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Abstract 1 

The purpose of this study was to investigate the influence of amorphous phase separation and 2 

crystallization of the drug in an amorphous solid dispersion (ASD) on its in vitro and in vivo 3 

performance. The amorphous phase-separated or crystallized ASDs were prepared by mixing a 4 

homogenous ASD (glass solution) of the model drug celecoxib (CCX) in polyvinylpyrrolidone 5 

(PVP) with pure amorphous or micronized crystalline CCX at 20, 40, 60 or 100% of the total 6 

drug load (25:75 w/w CCX:PVP), respectively. In this study, the performance of phase separated 7 

and crystallized amorphous solid dispersions (ASDs) these formulations was then evaluated by 8 

non-sink in vitro dissolution testing in fasted-state simulated intestinal fluid (FaSSIF) and in vivo 9 

in rats and compared to that of crystalline CCX, amorphous CCX and pure ASD. The amorphous 10 

phase-separated or crystallized ASDs were prepared by mixing an ASD of the model drug 11 

celecoxib (CCX) in polyvinylpyrrolidone (PVP) with pure amorphous or micronized crystalline 12 

CCX at 20, 40, 60 or 100% of the total drug load (25:75 w/w CCX:PVP), respectively. As 13 

expected, crystallization of CCX in the ASDs generally had a negative influence on both the area 14 

under the curve of the dissolution curve (in vitro AUC) and the plasma concentration-time 15 

profile (in vivo AUC) in rats compared to the pure ASD. However, the difference between the in 16 

vivo AUC of the pure ASD and the 20% and 40% crystallized ASDs was not statistically 17 

significant, which could indicate that a low fraction of crystallization of a drug in an ASD may 18 

only have limited impact on in vivo performance and hence bioavailability. In comparison, 19 

amorphous phase separation of CCX in the ASDs did not negatively influence the in vitro AUC 20 

and in vivo AUC to the same degree as crystallization and the dissolution profiles of all the 21 

amorphous phase-separated ASDs were similar to that of the pure ASD. In fact, even though a 22 

slight decrease of in vivo AUC with increasing fraction of amorphous phase separation was 23 

observed, the 20% and 40% amorphous phase-separated ASDs were bioequivalent with the pure 24 

ASD. Consequently, even though only one drug-polymer systems was investigated, the findings 25 

of this study indicate that the current regulatory general reservations towards the impact of 26 

amorphous phase separation and crystallization of the drug in an ASD on its bioavailability may 27 

be exaggerated. 28 
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Introduction 

Oral drug delivery has always been the preferred route of administration of pharmaceuticals, 

both from the patient’s perspective due to convenience and compliance, and from the 

manufacturer’s perspective due to long shelf life and limited cost of production (Augustijns and 

Brewster, 2012; Leuner and Dressman, 2000; Baghel et al., 2016). However, as a result of 

advanced high-throughput screening methods and the implementation of computational 

chemistry, the pharmaceutical industry is currently experiencing an increase in the amount of 

complex drug molecules. These more complex molecules in most cases entail a solubility 

limitation that challenges the oral delivery of these drugs, and has prompted the development of 

different so-called enabling formulation strategies to overcome the solubility limitations, 

including amorphous solid dispersions (ASDs) (Van den Mooter, 2012; Baghel et al., 2016; 

Stegemann et al., 2007; Fahr and Liu, 2007). An ASD is a molecular dispersion of a drug in an 

amorphous polymer, commonly prepared by melt-based method such as hot-melt extrusion or 

solvent-based method such as spray drying, and less commonly by freeze-drying or milling (Vo 

et al., 2013; Brouwers et al., 2009; Leuner and Dressman, 2000). The aim of this enabling 

formulation approach is first of all to increase the free energy of the drug and thus, its apparent 

solubility through amorphization and secondly, to stabilize the inherently unstable amorphous 

form of the drug through intermolecular interactions with the polymer (Van den Mooter, 2012; 

Warren et al, 2010). Compared to pure amorphous drugs, ASDs have a higher physical and 

chemical stability due to reduced molecular mobility, which also will increase the glass transition 

temperature of the system (Hancock and Zografi, 1997).  

To reduce the “pill burden” and increase compliance, many of the currently marketed ASDs are 

formulated with a relatively high drug loading. However, even though it is physically stabilized 

in a polymer, the drug in an ASD can also be thermodynamically unstable if the drug load 

exceeds its equilibrium solubility in the polymer at storage temperature (Marsac et al., 2009; 

Knopp et al., 2015). This situation will eventually lead to two potential outcomes: either the drug 

will separate to form local amorphous drug-rich clusters (amorphous phase separation) and/or the 

drug will nucleate and crystallize. Both of these events will significantly change the 

physicochemical properties of the formulation (Newman et al, 2012; Baghel et al., 2016). 

