
Roskilde
University

Use of Penicillium bilaiae to improve phosphorus bioavailability of thermally treated
sewage sludge
A potential novel type biofertiliser

Raymond, Nelly Sophie; Müller-Stöver, Dorette Sophie; Peltre, Clément; Hauggaard-Nielsen,
Henrik; Jensen, Lars Stoumann
Published in:
Process Biochemistry

DOI:
10.1016/j.procbio.2018.03.021

Publication date:
2018

Document Version
Peer reviewed version

Citation for published version (APA):
Raymond, N. S., Müller-Stöver, D. S., Peltre, C., Hauggaard-Nielsen, H., & Jensen, L. S. (2018). Use of
Penicillium bilaiae to improve phosphorus bioavailability of thermally treated sewage sludge: A potential novel
type biofertiliser. Process Biochemistry, 69, 169-177. https://doi.org/10.1016/j.procbio.2018.03.021

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain.
            • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 18. Jun. 2025

https://doi.org/10.1016/j.procbio.2018.03.021
https://doi.org/10.1016/j.procbio.2018.03.021


Accepted Manuscript

Title: Use of Penicillium bilaiae to improve P-bioavailability
of thermally treated sewage sludge − a potential novel
biofertiliser

Authors: Nelly Sophie Raymond, Dorette Müller Stöver,
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Highlights 

 Biochars and ashes from sewage sludge could serve as a growth carrier for the 

phosphate(P) solubilising fungus, P.bilaiae. 

 The amount of glucose added, the pH and the total nitrogen content of the ashes and 

biochars were the characteristics mainly influencing P.bilaiae colonization. 

 On three of the tested ashes and biochars, P.bilaiae increased P-availability by 

acidification 

 

 

Abstract  

This study explored the potential of different phosphorus (P)-rich sewage sludge biochars and 

ashes  to be colonized and be used as a P sources for the phosphate-solubilising fungus, 

Penicillium bilaiae. P.bilaiae was inoculated on five different biochars and ashes supplemented 

with nutrient solution. Fungal colonization, pH and water-extractable P (WEP) in the materials 

were determined after incubation. 

P.bilaiae colonized  at similar rates on all materials tested, but colonization was affected by 

glucose level, pH and total N content in the material. A pH decline, accompanied by an 

increase in WEP concentration, was observed in three materials. The amount of soluble P was 

significantly greater at the high glucose level and showed the largest relative increase in 

incineration ash (>100-fold after 10 days). The results show a potential to use P-solubilising 

microorganisms  to solubilise P from thermally converted sewage sludge, but the approach has 

to be further investigated regarding its effects in a soil/plant system.  

 

Key words: Bioproducts; Penicillium; Biofertiliser; P-solubilisation; Biochar;colonization; Sludge  
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1. Introduction 

The world’s population is increasing and the sustainability of food production is being 

challenged. Phosphorus (P) fertiliser is one of the key factors in increasing food security, as 

there is no substitute for P in agricultural production [1]. The quantities of remaining P 

reserves have been intensely debated in the past decade [2-6]. However, there is general 

agreement that, regardless of the future degree of P resource limitation, it can be aggravated 

by supplier monopoly, potentially threatening global P and food security [7, 8]. 

Concurrently, the quantities of P in solid organic waste and municipal wastewater are rising 

due to rapid urbanisation and industrialisation [5], thus offering possibilities for increased P 

recycling. 

Thermal conversion of sewage sludge by incineration, gasification or pyrolysis can be used to 

combine removal of organic contaminants with additional benefits such as high energy output 

[9, 10]. Depending on the thermal conversion method used, a residual ash or biochar product 

that is free of pathogen contamination, reduced in weight and volume and high in P 

concentration compared with the raw sludge is obtained [10]. However, the P contained in 

these products is often poorly available to plants, resulting in rather low uptake efficiency 

when recycled back to agriculture [11-14].  

Microorganisms such as fungi of the genus Penicillium that are able to solubilise unavailable 

inorganic P forms have been intensively studied and show promising solubilisation activity on 

different P sources in vitro [15-17]. Acidification of the environment and secretion of organic 

anions are known to be key mechanisms behind this P solubilisation. However, despite the 

success encountered in vitro, phosphate-solubilising microorganisms (PSM) and many other 

biofertiliser products have been found to be much less successful in increasing P availability 

and plant P uptake when applied to soil [18-20]. There are many reasons for this, including 

poor survival of the inoculated strain in the soil. Competition with indigenous soil 
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microorganisms and adverse abiotic conditions such as lack of water or nutrients can greatly 

harm the success of inoculation. A suitable carrier providing a protective environment for the 

inoculant is therefore key to ensuring its efficacy [21]. Biochar and ash materials possess 

characteristics such as high porosity, water-holding capacity and carbon content, which makes 

them potentially interesting for use as microbe carriers [22-24]. 

