ROSKILDE UNIVERSITET

SEMESTER PROJECT

Antipatterns: A literature review and
study to find reasons behind antipatterns

usage

Authors:
Devendra PRASHIN
Filip Andrzej GERMANEK
Gurdeep KAUR
Jens Bo PEDERSEN
Soniya Subba BEGHA

Supervisor:
Anders LASSEN

A report submitted in fulfillment of the requirements
for finishing third semester

in the

MSc in Computer Science and Informatics
IMT

December 17, 2019

http://www.ruc.dk
http://researchgroup.university.com
http://department.university.com

1

Contents

1 Introduction 3
1.1 Problem Formulation . 4

2 Background and Related Work 5
2.1 Informatics . 5
2.2 Software Antipatterns . 6

2.2.1 Human Behavior and Antipatterns 7
2.3 Software Development Antipatterns . 8

2.3.1 Software Performance Antipatterns 8
2.4 Software Architecture Antipatterns . 9

2.4.1 Project Management Antipatterns 10

3 Tree Structure 12
3.1 Problem . 12
3.2 Objective . 12
3.3 Antipattern . 13

3.3.1 Problems With The Antipattern 13
3.4 Informatics . 13

3.4.1 Systems Development and Design 13
3.4.2 Functional Viewpoint . 14
3.4.3 Information Viewpoint . 15

Comment ID As A Foreign Key (Antipattern Solution) 15
Path Enumeration . 16
Nested Sets . 17
Closure Table . 17

4 SQL Injection 19
4.1 Problem . 19

4.1.1 How Does It Work? . 19
4.2 Antipattern . 19

4.2.1 Problems With The Antipattern 19
4.3 Informatics . 20

4.3.1 Business Impact . 20
4.3.2 Security Perspective . 21

4.4 Solutions To The Antipattern . 22

5 Summary 24

6 Glossary 26

2

List of Figures

2.1 Design of patterns and antipatterns[10] 6
2.2 Category of Codesmells [13] . 8
2.3 UML of antipatterns[19] . 10
2.4 Relationship B/W three different antipatterns [19] 11

3.1 Comment ID as a foreign key solution design 15
3.2 Path Enumeration solution design . 16
3.3 Nested Sets solution design . 17
3.4 Closure Table solution design . 17

4.1 Security perspective [14] . 22
4.2 Parameterize dynamic values example 23

3

Chapter 1

Introduction

This report is not particularly about the merits or demerits of using antipatterns in
database or development design – much has been written about this already. This
report takes a critical look at reasons that force us to use patterns and antipatterns in
particular situations. Antipattern knowledge is a good way of learning about com-
monly occurring problems and bad practices. This helps us when trying to solve
them, prevent from these bad practices or refactor them by studying others negative
experiences. Therefore, proper documentation of antipatterns becomes crucial in or-
der to share experiences in this regard. However, available antipattern information
in the literature is mostly informal and unstructured[19]. To get a better understand-
ing of antipatterns for researchers and project managers, formal and more organized
documentation of antipatterns is a necessity[19].

In 1994, the "Gang of Four" (Erich Gamma, Richard Helm, Ralph Johnson and
John Vlissides) released the book "Design Patterns: Elements of Reusable Object-
Oriented Software". When doing so, they popularised the concept of "Patterns" for
use in Computer Science, a term originally coined by Christopher Alexander in "A
Pattern Language" (1977) for Architecture[8]. However, the closest Alexander got to
a concrete definition of the term "Pattern" was:

"Each pattern describes a problem which occurs over and over again in our envi-
ronment, and then describes the core of the solution to that problem, in such a way
that you can use this solution a million times over, without ever doing it the same
way twice".

When human does the translation of business concepts into software applica-
tions then there is a chance of running into problems related to usage of antipat-
terns. These problems are created during human run processes that require shared
vision and cooperation to make sure everyone involved understands the system. So,
antipatterns can be the result of a manager, developer not knowing any better, not
having enough knowledge or experience in solving a problem or having applied a
perfectly good pattern in the wrong context[10].

Antipatterns provide a real-world experience in recognizing recurring problems
in the software industry and provide a detailed remedy for the most common cir-
cumstances. They also describe the measure that can be taken at several levels to
improve the development of an application, the design of the software systems and
the effective management of software projects.

Several approaches of detecting antipatterns were proposed recently. Manual
and automated approaches use different techniques and were developed in order
to detect antipatterns at different levels of software life cycle. This study aims to
present antipatterns related to Relational Databases[10].

While our original hope was to examine antipatterns in real life as a case study,
this project has evolved to instead examine a selection of antipatterns through the

4

lens of viewpoints and perspectives. The report is divided into few Chapters. Chap-
ter 1 contains the introduction and problem formulation. Chapter 2 explains the
background study and related work. Furthermore, Chapter 3 and Chapter 4 contain
our first Case Study of ’Tree Structure’ and ’SQL injection’ respectively . Last chapter
will include the Summary and results part of this report.

1.1 Problem Formulation

"Antipatterns provide information on commonly occurring solutions to problems
that generate negative consequences"[1]. In an organisation antipatterns could be
one of reason behind total or partial failure of a software project.Accordingly to Jim
Coplien: "An antipattern is something that looks like a good idea, but which back-
fires badly when applied"[10]. Even though every project has to face constraints
which can lead to its failure such as budget, schedule, external laws etc these con-
strains are always taken into account and project managers are aware of them. An-
tipatterns are more difficult to detect but the damage caused by their application can
have a negative influence on schedule and budget as well. Therefore,the aim of this
project is to study and better understand the antipatterns and reasons that lead to
the usage of SQL antipatterns in databases.