Consequently, overloading the drug in the ASD will not only affect the overall physical stability, 
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but may also lead to variable performance and ultimately lower bioavailability over time and 

hence, constitutes a major regulatory, efficiency and safety issue (Rahman et al., 2014).  

Therefore, the aim of this study was to evaluate the influence of amorphous phase separation and 

crystallization on the in vitro and in vivo performance of an ASD of celecoxib (CCX) in 

polyvinylpyrrolidone (PVP). The amorphous phase-separated and crystallized ASDs were 

prepared by mixing a homogenous ASD (glass solution) of CCX in PVP with pure amorphous or 

micronized crystalline CCX at 20, 40, 60 or 100% of the total drug load (25:75 w/w CCX), 

respectively. The performance of these formulations was then evaluated by non-sink in vitro 

dissolution testing in fasted-state simulated intestinal fluid (FaSSIF) and in vivo in rats and 

compared to that of crystalline CCX, amorphous CCX and pure ASD.  

 

Materials and methods 

Materials 

Celecoxib (CCX, Mw = 381.37 g/mol), sodium chloride, sodium dihydrogen phosphate 

monohydrate, sodium hydroxide, hydrogen chloride, 0.1% trifluoracetic acid and acetonitrile 

were purchased from VWR (Leuven, Belgium). Kollidon® 30 (PVP, Mw = 44,000–54,000 

g/mol) was kindly supplied by BASF (Ludwigshafen, Germany) and SIF™ Powder instant 

biorelevant medium was purchased from Biorelevant.com Ltd (London, United Kingdom). 

 

Sample preparation 

The pure ASD and amorphous CCX were prepared by melt quenching. CCX and PVP were 

weighed (25% w/w CCX) and mixed thoroughly using a mortar and pestle. The physical mixture 

was then spread evenly on aluminum foil and placed in an electrical furnace at 169 °C for 5 min. 

The mixture was removed from the furnace, allowed to cool to room temperature and pulverized 

using a mortar and pestle. For the ASD this procedure was repeated to ensure homogeneity. The 

resulting powders were sieved through a 0.2 mm sieve and stored in air-tight amber containers 

until use. 

For the preparation of the amorphous phase-separated and crystallized ASDs, ASDs of different 

CCX concentration (5, 10, 15 and 25% w/w) were prepared using the aforementioned melt 

quenching method and mixed thoroughly with micronized pre-milled crystalline CCX (to better 

mimic the particle size of crystallized drug in the ASD) or freshly prepared amorphous CCX 
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using a mortar and pestle to yield 20, 40, 60 or 100% amorphous phase-separated or crystallized 

ASD. In all the ASDs, the total CCX concentration was fixed at 25% w/w and named after their 

relative fraction of amorphous phase-separated or crystallized CCX. For example, 40% 

amorphous phase-separated ASD refers to a system where 40% of the total dose of CCX has 

amorphous phase-separated and 60% is still dispersed/dissolved in the polymer. The successful 

formation of amorphous phase-separated ASDs (as evident from two separate glass transitions 

and no melting event) and crystallized ASDs (as evident from a single glass transition and a 

melting event) was confirmed using differential scanning calorimetry and X-ray powder 

diffraction (see Supplementary Material) (data now shown).  

 

Preparation of dissolution media 

For the non-sink dissolution studies, FaSSIF (version 1) was used as the dissolution medium and 

was prepared following the instructions provided by Biorelevant.com. To prepare 1 L of FaSSIF, 

1 L of pH 6.5 20 mM phosphate buffer was first prepared by dissolving 0.42 g sodium hydroxide 

pellets, 3.95 g sodium dihydrogen phosphate monohydrate and 6.19 g of sodium chloride in 900 

mL of purified filtered Milli-Q water. The pH was then adjusted to 6.50 ± 0.05 with 0.1N sodium 

hydroxide or hydrochloric acid and finally, the volume was increased to 1000 mL with Milli-Q 

water. A total of 2.12 g of the SIF powder was weighed and added to approximately 500 mL of 

the phosphate buffer and when completely dissolved, the volume was increased to 1000 mL with 

the buffer and kept on a magnetic stirrer for at least 2 h until use. The FaSSIF was used within 24 

h of preparation as recommended by the manufacturer. 