Available studies on biochar as a carrier for bacterial strains show positive effects of the 

biochar on the inoculated microorganisms [22, 25, 26]. For example, Hale, Luth, Kenney and 

Crowley [22] used pinewood biochar as an inoculant carrier for a plant growth-promoting 

rhizobacteria (PGPR) strain (Enterobacter cloacae UW5) in a pot trial and observed an 

improvement in survival of the bacteria compared with conventional inoculation with a 

microbial suspension. 

If biochar or ash could be used as a P source for plants and at the same time as an inoculant 

carrier for PSM applied to increase P availability, this would be a highly interesting bio-based 

fertiliser product, enhancing the recycling options for these residuals. The aim of this study 

was therefore to explore the ability of a phosphate-solubilising fungus, Penicillium bilaiae, to 

colonize and solubilise P from different P-rich biochar and ash products deriving from sewage 

sludge, in order to evaluate their potential as inoculant carriers and P sources. The P. bilaiae 

strain used in this study colonises plant roots [17] and is known to be capable of in vitro 

solubilisation of different forms of P such as calcium, iron and aluminium phosphate and rock 

phosphate [16, 27]. However, little is known about its ability to colonize and solubilise P from 

more chemically and physically complex sources such as biochar and ash [28]. The hypotheses 

tested were that: (1) P. bilaiae grows better on residues with greater surface area and more 

labile forms of carbon (C), (2) P availability from biochar and ash is improved when used by P. 

bilaiae as a growth substrate and (3) addition of a easily degradable C source results in greater 

P. bilaiae colonization and P solubilisation from biochar and ash.  
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2. Material and Methods  

2.1. Sewage sludge biochar and ash products 

Sewage sludge from Bjergmarken wastewater treatment plant (WWTP) (Roskilde, Denmark) 

was the feedstock used for production of the biochar and ash substrates tested. The sludge 

was anaerobically digested and then dried at the WWTP. The dried sewage sludge was 

processed by different thermal conversion processes as a part of the Cross Platform Sludge 

Experiment (CPSE) described in detail by Thomsen [29]. In this study, we used the residual 

material from five different thermal conversion processes: slow pyrolysis (SP) (~2 h, 600 °C), 

fast pyrolysis (FP), two-stage downdraft gasification (TS-G) (950 °C), low temperature 

circulating fluidised bed gasification (LT-CFBG) (750 °C) and fluid-bed incineration (FB-I) (850 

°C).  

Chemical and physical characteristics of the different materials were determined after crushing 

and sieving (<1 mm) and sterilisation by autoclaving for 20 min at 121 °C. pH was assessed in a 

suspension of 1 g material in 25 mL milliQ water. Electrical conductivity (EC) was measured 

with a conductivity meter (CDM 210, MeterLab, Radiometer Analytical, France) in a suspension 

of 1 g material in 20 mL milliQ water after filtration through Whatman® filter paper no. 42. 

Total P content was measured by ICP-OES (Agilent 5100, Agilent Technologies, Manchester, 

UK) in 25 mg material oxidised with 2.5 mL 70% nitric acid and 1 mL 30% hydrogen peroxide by 

digestion in a microwave (Multiwave 3000, Anton Paar GmbH, Graz, Austria), mixed with 500 

µL fluoric acid and left to stand overnight before ICP-OES measurement. Water-extractable P 

(WEP) was chosen as an indicator of plant-available P [30]. In brief, 0.5 g material was 

suspended in 30 mL milliQ water and shaken at 150 rpm for 16 h. After filtration through 

Whatman® filter paper no. 42, the molybdate blue-ascorbic acid assay was performed as 
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described in Murphy and Riley [31] and Watanabe and Olsen [32].  Water-holding capacity of 

the different materials was measured according to ISO 14238:2012(E), modified for biochar 

analysis. In brief, ash/biochar was soaked in water for 24 h, drained for 2 h on quartz sand and 

the wet weight was recorded. The material was then dried in an oven at 40 °C to constant 

weight. 

Surface area was determined by the Brunauer-Emmett-Teller (BET) method [33] (Gemini VII 

2390, Micrometrics Instrument Corp. Norcross, GA, USA), which calculates the surface area of 

a material by measuring nitrogen (N) gas molecules adsorbed onto its solid surfaces. 

To characterise the carbon forms present in the materials, surface functional groups of the 

different materials were investigated by Fourier transform mid-infrared photoacoustic 

spectroscopy (FTIR-PAS) [34, 35], using a Nicolet 6700 FTIR spectrometer (Thermo Scientific, 

USA) combined with a PA301 Photoacoustic (PAS) detector with a cantilever microphone 

(Gasera Ltd., Finland). The ash samples were packed in 10 mm diameter ring cups and inserted 

in the PAS detector, with helium as purge gas to remove noise arising from ambient moisture 

and CO2 and to improve detector sensitivity. For each sample, spectra were recorded as an 

average of 128 scans and with a resolution of 4 cm−1 in the range 4000–400 cm−1. 