We plan to base this study on literature review followed by case studies. We had
examined two concrete antipattern cases (Tree Structure and SQL Injection) with
regards to how they were implemented, why they were implemented and which
negative consequences they had. We tried to establish common presumptive evi-
dence using Tree Structure and SQL Injection examples which helps detecting when
an antipattern is being used in your project.

5

Chapter 2

Background and Related Work

In this chapter, we will focus on the background and related work by starting with
the field of Informatics. It will be followed by a discussion resolving around litera-
ture related to our own previous work with antipatterns. We describe different areas
of antipatterns in the software industry ending with a summary of how our project
relates to this past work.

2.1 Informatics

“Informatics uses technology in the collection, classification, storage, retrieval, and
dissemination of information to solve problems, improve business processes and fa-
cilitate the wants and needs of humans”[7]. It is basically the science of information.
The field takes into consideration the interaction between the information systems
and the user.

Informatics is a branch of information engineering which can be seen as the pro-
cess of involvement of information processing and the engineering of information
systems[21]. However, when we see it according to the academic perspective it only
applies to information science. The field considers interaction between humans and
information alongside the construction of interfaces, organisations, technologies and
systems. Therefore, the study of Informatics has wide-range of areas and is aimed
at more focused field of study within Computer Science. With respect to our project,
it falls into few of the major core areas we studied during previous semester which
are defined below:

• Systems Development and Design
Account for, identify and analyze challenges related to IT architecture.IT archi-
tecture development including concepts of viewpoints and perspectives, and
Architecture Skeleton construction. Iterative development phase[14].While work-
ing with antipatterns explore how system development and design affect the
implementation of antipatterns in particular situation. We have also consid-
ered few of the important viewpoints and perspectives like information view-
point which describes the way system will store, manipulate or manage in-
formation.Furthermore, functional viewpoint explain the systems functional
elements, responsibilities and primary interactions.

• IT Security
"Security as the set of processes and technologies that allow the owners of re-
sources in the system to reliably control who can access which resources" [14].
The reason that we need security in our systems is that they contain valuable

6

information and sensitive operations, and we want to be sure these are ac-
cessed or executed only by certain people. Items in the system that we are
trying to protect are known in security jargon as resources.

• Human Computer Interaction
Human Computer Interaction(HCI) has its roots in the main areas of industrial
engineering, human factors and cognitive psychology with the focus on the de-
velopment of user-friendly IT. Another issue that should be considered in this
interaction is the impact that information systems may have on humans and
organizations[16]. There is general consensus that the adoption of any IT/IS
brings change. Furthermore, IT/IS and organizations have a mutual influence
on each other, meaning that technology affects organizations and that organi-
zations necessarily affect for instance the design, the choice and the manage-
ment of those systems.

2.2 Software Antipatterns

"A design pattern documents a commonly recurring and proven structure of inter-
connected design elements that solves a general design problem within a particular
context"[14]. However, antipatterns are conceptually similar to patterns in that they
document recurring solutions to common design problems.

FIGURE 2.1: Design of patterns and antipatterns[10]

The role of patterns is to ensure positive solutions to a commonly occurring problem,
whereas antipatterns have two solutions as producing problematic solutions which
cause negative consequences and difficulties and refactored solutions which make
antipatterns beneficial[10]. Antipatterns are closely related to design patterns since
design patterns can evolve into antipatterns as it can be observed from above figure.

7

It can be seen that design patterns have two essences as a problem and a solution. A
problem can be varied according to its context and design forces. Besides, a pattern
documents a repeatable solution to the associated problem. A solution generates
benefits, consequences and related solutions[17]. On the other hand, an antipattern
presents a solution commonly applied to a particular problem which generates neg-
ative consequences. An antipattern provides information about the reason of the
wrong practice applied to a specific problem and shows how to prevent and cor-
rect the solution. Because of the pace of technological advancements, technology is
changing rapidly. Therefore, patterns are transforming into antipatterns over time.
That’s why the number of existing antipatterns are more than patterns today [10],
[17]. To clarify the antipatterns concept, it can be divided into two types: A simple
antipattern tells the reader how to go from a problem to a poor solution. Simple
antipatterns therefore, focus on presenting negative solutions. An amelioration an-
tipattern tells the reader how to go from a problem to a bad solution, but also how to
get from that bad solution to a good solution[4]. It defines a migration (or refactor-
ing) from negative solutions to positive solutions. It tells you why the bad solution
looks attractive, why it turns out to be bad in conjunction with the desired new out-
come or behaviour and what positive patterns are applicable instead [4].

Antipatterns are poor solutions of recurring design problems, which decrease
software quality. Numerous antipatterns have been outlined in the literature as vi-
olations of various quality rules. Most of these antipatterns have been defined in
terms of code quality metrics. However, identifying antipatterns at the design level
would improve considerably[6]. Furthermore, Dodani added that developing pat-
terns is a bottom-up process, whereas developing antipatterns is a top-down pro-
cess. He insisted that we should learn from our ‘mistakes’ which are antipatterns[6].
It is not difficult to produce antipatterns based on one’s own experience. An an-
tipattern can be easily derived by generalizing project cases where bad decisions
have been made[1].

Each proposed antipattern template may be represented with a different view-
point. However, different templates that have been proposed for the documentation
of antipatterns may cause confusion to software project managers.

2.2.1 Human Behavior and Antipatterns

It is important to understand the human behavior in any organization before we ex-
plore the antipatterns. One of the ways humans solve newly encountered problems
is by subconsciously applying a previously successful solution to a similar or related
problem[12]. But why is there a need to study human behavior patterns? And why
do we bother?

