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Abstract 19 

We evaluate the robustness of optical density (OD) as a tool in the assessment of the biomass 20 

of the cryptophyte Rhodomonas salina under different growth conditions. We measure the 21 

OD under three different wavelengths, 550, 665 and 750 nm. 22 

We find, as expected, that growth rates of the microalga depend strongly on growth 23 

conditions, being highest in saturating light conditions under non-limiting nitrogen 24 

availability. 25 

OD – cell count relationships are strong and well defined regardless of growth 26 

conditions and wavelength used for measurement. However, measuring within the absorption 27 

range of chlorophyll, at 550 and 665 nm, does give higher regression coefficients under 28 

conditions leading to a high cell chlorophyll content, while the coefficients of determinations 29 

are slightly higher when cell chlorophyll content is low. 30 

We conclude that to use OD as a proxy for biomass under large-scale production of 31 

microalgae, it is important to take into account that the precise relationship between OD and 32 

algal biomass does depend on factors such as irradiance and nutrient availability, and hence 33 

the physiological state of the microalgae as well as the production conditions. Errors in 34 

estimation of biomass may range from 44 % to 95 %, if these factors are not taken into 35 

consideration. 36 

 37 

Keywords 38 
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Introduction 41 

Large-scale production of microalgal biomass is becoming increasingly important for a 42 

number of purposes ranging from biofuel production, over feedstock, to production of 43 

pharmaceuticals (Guedes et al., 2011; Sasso et al., 2012; Skarka, 2012). Regardless of the 44 

purpose, a fast and efficient method for determining the microalgal biomass and growth rate 45 

is needed. Measurement of optical density (OD) is probably the best-suited method for use in 46 

large-scale production of microalgal biomass (Sarrafzadeh et al., 2015). It can be done in-47 

line, alleviating the need for opening and sampling in the production system, and it provides 48 

data in real-time, without the delay caused by taking and analyzing samples manually. In 49 

addition, due to the high degree of automation that can be achieved by using OD 50 

measurements, it is also the cheapest of the available methods. Alternative methods include 51 

extremely time-consuming manual cell counting by microscopy, chlorophyll analysis 52 

involving sampling, extraction and measurement, or automated counting on e.g. an electronic 53 

particle counter, which is faster, but still necessitates taking samples from the production 54 

system. 55 

However, it is necessary to take into consideration that OD is a proxy for biomass, 56 

rather than a measurement of biomass itself. OD is not only determined by the biomass 57 

present, but is also affected by various characteristics of the biomass, especially the color or 58 

other parameters affecting the opaqueness of the microalgal biomass (Griffiths et al., 2011). 59 

The relationship between biomass and OD can therefore be expected to vary depending on 60 

the physiological state of the microalgae (Griffiths et al., 2011), and hence on production 61 

conditions. OD is also sensitive to contamination of the production system. The presence of 62 

dead algae, other organisms, other types of particles, and CDOM (colored dissolved organic 63 

matter) from microalgal metabolites will contribute to OD (Kirk, 1994). It is therefore 64 
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necessary to be able directly to relate OD measurements to the cell concentration or biomass 65 

of the microalgae under the actual culture conditions in the production system. 66 

The wavelength at which OD is measured will also affect measurements. In 67 

fermentation, using bacteria or fungi, OD is usually measured at 750 nm (Shuler & Kargi, 68 

2005). However, microalgae universally contain the photosynthetic pigment chlorophyll a 69 

and 750 nm is outside its absorption range. This has several implications. On one hand, using 70 