2.2. Phosphate-solubilising strain and inoculum preparation  

 Penicillium bilaiae ATCC 20851 [15] was provided by Novozymes (Denmark) as a spore stock 

stored at -80 °C. Spores from the stock were propagated on potato dextrose agar (PDA) and 

grown for approximately 2 weeks, followed by sub-culturing for another 2 weeks on a new 

PDA plate. Spores from the second generation were collected by washing the plate with sterile 

milliQ water. The spore suspension was then filtered through sterile glass wool (Miracloth, 

EMD Millipore Corporation, Billerica, MA 01821 USA) to remove the hyphae. The filtrate was 

centrifuged at 4000 rpm and 4 °C for 10 min. Spore counting was carried out with a 
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haemacytometer (Improved Neubauer, Brand, Germany) and the desired spore concentration 

was prepared using sterile milliQ water. 

2.3. Incubation study 

All biochars and ashes were supplemented with nutrient solution containing: sodium nitrate (2 

g L-1), magnesium sulphate (0.5 g L-1), potassium chloride (0.5 g L-1) and ferrous sulphate (0.019 

g L-1). Two different levels of glucose were also added (30 g L-1 and 60 g L-1). Biochars, ashes 

and nutrient solutions were sterilised separately by autoclaving for 20 min at 121 °C and then 

14.5 g of each material was placed in a 5.5 cm diameter Petri dish and supplemented with the 

nutrient broth in order to add 12.5 mg (low) or 25 mg (high) glucose g-1 material. The spore 

suspension was added at a concentration of 1.106 spores g-1 of material. The water content of 

the materials was adjusted to approximately 45% (of wet weight) with sterile milliQ water. The 

Petri dishes were incubated at 25 °C (± 1 °C) in the dark for 10 or 30 days. For each treatment, 

a non-inoculated control was also included and each treatment had three replicates. 

2.4. pH, P solubilisation, colony-forming unit (CFU) enumeration and 

determination of glucose concentration 

The pH and WEP of the materials were assessed as described above at after 10 days and 30 

days of inoculation. Each measurement was made in duplicate. For determination of P. bilaiae 

viability and colonization, one sub-sample of 1 g (DW) was shaken in 9 mL sterile 0.05% Tween-

80 solution for 20 min, serially diluted and 100 µL suspension of two different dilutions was 

spread on PDA plates. Each dilution was plated in triplicate. Plates were incubated for about 3 

days at 25 °C and macroscopically visible colonies were counted. Plates with 20-200 colonies 

were used to determine CFU.  
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Glucose concentration in the ash materials was determined using the WEP extract. The extract 

was filtered through a 0.22 µm syringe filter and analysed using anion chromatography Dionex 

ICS-5000 (Thermo-Scientific) by injecting 2.5 µL in a solvent mix of 30 mM NaOH and 1M 

NaOAc and using a retention time of 20 min.  

  2.5. Scanning electron microscopy  

The growth phenotype of P. bilaiae on the surface of the different materials was investigated 

using scanning electron microscopy (SEM). Around 1 g of material from the incubation 

experiment was placed in a 10 mL glass vial, submerged in Karnovsky’s fixation solution and 

kept under vacuum for 1 h. The vials were then placed in a circular rotator for 20 min. After 

discarding the fixation solution, two series of 0.1 M sodium cacodylate buffer were applied to 

the samples for 20 min on the rotator. After washing with milliQ water, a series of dehydration 

steps with acetone was applied to the material (10%, 20%, 30%, 50%, 70%, 90%, 90% and 

100% acetone). The samples were then submerged in 100% hexamethyldisilizane for 20 min in 

the rotator. Finally, the samples were dried overnight on filter paper under the hood.  

Samples were placed onto specimen stubs and sputter-coated (Polaron SC7640 Sputter Coater, 

Quorum Technologies Ltd, Sussex, UK) with gold and palladium before examination under a FEI 

Quanta 200 microscope (FEI Company, USA). Images presented in this study were taken at 

x500 and x1500 magnification.  

 2.6. Statistical analysis 

Statistical analysis was performed using RStudio (R i386 3.3.2, GNU Project) in the RStudio 

development environment. For each biochar or ash material, differences in CFU count, WEP 

and pH after incubation were tested in a simple multivariate linear model including 
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interactions followed by Tukey’s HSD post hoc test (agricolae package; significance level set to  

p<0.05). 

Hierarchical regression analysis was performed for variables predicting P. bilaiae colonization 

(LogCFU) and P solubilisation after incubation, in one set of analyses including the physical 

characteristics of all the biochars and ashes and in another only those of biochars and ashes 

where P. bilaiae had a significant effect on P availability, using a multiple linear regression 

model (significance level set to  p<0.01).  