First, it can be used to understand what motivates people. Understanding their
motivation makes it easier to look for solutions that are mutually beneficial or avoid
them causing problems. Furthermore, understanding individual motives help the
manager to organize the teams. That is the reason, many organizations use person-
ality tests in their hiring practices to ensure corporate cultural alignment. Everyone
has to deal with some difficult people[12].

According to Brown[10], people who cause trouble are called “corncobs”. The
term “corncob”, means a general pain in the buttocks. Difficult people obstruct and
divert the software development process[10]. Therefore, individual agendas should
be addressed through various tactical, operational and strategic organizational ac-
tions.

8

2.3 Software Development Antipatterns

Software Development AntiPatterns are also called as Codesmell.Code smells were
introduced by Fowler and Back [13]. Codesmell describe a code structure that is
likely to cause problems and that can be removed through refactoring.They com-
monly increase the software’s defectiveness and change proneness and increase main-
tenance effort. A key goal of development antipatterns is to describe useful forms
of software refactoring. Software refactoring is a form of code modification, used to
improve the software structure in support of subsequent extension and long-term
maintenance. In most cases, the goal is to transform code without impacting cor-
rectness.Furthermore, codesmells can be classified into below category purposed by
Mäntylä and Lassenius[15].

FIGURE 2.2: Category of Codesmells [13]

This figure describes the different categories and different types of codesmells in
software development antipatterns. The Bloaters are objects that have grown too
much and can become hard to manage. This category includes the codesmells Blob,
Long Method, Large Class, and Long Parameter List. Similary, The Dispensables are
unnecessary code fragments that should be removed. This includes the codesmells
Lazy Class, Duplicated Code, and Speculative Generality.

2.3.1 Software Performance Antipatterns

The concept of design patterns has been introduced several decades ago for defin-
ing good practices to design software[9]. Along with patterns there is a creation of

9

many antipatterns. These design patterns and antipatterns are being very powerful
instruments of software developer for enhancing the quality of the product. Among
many antipatterns Smith and Williams have introduced specific antipatterns as per-
formance antipatterns which are bad design practices that may lead performance to
degrade.

The main point of this paper is to reduce the gap between design patterns and
performance antipatterns to fulfill the performance requirements which leads to the
better quality of software. The authors are concerned about removing the perfor-
mance antipattern (Empty Semi-Trucks) and introducing design patterns (Session
Facade, batching etc.) to improve the quality of the software design. They are work-
ing in a fuzzy context where threshold values related to performance antipattern
metrics (e.g. the number of connections that a component has with other compo-
nents in the system is too high) can’t be determined, but only their lower and upper
bounds do. In this context, the ranking criteria for design pattern is best to use for
the removal of antipatterns.

They describe the refactoring process and the ranking criteria to drive the choice
of design pattern towards the removal of performance antipatterns. E.g. a design
model of the current version of the application code which lacks some performance
requirement i.e. a response time of a service must be less than 2 seconds. To verify
if this condition is met, there should be performance analysis using specific perfor-
mance model as a Querying Network (in case of design mode) or by monitoring the
running application (in case of the current version of the app code).

2.4 Software Architecture Antipatterns

"The architecture of a system or software is the set of fundamental concepts or
properties of the system in its environment, embodied in its elements,relationships,
and the principles of its design and evolution"[14]. Architecture antipatterns fo-
cus on the system-level and enterprise-level structure of applications and compo-
nents. Although the engineering discipline of software architecture is relatively im-
mature, what has been determined repeatedly by software research and experience
is the overarching importance of architecture in software development. As stated by
Rozanski & Woods "Unified Modeling Language (UML) is the most widely under-
stood modeling language around the world. UML model, to help you investigate
scenarios without building full prototypes[14]. Below mentioned is the UML repre-
sentation of one proposed generic antipattern viewpoint [19] though,unclear mod-
eling viewpoint can causes problematic ambiguities in object models.However,this
viewpoint considers software architecture and software development antipatterns,
aiming at a broader audience and antipattern application scope. The viewpoint
models certain relationships between antipatterns: An antipattern may replace, use,
refine or require another antipattern.As the old requirements are refined, new re-
quirements are gathered and processed. According to the project managers who
answered the questionnaire, the main source of changes was team members’ ideas
and clients’ demands and requirement change because of technical reasons was ob-
served in one instance.

10

FIGURE 2.3: UML of antipatterns[19]

This model can be assumed as an important step towards the architecture of an
intelligent system that aims to assist project managers in detecting and resolving
appropriate antipatterns during the execution of a software project. Software archi-
tecture is a subset of the overall system architecture, which includes all design and
implementation aspects, including hardware and technology selection. Important
principles of architecture include the following[13]:

• Architecture provides a view of the whole system. This distinguishes architec-
ture from other analysis and design models that focus on parts of a system.

• An effective way to model whole systems is through multiple viewpoints.
The viewpoints correlate to various stakeholders and technical experts in the
system-development process.

Architecture antipatterns are mainly related to dependency and interface issues:
Ambiguous Interface, Redundant Interface, Overused Interface, Cyclic Dependency[13].

2.4.1 Project Management Antipatterns

There are several reasons which can lead software projects to partial or complete
failure. These reasons can be basically gathered under two viewpoints as exter-
nal(customer expectations, schedule related issues and so on) and internal. Inter-
nal constraints affect basic management practices (planning, team building, decision
making and so on) in a negative way. Software project management antipatterns are
one of the underlying reasons for failure of a project [19]. In project management,
antipattern is defined as commonly repeated bad practice [1]. There are various

11

templates used to document antipatterns. When documenting antipattern, it is im-
portant to identify not only what caused given antipattern but also how can it be
fixed.