 

In vitro dissolution 

The non-sink dissolution studies were performed on a VanKel VK 7000 USP II apparatus 

equipped with a VK 750D/K heating device from VanKel Technology Group (Cary, NC, USA). 

A total of 300 mL of freshly prepared FaSSIF was added to each dissolution chamber and 

allowed to equilibrate at 37 °C. The remaining FaSSIF was stored in an oven at 37.5 °C. The 

dissolution studies were initialized by pre-suspending the formulation at a dose drug load of 

corresponding to 400 mg CCX in 100 mL FaSSIF in a 150 mL beaker under by rigorous stirring. 

This suspension was then immediately added to the dissolution chamber, and an additional 100 

mL FaSSIF was used to rinse the beaker of any remaining drug formulation and added to the 
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dissolution chamber to yield a total of 500 mL FaSSIF (and 800 mµg/mL CCX). Samples of 2 

mL were withdrawn from each chamber at predetermined time points (1, 5, 10, 15, 20, 30, 45, 

60, 90, 120, 180, 240, 360 and 1440 min) with a syringe and filtered into a 4 mL black cap vial 

with a Spartan Whatman 0.22 µm syringe filter from GE Health Care (Chicago, IL, USA). From 

this vial, 1 mL of the filtrate was immediately diluted with 1 mL of methanol to prevent 

precipitation from supersaturated samples and assayed for CCX content by UPLC (see below).  

 

In vivo study 

The procedure for the in vivo study was approved by the local Animal Welfare Committee. All 

animal procedures were carried out in compliance with EC Directive 2010/63/ EU, NIH Guide 

for the Care and Use of Laboratory Animals, and with the Belgian laws regulating experiments 

on animals. 

Male Sprague-Dawley rats (~300 g) were purchased from Charles River Laboratories (Sulzfeld, 

Germany). To avoid food effects, all rats were fasted 16–20 h prior to the study and until 8 h 

after dosing. Immediately before oral dosing, the formulations were suspended in 30 mL FaSSIF 

at a concentration corresponding to 10 mg/mL CCX using a magnetic stirrer and dosed to each 

rat individually at 10 mL/kg by oral gavage (n = 3-5). A total of 42 rats were randomly assigned 

to one of the following groups, each consisting of 3-5 animals: i) amorphous CCX (n = 5), ii) 

pure ASD (25:75 w/w) of CCX-PVP (n = 5), iii) 20% crystallized ASD (n = 5), iv) 40% 

crystallized ASD (n = 5), v) 60% crystallized ASD (n = 5), vi) 100% crystallized ASD (n = 5), 

vii), 20% amorphous phase-separated ASD (n = 3), viii) 40% amorphous phase-separated ASD 

(n = 3), ix) 60% amorphous phase-separated ASD (n = 3), x) 100% amorphous phase-separated 

ASD (n = 3). Blood samples of 100 µL were collected at 0.5, 1, 2, 3, 4, 6, 8 and 24 h after 

administration by individual lateral tail vein puncture and transferred to 

ethylenediaminetetraacetic acid (EDTA)-coated tubes to prevent coagulation. The blood samples 

were then centrifuged for 10 min at 3600×g and the plasma was subsequently transferred to 

labeled plastic tubes and stored at −80°C until analysis. After collection of the last sample, the 

animals were euthanized. 

 

Quantitative analysis 
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The method of analysis for the in vitro dissolution samples was developed on an Acquity ultra 

performance liquid chromatograph (UPLC) equipped with an Acquity UPLC BEH C18 column, 

both from Waters Corp. (Milford, MA, USA), using a mobile phase consisting of triflouroacetic 

acid (TFA) 0.1% in water and acetonitrile in a 70:30 v/v ratio, respectively. The diluted samples 

were mixed on a VVR whirl-mixer and added to a 96 well plate in which 100 µg/mL CCX in 

methanol standards were added as a reference. A volume of 1-3 µL was eluted at a flow rate of 

0.6 ml/min with a column oven temperature of 55 ºC, and the effluent was detected at a 

wavelength of 251 nm after approximately 1.7 minutes. A standard curve was prepared by 

analyzing CCX in methanol in concentrations between 1 µg/mL and 250 µg/mL, resulting in a 

standard curve with a linear correlation of R
2
 = 0.999. 

