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Abstract: Contamination of large-scale microalgal cultures by grazers can cause huge losses in biomass 

productivity. Here we propose the use of a quaternary ammonium salt CTAB (cetyltrimethylammonium 

bromide) to eradicate three types of commonly occurring grazers in microalgal cultures: the rotifer 

Brachionus, the ciliate Sterkiella and the flagellate Paraphysomonas. Low, premicellar doses (≤ 3 µM) of 

CTAB rapidly eradicated (within 1 – 2 d) all three tested grazers from microalgal cultures without 

significant losses (p < 0.05) in microalgal productivity. However, doses exceeding 5 µM also negatively 

affected microalgal growth. The optimal dose of CTAB that resulted in complete eradication of the grazers 

with minimum impact on microalgal productivity was 3 µM for Brachionus, 2 µM for Sterkiella and 3 µM 

for Paraphysomonas. Thus, being a readily available chemical, CTAB has the potential to be used as a 

fast-acting, low-cost control agent against a range of frequently occurring grazer types in large-scale 

microalgal cultures. 
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1. Introduction 

During the past two decades, there has been an increased interest in using microalgae for food, 

nutraceuticals, feed and biofuel production. Today, microalgae are most commonly produced in open 

raceway ponds [1]. These large-scale cultivation systems often experience severe losses in productivity 

due to microscopic grazers that invade the cultures and feed on microalgae, such as rotifers, ciliates and 

flagellates [2,3]. These grazers form resting stages that are easily dispersed through air. As a result, 

contamination of microalgal cultures by these grazers is hard to avoid. Open raceway ponds are 

particularly susceptible to contamination because the water surface is continuously exposed to the 

atmosphere [4].  Nevertheless, closed systems such as photobioreactors are also susceptible to 

contamination because they require continuous sparging with large volumes of air to remove excess 

oxygen [5], and this air may contain dormant stages of grazers. Once entering the culture, the grazers will 

emerge from the dormant stages and will rapidly develop a large population by feeding on microalgae and 

can cause a culture crash within few days [6,7]. 

In recent years, some methods have been proposed to control grazers that have invaded microalgal 

cultures. Addition of ammonium (NH4
+) in combination with an increase in pH results in the formation of 

free ammonia (NH3), which is toxic to some but not all grazers [8]. CO2 asphyxiation can be used to 

control rotifer, ciliate and flagellate contamination [9,10]. Use of chemicals such as quinine sulfate [4], 

toosendanin [11] and rotenone [12] have also been proposed. Recently, feeding deterrents from marine 

algae and their chemical analogues have been reported to control the grazers [13]. However, most of these 

methods either require large doses of chemicals or are not cost-effective be used in large-scale systems. 

Therefore, it is important to find methods that are both effective at low dose and low-cost, and that are 

active for controlling grazers in large-scale microalgal cultures. 

Quaternary ammonium compounds (QACs) are widely used as antimicrobial agents in detergents 

and cosmetics [14,15]. CTAB (cetyltrimethylammonium bromide), a widely used QAC, is a cationic 

surfactant with a hydrophobic chain linked to a positively-charged quaternary ammonium head group. 

CTAB has been effectively used against bacteria and fungi at varying concentrations: 44 µM to 3 mM 

[16]. The main cause of QACs toxicity on living cells is due to interaction with the cell membrane [17]. 

The positively-charged quaternary ammonium head of CTAB interacts with negatively-charged 
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phospholipids of the plasma membrane, followed by penetration of the hydrophobic tail of CTAB inside 

the bilayer to interact with the lipidic tails through hydrophobic exclusion. These series of events alter the 

membrane integrity to result in leakage of intracellular components and ultimately lead to cell death [18].    

The aim of this study was to assess if CTAB can be used as a chemical control agent to eradicate 

grazers from microalgal cultures. To test this, we evaluated the impact of CTAB on three different types 

of microalgal grazers that are known to invade large-scale microalgal cultures: rotifers, ciliates and 

flagellates [2,19]. Earlier studies, however, also reported a negative impact of CTAB on microalgae in 

natural aquatic ecosystems [15]. Therefore, we also assessed the impact of CTAB on the microalgae and 

aimed to find an optimal dose that results in rapid eradication of grazers with minimal impact on 

microalgal productivity. 