FIGURE 2.4: Relationship B/W three different antipatterns [19]

Above figure illustrates an example of relationship between three different antipat-
terns, through their causes, symptoms and consequences. In this example, the “Death
by Planning” project management antipattern interacts with the other two antipat-
terns through the symptom “Inaccurate schedule”. SPARSE operates with a symp-
tom based approach. If a project manager has selected the “Inaccurate schedule”
symptom, SPARSE can report the directly matching “Death by Planning” antipat-
tern but also detects the other two related antipatterns of the example and other
semantically related antipatterns[1] even though different authors have used differ-
ent template to document antipatterns. Although many of them are documented
through some kind of informal template, others are described in plain text.

• Templates are extremely useful for remembering antipattern details, but lack
vigor and do not provide quantitative information that may be used by man-
agers for improving tangible project indicators.

• Causality is a strong component of any antipattern description.For an antipat-
tern to be convincing, it is crucial to produce causes and effects, with justified
bonds between pairs of causes-effects.

• Antipatterns are not fully deterministic. Ambiguity comes into play when a
cause is linked to an effect; a cause may produce an effect with some probabil-
ity and to some extent.

Antipatterns can either appear in isolation or can be related with other antipat-
terns (interacting antipatterns). When studying antipatterns from a project man-
agement point of view we can observe that in IT projects, consequences are one of
antipatterns which are often a cause of other antipatterns in different stage of the
project.

12

Chapter 3

Tree Structure

In this chapter, we will discuss the problem related to selected antipattern. An-
tipatterns problem description includes definition, objective and possible negative
consequences of it. This section of the chapter will be followed by an investigation
of techniques which can be used to solve the problem as well as understand what
leads to the presence of the antipattern in projects.

3.1 Problem

To define the problem we should first look into the definition of tree structure. Trees
are graphs which have the following properties [2]:

• A tree is a connected graph (connected graph is a graph where there is a path
between any two nodes and no node is disconnected from the rest of the graph)
which has no cycles.

• Every node is the root of a sub tree.

• Every two nodes in a tree are connected by only one path. It has one less edge
than the number of nodes.

The need to store hierarchies is a common requirement. However, there are mul-
tiple ways to store these relations in a relational database. Choosing a right solution
that would suit our given case, best can be counter intuitive and should be deter-
mined by looking into most common use cases. In practice, developers often choose
solution which may seem most logical in terms of structuring the data. This can
lead to an antipattern because we solve a problem of storing tree hierarchy but we
may complicate records creation, updating, deletion or data retrieval by choosing
the wrong solution.

To understand the problem better, we will use an example in which we want to
store relations between posts and their comments (which can be nested). Suppose,
we have a website where users can add posts and comment on both posts and other
comments. We need to store this relationship in our database. The design problem,
this requirement introduces is that comments can possibly have an infinite number
of nested comments under them. We need to be able to add, update, and delete
comments.

3.2 Objective

• Be able to store and query hierarchies

• Be able to query the tree structure in efficient way

13

3.3 Antipattern

An antipattern in this case is that we may design the database in a way where we
always depend on nodes parent. That is because a solution which is commonly
used is to add a column parent_id. This column references another record in the
same table. This design however, is not perfect and complicates querying data in
some scenarios that will be discussed in the functional and information viewpoint
subsections.

3.3.1 Problems With The Antipattern

There are two main problems We would like to focus on while investigating this
antipattern:

• Maintaining the tree - We need to be able to store, update and delete records
with the hierarchical relationship. This means that when we delete a record,
all of its nested records should either also be deleted or should be moved to
another tree level. Querying all nested records is not simple when using an-
tipattern solution. Therefore, maintaining the tree also becomes complicated.

• Querying the tree - If there is an use case which requires querying whole tree
structure or all records nested under given record disadvantages of the an-
tipattern solution become obvious. We cannot query all nested records with
just one simple SQL query because nested records only know about its clos-
est parent. Therefore, in order to fulfill this use case we would have to build
recursive query. Querying whole tree structure is a common use case.

As we can see in the solutions part of this section(3.4) design which completes
these objectives can contradict themselves. We can use techniques from [14] to help
us in determining which of the mentioned objectives will be more common for a
given IT system.

3.4 Informatics

3.4.1 Systems Development and Design

One reason leading to the usage of this antipattern is developers not understanding
main use cases the tree structure needs to fulfill. There are various techniques that
can be used to improve that. We believe that this could be done using architecture
definition process[14].

• The architecture definition process - it is an iterative process which consists of
following steps:

– Consolidate input

– Identify Scenarios

– Identify relevant architectural styles

– Produce candidate Architecture

– Explore architectural options

– Evaluate Architecture with stakeholders

14

Applying this approach can help us in avoiding antipattern design decision
because it gives us time to identify scenarios in which database will be used.
After that we can explore candidate design approaches and test/evaluate each
of the with stakeholders.

• Architectural Decisions - need to answer ’what’, ’how’ and ’with what’. Must
be traceable from concerns provided. Should be specific to avoid confusion. If
this approach is followed, we decrease a chance of spontaneous decision which
can influence our design negatively in the future. It does not mean that wrong
decisions will not be made however investigating the problem and mapping
concerns into decisions gives us tools to argument and analyze each solution
in more detail.