The concentration of CCX in plasma was determined using UPLC chromatography with MS/MS 

detection. A quantity of 10 µL plasma was mixed with 10 µL blank plasma, 20 µL DMSO and 

200 µL of acetonitrile. The samples were centrifuged at 6,000×g for 20 min at 5°C. Analysis of 

the plasma samples was performed by UPLC connected to a tandem mass spectrometer 

(MS/MS) using a Waters Acquity Ultra Performance Liquid Chromatograph system (Waters 

Corp., Milford, MA) equipped with a binary solvent delivery system (pump), a sample manager 

module with autosampler, and a column compartment/heater. A switch valve connected the 

UPLC to the mass spectrometer. The MS/MS detection was performed using a SCIEX API 4000 

MS/MS system with a Turbo Ion Spray® (ESI) as an interface (Applied Biosystems, Carlsbad, 

CA), operating in the positive ion electrospray mode. Operational settings: CCX was detected at 

a precursor product ion mass to charge ratio (m/z) of 316. Collision gas (CAD) 6.0, temperature 

(TEM) 550 °C, IS - 4500 V, Entrance potential (EP) - 10.0V and collision energy (CE) – 32.0 V. 

For the UPLC analysis, chromatographic separation was performed on a Acquity UPLC BEH 

C18 (50 x 2.1 mm, 1.7µm) from Waters Corp. (Milford, MA, USA). The mobile phases 

contained 0.1% formic acid in water (A) and methanol (B). The total run time was 1.7 min and a 

gradient system was used. The gradient conditions were 80.0% A and 20.0% B from initial time 

to 1 min, 90% A and 10% B from 1 to 1.15 min and finally 80.0% A and 20.0% B from 1.15 to 

1.7 min. The flow rate was 0.80 mL/min. The column temperature was maintained at 40 °C, and 

the injection volume was 1.0 µL. A lower limit of quantification (LLOQ) and an upper limit of 

quantification (ULOQ) of 10 and 40000 ng/mL, respectively, were obtained. 
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Data analysis 

Results from the in vitro study are expressed as mean ± SD and data from the in vivo study are 

expressed as mean ± SEM. Statistical analysis of the in vivo data was performed in SigmaPlot 

13.0 from Systat Software Inc. (Chicago, IL, USA). The primary pharmacokinetic parameters: 

area under the plasma concentration-time profile (AUC0-24h), maximum plasma concentration 

(Cmax) and time to reach Cmax (tmax) were obtained by non-compartmental analysis of the plasma 

data. A one-way analysis of variance (ANOVA) followed by a pairwise multiple comparison 

Student-Newman-Keuls test was performed on untransformed data in order to identify 

significant differences of Cmax and AUC0–24h and differences in  tmax were analyzed using a Mann-

Whitney rank sum test for the paired samples. A statistical p value < 0.05 was considered 

significant. 

 

Results and discussion 

Crystallization 

The in vitro dissolution profiles and in vivo plasma concentration-time profiles following 

administration of the different crystallized ASDs are shown in Figures 1 and 2, respectively. The 

corresponding (pharmacokinetic) parameters, maximum (plasma) concentration (Cmax) of CCX, 

time to reach Cmax (tmax), and area under the dissolution (AUC0-4h) and plasma concentration-time 

curves (AUC0–24h) are provided in Tables 1 and 2, respectively. The area under the dissolution 

curve (in vitro AUC0-4h) is calculated from 0-4 hours as the gastrointestinal transit time of rats is 

3-4 hours and a previous study showed that this concentration-time profile is predictive of in vivo 

bioavailability of CCX ASDs (Knopp et al., 2016). 
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Figure 1: Dissolution profiles after non-sink in vitro dissolution of crystalline CCX (●), 100% 

crystallized ASD (○), 60% crystallized ASD (�), 40% crystallized ASD (�), 20% crystallized 

ASD (■) and pure ASD (□) at a dose of 400 mg of CCX in 500 mL FaSSIF. Values represent 

mean CCX concentration ± SD (n = 3).  

 

 

Figure 2: Plasma concentration-time profiles after oral administrations of crystalline CCX (●), 

100% crystallized ASD (○), 60% crystallized ASD (�), 40% crystallized ASD (�), 20% 

crystallized ASD (■) and pure ASD (□) in rats at a dose corresponding to 100 mg/kg body 

weight of CCX. Values represent mean plasma concentration ± SEM (n = 5). 

 



  

Page 10 

 

Table 1: In vitro parameters after non-sink dissolution testing of the crystallized ASDs at a 

dose of 400 mg (values are mean ± SD, n = 3). 