750 nm means that measurements will be independent of variations in the chlorophyll content 71 

of the microalgal biomass. On the other hand, measurements at this wavelength will not be 72 

microalgae specific. If instead measurements were done within the absorption range of 73 

chlorophyll, measurements would be more sensitive to changes in microalgal biomass and be 74 

less affected by other kinds of particles in the production system. However, measurements 75 

would be sensitive to changes in the chlorophyll content of the microalgal biomass 76 

independent of concomitant changes in biomass. Measuring OD within the absorption range 77 

of chlorophyll therefore has both advantages and disadvantages compared to the more 78 

common practice of using 750 nm for measurement of OD (Becker, 1994). Several 79 

wavelengths within the absorption range of chlorophyll have been suggested for 80 

measurement of OD of microalgal cultures, including measuring at wavelengths close to one 81 

of the absorption peaks of chlorophyll e.g. around 665 nm, as well as measuring close to the 82 

absorption minimum of chlorophyll around 550 nm (Becker, 1994; Griffiths et al., 2011). The 83 

former would maximize sensitivity towards microalgal biomass; the latter would minimize 84 

effects of changes in chlorophyll content not related to changes in biomass. 85 

Changes in microalgal pigmentation depend on external environmental parameters as 86 

well as on the physiological state of the algae. It is well know that microalgae compensate for 87 

limiting light availability by increasing their cell specific chlorophyll concentration (e.g. 88 
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Antoine & Benson-Evans, 1983). Because chlorophyll, as well as the rest of the 89 

photosynthetic machinery of algae, contain nitrogen, the nitrogen availability also affects cell 90 

chlorophyll concentration (Seip et al., 1992). In this study, we work with the cryptophyte 91 

Rhodomonas salina (Wislouch) D.R.A.Hill & R.Wetherbee, which is an important feed alga 92 

in the production of live feed for aquaculture (Vu et al., 2016). Rhodomonas, in addition to 93 

chlorophyll a and c, also contain the pigment phycoerythrin, giving the algae a reddish color. 94 

It can be expected that this additional pigment will add further complexity to the 95 

establishment of relationships between OD and microalgal biomass, here determined as cell 96 

count, as well as carbon biomass and nitrogen biomass. We examine and establish OD – cell 97 

count relationships under two different irradiances as well as under two different nitrogen 98 

regimes together with growth rates and cell pigment concentrations, and we establish 99 

relationships between carbon biomass and nitrogen biomass and cell count. We expect that 100 

the OD of the microalgae will vary not only according to their cell density, but also be 101 

affected by both light and nitrogen availability, influencing the pigment content of the cells. 102 

Furthermore, we expect that changes in cell count will cause a larger increase in OD when 103 

measured at 550 and 665 nm than at 750 nm, but also that measuring at 550 and 665 nm will 104 

cause an increase in the ‘noise’ caused by variations in pigment content. We conducted the 105 

experiments as short-term batch experiments even though this means that the algal cultures 106 

were not in so-called balanced growth. We did this because this type of experiments are 107 

relevant to many types of microalgal production, where the algae are rarely in balanced 108 

growth. 109 

 110 

  111 
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Materials and Methods 112 

Algal strain and culture conditions 113 

In this study, we used the cryptophyte Rhodomonas salina, obtained as SCCAP K-1487 of 114 

the Scandinavian Culture Collection of Algae and Protozoa (University of Copenhagen, 115 

Denmark). Cultures of R. salina were maintained in acid washed 5 L round-bottom glass 116 

flasks containing autoclaved 0.2 µm filtered seawater (salinity 30 ‰) enriched with B1 117 

medium (1 mL L-1 of seawater, (Hansen, 1989)). The cultures were maintained under a 118 

continuous irradiance of 80 µmol photons m-2 s-1 photosynthetically active radiation (PAR) in 119 

a thermostatted room at 20 °C. The flasks were gently aerated with atmospheric air (400 ppm 120 

CO2) provided through 0.45 µm filters to mix the cultures to avoid temperature stratification, 121 

algal sedimentation, CO2 depletion and O2 accumulation. 122 

 123 

Experimental design 124 

For the experiments, the microalgae were grown in a Multicultivator MC1000 OD (Photon 125 

Systems Instruments, Czech Republic) with eight 100 mL test tubes. The test tubes were 126 

immersed in a 5 L rectangular glass container in which water was circulated by a pump 127 

through a cooling unit to maintain a stable temperature of 20 °C in all test tubes. Each test 128 

tube was bubbled individually with atmospheric air. The test tubes were illuminated by cool-129 

white LEDs. These LEDs emit in the range 400 – 665 nm, with a main peak in the blue area 130 