2. Materials and methods 

2.1. Cultivation of microalgae 

Monocultures of microalgae Chlorella vulgaris 211-11 B (SAG, Göttingen) and Chlamydomonas 

reinhardtii 77.81 (SAG, Göttingen) were maintained in 2 L batch cultures in Wright's Cryptophyte (WC) 

medium [20] in a temperature-controlled room (20 ± 1 ºC) at a light intensity of 80 µE m-2 s-1 and light-

dark cycle of 16:8 h. Growth of microalgae was monitored spectrophotometrically by measuring the 

absorbance at 750 nm (OD750). Biomass concentrations (mg L-1) were calculated by multiplying the OD750 

values with 353 for Chlorella and with 551.2 for Chlamydomonas, derived from the plot of OD750 values 

versus varying dry weight (DW; see SI for details). Late exponential phase cultures were used for the 

experiments. 

2.2. Cultivation of rotifers, ciliates and flagellates 

The rotifer Brachionus calyciflorus and the flagellate Paraphysomonas were isolated from a 

freshwater pond near the KU Leuven campus in Kortrijk, Belgium (See SI). The hypotrich ciliate 

Sterkiella was isolated from a rainwater storage reservoir in Meulebeke, Belgium (See SI) [21].  

Brachionus were maintained in batch cultures for approximately 3 years before experimentation 

under the same conditions as used for microalgae. Brachionus cultures were routinely transferred every 4 

– 5 days to a fresh Chlorella culture: 25 mL of the rotifer culture was transferred to a 0.5 L glass bottle 
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containing 200 mL WC medium and 100 mL of an exponential phase Chlorella culture. Initial rotifer 

density varied from 0.1 to 1 rotifers mL-1 and the Chlorella concentration varied from 0.1 to 0.35 g L-1.    

Sterkiella and Paraphysomonas were maintained in 6-well plates in 3 mL volume cultures for 

approximately 8 months before experimentation. Both grazers were transferred every 3 days: 0.5 mL of 

the ciliate/flagellate suspension was transferred to a well containing 2 mL of WC medium and 0.5 mL of  

an exponential phase Chlamydomonas/Chlorogonium elongatum 30.98 (SAG, Göttingen) culture. Initial 

ciliate/flagellate abundance varied from 10 to 50 cells mL-1 and the microalgal food concentration varied 

from 0.08-0.19 g L-1. To obtain sufficient numbers of Sterkiella and Paraphysomonas cells for this study, 

cultivation was upscaled to 350 mL batch cultures with the same transfer conditions. Exponential growing 

populations of all grazers were used as inocula for all conducted contamination experiments.  

 

2.3. Evaluation of grazer elimination by CTAB 

A working solution of 100 µM of cetyltrimethylammonium bromide (CTAB; analytical grade; 

Sigma-Aldrich, Belgium) was freshly prepared for each experiment by diluting the stock solution (10 

mM) in WC medium. Different concentrations of CTAB (0.1 – 9 µM) were tested against the grazers in 

microalgal cultures and the results were compared against the untreated control (see SI Table S1). 

Further, the effect of CTAB on microalgal monocultures was also tested with the selected concentrations.   

Separate controlled contamination experiments were carried out for each grazer. Experimental 

setup consisted of 100 mL microalgal cultures bubbled with sterile-filtered air and gentle stirring 

(magnetic stirrer, 10 rpm) in the presence or absence of grazers. Each treatment was tested in triplicate and 

all treatments were incubated in the similar culture conditions as for the microalgal monocultures. Initial 

microalgal and grazer levels were chosen as to represent a high-risk level of infection in established 

microalgal cultures (See SI Table S2). Previous experiments showed that these initial concentrations 

result in culture crash within few days (e.g. as in [21]). For each treatment, CTAB was added ~ 5 minutes 

after inoculating the microalgal cultures with the grazers. The cultures were monitored daily up to 5 days. 

Growth of microalgae was monitored spectrophotometrically (OD750) from 2 mL subsamples. The 

abundance of rotifers and ciliates was determined from 2 mL subsamples using a Sedgewick rafter 

counting chamber under an Olympus SZX10 stereomicroscope. Rotifer and ciliates counts were derived 
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from formaldehyde (5% vol)-preserved samples. Abundance of flagellates was determined from 2 mL 

subsamples under an Olympic BX51 microscope (200X magnification) using a Bürker counting chamber 

in presence of glycerol (final concentration of 10% w/vol).  