Regressions between WEP and pH were generated with SigmaPlot 13 (Systat Software, Inc., 

San Jose, CA, USA), using a non-linear regression model (exponential decay single, two 

parameters, significance level set to  p<0.05).   

 

3. Results  

3.1. Characteristics of ashes and biochars 

The biochars and ashes had higher pH than the raw sludge, with values varying from 8.1 to 

11.6 (Table 1). The EC varied greatly between the materials, with FB-I showing the highest 

value and TS-G the lowest. The ash products contained only small amounts of total C and N [9, 

10], whereas there were considerable amounts of C and some N present in the two biochars. 

Accordingly, total P content was higher in the ashes compared with the biochars. Water-

extractable P was in general very low in all the materials.  

Scanning electron microscopy revealed similar surface morphology for the ashes and biochars, 

as shown in Fig. 1 for TS-G ash, FB-I ash and SP biochar. Surface structures showed sags and 

crests, but few pores.   

 The FTIR-PAS spectra of the different biochars and ashes showed common peaks for the 

materials, but at different abundances (Fig. 2). The FP biochar displayed higher peak intensities 
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in O-H, C-H aliphatic (3000-2800 cm-1), COOH carboxylic (1710 cm-1), aromatic (1600 cm-1) and 

C-H (1440 cm-1) vibrations compared with the other materials. The SP biochar also displayed 

carboxylic, aromatic and C-H liaisons, but less than FP. Interestingly, FB-I ash also displayed O-

H and C-H aliphatic liaisons and contained the highest amount of Si-O liaisons (1200-1000 cm-

1). 

3.2. P. bilaiae colonization on biochar and ash materials  

Overall, the number of CFU increased on average by 100-fold on the different materials during 

the incubation (Fig. 3). The number of CFU counted was dependent on the growth substrate, 

the amount of glucose added and incubation duration (p<0.01). The FP biochar, combined with 

the higher amount of glucose (25 mg g-1 ash), showed the highest CFU count after both 10 and 

30 days of incubation, while LT-CFBG ash at the high glucose level showed the lowest CFU 

count after 10 days of inoculation. 

Colonization on SP biochar and LT-CFBG ash was affected by both the glucose 

concentration and incubation duration (p<0.01).  For those two materials, increasing the 

glucose concentration did not increase the CFU count, but rather tended to decrease it in the 

first 10 days of incubation. The CFU count on FB-I ash was only influenced by  incubation 

duration (p<0.01), with an increasing number after 30 days of incubation compared with after 

10 days. On the other hand, FP biochar was only influenced by glucose concentration (p<0.01), 

with increasing concentration generating a higher CFU count. Colonization of the fungal strain 

on TS-G ash was not affected by glucose concentration or incubation duration (p>0.05) 

 The SEM surface images of the different materials inoculated with P. bilaiae and with different 

glucose concentrations showed no visible differences after 30 days of incubation  (Fig. 1). The 

fungus grew in a similar way on all the materials, with some regions densely covered with 
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hyphae and spores (Fig. 1D) and other areas with only a few hyphae (Fig. 1E). Hyphal 

connection of particles was also observed (Fig. 1F). 

According to the multiple linear regression model, initial pH of the materials (p<0.0001), total 

N (p<0.0001), and glucose concentration and duration of inoculation (p<0.01) significantly 

influenced the colonization of P. bilaiae (LogCFU) (Table 2).  

3.3. Water-extractable P concentration and pH  

Incubation of biochar and ash materials from sewage sludge significantly altered WEP 

concentration and pH over the incubation period (Fig. 4). WEP increased over time in both 

inoculated and non-inoculated treatments and was positively and significantly influenced by 

the glucose concentration, P. bilaiae inoculation and incubation duration.  

The WEP concentration in the non-inoculated treatments increased in all materials after 10 

days of incubation. After a 30-day incubation period, WEP in the non-inoculated SP biochar 

and LT-CFBG ash generally increased further, while it decreased in FP biochar and remained 

stable in TS-G and FB-I ash, irrespective of the amount of glucose added. In the P. bilaiae-

inoculated SP biochar, LT-CFBG ash and FB-I ash, the WEP concentration increased after 10 

days of incubation compared with the non-inoculated controls and the increase was larger 

with the high glucose level. FB-I ash inoculated with P. bilaiae and the high level of glucose 

showed the largest increase in WEP over the 10-day incubation period, with a 100-fold 

increase compared with the WEP concentration at the beginning of the experiment. In 

contrast, FP biochar and TS-G ash did not show any increase in WEP concentration after 10 

days of inoculation with the fungal strain. After 30 days of incubation, the WEP concentration 

tended to remain stable in the inoculated treatments except at the high glucose level, where 

WEP tended to decrease in some of the materials, such as SP biochar and FB-I ash.  
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The pH of the materials was also strongly dependent on the glucose concentration, inoculation 

with the fungal strain and incubation duration (Fig. 4). For SP biochar and all three ash 

products, a sharp drop in pH was observed after 10 days of incubation. For all the materials 

except TS-G ash, the lowest pH values were observed for P. bilaiae inoculation combined with 

the high glucose level. FP biochar, which was initially less alkaline, showed a less distinct drop 

in pH after the first period of incubation. After 30 days of incubation, in most treatments the 

pH remained stable or continued to decrease, but to a lower extent than in the first 10 days of 

incubation. The only exception was FB-I ash, for which high glucose level combined with P. 

bilaiae inoculation gave a slight pH increase. 