• Identifying and engaging stakeholders - this can be helpful when trying to un-
derstand how the system we are designing will be used. Stakeholders should
influence the database design decisions. In our example (storing relations
between comments), interviewing stakeholders could be important in under-
standing most commons use cases when it comes to fetching comments from
database.

3.4.2 Functional Viewpoint

By applying this viewpoint we can establish use cases which system needs to fulfill.
This can influence design of the database and help us to decide which approach to
take when solving tree structure relationships problem. If most common use case is
to display whole tree, we should introduce a design which supports fetching of the
whole tree. If most common design is to add, update or remove the node from tree
most of the time won’t be displaying whole structure we can follow another design
approach. Design should reflect functional scenarios described in this viewpoint.

Functional Scenarios

• Display all comments for given comment

This scenario requires a SQL query which selects all comments nested un-
der given comment. If we decide to model database in a way described in
’Antipattern’ section of this chapter then a simple task of selecting all nested
comments becomes complicated because each record has only reference to its
direct parent. With antipattern solution, we see two ways to query all needed
comments.

SELECT c1.*, c2.*, c3.*, c4.*
FROM Comments c1 -- 1st level

LEFT OUTER JOIN Comments c2
ON c2.parent_id = c1.comment_id -- 2nd level

LEFT OUTER JOIN Comments c3
ON c3.parent_id = c2.comment_id -- 3rd level

LEFT OUTER JOIN Comments c4
ON c4.parent_id = c3.comment_id; -- 4th level
....

This way of querying records is problematic because in order to add more
nested records we need to include join for each nested level. Aggregate queries
such as COUNT() are also difficult to compute.

15

SELECT * FROM Comments WHERE post_id = 1;

This is an easy way of querying comments but we would have to organise
records in the tree hierarchy before they would be ready to be used.

• Add comment

This scenario is the one that benefits the most from the antipattern solution. It
only requires one INSERT query and we do not need to update other records
in the database.

INSERT INTO Comments (post_id, comment_id, ..., ...)
VALUES (1, 2, ’...’, ’...’);

• Delete comment

Depending on the business logic, when we delete a comment all of its nested
comments have to either also be deleted or moved to a higher level. However,
each case requires checking if a comment to be deleted has nested comments.
To do that, we need a similar query to the ones described in scenario ’Display
all comments of given comment’.

3.4.3 Information Viewpoint

This viewpoint mostly resolves around database as it describes ways in which sys-
tem stores and processes information.

Storing information about post is easy. Comment can reference a post by id.
Storing relationships between comments becomes more complicated. We have to
deal with recursive relationships where data is organised in a treelike way. This
section investigates possible solutions to this problem and analyzes each of them.
This should help us in understanding problems that arise when using an antipattern
solution but also investigate whether there are alternative solutions which could be
used.

Comment ID As A Foreign Key (Antipattern Solution)

FIGURE 3.1: Comment ID as a foreign key solution design

16

• Explanation

We are storing reference to parent comment record in a comment_id column.
This is a foreign key relationship. If comment has a comment_id value it means
this record is a comment nested under the comment it is referencing.

• Advantages

Adding new comment, changing parent of existing comment is easy to imple-
ment. Probably, the most common solution when storing hierarchical relations
because the relations are normalized and logical.

• Disadvantages

Deleting a comment , querying all descendants will be problematic. If we want
to implement count query it will also be difficult.

Path Enumeration

FIGURE 3.2: Path Enumeration solution design

• Explanation

Storing a string of ancestors path as a varchar column in comments table (ex-
ample: ‘1/2/3’)

• Advantages

Easy access to the tree path which makes querying post and all its comments
easy. If fetching whole tree is a most common use case then this solution
should be strongly considered.

• Disadvantages

Creating, deleting and updating a single comment becomes complicated be-
cause every time we change the tree structure, we need to update other com-
ments as well to make sure path is up to date for all records.

17

Nested Sets

FIGURE 3.3: Nested Sets solution design

• Explanation

This solution stores ids of comments that follows a given comment.

• Advantages

Easy access to comments ‘children’. Still fetching all comments of given post
can be problematic as we need to look at the next record until given record has
no children. Recursive query would be needed.

• Disadvantages

If there can be an unlimited number of comments following given comment,
storing this information can be problematic. Keeping children reference up to
date requires checks and possible updates on the multiple records every time
we want to update/delete single record. Should be used, if you need to mostly
fetch the comments tree and you would modify it rarely.

Closure Table

FIGURE 3.4: Closure Table solution design

• Explanation:

18

This is a way of storing hierarchies done by introducing new ‘paths’ table.
In the ‘paths’ table, we will store not just direct relations but all relations even
if they are separated by multiple levels of comments in between.

• Advantages:

This allows us to easily fetch all comments for a given post. Fetching all com-
ments for a given comment should not be complicated.

• Disadvantages:

Increased space consumption as we store all relations not just direct ones which
results in additional records being created.

19

Chapter 4

SQL Injection

In this chapter, we will discuss the antipattern- SQL injection. We will begin by in-
troducing the problem and how does it work in practice. Then, we’ll try to establish
SQL injection as one of the antipatterns. Finally, the chapter will conclude with an
investigation of techniques that can be used to understand what leads to the pres-
ence of the antipattern and how this antipattern can be addressed.

4.1 Problem

SQL injection is one of the most commonly used web hacking techniques [20]. It is
about manipulating a SQL query, and the results of executing it on the server would
not be desired. The vulnerability to SQL injection is very big, and this is a huge
threat to the web-based application. The hackers can easily hack the system and
obtain any data and information that they want anytime and anywhere[11].