Formulation AUC0-4 h (mg min mL
-1

) Cmax (µg mL
-1

) tmax (min) 

Pure ASD  67.2 ± 0.3
 
 355.2 ± 4.0 45.0 ± 0.0  

20% crystallized ASD 61.3 ± 0.5 
 

303.1 ± 5.0
 

50.0 ± 8.7 

40% crystallized ASD 56.4 ± 1.5 
 

260.0 ± 7.1 
 

80.0 ± 17.3
 
 

60% crystallized ASD 46.6 ± 0.3 
 

212.4 ± 3.4
 

110.0 ± 17.3
 
 

100% crystallized 

ASD 

14.3 ± 0.0
 

60.8 ± 0.2
 a 

Crystalline CCX  12.8 ± 0.3  54.9 ± 1.4 
a 

a
 tmax at end of sampling period (1440 min) 

 

Table 2: Pharmacokinetic parameters of the various crystallized ASDs administered to rats 

at a dose of 100 mg/kg (values are mean ± SEM, n = 5). 

Formulation AUC0-24 h (µg h mL
-1

) Cmax (µg mL
-1

) tmax (h) 

Pure ASD  294.4 ± 16.4 
a,b,c

 25.7 ± 1.4 
a,b,c

 3.6 ± 0.4 
a
 

20% crystallized ASD 270.8 ± 39.4 
a,b 

25.4 ± 2.2 
a,b,c 

3.2 ± 0.4 
a
 

40% crystallized ASD 257.5 ± 9.0 
a,b 

22.2 ± 1.1 
a,b 

4.0 ± 0.0 
a
 

60% crystallized ASD 198.3 ± 21.3 
a 

18.5 ± 1.7 
a 

4.0 ± 0.0 
a
 

100% crystallized 

ASD 

158.3 ± 17.8
 

14.4 ± 1.5 
a 

4.0 ± 0.0 
a
 

Crystalline CCX
* 105.1 ± 10.2

 
8.7 ± 1.0

 
6.3 ± 0.4 

Significantly different at p < 0.05: 
a
 vs. crystalline CCX; 

b
 vs. 100% crystallized ASD; 

c
 vs. 60% crystallized ASD. 

*
Data adapted from Knopp et al. (2016) 

 

As can be seen in Figure 1 and Table 1, the in vitro tmax increased and the AUC0-4h and Cmax 

decreased (almost linearly) with an increasing fraction of crystallized drug, respectively, which 

was somewhat expected given that both the dissolution rate and (apparent) solubility of the 

amorphous form of a drug is higher than that of its crystalline counterpart (Leuner and 

Dressman, 2000). This suggests that the performance of an ASD is significantly affected by 

crystallization of the drug in the ASD. By comparing the in vitro Cmax for the crystalline CCX 

and the 100% crystallized ASD it is clear that PVP has some solubilizing properties, i.e. it 
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increases the equilibrium solubility of crystalline CCX in the solution (from 54.9 to 60.8 µg/mL) 

most likely due to drug-polymer interactions (Baghel et al., 2016). Therefore, based on the in 

vitro dissolution study it is expected that the mere presence of PVP in the 100% crystallized 

ASD will improve the performance of the system compared to pure crystalline CCX. 

Nevertheless, this improved performance pales in comparison with the effect from formulating 

the drug as an ASD, which more than quadruples the in vitro AUC0-4h. 

This substantial increase in performance (AUC) of the pure ASD was also reflected in the in vivo 

study as shown in Figure 2 and Table 2. In accordance with the observations in vitro, the tmax for 

the pure and crystallized ASDs were significantly lower than for crystalline CCX, which is 

probably a result of the lower dissolution rate of the crystalline CCX compared to amorphous 

CCX. Similarly, both the in vivo Cmax and AUC0-24h decreased with increasing fraction of 

crystallization with the pure ASD and the 20% and 40% crystallized ASDs being significantly 

higher than for the 100% crystallized ASDs (and crystalline CCX). Compared to 100% 

crystallized ASD and crystalline CCX, the in vivo AUC0-24h for the pure ASD was approximately 

2-fold and 3-fold higher, respectively, which indicates that crystallization has a significant 

impact on the in vivo performance of an ASD. In order to illustrate this influence, the in vivo 

AUC0-24h is plotted as a function of crystallized CCX fraction in Figure 3. 

 

 

Figure 3: Relationship between the fraction of crystallized CCX (% w/w) in the ASDs and in 

vivo AUC0-24h. ± SEM (n = 5). The solid line in the figure is intended to indicate a linear 
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relationship between the data points. The decrease in AUC0-24h as a function of crystallized CCX 

is fitted to a linear regression model illustrated by the solid line (R
2
 = 0.961). 