(445 nm) and a secondary peak in the range 535 – 570 nm. Two levels of irradiance were 131 

used: 140 µmol photons m-2 s-1 (PAR) (saturating light) and 20 µmol photons m-2 s-1 (PAR) 132 

(limiting light) (Vu et al., 2016). For the experiments, nutrient medium with two different 133 

levels of nitrogen content were used. For all experiments we used the standard B1 medium 134 

(Hansen, 1989), except that nitrogen deplete conditions were achieved by using the B1 135 
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medium with a nitrogen content of 1/10th of the standard B1 medium. All other nutrients were 136 

kept at surplus concentrations as defined by the standard B1 medium. The effects of light and 137 

nitrogen availability were tested in a 2x2 factorial design with four replicates (n = 4). 138 

 139 

Growth rate measurement 140 

The cell density of R. salina was determined twice per day with approximately 12 h intervals 141 

during the experimental runs. The algae left the exponential growth phase and entered the 142 

stationary phase 35 – 200 h after the initialization of the experimental run, depending on the 143 

growth conditions. For calculation of growth rates, only data from the exponential growth 144 

phase were included. The cell density as well as the cell biovolume were measured on a 145 

Beckman Multisizer3 Coulter Counter (Beckman Coulter Inc., USA). All particles with a 146 

diameter in the range 5 – 12 µm were considered algal cells.  147 

 148 

Cell density – OD relationships 149 

After measurement of cell number and biovolume on the Coulter Counter, the optical density 150 

of the same samples was measured without any extraction on a spectrophotometer 151 

(GENESYS 6, ThermoFisher, USA) at 550, 665 and 750 nm to achieve corresponding 152 

measurements of cell count and optical density in the same samples. It should be noted that 153 

the built-in OD measurement facility of the Multicultivator MC-1000 OD was not used in this 154 

study, as it does not operate at the wavelengths we wanted to use in measuring OD. 155 

 156 

Carbon and nitrogen biomass 157 

After measurement of OD as described above, the algal samples were filtered on to glass 158 

fiber filters (Whatman GF/C). The filters were dried at 105 °C to constant weight, after which 159 
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the filters with the retained algae were analyzed on a CHN-analyzer, using cystine and 160 

acetanilide as standards, to yield the carbon and nitrogen content of the microalgal biomass as 161 

well as the C/N-ratio. 162 

 163 

Calculation of coefficients for the OD – carbon biomass and OD – nitrogen biomass 164 

relationships 165 

From the measurements described above, the relationship between OD and cell count (CC) is 166 

established as OD = a*CC, the relationship between carbon biomass (CB) and cell count as 167 

CB = b*CC, and the relationship between nitrogen biomass (NB) and cell count as NB = 168 

c*CC. From it follows that bCB OD
a

=  and cNB OD
a

= . 169 

 170 

Algal pigments 171 

Pigment samples were taken at the conclusion of the cultivation period. Chlorophylls a and c 172 

were extracted using standard methods (Jeffrey & Humphrey, 1975; Ritchie, 2006). Filter 173 

samples were lyophilized before extraction. Each of these filters was placed in a glass vial 174 

where 3.3 mL of 90 % acetone was added. Samples were shaken on a whirly mixer. Then 175 

samples were placed in the dark for 24 h at 5 °C. The extraction solvent in each vial was 176 

transferred into a quartz cuvette through a 0.2 µm pore size syringe filter and the absorbance 177 

was measured at 664 and 630 nm on a spectrophotometer (GENESYS 6, ThermoFisher, 178 

USA). The concentration of chlorophyll a and c was expressed as pg cell-1. 179 

Phycoerythrin (PE) was extracted based on procedures described in the literature 180 