2.4. Growth rate 

The specific growth rate (µ) of grazers was calculated by fitting their abundance from 24 h to 72 h of 

cultivation to an exponential function. 

µ =
𝑙𝑛 (𝑁2/ 𝑁1)

𝑡2 −  𝑡1
 

Where, µ represented the specific growth rate, N1 and N2 are the abundance at times t1 and t2. 

2.5. LD50 determination  

The 24-h LD50 (the dose lethal to 50% of the individuals in a population over 24 h) of CTAB was 

determined for microalgae and grazers. For the microalgae, the rotifer Brachionus and the ciliate Sterkiella 

LD50 values were determined through a linear regression curve. Whereas, for the flagellate 

Paraphysomonas, the mortality as a function of CTAB concentration was best described by a sigmoid 

curve, which was further linearized through probit analysis method described by Finney (1952) [22] to 

determine the LD50 values (see SI for detailed methodology and regression equations). 

2.6. Statistical analysis 

Data were statistically analysed using R version 3.4.3 (The R Foundation for Statistical 

Computing, Austria). The independent and interacting effects of grazers and CTAB on final microalgal 

biomass concentration were analysed using two-way ANOVA followed by Tukey’s HSD test for all 

pairwise comparisons. The influence of varying CTAB concentrations on final grazer densities were 

compared using a one-way ANOVA followed by Tukey’s HSD test for all pairwise comparisons. 

Significances for the differences were established at an ∝  risk of 5% (p = 0.05). 

3. Results and discussion 

3.1. Impact of CTAB on microalgal grazers and microalgae 

To test the efficacy of CTAB as a grazer control agent in microalgal cultures, controlled 

contamination experiments were performed. Microalgal growth and culture biomass productivity in the 
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presence or absence of grazers exposed to different CTAB concentrations were compared (growth curves 

in SI Fig. S1). In control cultures without CTAB and grazers, Chlorella biomass doubled within 48 h from 

160 mg L-1 to approximately 320 mg L-1, whereas Chlamydomonas biomass doubled within 72 h from 135 

mg L-1 to approximately 270 mg L-1. When the culture was contaminated with grazers and no CTAB was 

applied, a negative impact of the grazers on the microalgal biomass production was observed, resulting in 

a maximum biomass loss within 72 h. The daily mean biomass loss was 32% for Chlorella contaminated 

with Brachionus, 26% for Chlamydomonas contaminated with Sterkiella and 21% for Chlamydomonas 

contaminated with Paraphysomonas (Fig. 2). At the same time, the abundance of grazers increased 

exponentially for Brachionus from 5 ind mL-1 to 175 ind mL-1 within 72 h, for Sterkiella from 25 cells mL-

1 to 435 cells mL-1 within 96 h and for Paraphysomonas from 1,000 cells mL-1 to 1.75 x 103 cells mL-1 

within 96 h. Further, their specific growth rate between 24 and 72 h was as high as 1.3 ± 0.08 d-1 for 

Brachionus, 0.9 ± 0.03 d-1 for Sterkiella and 2.11 ± 0.03 d-1 for Paraphysomonas. This shows the vigour 

and severity of impact of these grazers on the productivity of microalgal cultures. 

Addition of CTAB had a negative impact on all three grazer types and this impact was 

concentration-dependent (Fig. 2). Significant reduction (p<0.05) in abundance of Brachionus was 

observed at doses ≥1 µM, when compared to the untreated control. Whereas, for Sterkiella a dose as low 

as 0.1 µM already resulted in significant reduction (p<0.05) in their abundance. In contrast, significant 

reduction (p<0.05) of Paraphysomonas occurred only at doses ≥2.5 µM (Fig. 2). Doses higher than 3 µM 

resulted in complete eradication of all three grazers within 72 h. These results indicate that CTAB could 

be used to completely eradicate all three grazers from the microalgal culture. 

CTAB also negatively impacted the growth of microalgae with doses higher than 4 µM (Fig. 1). 