 

As can be seen, there is a good linear correlation between the in vivo AUC0-24h and fraction of 

crystallized CCX, which suggests that crystallization of a drug in an ASD during storage has 

significant impact on the in vivo performance or bioavailability of the drug. Nevertheless, the 

difference between the in vivo AUC0-24h and Cmax for the pure ASD and the 20% and 40% 

crystallized ASDs was not statistically significant. This indicates that, despite the good 

correlation between the in vivo AUC0-24h and % of crystallization of CCX, these systems could 

be bioequivalent.  

A test product can be considered bioequivalent with a reference product if the 90% confidence 

interval for AUC and Cmax of the test product both fall within 80-125% of those of the reference 

product (FDA, 2003). The 90% confidence interval for the test product is given by X  ±  Z·s/√n, 

where X is the mean, Z is the standard normal variable (= 1.645 for 90% confidence interval), s is 

the standard variation and n is the number of samples. Hence, in order to be considered 

bioequivalent with the pure ASD, the 90% confidence intervals for in vivo AUC0-24h and Cmax for 

the crystallized ASDs should fall within 235.6-368.1 µg·h/mL and 20.6-32.2 µg/mL, 

respectively. For the 20% and 40% crystallized ASDs the 90% confidence intervals for in vivo 

AUC0-24h and Cmax was 205.1-336.5 and 242.7-272.3 µg·h/mL, and 21.8-28.9 and 20.3-24.1 

µg/mL, respectively. This means that the 20% crystallized ASD is bioequivalent to the pure ASD 

with regards to in vivo Cmax and the 40% crystallized ASD was bioequivalent with regards to in 

vivo AUC0-24h. However, as none of the crystallized ASDs fall within the limits of the pure ASD 

for both pharmacokinetic parameters, they cannot be considered bioequivalent. 

The lack of bioequivalence between the pure ASD and the 20% crystallized ASD was probably a 

result of the high standard deviation on the AUC0-24h due to the relatively low number of animals 

(n = 5). Accordingly, bioequivalence between the 20% crystallized ASD and the pure ASD could 

probably be established if the number of animals is increased to n = 10-12. In combination with 

the lack of statistical significance between the AUC0-24h and Cmax for the pure ASD and the 20% 

and 40% crystallized ASDs, this could indicate that a small fraction (up to 20% w/w) of 

crystallized drug in an ASD only have limited or no impact on the in vivo performance and 

bioavailability. In fact, considering that the crystals formed within an ASD during storage were 
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most likely much smaller than the micronized drug particles used in this study (nm vs. µm scale), 

the effect of crystallization on the performance of the ASD was expected to be even less 

pronounced than demonstrated above. Nevertheless, this claim would have to be investigated in 

further detail in future studies in humans.  

 

Amorphous phase separation 

The in vitro dissolution profiles and in vivo plasma concentration-time profiles following 

administration of the different amorphous phase-separated ASDs are shown in Figures 4 and 5, 

respectively. The corresponding (pharmacokinetic) parameters, maximum (plasma) 

concentration (Cmax) of CCX, time to reach Cmax (tmax), and area under the dissolution (AUC0-4h ) 

and plasma concentration-time curves (AUC0–24h) are provided in Tables 3 and 4, respectively. 

 

 

Figure 4: Dissolution profiles after non-sink in vitro dissolution of amorphous CCX (●), 100% 

amorphous phase-separated ASD (○), 60% amorphous phase-separated ASD (�), 40% 

amorphous phase-separated ASD (�), 20% amorphous phase-separated ASD (■) and pure ASD 

(□) at a dose of 400 mg of CCX in 500 mL FaSSIF. Values represent mean CCX concentration ± 

SD (n = 3).  
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Figure 5: Plasma concentration-time profiles after oral administrations of amorphous CCX (●), 

100% amorphous phase-separated ASD (○), 60% amorphous phase-separated ASD (�), 40% 

amorphous phase-separated ASD (�), 20% amorphous phase-separated ASD (■) and pure ASD 

(□) in rats at a dose corresponding to 100 mg/kg body weight of CCX. Values represent mean 

plasma concentration ± SEM (n = 3-5). 

 

Table 3: In vitro parameters after non-sink dissolution testing of the amorphous phase-

separated ASDs at a dose of 400 mg (values are mean ± SD, n = 3). 