(Bennett & Bogorad, 1973; Zimba, 2012), and modified in our own laboratory (Thoisen et 181 

al., 2017). After lyophilization, each of the filter samples for PE extraction was placed in a 182 

glass vial together with 3 mL phosphate buffer (0.1 mol pH 7, 0.05 mol K2HPO4, 0.05 mol 183 
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KH2PO4). Samples were sonicated in an ice water bath for 15 min and then left refrigerated 184 

for 12 h. Extraction solvent was filtered through a 0.2 µm pore size syringe filter into a 185 

cuvette for spectrophotometric measurement of the absorbance at 455, 564 and 592 nm. The 186 

concentration of PE was calculated according to the literature (Bennett & Bogorad, 1973), 187 

and expressed as pg cell-1. 188 

 189 

Statistical analyses 190 

Growth rates were calculated by ln-transforming the cell counts, followed by linear 191 

regression analysis of the increase in cell count over time (Sokal & Rohlf, 1995). For the two 192 

N-replete treatments a simple least-squares linear regression was performed. The two N-193 

deplete treatments showed a two-phased growth response due to the onset of N-limitation, so 194 

for these treatments sequential least-squares linear regression was used. Only the slope of the 195 

first linear sequence, corresponding to exponential growth, is reported in Table 1. GraphPad 196 

Prism 8 was used for the linear regression analyses. 197 

The relationships between cell number and optical density were evaluated using least-198 

squares linear regression analysis (Sokal & Rohlf, 1995), as described above, using GraphPad 199 

Prism 8.  200 

Cell count – carbon biomass and cell count – nitrogen biomass relationships were 201 

analyzed using linear regression analysis. As with the growth rates, simple least squares 202 

linear regression was used for the two N-replete treatments, while sequential least-squares 203 

linear regression was used for the two N-deplete treatments, that showed a saturation of the 204 

nitrogen biomass at high cell counts due to N-limitation. As for the growth rate analyses, we 205 

used GraphPad Prism 8. 206 
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The slopes of the resulting regression lines from the above analyses were tested against 207 

each other for statistically significant differences based on the procedures described in Sokal 208 

and Rohlf (1995), using the TestSlopes procedure of the RealStats package v. 5.4.2 with α = 209 

0.05. 210 

Chlorophyll a and c as well as PE concentrations were subjected to one-way ANOVA 211 

with treatment as a fixed factor. Tukey’s test was subsequently used to compare individual 212 

means across treatments. Data were tested for homogeneity of variance (Cochran’s test) and 213 

normal distribution (Kolmogorov-Smirnoff goodness of fit test) before being analyzed by 214 

ANOVA (Quinn & Keough, 2002). All tests were carried out using SYSTAT v. 13 with α = 215 

0.05. 216 

 217 

Results 218 

Growth rates 219 

Growth rates, as established through direct cell counts, varied between treatments (evaluation 220 

of 95 % C.I., Table 1, Fig. 1). The highest growth rate was seen under nitrogen replete 221 

conditions under saturating light, were a specific growth rate of 0.82 d-1 was obtained. The 222 

second highest specific growth rate was obtained under nitrogen deplete, saturating light, 223 

conditions and found to be 0.50 d-1. Limiting light conditions yielded the lowest specific 224 

growth rates with a growth rate of 0.21 d-1 under both nitrogen conditions. It should be noted 225 

that for the two nitrogen deplete treatments, only the first part of the sequential regression 226 

lines are considered in the comparison of growth rates, as the sequential linear regression 227 

analysis show a decline in growth rate, probably due to nitrogen limitation, after 78 hours 228 

under light limitation and after 35 hours under light saturation. 229 

 230 
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Cell count – OD relationships 231 

The relationships found between direct cell counts and optical density are shown in Figs. 2A 232 

(nitrogen replete, limiting light), 2B (nitrogen replete, saturating light), 2C (nitrogen deplete, 233 

limiting light) and 2D (nitrogen deplete, saturating light). The linear relationships are all 234 

strongly statistically significant, with slopes in the range 2.3 – 3.6, all significantly different 235 

from 0 (least-squares linear regression, p << 0.05). The slopes and coefficients of 236 

determination (the R2 – values) are further evaluated in Fig. 3 and Table 1. The slopes 237 

measured at 665 and 550 nm for nitrogen replete, limiting light conditions are 3.5 – 3.6 and 238 

significantly higher than the rest of the slopes (2.3 – 2.8) (p << 0.001), but not significantly 239 

different from each other (p > 0.05, Fig. 3 and Table 1). This indicates that under nitrogen 240 

replete limiting light conditions, the direct cell count is accompanied by a larger increase in 241 