In fact, addition of CTAB at higher doses had negative impact on both the tested microalgae even in the 

absence of grazers. The toxicity of CTAB on microalgae has been reported earlier [23]. The optimal dose 

of CTAB required to eradicate the grazers without affecting the microalgal growth was determined as 3 

µM for Brachionus, 2 – 4 µM for Sterkiella and 3 µM for Paraphysomonas. These concentrations resulted 

in complete eradication of grazers within 24 – 48 h. At the same time, the optimal dose of CTAB resulted 

in a decrease in daily mean biomass losses to 8.6% for Chlorella contaminated with Brachionus, 6.1% for 
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Chlamydomonas contaminated with Sterkiella and 1.5% for Chlamydomonas contaminated with 

Paraphysomonas (Fig. 1).  
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Figure 1: Microalgal biomass (dry weight, mg L-1) in grazer contaminated (left) and uncontaminated 

microalgal cultures (right) treated with different doses of CTAB at the end of each growth experiment. For 

each microalgae-grazer combination five different CTAB concentrations were applied. Two-way ANOVA 



9 
 

was used to test for the effects of CTAB concentration, grazer presence and their interaction on microalgal 

dry weight biomass (mg L-1) at the end of each experiment. Statistically different microalgal biomass 

concentrations for each tested grazer (p<0.05, n =12, two-way ANOVA with Tukey HSD posthoc test) are 

indicated by a different letter. Each data point is the mean of three replicates. Error bars denote one 

standard deviation. If no bar is shown, microalgal biomass concentration equals zero. 

 

 

Figure 2: Influence of CTAB concentration on growth of the rotifer Brachionus, the ciliate Sterkiella and 

the flagellate Paraphysomonas. Each grazer species was exposed to five different CTAB concentrations 

and compared with a control culture (= 0 µM). One-way ANOVA was used to test for the effect of CTAB 

concentration on grazer abundance at the end of each experiment. Statistically different values (p<0.05, n= 

6, One-way ANOVA with Tukey HSD post hoc test) are indicated by a different letter. Each data point is 

the mean of three replicates. Error bars denote one standard deviation. 

 

Application of  CTAB at the optimal dose to cultures without grazers caused similar daily mean 

biomass losses: 6.9% for Chlorella cultures at 3 µM and 2.1 – 2.8% for Chlamydomonas cultures at 2 - 3 

µM. However, these losses were much lower and trivial when compared to losses caused by grazers in the 

contaminated cultures without CTAB. The microalgal biomass productivity at these optimal doses was 

significantly higher (p<0.05) compared to contaminated cultures treated with lower and higher doses of 

CTAB (Fig. 1). These findings indicate that if CTAB is applied with the optimal dose it can protect 

microalgae biomass from devastating grazers and prevent a culture crash, with only a limited reduction in 

biomass productivity. 

The CTAB dose needed to kill 50% of the grazers in 24 h (24-h LD50) was estimated as, 3.7 ± 

0.55 µM (1.31 ± 0.2 mg L-1) for Brachionus, 1.98 ± 0.06 µM (0.69 ± 0.02 mg L-1) for Sterkiella and 2.7 ± 

0.04 µM (0.98 ± 0.01 mg L-1) for Paraphysomonas. The 24-h LD50 for the two microalgae species was 
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12.14 ± 0.24 µM (4.42 ± 0.09 mg L-1) for Chlorella and 5.41 ± 0.09 µM (1.96 ± 0.03 mg L-1) for 

Chlamydomonas. 

These results indicate that CTAB negatively affects both microalgal grazers and microalgae. Yet,  

microalgal grazers are more sensitive to CTAB than microalgae, and there is also a difference in 

sensitivity to CTAB between microalgal species. This difference may be caused by an interaction between 

the action mechanism of CTAB and the differences in the cell structure of the microalgae and their grazers 

(Scheme 1). The likely mechanism by which CTAB interacts with living cells is by (a) solubilizing cell 

wall polysaccharides and/or (b) destabilizing the lipid bilayer of the plasma membrane [24,25]. Thus, 

CTAB is capable of affecting the organisms in spite of having a protective cell wall. However, organisms 

with a cell wall can be expected to be less impacted by quaternary ammonium surfactants such as CTAB, 

when compared to organisms lacking a cell wall [15]. Most microalgal grazers either lack a cell wall 