For all biochar and ash materials, significant negative correlations between WEP concentration 

and pH were found (Fig. 4).  The correlation coefficient was highest (r2= 0.94) for FB-I ash and 

lowest (r2 = 0.33) for TS-G ash. 

Colonization (LogCFU) and WEP concentration after incubation did not show any correlation 

(p>0.05). 

 In the biochar and ash materials where P. bilaiae had a significant effect on available P,  

multiple linear regression analysis revealed that only the glucose concentration influenced the 

amount of P solubilised by P. bilaiae (r2 = 0.13; p<0.0001).   

3.4. Glucose consumption and recovery 

The total amount of glucose added was consumed in all treatments inoculated with P. bilaiae 

already after 10 days of incubation (Table 3). In the control treatments, glucose was still 

present at that time except in the FP biochar treatment with the high glucose level. Glucose 

recovery rate varied between the materials, with LT-CFBG and FB-I ashes showing the highest 

and FP biochar and TS-G ash the lowest recoveries. 
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4. Discussion  

4.1. Sewage sludge biochars and ashes as a growth substrate for P. bilaiae 

Establishment of the inoculum on a substrate is critical for successful targeted microbial 

actions such as P solubilisation. To the best of our knowledge, this is the first study to examine 

the possibility of using biochar and ash products from sewage sludge as a growth and 

inoculation carrier, although some previous studies have investigated the option of using 

biochar from acacia wood, coconut shell or pine wood as a storage medium or inoculant 

carrier for beneficial microorganisms [22, 24, 25, 36]. In the present study, the focus was on 

different thermal residues from a single batch of sewage sludge, resulting in some contrasting 

features arising from the processing that may have caused some of the variation in P. bilaiae 

colonization and performance. However, SEM revealed a similar phenotypic fungal 

colonization pattern on all materials except FP biochar, which had some more porous particles. 

These were presumably small cereal straw/straw char particles that probably originated from 

improperly cleaned parts of the pyrolysis unit [10].   

Biochars and ashes often have low nutrient availability and P. bilaiae was therefore provided 

with an easily available initial pool of carbon and nutrients. Overall, the amount of glucose 

added and incubation duration had a dominant positive effect on fungal colonization. In 

previous studies using submerged fermentation to test different strains for solubilisation of 

different P sources, the nutrients have been provided in larger amounts than in our solid-state 

culture test. For example, Whitelaw et al., [37] added the equivalent of 30 g sucrose per 1000 

mg P, whereas we only used the equivalent of 8.6 and 17.2 mg glucose per 1000 mg P (low and 

high level, respectively). The slow colonization observed between day 10 and day 30 of 
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inoculation may be the result of lack of carbon source, as all the glucose had been consumed 

in the inoculated treatments after 10 days. 

However, we also observed a strong negative correlation between fungal colonization and 

initial pH of the material. All materials tested had an alkaline pH, although at varying levels, a 

characteristic commonly observed after thermal conversion of sewage sludge with a high ash 

content. Alkalinity of the medium is often reported as a potential obstacle to colonization and 

performance of microbial inoculants, e.g. Scervino et al., [38] demonstrated that Penicillium 

purpurogenom was able to colonize and perform P solubilisation under alkaline conditions, but 

less well than at pH 6.5.  

Colonization of P. bilaiae was also positively correlated with total N concentration in the 

material. Total N content was higher in the biochars than in the ashes and the highest 

colonization rate of the fungus was observed on FP biochar, which had a high N content 

combined with a comparatively low pH. However, we cannot exclude the possibility that 

feedstock contamination with straw contributed to the increased fungal colonization on this 

material. Furthermore, it has been shown that biochar from fast pyrolysis processes may 

contain a fraction of labile C that is easily degradable for microorganisms, in contrast to 

materials originating from slow pyrolysis [39]. This was evident from the FTIR-PAS spectra of 

the materials tested here, with C forms that showed common peaks but with varying 

intensities. The O-H stretch peak was more intense for FP biochar than for all other materials 

and was completely absent for the gasification ashes. The C-H aliphatic peak was also seen 

only in the biochar spectra, which is in agreement with results for switchgrass converted in 

different thermal processes reported by Brewer et al., [40], who attributed it to more labile C 

in the respective products. FP and SP biochars also showed higher –COOH, COO/C=C and C-H 

stretch peaks, which may likewise be related to the amount of C present in the materials.  
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Characteristics such as specific surface area and water-holding capacity did not display 

differences discriminating any colonization preferences, and therefore the hypothesis that the 

physical properties of the materials have a beneficial effect on fungal colonization was 

rejected. The use of other feedstocks in the thermal processes would have allowed more 

varying characteristics and could perhaps have distinguished other colonization preferences. 