OD when OD is measured within the absorption range of chlorophyll than is the case for the 242 

other treatments. Measurement at 665 and 550 nm tend to give a higher increase in OD per 243 

change in cell count than measurement at 750 nm, although this is only statistically 244 

significant under nitrogen replete conditions, independently of light level (p << 0.001, Table 245 

1, Fig. 3), not at nitrogen deplete conditions (p > 0.05, Table 1, Fig. 3). The coefficients of 246 

determination are all high, > 0.95 (Table 1), but with a clear tendency for the nitrogen deplete 247 

saturating light treatment to give the highest determination coefficients, ≈ 0.98. This 248 

treatment thus gives the strongest relationship between cell count and OD with some 98 % of 249 

the variation in OD being explained by increases in cell count (Table 1, Fig. 3). 250 

 251 

Variation in carbon and nitrogen biomass and cell content 252 

The carbon biomass of all treatments showed a direct linear relationship to the increasing cell 253 

counts (Table 1, Fig. 4). The slope of this relationship is significantly lower for algae grown 254 
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under nitrogen replete, but light limited conditions (4.53 x 10-5 µg C cell-1), than for the other 255 

three treatments that varied from 8.13 – 8.97 x 10-5 µg C cell-1 with no statistically significant 256 

differences among them (Table 1, Fig. 4). The nitrogen biomass also showed initial linear 257 

increases with cell count in all four treatments (Table 1, Fig. 5). However, for the two 258 

nitrogen deplete treatments, the nitrogen biomass leveled off at cells counts of 2.58 x 106 259 

under light limitation and 2.86 x 106 under light saturation (Fig. 5), and did not show any 260 

further increase despite continued increase in the cell counts. This is reflected in changes in 261 

the cell C/N-ratios and cell nitrogen content over time (Fig. 6), were the two nitrogen deplete 262 

treatments show a decline in C/N-ratio and cell nitrogen content over time, while the two 263 

nitrogen replete treatments do not show any statistically significant changes in these 264 

parameters over time. None of the four treatments shows any statistically significant changes 265 

in cell carbon content over time. 266 

 267 

Pigment content 268 

Chlorophyll concentrations are shown in Table 1 and Fig. 7. Concentrations of chlorophyll a 269 

are significantly higher under nitrogen replete limiting light conditions (4.3 pg cell-1) than 270 

under the other treatments (ANOVA followed by Tukey post-hoc test, p < 0.0001). There is a 271 

tendency for chlorophyll a concentration to be higher under light limited conditions, although 272 

is only statistically significant for the nitrogen replete treatment. Concentrations of 273 

chlorophyll c were very low, but tended to follow the same overall pattern as for chlorophyll 274 

a. 275 

Phycoerythrin concentrations are shown in Fig. 8. Concentrations varied from 0.72 to 276 

7.35 pg cell-1. Concentrations were higher under nitrogen replete conditions than under 277 
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nitrogen deplete conditions (ANOVA followed by Tukey post-hoc test, p < 0.0001), with a 278 

non-significantly tendency to be higher under limiting than under saturating light (Fig. 8). 279 

 280 

Discussion 281 

Not surprisingly, the growth rates of Rhodomonas in our study depend on both irradiance and 282 

nitrogen availability. The highest growth rate is thus achieved with saturating light and high 283 

nitrogen availability and is 0.82 d-1, which is in good accordance with growth rates reported 284 

in the literature for Rhodomonas growing under optimal conditions (Guevara et al., 2016). 285 

The lowest growth rates, 0.21 d-1, achieved under limiting light, are among the lowest 286 

reported in the literature, and confirms that this set of conditions is strongly limiting for 287 