(rotifers, ciliates) or have a cell that is covered by loose silicaceous scales (the flagellate 

Paraphysomonas). This allows CTAB to directly interact with their cytoplasm membrane, which should 

rapidly result in loss of cellular integrity. On the contrary, the cell wall of most microalgae makes them 

less prone to the destructive action of CTAB, at least at concentrations (< 4 µM) at which the grazers 

lacking a cell wall are susceptible. The difference in susceptibility between the microalgae is likely in part 

due to differences in algal physiology and differences in cell wall composition and structure [15,26]. This 

difference in CTAB vulnerability between grazers and microalgae is a necessary prerequisite for 

successful application of CTAB for grazer control in microalgal cultures. 
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Scheme 1: Illustration of the possible action mechanism of CTAB on microalgae and grazers, owing to 

their different cell coverings, which have been exploited in the current study to selectively eradicate 

grazers from the microalgal culture (derived from [24,25]). In case of microalgae, the CTAB acts on the 

cells via a two-step process (a) interaction of positively-charged head group with negatively-charged cell 

wall surfaces and solubilisation of cell wall polysaccharides to create localized pores; (b) interaction of the 

positively-charged head group with negatively-charged phosphate moiety of phospholipid bilayer and 

penetration of the tail group of CTAB inside the bilayer to interact with the lipidic tails. This alters the 

phospholipid assembly, thereby causing membrane disruption and results in leakage of intracellular 

components and cell death. Since the grazers lack the cell wall, CTAB directly acts on the plasma 

membrane following the step (b) and affects them quicker than the microalgae. CW, cell wall; PM, plasma 

membrane. 

 

3.2. Practical implications of using CTAB as pesticide in microalgal cultivation 

Quaternary ammonium salts like CTAB are widely used as disinfectants against bacteria and 

fungi. The results of this study show that CTAB is also effective against a range of grazers that 

contaminate microalgal cultures. The dose at which CTAB kills microalgal grazers (2 - 3 µM) is an order 

of magnitude lower than the doses used to kill bacteria or fungi (44 µM to mM range; [16]). It would be 

interesting to test whether CTAB is also effective against other types of contaminants in microalgal 

cultures, such as microscopic fungi (e.g. chytrids) or parasitic amoebae which are also a widespread 
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problem in microalgae production [2,3]. In this study we have only tested the effect of CTAB in fresh 

water microalgal cultures. However, it would be compelling to test if CTAB is also effective against 

grazers in industrially relevant marine microalgal cultures such as Dunaliella or Nannochloropsis spp.  

CTAB has already been widely applied in microalgal processes, either as a flocculant or as an 

agent for cell disruption [27]. However, concentrations used for these applications are three orders of 

magnitude higher (0.5 – 5 mM) than the concentrations used in this study (2 – 3 µM). Hence, at the 

concentration range used to eradicate the grazers, no flocculation could be observed at all. 

With an effective dose of 3 µM, about 110 g of CTAB would be required to treat a 100 m3 grazer 

contaminated microalgal raceway pond. With an estimated cost of 10 $ kg-1 CTAB, the cost for 

eradication of the tested grazers in 100 m3 ponds varies from 0.7 to 1.3 $ (Table 1). In comparison with 

previously reported chemical control agents such as rotenone and toosendanin, the effective CTAB dose is 

~ 10 to 500-fold higher [11,28,29]. Although, rotenone and toosendanin are effective at very low 

concentrations, their cost kg-1 is ~ 7.5 to 250-fold higher compared to CTAB, which makes the application 

cost to a 100 m3 algal pond similar or higher compared to CTAB (Table 1). In comparison with quinine 

sulfate and ammonium bicarbonate, the effective CTAB dose is ~ 14 to 1000-fold lower [29,30]. The 

higher dose needed in combination with the higher cost of ~ 20 $ kg-1 for quinine sulfate makes this 

chemical ~ 25 times more costly to apply to a 100 m3 culture suspension. Ammonium bicarbonate is the 

cheapest chemical ~ 0.11 $ kg-1, but the higher doses needed result to a similar or higher cost compared to 

CTAB when applied to a 100 m3 pond (Table 1). This implies that the use of CTAB might be a cost 

competitive option compared to previously reported chemical control agents if a single application is 

sufficient to control grazers. The actual chemical cost during operation may deviate due to differences in 

persistence of the chemical in the culture medium. Environmental factors including pH, temperature and 

light may affect chemical degradation rates and force multiple applications of the chemical to control the 

grazers [30,31]. 
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Table 1: Comparison of selected chemical control agents to CTAB used to eradicate grazers from 

microalgal cultures. Effectiveness of these chemicals to various grazers is reported from available 

literature. Chemical cost ($ kg-1) and cost for application to a 100 m3 pond for each chemical are reported. 