Formulation AUC0-4 h (mg min mL
-1

) Cmax (µg mL
-1

) tmax (min) 

Pure ASD  67.2 ± 0.3 355.2 ± 4.0  45.0 ± 0.0  

20% amorphous 

phase-separated ASD 

62.6 ± 1.6  320.0 ± 9.7  55.0 ± 8.7 

40% amorphous 

phase-separated ASD 

58.9 ± 1.3  292.7 ± 13.9  70.0 ± 17.3 

60% amorphous 

phase-separated ASD 

54.3 ± 1.4  256.4 ± 10.3  55.0 ± 8.7 

100% amorphous 

phase-separated ASD 

44.1 ± 0.9  215.7 ± 14.9  80.0 ± 17.3 

Amorphous CCX 19.8 ± 0.3  118.2 ± 4.7  13.3 ± 2.9 

 

Table 4: Pharmacokinetic parameters of the various amorphous phase-separated ASDs 

administered to rats at a dose of 100 mg/kg (values are mean ± SEM, n = 3-5). 
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Formulation AUC0-24 h (µg h mL
-1

) Cmax (µg mL
-1

) tmax (h) 

Pure ASD  294.4 ± 16.4 
a
 25.7 ± 1.4 

a,b
 3.6 ± 0.4 

20% amorphous 

phase-separated ASD 

294.0 ± 35.4 
a
 24.3 ± 1.9 

a,b
 4.0 ± 0.0 

40% amorphous 

phase-separated ASD 

285.9 ± 18.0 
a
 24.6 ± 1.7 

a,b
 5.3 ± 1.3 

60% amorphous 

phase-separated ASD 

242.9 ± 5.2 
a
 21.6 ± 0.4 

a,b
 4.0 ± 0.0 

100% amorphous 

phase-separated ASD  

231.0 ± 4.3 
a
 16.5 ± 1.0  5.3 ± 1.3 

Amorphous CCX 157.0 ± 14.9  14.9 ± 0.8 3.6 ± 0.4 

Significantly different at p < 0.05: 
a
 vs. amorphous CCX; 

b
 vs. 100% amorphous phase-separated ASD 

 

As can be seen in Figure 4 and Table 3, the in vitro tmax generally decreased increased with 

increasing fraction of amorphous phase-separated CCX (except for the 60% phase-separated 

ASD). However, the tmax for the pure amorphous CCX was shorter than for the pure ASD (13.3 

vs. 45.0 min). This difference could be due to the dissolution rate of the amorphous CCX being 

higher than the dissolution rate of PVP as drug release from an ASD is driven by the dissolution 

of the polymer (Newman et al., 2012). However, by comparing the dissolution profile of the 

amorphous CCX with the 100% amorphous phase-separated ASD it is clear that PVP, besides 

having solubilizing properties (as shown in Table 1), also inhibited the crystallization of the drug 

from the supersaturated solution by delaying the onset of crystallization as implied from the 

increase in tmax. This increase in dissolution rate followed by inhibition/delay of crystallization of 

drug from the supersaturated solution is a well-known property of many polymeric ASDs (such 

as CCX-PVP) and based on the appearance of the non-sink dissolution profile it is referred to as 

the “spring and parachute” effect (Baghel et al., 2016; Guzman et al., 2007). Furthermore, the in 

vitro AUC0-4h and Cmax decreased with increasing fraction of amorphous phase separation, 

however, not to the same extent as for the crystallized ASDs (Figure 1 and Table 1). In fact, the 

difference between the in vitro AUC0-4h for the pure ASD and the 20% and 40% amorphous 

phase-separated ASDs was only around 10%, which suggests that based on the in vitro 

dissolution study, amorphous phase separation may not have a significant influence on the 

performance of an ASD. These findings are in accordance with a study by Chen et al. (2018), 

who demonstrated that amorphous phase separation of a slow crystallizing drug in an ASD only 

had minimal impact on the in vitro dissolution performance.  



  

 

Indeed, at first glance, amorphous phase separation did

the in vivo performance (in vivo 

4. In contrast to the in vivo study of

between tmax of the pure and amorphous phase

in accordance with the observations

tmax of for amorphous CCX was

probably a result of the absence of the precipitation inhibitor PVP.

Cmax and AUC0-24h decreased with increasing 

pharmacokinetic parameters for the 

ASDs being significantly higher th

Nevertheless, compared to 100% phase

24h for the pure ASD was only 1.3

influence of phase separation of a drug in an 

compared to the effect crystallization. 

separation on the in vivo performance of an ASD, the 

amorphous phase-separated CCX

 

Figure 6: Relationship between the fraction of

ASDs and in vivo AUC0-24h. ± SEM (

indicate a linear relationship between the data points.