For the sewage sludge biochar and ash materials tested, the pH and most probably the forms 

of C in the material proved to be major determinants of P. bilaiae colonization. 

4.2. P solubilisation on the different materials 

After 10 days of incubation, WEP had increased in all the treatments. An increase was also 

observed in the non-inoculated treatments, where the alkalinity of the materials may have led 

to absorption of atmospheric CO2, thereby causing a natural, gradual pH decline and 

potentially promoting abiotic P solubilisation. Furthermore, oxidation reactions may have 

occurred, hydrolysing the glucose and creating acidity [41]. FP biochar and TS-G ash showed 

the highest increase in WEP for the non-inoculated treatments and recovered the lowest 

amount of glucose after incubation, confirming that glucose may have acted as an abiotic 

factor for P solubilisation. Although the fungus could colonize on the materials, no further P 

solubilisation was observed, probably because P solubilisation was not needed as the 

environment contained enough available P to sustain P. bilaiae colonization. 

The addition of P. bilaiae further increased WEP concentration in the three other materials 

tested (SP biochar and LT-CFBG and FB-I ashes), confirming our second hypothesis. The WEP 

concentration resulting from fungal P solubilisation activity was enhanced when more glucose 

was added, confirming our third hypothesis. Enhanced fungal P solubilisation with increasing C 

source concentration has been demonstrated previously in other works using Penicillium 

purpurogenum with calcium phosphate in a liquid culture [38] or Aspergillus niger FS1, 
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Penicillium canescens FS23, Eupenicillium ludwigii FS27 and Penicillium islandicum FS30 with 

rock phosphate in solid state fermentation [42]. As mentioned earlier, even the high level of 

glucose added in this study may have been too low to achieve optimal fungal colonization and 

P-solubilisation activity and further work is needed to determine the glucose concentration 

that ensures the highest P-solubilisation efficiency. Growth of the inoculant is frequently 

correlated to P-solubilisation performance of the fungal strain [37, 38].  

The increasing amount of WEP occurred together with acidification in all materials. The 

acidification effect associated with the activity of P-solubilising microorganisms is known to be 

caused by proton and organic anion (OA) excretion [38, 43, 44]. Takeda and Knight [16] and 

Cunningham and Kuiack [27] concluded that P. bilaiae secretes mainly citric and oxalic acids to 

solubilise P. Efthymiou et al.,[28], who investigated P solubilisation from slow pyrolysis sewage 

sludge biochar by the same P. bilaiae strain as used in our study, reached similar conclusions. 

The production of OA by P-solubilising microorganisms depends on many factors, but in 

particular on the availability, type and concentration of the C source [45-47]. In the present 

study we used glucose as the main source of C, but other studies have shown that different 

Penicillium strains show higher P-solubilisation activity with other C sources, depending on the 

type of P to be solubilised and the pH of the growth medium [47]. Alkaline pH may have a 

negative effect on OA excretion and therefore on P-solubilisation activity [38]. Further 

investigations are necessary to identify C sources that result in greater P solubilisation in 

alkaline sewage sludge biochar and ash materials combined with P. bilaiae. 

It has also been found that the N source and concentration interact with the P-solubilisation 

ability of phosphate-solubilising microorganisms [47]. In this study nitrate was used as the N 

source, but it has been reported that the use of ammonium N causes greater P solubilisation 

[37] due to the acidification generated by ammonium uptake into fungal cells. However, Reyes 
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et al., [48] found that the P-solubilisation efficiency of Penicillium rugulosum was inhibited by 

ammonium as the N source on different insoluble P sources, due to poor assimilation and low 

metabolic performance of the ammonium. De Oliveira Mendes et al.,  [43] found that some 

fungal strains are more efficient at solubilising specific forms of P, e.g. Aspergillus niger FS1 

solubilised a large amount of P from aluminium phosphate and calcium phosphate, whereas 

Penicillium islandicum FS30 solubilised calcium phosphate, but only very small amounts of 

aluminium phosphate and iron phosphate. Those authors attributed the P solubilisation from 

different insoluble P forms to acidification of the growth medium and production of OA. 