The cost of CTAB, rotenone and quinine sulfate with a minimum purity level of 98 % were assumed 

based on Alibaba.com price rates (march 2019). Cost of toosendanin and ammonium bicarbonate were 

calculated from [29] whereby the purity of ammonium bicarbonate was 99.9 % and a minimum purity of 

98 % for toosendanin was assumed. 

 

Chemical control 

agent 

Grazer Microalgae Effectiveness  

(24-h LD50: 

mg L-1) 

 

Chemical cost 

(US dollar kg-1) 

Cost applied 

to a 100 m3 

pond 

(US dollar) 

Ref. 

Cetyltrimethyl 

ammonium  

bromide (CTAB) 

Rotifer Brachionus 

calyciflorus 

Chlorella vulgaris 1.31  10 

 

1.3 This 

study 

 Ciliate Sterkiella Chlamydomonas 

reinhardtii 

 
Chlamydomonas 

reinhardtii 

0.69  0.7 

 Flagellate 

Paraphysomonas 

0.98 1 

Rotenone 

 

Rotifer Brachionus 

calyciflorus 

Chlorella kessleri 29.2 x 10-3 75 

 

2.2 [12] 

 Rotifer Brachionus 

manjavacas 

and Brachionus 

rotundiformis 

Nannochloropsis 

oculata and 

Tetraselmis suecica 

71-138 x 10-3 5.3-10.4 [28] 

Toosendanin 

 

Ciliate Stylonichia 

mytilus 

Chlorella 

pyrenoidosa 

8 x 10-3 2500 

 

2 [29] 

 Rotifer Brachionus 

plicatilis 

Chlorella and 

Nannochloropsis 

sp. 

2.1 x 10-3 0.53 [11] 

Ammonium 

bicarbonate 

Ciliate Stylonichia 

mytilus 

Chlorella 

pyrenoidosa 

1 x 103 0.11 

 

11 [29] 

Quinine sulfate 

 

Rotifer Brachionus 

calyciflorus 

Chlorella kessleri 14 

 

20 

 

28 [30] 
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In terms of safety, CTAB is listed in the Hazardous Materials Identification System as a level 2 

substance, implying that it might cause temporary or minor injury [32]. Hence, handling of CTAB requires 

precautions to avoid contact with skin and eyes, and to avoid inhalation of vapour or dust. CTAB along 

with other QACs is widely used in domestic and industrial products and can be present in high 

concentration in cosmetic products such as shampoo. However, their release into the environment poses a 

significant risk, especially in the context of emergence of microbial resistance to other antimicrobial 

agents [33]. Hence, the possible environmental impact of using CTAB or other QACs in microalgal 

systems has to be carefully assessed. This report is aimed to demonstrate the technical feasibility of using 

CTAB as a control agent against three types of grazers readily contaminating microalgal cultures. 

However, before effective application of CTAB, it is essential to understand how the culture conditions 

affect the persistence and degradation, if any, of CTAB during the microalgal cultivation process.  

  

4. Conclusions 

Low concentrations of CTAB (≤ 3 µM) can be used to effectively eradicate microscopic grazers 

from microalgal cultures, including rotifers, ciliates and flagellates. Although CTAB has negative effects 

on microalgae at higher doses, application of CTAB at an optimal dose to a contaminated microalgal 

culture can avoid large losses in biomass productivity. Thus, CTAB has the potential to serve as a low-

cost, fast-acting control agent for the extermination of various types of grazers. However, additional 

environmental testing and biodegradability of CTAB needs to be assessed before practical application in 

large-scale cultivation systems. 

Supplementary Information of this work can be found in online version of the paper. 
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