Rhodomonas growth (Hammer et al., 2002). Comparison across treatments indicate that light 288 

is the more important factor controlling growth rate in present study, as the growth rate drops 289 

a factor of almost four when lowering the irradiance with the same nitrogen availability. In 290 

contrast lowering nitrogen availability under the same irradiance only lowers the growth rate 291 

from 0.82 d-1 to 0.50 d-1 under saturating light and not at all under light limitation. 292 

Chlorophyll does not vary in parallel with growth rate, indicating that growth rate is not 293 

directly controlled by cell chlorophyll content. The highest cell chlorophyll concentrations 294 

are achieved under low irradiance and high nitrogen availability, as is usually found to be the 295 

case in algae and plants (e.g. Horton et al., 1996); while the lowest cell chlorophyll 296 

concentrations likewise are found under high irradiance. Phycoerythrin shows a similar 297 

pattern, with the highest concentrations under nitrogen replete conditions and with a non-298 

significant tendency to be higher under light limitation. Similar results have been reported 299 

before (Vu et al., 2016), and are no doubt caused by the fact that phycoerythrin in 300 



14 
 

Rhodomonas is a light-harvesting billi-protein pigment with a similar role in cryptophyte 301 

photosynthesis as chlorophyll. 302 

The OD – cell count relationships evince high R2 - values and cell count always explain 303 

more than 95 % of the variation in OD regardless of treatment and wavelength, indicating 304 

that the contribution of changes in cellular properties to OD is always small. This means that 305 

no matter the physiological state of the microalgae and regardless of which wavelength used, 306 

within the absorption range of chlorophyll or not, it is possible to establish a good, strong 307 

relationship between OD and cell concentration. Hence, OD seems a very robust proxy for 308 

microalgal biomass in different physiological states. The regression slopes, however, clearly 309 

depend on the physiological state of the algae, as well as on the wavelength used. They are 310 

highest at low irradiance and high nitrogen availability, just like cell chlorophyll content, but 311 

are lowest under low irradiance and low nitrogen availability This most likely is due to the 312 

OD – cell count relationship being governed primarily by nitrogen availability and to a lesser 313 

extent by irradiance. The regression coefficients of the two saturating light treatments are 314 

intermediate. Interestingly, this pattern is seen for all three wavelengths, although it was 315 

expected that only OD measured at the two wavelengths within the absorption range of 316 

chlorophyll, 665 and 550 nm, would depend on cell chlorophyll content. It is possible that 317 

cell chlorophyll content co-vary with other parameters contributing to the absorption at 750 318 

nm (Griffiths et al., 2011). 319 

Higher cell chlorophyll contents not surprisingly cause a higher OD for any given cell 320 

concentration. This is obviously most pronounced at 665 and 550 nm where we find the 321 

highest slopes of the cell count – OD relationships. The differences in R2 - values are always 322 

very small, ranging from 0.95 to 0.98. 323 
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All four treatments show strong, linear, relationships between cell counts and carbon 324 

biomass. Interestingly, the slope of the relationship for the nitrogen replete, light limited 325 

treatment is only approximately 50 % (4.53) of the slopes of the three other treatments (8.13 326 

– 8.97). It is possible that this is caused by microalgal cells under light limited, but nitrogen 327 

replete, conditions investing more in nitrogen uptake and storage in e.g. amino acids and 328 

pigments than in increased carbon biomass. This hypothesis is in accordance with the 329 

observed patterns of chlorophyll and phycoerythrin contents in the cells. In accordance with 330 

the observed linear relationships between cell count and carbon biomass, the cell carbon 331 

content is constant in all four treatments. We also observe linear relationships between cell 332 

counts and nitrogen biomass, but for the two nitrogen limited treatments only up to a certain 333 

point, where nitrogen apparently becomes limiting, and the carbon biomass of the culture 334 

continues to increase, while the nitrogen biomass remains constant. This happens at 335 

approximately the same cell densities regardless of light conditions, at a cell count of about 336 

2.6 * 105 cells ml-1
 under light limited conditions and 2.8 * 105 cells ml-1 under light 337 

saturation. It is accompanied by a decrease in cellular nitrogen content and increasing C/N – 338 

ratios of the cells from both nitrogen limited treatments, while the cellular nitrogen content 339 

and C/N – ratios remain constant for cells under nitrogen replete conditions. 340 