4.1.1 How Does It Work?

A hacker(or users without database knowledge) typically supplies a malicious code
in SQL statements via UI. Then, the application combines the malicious code(strings)
received from UI with the application variables. As a result, the original or intended
SQL query turns to a second query. It can lead to a various threats like denial of
services, loss of data, and other security-related threats.

4.2 Antipattern

Execute unverified input as code.

4.2.1 Problems With The Antipattern

Often, we need to write a dynamic SQL queries for our applications. In the process,
we concatenate user inputs with an application variables, which exposes the appli-
cation to a SQL injection attack. A potential SQL injection attack is the price that we
pay for building the SQL statements dynamically.

In January 2009, Heartland announced that the computers that they use to pro-
cess payment card transactions had been breached in 2008[3]. 134 million credit
cards were exposed through SQL injection attacks used to install spyware on Heart-
land’s data systems.The method used to compromise Heartland’s network was ulti-
mately determined to be SQL injection[3].

In fact, the breach was a very slow moving event. It started with an “SQL Injec-
tion” attack in late 2007 that compromised their database. An SQL Injection appends

20

additional database commands to code in web scripts. Heartland determined that
the code modified was in a web login page that had been deployed 8 years earlier,
but this was the first time the vulnerability had been exploited [3].

4.3 Informatics

To begin with, let’s review informatics definition and understand its field. Under-
standing the heart of any field and its scope helps to identify the valuable informa-
tion and concerns related to it.

"Informatics studies the interaction of information with individuals and orga-
nizations, as well as the fundamentals of computation and computability, and the
hardware and software technologies used to store, process and communicate dig-
itized information. It includes the study of communication as a process that links
people together, to affect the behavior of individuals and organizations" [5].

Some of the keywords in the definition are information, technology, people, and
communication. Technologies or IT systems are being used to collect, store, and
process information by people(or sub-systems).

An architectural perspective is a collection of activities, tactics, and guidelines
that are used to ensure that a system exhibits a particular set of related quality
properties that require consideration across a number of the system’s architectural
views[14].

4.3.1 Business Impact

SQL injection is one of the most common threats to a web-based applications. It is a
problem that many people - including developers and organizations, are aware of,
but due to various reasons, does little to prevent it. There are many reasons for this
negligence:

• Not many organizations have resources, skills, and competences to detect SQL
injection attacks.

• Investing less in security-related features and testing.

• Tight delivery deadlines with a limited budget- leads to a security compro-
mise.

• Developers not following the standards to address the issue.

• Organizations not monitoring the applications. Besides, there should be regu-
lar code assessments.

• Organizations lack peer programming and code review practices in their soft-
ware development process.

• Advanced hacker tools for finding vulnerable applications are available on the
internet.

A result of a SQL injection attack opens a number of possibilities, which are lim-
ited only by the configuration of the system and the skills of the attacker [18]. If an
attack is successful, a host of problems could result. The following are a sample of
the potential outcomes [18]:

21

• Identity spoofing through manipulating databases to insert bogus or mislead-
ing information such as email addresses and contact information.

• Alteration of prices in e-commerce applications. In this attack, the intruder
once again alters data but does so with the intention of changing price infor-
mation in order to purchase the products or the services at a reduced rate.

• Alteration of data or outright replacement of data in existing databases with
information created by the attacker.

• Escalation of privileges to increase the level of access an attacker has to the
system, up to and including full administrative access to the operating system.

• Denial of service, performed by flooding the server with requests designed to
overwhelm the system.

• Data extraction and disclosure of all data on the system through the manipu-
lation of the database.

• Destruction or corruption of data through rewriting, altering, or other means.

• Eliminating or altering transactions that have been or will be committed.

All of these could lead to severe damage to the organization’s reputation and
will have an adverse effect on daily business. It is an organization’s duty to pro-
tect its customer’s data and ensure privacy while providing services. Usually, these
rights are protected by data and privacy protection laws, like GDPR. Any organiza-
tion failing to comply with these laws could face a lawsuit and expensive financial
penalty.

4.3.2 Security Perspective

Security can be defined as the set of processes and technologies that allow the own-
ers of resources in the system to reliably control who can access which resources[14].
For this, we need to identify stakeholders and their concerns right from the begin-
ning. Also, we have to keep in mind that a security is about risk management that
balances likely security risks against the costs of guarding against them. It can be
quite difficult to accommodate all the concerns from the stakeholders, therefore,
a careful analysis is required. According to the book "Software Systems Architec-
ture"[14] by Nick Rozanski and Eoin Woods, a security perspective deals with the
concerns like resources, principles, policies, threats, confidentiality, integrity, and
availability etc.

The security perspective includes the following desired quality, concerns and
activities(figure 4.1).

22

FIGURE 4.1: Security perspective [14]

4.4 Solutions To The Antipattern

• Trust no one- User inputs must always be sanitized before it is used in dynamic
SQL statements.

• Filter input- Regular expressions can be used to detect potential harmful code
or force users to provide input in a specific format.

• Use appropriate privileges: We don’t want all the users to have the same(admin)
access rights as it can be misused.

• Parameterize dynamic values- A parameterized query is a query in which
placeholders are used for parameters and the parameter value is supplied at
the execution time.

• The following SQL query(figure 4.2) ensures that only the insert statement will
be executed. Unlike, a SQL query created by concatenating user input, the
query execution plan for the parameterized SQL is constructed on the server
before the query is executed.

23

FIGURE 4.2: Parameterize dynamic values example

• Use stored procedures- It encapsulates the SQL statements and treats all input
as parameters.