Biochar and ash products from sewage sludge are rather complicated materials as regard P 

speciation, but several studies show the presence of complex P forms such as apatite and iron-

oxide P [49, 50]. Mackay et al.,[11] used a sequential extraction method to compare the P 

availability of the biochars and ashes used in the present study and found that the P solubility 

differed between the materials. FB-I ash was more acid-soluble than the other materials, 

indicating that the main P form may be calcium-P, which would also explain the high 

solubilisation from FB-I ash after acidification by P.bilaiae. In contrast, Efthymiou et al., [28] 

concluded that slow pyrolysis biochar P is solubilised by chelation with citrate, rather than by 

acidification, and also found that P. bilaiae was very efficient in solubilising calcium-P, but less 

efficient in solubilising iron-P. Therefore, the varying efficiency of P.bilaiae in solubilising P 

from the different materials tested here and the different correlation coefficients between 

WEP concentration and pH could also be related to different dominant P species in the 

biochars and ashes.  

After 30 days of incubation, in some of the P. bilaiae-inoculated treatments (SP biochar and 

FB-I ash with high glucose) we observed a decrease in the amount of WEP. Possible reasons 

are that (1) P.bilaiae consumed some the solubilised P and immobilised it and/or (2) the 

soluble P was re-sorbed onto the materials. Sorption of P by different biochars has been 
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described and attributed to the presence of adsorption sites on surfaces (e.g. colloidal and 

nano-sized MgO particles) that can absorb P in solution or on biochar and ash surfaces [51, 52].  

 

Conclusion 

We were able to grow the P-solubilising fungus P. bilaiae on different biochar and ash 

materials from sewage sludge in a solid state fermentation system, but to different extents 

depending on the characteristics of the material. Amount of glucose added, initial pH and total 

N content in the material were the most influential characteristics for fungal colonization on 

biochars and ashes from sewage sludge. An increase in soluble P in slow pyrolysis (SP) biochar 

and two types of ash (low temperature circulating fluidized bed gasification (LT-CFBG) and 

fluid-bed incineration (FB-I)) was observed after inoculation, suggesting that these materials 

can be used as a inoculant carrier and P source to be solubilised by P. bilaiae. The P-

solubilisation activity was only influenced by the amount of glucose added, emphasising the 

importance of carbon availability for the process of P solubilisation. Further work is needed to 

optimise the P-solubilisation activity by investigating the effect of specific C and N sources at 

different concentrations. The possibility to grow P. bilaiae on sewage sludge biochars and 

ashes, with increased P availability in some cases, proved that this combination could be an 

interesting biofertiliser when applied to soil.  
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Figure 1: Scanning electron microscopy (SEM) images of the surface morphology of different materials 

(magnification 1500x and 500x): A: Two-stage downdraft gasification (TS-G) ash, B: fluid-bed incineration (FB-I) 

ash and C: slow pyrolysis (SP) biochar, D: slow pyrolysis (SP) biochar with growing Penicillium bilaiae with dense 

fungal colonisation, E: slow pyrolysis (SP) biochar with growing Penicillium bilaiae with less dense fungal 

colonisation and F: slow pyrolysis (SP) biochar with growing Penicillium bilaiae with fungal hyphae growing 

between the biochar particles (lower magnification). 

A                                                     B                                                   C 

D                                                    E                                                   F 
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Figure 2: Comparison of the absorption spectra of the ash and biochar materials. SP: slow pyrolysis biochar; FP: 

fast pyrolysis biochar; TS-G: two-stage downdraft gasification ash; LT-CFBG: low temperature circulating fluidised 

bed gasification ash; FB-I: fluid-bed incineration ash. 
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Figure 3:  Log10 colony-forming units (CFU) count per g of the different ash and biochar materials after 10 and 30 

days of incubation and Anova p-values for testing the effect of glucose concentration (Glucose) and incubation 

time (Time) on fungal colonisation. Name abbreviations of the biochars and ashes are specified in Table 1. Letters 

above the bars indicate significant differences between the treatments at different incubation times (p<0.05). 

Values are the mean (n = 3) ± S.E. (bars). 
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Figure 4: Change in concentration of water-extractable P (WEP) and in pH in the different biochar and ash 

treatments at different sampling times (A-E) and non-linear correlations (exponential decay) between pH and 

WEP (F-J). “LG” refers to low glucose and “HG” to high glucose. Name abbreviations of the biochars and ashes are 

specified in Table 1. Letters above the bars indicate significant differences between the treatments at different 

incubation times (p<0.05). Values are the mean (n = 6) ± S.E. (bars). 
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Table 1: Selected chemical and physical properties of the ash and biochar materials produced from sewage 

sludge. SP: slow pyrolysis; FP: fast pyrolysis; TS-G: two-stage downdraft gasification; LT-CFBG: low temperature 

circulating fluidised bed gasification; FB-I: fluid-bed incineration. Letters indicates significant differences between 

materials characteristics according to a HSD test (p < 0.05). Values are the mean (n = 3) ± S.E. 