We established coefficients for the relationships between OD and both carbon biomass 341 

and nitrogen biomass. These were highest when OD was measured at 750 nm, but only 342 

slightly lower when measured at the two other wavelengths, 665 and 550 nm. Obviously, 343 

these coefficients are affected both by the established relationships between OD and cell 344 

count and between cell count and carbon and nitrogen biomass, respectively. 345 

We can conclude that it is indeed possible to use the convenient, fast and reliable OD 346 

measurement as a proxy for microalgal biomass during microalgal biomass production. The 347 
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three different wavelengths used in our study can all be used for measurements of OD, 348 

although the two wavelengths that lie within the absorption range of chlorophyll give 349 

stronger OD signals for any increase in microalgal biomass, especially under nitrogen replete 350 

conditions, which may be advantageous in some situations. The R2 – values are always high, 351 

evincing very small differences, indicating that the ‘noise’ caused by cell pigment content is 352 

minimal. It is, however, important to take into account that the precise relationship between 353 

OD and biomass, here measured as cell count, does depend on factors such as irradiance and 354 

nutrient availability. These factors determine the physiological state of the algae, which 355 

translates into their overall absorbance signal, which must therefore be established in each 356 

specific case and set of production parameters. Especially if the microalgae become nitrogen 357 

limited during growth the OD measurements need to be interpreted carefully as cell division 358 

will cease under these conditions, while an increase in carbon biomass can still be observed. 359 

Failing to consider these factors, may cause over- or under-estimation of the biomass present, 360 

which can have serious economic consequences further downstream in the production. Based 361 

on differences among slopes, errors in biomass estimation may vary from 44 % based on cell 362 

concentration, over 66 % for carbon biomass, to 95 % for nitrogen biomass. 363 
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Table 1 

Data for growth rates (µ) of the microalga Rhodomonas salina, slopes and squared multiple correlation coefficients of cell count – optical density relationships; 

as well as slopes of cell count – carbon biomass and cell count – nitrogen biomass for the algae growth under the four different treatment conditions in this 

experiment. Results are expressed as means ± 1 SD. 

Treatment 
Growth rate, µ 

(d-1) 

Slope of cell count – OD relationship 

(x 10-5) 
R2 

Slope of cell count – carbon 
biomass relationship 

(x 10-5) 

Slope of cell count – 
nitrogen biomass 

relationship 

(x 10-5) 750 nm 665 nm 550 nm 
750 
nm 

665 
nm 

550 
nm 

Nitrogen replete, 
Limiting light 

0.21 ± 0.01 2.79 ± 0.12 3.47 ± 0.14 3.62 ± 0.14 0.952 0.956 0.958 4.53 ± 0.36 0.91 ± 0.07 

Nitrogen replete, 
Saturating light 

0.82 ± 0.03 2.47 ± 0.09 2.72 ± 0.09 2.72 ± 0.084 0.964 0.966 0.971 8.13 ± 0.60 0.80 ± 0.24 

Nitrogen deplete, 
Limiting light 

0.21 ± 0.03 2.32 ± 0.15 2.62 ± 0.16 2.67 ± 0.14 0.958 0.965 0.974 8.97 ± 0.72 1.22 ± 0.62 

Nitrogen deplete, 
Saturating light 

0.50 ± 0.07 2.57 ± 0.12 2.71 ± 0.13 2.70 ± 0.13 0.979 0.978 0.978 8.27 ± 0.99 0.43 ± 0.07 
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Table 2 

Calculated coefficients for the relationships between optical density and carbon and nitrogen 
biomass, respectively. Carbon biomass is expressed as µg C ml-1 and nitrogen biomass as µg 
N ml-1. For the two nitrogen deplete treatments, coefficients for nitrogen-limited growth (Fig. 
5) are given in brackets. 