• Monitor SQL statements from database connected applications.

• Code review

24

Chapter 5

Summary

Hopefully our preceding chapters have stressed the importance of avoiding antipat-
terns and it is this avoidance that is at the heart of the project.

We wanted to get in contact with people maintaining databases in the real world,
to examine which antipatterns had been implemented and why. However, this de-
sire came as a result of a question that we originally had when we came across the
concept of antipatterns. That is, there is all this literature about what antipatterns
are, why they exist and why should they be avoided. Furthermore, they also talk
about why are antipatterns so common?

Our initial response to that question was to want to answer it, but we missed
that we already had a possible answer: Yes there’s a lot of literature on antipatterns,
but usage of the antipattern concept is limited to that literature. We had been taught
systems architecture previously, and in that context we had learnt about viewpoints
and perspectives, but not antipatterns.

It could be said that the subject would be too broad if we were taught multi-
ple frameworks, rather than focusing on one. However, only viewpoints and per-
spectives are frameworks. Antipatterns are nothing more than an inversion of the
common principle of "best practices" that feature as a part of all frameworks. As
such, that antipatterns could have been taught within the framework of viewpoints
and perspectives but weren’t, illustrates that it’s unnecessarily closed off as it’s own
separate concept.

In this manner, antipatterns are a tool that can be used within any other theory
and design framework, just as patterns themselves are. In fact, it could be argued
that antipatterns are an even more useful tool than regular patterns.

From our own experience with semester projects, things rarely go according to
a predetermined plan, and there often arises unforeseen circumstances. We have a
problem where there isn’t a cut and dry best pattern to apply, or there are external
pressures from deadlines, stress and parts not working out as they’re supposed to.
Not to mention needs changing during the project, or completely new needs being
added. This has even been mentioned in our lectures on agile development as a flaw
of the waterfall model, suggesting this is more than just personal experience.

All of this can combine to a project experience where the members aren’t con-
cerned with living up to the best practices prescribed by patterns, but just with
making it work at all. It is particularly in these circumstances that awareness of
antipatterns can be useful. Antipatterns provide clear guidelines of what to avoid
doing when perfection is an impossible luxury, and everyone is just focused on get-
ting it "good enough". Awareness of antipatterns could also prevent implementing
bad code that complicate the development process, in addition to spotting already
existing problems.

25

Of course, awareness of antipatterns might not be needed if the project never
needs to diverge from what is planned. Any proper pattern should avoid antipat-
terns when applied correctly, so a project where everything goes smoothly and there’s
never any problems with following coding guidelines and best practices, would
avoid antipatterns without being aware of the concept.

This is where empirical evidence and case study could provide data that this re-
port can’t on its own: how often does a project go smoothly vs. how often are there
problems in development; how often antipatterns are the result of a troubled devel-
opment, and how often do they cause it. As antipatterns can both be the cause and
consequences of a troubled development cycle, another study could be on "death-
spirals". This term referring to where to solve the problems caused by antipatterns,
new antipatterns are used, which then causes more problems that need to be solved
until the entire project is a patchwork "temporary" solutions that ended up being
permanent.

With how useful we judge the antipattern terminology to be, it could be interest-
ing to empirically test whether that judgement is correct, by examining real world
projects through that lens. That would however require closer cooperation with a
business or organization than we were able to acquire during this project.

26

Chapter 6

Glossary

1. Ambiguity: a situation that is unclear, but can be understood in more than one way

2. Amelioration: the process of making bad or unpleasant situation better

3. Architecture: the design and interaction of components of a computer or computer system

4. Bound: to go or to plan to go especially to a certain destination

5. Computation: the method of calculating

6. Consolidate: to bring together or unite things that were separate

7. Coupling: the act of bringing or coming together

8. Dependency: something that is dependent to others

9. Deterministic: forces and factors cause things to happen in a way that cannot be changed

10. Enumeration: the act of naming things separately; one by one

11. Fuzzy: not clear or not easily heard, seen or understood

12. GDPR: General Data Protection Regulation

13. Generic: relating to or shared by a whole group of similar things

14. HCI: Human Computer Interaction

15. Integrity: the quality of being whole and complete

16. Interface: a device or program enabling user to communicate with a computer

17. IT: Information Technology

18. IS: Information System

19. Malicious: intended to do harm

20. Mapping: matching process where the points of one set are matched against the point of other set

21. Metrics: a system or standard of measurement

22. Nodes: a point in a network or diagram at which lines or pathways intersect or branch

23. Perspective: cross-structural quality concepts

24. SQL: Structured Query Language

25. Scenarios : a description of possible actions or events in the future

27

26. Spyware : a description of possible actions or events in the future

27. Stakeholder : a person or group of person with something at stake, interest and concern

28. Tangible : real, existing that can be seen or touched

29. UI: User Interface

30. UML: Unified Modeling Language

31. View: description of one aspect of a system’s architecture

32. Viewpoint: a template for developing the views

33. Vigor: strong feeling; enthusiasm or intensity

28

Bibliography

[1] Dimitrios Lettas Georgios Meditskos Ioannis Gtamelos Nick Bassiliades. “SPARSE:
A symptom-based antipattern retrieval knowledge-based system using Se-
mantic Web technologies”. In: (2010).

[2] Joe Celko. “Trees and hierarchies in SQL for smarties”. In: Morgan Kaufmann,
2004. Chap. 1, pp. 3–6.

[3] Julia S. Cheney. “Heartland Payment Systems: Lessons Learned from a Data
Breach”. In: (2010).