Properties Raw sludge SP biochar FP biochar TS-G ash LT-CFBG ash FB-I ash 

pH  7.2 (f) 11.6 (a) 8.1 (e) 9.9 (c) 10.7 (b) 9.2 (d) 

Electrical conductivity (µS 

cm-1 (25°C)) 

ND 419.7 ± 6.7 

(c) 

478.7 ± 25.7 

(b) 

76.7 ± 6.4 

(e) 

321.7 ± 22.2 

(d) 

945.7 ± 32.0 

(a) 

Total C (mg g-1 (DM))1 267 226 22 58 72 5 

Total N (mg g-1 (DM))1 37 22 21 10 5 - 

C:N ratio 7.21 10.27 10.81 58 14.4 - 

Total P (mg g-1 (DM)) 38.3 76.0 (c) 67.5 (d) 103.3 (a) 101.5 (a) 95.2 (b) 

Water-extractable P (% of 

total P) 

1.91 (a) 0.002 (c) 0.024 (c) 0.105 (b) 0.004 (c) 0.008 (c) 

Water-holding capacity (% 

wt) 

ND 24 ± 1 (c) 29 ± 2 (abc) 25 ± 1 (bc) 32± 4 (a) 29 ± 1 (ab) 

BET2 surface area (m2 g-1) ND 24.46 ± 0.35 22.16 ± 0.30 73.04 ± 0.92 24.88 ± 0.33 5.08 ± 0.06 

1From (Thomsen et al. (2015), Thomsen et al. (2017))  

2Brunauer-Emmett-Teller method 

 

 

 

ACCEPTED M
ANUSCRIP

T



30 
 

 

 

Table 2: Summary of hierarchical regression analysis for variables predicting P.bilaiae colonisation (log10 CFU) 

applied with a strict value criterion of p<0.01 for variables to stay in the model 

 Δr2 B SE B β p 

Constant 0.73 11.21 0.41  <0.0001 

Duration (30 days)  0.26 0.13 0.19 >0.01 

Glucose (high)  -0.25 0.14 -0.19 >0.01 

pH  -0.35 0.04 -0.61 <0.0001 

Total N  0.30 0.05 0.43 <0.0001 

Duration (30 days): Glucose 

(high) 

 0.54 0.19 0.40 <0. 01 

Where Δr2: indicating that the cross validity of the model; B: indicating the relationship between P. 

bilaiae colonization and each predictor; SE B: B associated standard error; β: standardized beta 

estimates; p: p-value 

 

 

 

 

 

 

 

ACCEPTED M
ANUSCRIP

T



31 
 

 

Table 3: Anova p-values for testing the effect of P.bilaiae inoculation (Pb), glucose concentration (Glucose) and 

incubation time (Time) on biochars and ashes water extractable P (WEP) and pH. Name abbreviations of the 

biochars and ashes are specified in Table 1. 

Source of 

variation  

SP biochar FP biochar TS-G ash LT-CFBG ash FB-I ash 

WEP pH WEP pH WEP pH WEP pH WEP pH 

Pb <0.001 <0.00

1 

<0.001 0.18  

<0.00

1 

<0.00

1 

<0.001 <0.00

1 

<0.00

1 

<0.00

1 

Glucose 0.002 0.92 <0.001 <0.001 0.03 0.58 <0.001 <0.00

1 

<0.00

1 

<0.00

1 

Time <0.001 <0.00

1 

<0.001 <0.001 <0.00

1 

<0.00

1 

<0.001 <0.00

1 

<0.00

1 

<0.00

1 

Pb:Glucose <0.001 <0.00

1 

0.026 <0.001 < .001 <0.00

1 

<0.001 <0.00

1 

<0.00

1 

<0.00

1 

Pb:Time <0.001 <0.00

1 

0.48 0.18 0.005 <0.00

1 

<0.001 <0.00

1 

<0.00

1 

<0.00

1 

Glucose:Time 0.034 0.007 <0.001 0.052 0.002 0.41 <0.001 <0.00

1 

<0.00

1 

<0.00

1 

Pb:Glucose:Time  0.003 <0.00

1 

0.52  <0.001 <0.00

1 

0.01 0.041 <0.00

1 

<0.00

1 

<0.00

1 
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Table 2: Glucose recovery after the incubation periods in the different char and ash treatments. Values are the 

mean (n = 6) ± S.D. 

Glucose 

treatment 

Day Glucose recovered (% of initial amount added) 

  SP biochar FP biochar TS-G ash LT-CFBG ash FB-I ash 

12.5 mg g-1 ash 

control 

10 24 ± 16 7 ± 16 17 ± 8 91 ± 37 81 ± 10 

30 54 ± 34 4 ± 8 8 ± 0.4 43 ± 5 83 ± 4 

12.5 mg g-1 ash 

+ Pb 

10 0 0 0 0 0 

30 0 0 0 0 0 

25 mg g-1 ash 

control 

10 61 ± 5 0 40 ± 33 49 ± 28 90 ± 3 

30 72 ± 26 0 12 ± 8 62 ± 31 46 ± 25 

25 mg g-1 ash + 

Pb 

10 0 0 0 0 0 

30 0 0 0 0 0 
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