Treatment Carbon biomass - OD Nitrogen Biomass - OD 

 750 nm 665 nm 550 nm 750 nm 665 nm 550 nm 

Nitrogen replete, 
Limiting light 

1.62 1.31 1.25 0.33 0.26 0.25 

Nitrogen replete, 
Saturating light 

3.29 2.99 2.99 0.32 0.29 0.29 

Nitrogen deplete, 
Limiting light 

3.87 3.42 3.36 0.53 

(-0.002) 

0.47 

(-0.002) 

0.45 

(-0.002) 

Nitrogen deplete, 
Saturating light 

3.22 3.05 3.06 0.17 

(-0.004) 

0.16 

(-0.003) 

0.16 

(-0.003) 
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Figure legends 

Figure 1 

Growth in cell counts over time in the four treatments. A: Nitrogen replete, limiting light; B: 

Nitrogen replete, saturating light; C: Nitrogen deplete, limiting light; D: Nitrogen deplete, 

saturating light. The lines represent the fitted regression lines. For treatments A and B, simple 

least-squares regression lines are given. For treatment C and D, the lines represent sequential 

least-squares regression lines. Please note that X-axes have different scales for nitrogen 

replete vs. deplete treatments and that the Y-axes are logarithmic. 

 

Figure 2 

Relationship between cell count and optical density (OD), measured at three different 

wavelengths, 750, 665 and 550 nm. The lines represent the fitted least-squares regression 

lines. Panel A: Nitrogen replete, limiting light treatment. Panel B: Nitrogen replete, saturating 

light treatment. Panel C: Nitrogen deplete, limiting light treatment. Panel D: Nitrogen 

deplete, saturating light treatment. 

 

Figure 3 

Comparisons of slopes for the regression lines from the cell count – optical density 

relationships for the four treatments, measured at the three wavelengths, 750, 665 and 550 

nm. A: Nitrogen replete, limiting light; B: Nitrogen replete, saturating light; C: Nitrogen 

deplete, limiting light; D: Nitrogen deplete, saturating light. Error bars represent 95 % C.I., 

allowing direct visual comparisons. 
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Figure 4 

Increase in carbon biomass as a function of increasing cell count per ml. The lines represent 

the fitted least-squares regression lines. Panel A: Nitrogen replete, limiting light treatment. 

Panel B: Nitrogen replete, saturating light treatment. Panel C: Nitrogen deplete, limiting light 

treatment. Panel D: Nitrogen deplete, saturating light treatment. 

 

Figure 5 

Increase in nitrogen biomass as a function of increasing cell count per ml. Panel A: Nitrogen 

replete, limiting light treatment. Panel B: Nitrogen replete, saturating light treatment. Panel 

C: Nitrogen deplete, limiting light treatment. Panel D: Nitrogen deplete, saturating light 

treatment. The lines represent the fitted regression lines. For treatments A and B, simple 

least-squares regression lines are given. For treatment C and D, the lines represent sequential 

least-squares regression lines. 

 

Figure 6 

Variation in C/N-ratio (upper panel), cell carbon content (middle panel) and cell nitrogen 

content (lower panel). Circles: nitrogen replete treatments, squares: nitrogen deplete 

treatments, filled data points: limiting light, open data points: saturating light. Least-squares 

linear regression lines were fitted if the variation of the parameter over time was found to be 

statistically significant. 

 

Figure 7 

Chlorophyll concentrations (pg cell-1) of algae from the four treatments. Values are given as 

means with error bars indicating 1 SD. Different letters indicate statistically significant 
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differences between treatments. Black bars and capital letters: Chl a, grey bars and lower case 

letters: Chl c, open bars indicate the sum of Chl a and c concentrations. A: Nitrogen replete, 

limiting light; B: Nitrogen replete, saturating light; C: Nitrogen deplete, limiting light; D: 

Nitrogen deplete, saturating light. 

 

Figure 8 

Phycoerythrin concentrations (pg cell-1) of algae from the four treatments. Values are given 

as means with error bars indicating 1 SD. Different letters indicate statistically significant 

differences between treatments. A: Nitrogen replete, limiting light; B: Nitrogen replete, 

saturating light; C: Nitrogen deplete, limiting light; D: Nitrogen deplete, saturating light. 
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