[4] Paula Kotzé KarenKostas Koukouletsos Babak Khazaei Andy Dearden. “Pat-
terns AntiPatterns and Guidelines – Effective Aids to Teaching HCI Princi-
ples?” In: (2010).

[5] Michael Fourman, Michael Fourman, and Centre For Intelligent Systems. in-
formatics. 2002.

[6] Nadia Bouassida Hanêne Ben-Abdallah Rahma Fourati. “A Metric-Based Ap-
proach for Antipattern Detection in UML Designs”. In: (1970).

[7] IU Informatics. What is informatics IU. https://www.youtube.com/watch?v=
bYour9b86Ys&fbclid=IwAR2nAXRY8a27gaFY1KbheDC32FEeshBzoHfcMBxvNABz8p_
BQkMzqHlAEZ8. [Online; accessed 3-December-2019].

[8] Christopher Alexander Sara Ishikawa and Murray Silverstein. “A Pattern Lan-
guage”. In: Oxford University Press, 1977. Chap. 1, p. 10.

[9] Erich Gamma Richard Helm Ralph Johnson and John Vlissides. “Design Pat-
terns: Elements of a Reusable Object-Oriented Software”. In: Addison-Wesley,
1994. Chap. 1, p. 2.

[10] William Brown Raphael Malveau Skip McCormick and Tom Mowbray. “An-
tiPatterns Refactoring Software, Architectures, and Projects in Crisis”. In: John
Wiley & Sons, 1998. Chap. 1, p. 6.

[11] Mohd Amin Mohd Yunus et al. “Review of SQL Injection : Problems and Pre-
vention”. In: JOIV : International Journal on Informatics Visualization 2.3-2 (2018).
ISSN: 2549-9610.

[12] Phillip A. Laplante & Colin J. Neill. “antipatterns Identification, Refactoring,
and Management”. In: Taylor & Francis Group, LLC, 2006. Chap. 2, pp. 13–30.

[13] Francesca Arcelli Fontanaa Valentina Lenarduzzi b Riccardo Rovedac Davide
Taibi. “The Journal of Systems and Software 154 (2019) 139–156”. In: (2019).

[14] Nick Rozanski and Eoin Woods. Software systems architecture, working with stake-
holders using viewpoints and perspectives. eng. 2. ed. Upper Saddle River NJ:
Addison-Wesley, 2012. Chap. 7, 25. ISBN: 032171833X.

[15] ALenarduzzi V Tosi D Lavazza LMorasca S. “Why Do Developers Adopt Open
Source Software”. In: (2019).

https://www.youtube.com/watch?v=bYour9b86Ys&fbclid=IwAR2nAXRY8a27gaFY1KbheDC32FEeshBzoHfcMBxvNABz8p_BQkMzqHlAEZ8
https://www.youtube.com/watch?v=bYour9b86Ys&fbclid=IwAR2nAXRY8a27gaFY1KbheDC32FEeshBzoHfcMBxvNABz8p_BQkMzqHlAEZ8
https://www.youtube.com/watch?v=bYour9b86Ys&fbclid=IwAR2nAXRY8a27gaFY1KbheDC32FEeshBzoHfcMBxvNABz8p_BQkMzqHlAEZ8

29

[16] Anabela Sarmento. “Issues of Human Computer Interaction”. In: IRM Press
(an imprint of Idea Group Inc.) 701 E. Chocolate Avenue, Suite 200, 2005.
Chap. 1, p. Vii.

[17] Dimitrios Settas. “Software Project Antipattern Knowledge Management”. In:
(2011).

[18] “SQL Injection”. In: CEHTMv9. John Wiley & Sons, Ltd, 2017. Chap. 14, pp. 389–
408. ISBN: 9781119419303.

[19] Ioannis Stamelos. “Software project management antipatterns”. In: (2010).

[20] w3schools. w3schoolsSQL Injection. https://www.w3schools.com/sql/sql_
injection.asp. [Online; accessed 4-November-2019].

[21] Wikipedia. Wikipedia Informatics. https://en.wikipedia.org/wiki/Information_
system?fbclid=IwAR1mRcDeK119iBL-F2VFjL9njEgFxPYcXjRw8xvOhrVGUXie3VR6tfAygIk.
[Online; accessed 3-December-2019].

https://www.w3schools.com/sql/sql_injection.asp
https://www.w3schools.com/sql/sql_injection.asp
https://en.wikipedia.org/wiki/Information_system?fbclid=IwAR1mRcDeK119iBL-F2VFjL9njEgFxPYcXjRw8xvOhrVGUXie3VR6tfAygIk
https://en.wikipedia.org/wiki/Information_system?fbclid=IwAR1mRcDeK119iBL-F2VFjL9njEgFxPYcXjRw8xvOhrVGUXie3VR6tfAygIk

	Introduction
	Problem Formulation

	Background and Related Work
	Informatics
	Software Antipatterns
	Human Behavior and Antipatterns

	Software Development Antipatterns
	Software Performance Antipatterns

	Software Architecture Antipatterns
	Project Management Antipatterns

	Tree Structure
	Problem
	Objective
	Antipattern
	Problems With The Antipattern

	Informatics
	Systems Development and Design
	Functional Viewpoint
	Information Viewpoint
	Comment ID As A Foreign Key (Antipattern Solution)
	Path Enumeration
	Nested Sets
	Closure Table

	SQL Injection
	Problem
	How Does It Work?

	Antipattern
	Problems With The Antipattern

	Informatics
	 Business Impact
	Security Perspective

	Solutions To The Antipattern

	Summary
	Glossary