 

amorphous phase separation did not seem to have significant influence on 

 AUC0-4h and Cmax) of the ASD as shown in Figure 5 and Table 

study of the crystallized ASDs, there was no significant difference 

of the pure and amorphous phase-separated ASDs and amorphous CCX. However, 

in accordance with the observations in vitro (despite a lack of statistical significance), 

amorphous CCX was lower than that for all the crystallized ASDs, which 

absence of the precipitation inhibitor PVP. In addition, both the 

decreased with increasing fraction of crystallization with 

pharmacokinetic parameters for the pure ASD and the 20% and 40% amorphous phase

ASDs being significantly higher than 100% phase-separated ASD and amorphous CCX. 

ompared to 100% phase-separated ASD and amorphous CCX, the

for the pure ASD was only 1.3-fold and 1.9-fold higher, respectively, which suggest that 

phase separation of a drug in an ASD, may not be as significant

stallization. In order to illustrate the influence of amorphous phase 

performance of an ASD, the in vivo AUC0-24h is plotted a

CCX fraction in Figure 6. 

 

Relationship between the fraction of amorphous phase-separated CCX

. ± SEM (n = 3-5). The solid line in the figure is not intended to 

indicate a linear relationship between the data points. 
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not seem to have significant influence on 

as shown in Figure 5 and Table 

no significant difference 

separated ASDs and amorphous CCX. However, 

(despite a lack of statistical significance), the in vivo 

stallized ASDs, which was 

, both the in vivo 

stallization with both 

the 20% and 40% amorphous phase-separated 

separated ASD and amorphous CCX. 

us CCX, the in vivo AUC0-

respectively, which suggest that the 

may not be as significant, at least when 

order to illustrate the influence of amorphous phase 

is plotted as a function of 

separated CCX (% w/w) in the 

The solid line in the figure is not intended to 
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As can be seen, in contrast to the data presented in Figure 3, the in vivo AUC0-24h does not appear 

to decrease linearly with increasing fraction of amorphous phase-separated CCX. Rather it seems 

that the curve is S-shaped, which indicates that lower fractions of amorphous phase separation 

(≤40% w/w) do not affect the performance of an ASD. In fact, the lack of statistical significant 

differences between the AUC0-24h and Cmax for the pure ASD and the amorphous phase-separated 

ASDs suggests that the these systems are bioequivalent.  

As mentioned above, in order to be bioequivalent with the pure ASD, the 90% confidence 

intervals should fall within 235.6-368.1 µg·h/mL for AUC0-24h and 20.6-32.2 µg/mL for Cmax. 

For the 20% and 40% amorphous phase-separated ASDs, the 90% confidence intervals for 

AUC0-24h is 235.8-352.1 and 256.-315.5 µg·h/mL, and the 90% confidence intervals for Cmax is 

21.1-27.4 and 21.7-27.4 µg/mL, respectively. This means that the 20% and 40% amorphous 

phase-separated ASDs can indeed be considered bioequivalent with the pure ASD. In 

combination with the lack of statistical significance between the AUC0-24h and Cmax for the pure 

ASD and these systems, this strongly indicates that even a substantial fraction (up to 40% w/w) 

of amorphous phase separation of the drug in an ASD during storage may not significantly 

impede the performance or bioavailability of the formulation.  

 

Conclusions 

The present study addresses the issues related to the efficiency and safety of crystallized or 

amorphous phase-separated ASDs as a result of the change in physicochemical properties of the 

system. The results demonstrate that both the in vitro and in vivo performance of an ASD was 

indeed influenced by crystallization or phase-separation of the drug. As expected, crystallization 

of CCX in the ASDs generally had a negative influence on performance compared to the pure 

ASD. However, the difference between the in vivo AUC of the pure ASD and the 20% and 40% 

crystallized ASDs was not statistically significant, which could indicate that a small fraction of 

crystallization of the drug in an ASD (e.g. below 20% w/w) could only have limited or no impact 

on in vivo performance/ bioavailability. In comparison, amorphous phase separation of CCX in 

the ASDs did not negatively influence the in vitro and in vivo AUC to the same degree as 

crystallization. In fact, even though a slight decrease of in vivo AUC with increasing fraction of 

amorphous phase separation was observed, the 20% and 40% amorphous phase-separated ASDs 

were bioequivalent with the pure ASD. Even though only one drug-polymer systems was 
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investigated, the findings of this study indicate that the current regulatory general reservations 

towards the impact of amorphous phase separation and crystallization of the drug in an ASD on 

its bioavailability may be exaggerated. 
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