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Introduction – or, if so you wish, abstract

The following discusses the practice of mathematical argument or demonstration –
at first based on what I shall speak of as “the locally obvious”, that is, presuppositions
which the interlocutor – or, in case of writing, the imagined or “model” reader – will
accept as obvious; next in its interaction with critique, investigation of the conditions
for the validity of the seemingly obvious as well as the limits of this validity. This is
done, in part through analysis of material produced within late medieval Italian abbacus
culture, in part from a perspective offered by the Old Babylonian mathematical corpus –
both sufficiently distant from what we are familiar with to make phenomena visible
which in our daily life go as unnoticed as the air we breathe; that is, they allow
Verfremdung. These tools are then applied to the development from argued procedure
toward axiomatics in ancient Greece, from the mid-fifth to the mid-third century BCE.
Finally is discussed the further development of ancient demonstrative mathematics,
when axiomatization, at first a practice, then a norm, in the end became an ideology.
The whole is rounded off by a few polemical remarks about present-day beliefs
concerning the character of mathematics.

Arguing from the locally obvious

Let us start with this piece from Dardi of Pisa’s Aliabraa argibra, written in 1344,
presumably in Veneto.1 It comes from the first part of the treatise, which teaches the
arithmetic of monomials, binomials and polynomials containing radicals. The passage
teaches how to divide number by number plus square root, and is based on the example

. I transcribe in modern notation – Dardi has più where I write “+”, meno where8

3 √4

I have “–”, and where I use √. Finally, I write the division as a fraction – this is less
innocuous but useful for our later argument.2

Building on what he has already taught, Dardi starts by calculating that
(3+√4) (3–√4) = 32–(√4)2 = 5. Then he knows (we would say that this is the definition
of division, but such concepts were not Dardi’s) that

1 When at home in Pisa, Dardi would obviously not be identified as coming from there. Where
then did he write? The oldest manuscript (Vatican, Chigi M.VIII.170) is written in Venetian, which
does not say much. However, this manuscript uses the characteristic Venetian spelling çenso and
the corresponding abbreviation ç. So does the Arizona manuscript, whose orthography is also
northern; the last two manuscripts, written in Tuscan, still use the abbreviation ç even though
writing censo or cienso when not abbreviating (actually I have not seen the Florence manuscript,
but Libri’s transcription of a short extract [1838: III, 349–359] uses “c,” probably standing for
ç). There is thus no reasonable doubt that the original was written in Venetian or a related dialect.

The manuscripts are discussed in [Hughes 1987] and in [Franci 2001: 3–6]. I thank Van
Egmond for access to his personal transcription of the Arizona manuscript.

2 I refer to the text edition in [Franci 2001: 59]; the Chigi manuscript (fol. 12v, original foliation;
probably closer to Dardi’s own text) has m̂ instead on meno and e instead of più but is otherwise
no different.
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5
3–√4

3 √4

and that

.
5

3 √4
3 √4

What we need to find is

.
8

3 √4

So far, nothing amazing. But now comes something unexpected. Dardi makes appeal
to the rule of three, which tells him that

8
3 √4

(8 [3 √4])÷5 (24 256 )÷5

which he then in agreement with abbacus algebra3 aesthetics reduces to

.4 4

5
10 6

25

What precisely was the rule of three for Dardi? Not the problem to find an unknown
q (or p) from “if q is to p as Q to P” (where p and q may stand for “quantity” and
“price”, respectively), nor for whatever method can be used to solve that problem. The
rule of three is the specific method which first multiplies and then divides, and only
that. In the Italian abbacus school environment it was taught in words like these:

If some computation was said to us in which three things are proposed, then we shall
multiply the thing that we want to know with the one which is not of the same (kind),
and divide in the other.

This is the formulation in the Umbrian Livero de l’abbecho [ed. Arrighi 1989: 9],4 dating
from around 1300; it is repeated more or less verbatim in almost all abbacus writings
that formulate the rule – see [Høyrup 2012: 148–152]. This is thus certainly what Dardi
referred to. The rule was taught unexplained; it is indeed difficult to explain, since the
intermediate product has no concrete meaning.5

3 “Abbacus” (abbaco, abbacho) has nothing to do with any variant of the reckoning board. It stands
for practical arithmetic, but in the variant that was taught in the “abbacus school”, and it
calculated with Hindu-Arabic numerals on paper. Abbacus schools, existing between Genova-
Milan-Venice to the north and Umbria to the south from ca 1260 to c. 1600, were frequented
by artisans’ and merchants’ sons (also sons of patrician-merchants like the Florentine Medici)
for two years or less around the age of 11–12.

Abbacus algebra was not taught here, but flourished from ca 1310 onward in the environment
of abbacus school teachers, serving to display their competence in the competition for pupils
or for municipal employment.

4 My translation, as other translations in the following unless otherwise stated.

5 In contrast, the two alternative methods where division precedes multiplication, can be explained
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The recourse to the rule of three was certainly meant by Dardi as an explanation.
Is it a demonstration? Probably even Dardi did not think of it in terms like that, but
rather as what we might express as a “reasoned procedure”.

We may compare with the way we ourselves may have been taught to perform
the same division – I myself around the age of 14. We would have been told to multiply

the numerator and the denominator of by 3–√4,8

3 √4

.8

3 √4

8 (3 √4)

(3 √4) (3–√4)

8 (3 √4)

32 (√4)3

24 8√4

9 4

24 8√4

5

Even this is a reasoned procedure, but we might spontaneously tend to see it as more
akin to demonstration. But how did we know that a fraction does not change its value
when numerator and denominator are multiplied by the same number? And would
3–√4 be a number in the sense corresponding to the argument behind this manipulation?

It certainly was not. At an earlier moment we may have been presented with an

explanation of the expansion of, say, into corresponding to this diagram:6

13

5 6

5 13

To the left, in heavy outline, we see of a rectangle – 6 out of 13 equal strips. To6

13

the right the same, now 5 6 out of 5 13 equal squares, that is, of the rectangle.5 6

5 13

To make that a rigorously valid argument in the case of irrational factors would reqire
something like an Archimedean exhaustion. In any case, when we were confronted

with we had long forgotten the argument for the possibility of reduction or8

3 √4

expansion of fractions (if we had ever been presented with one); we had just got
accustomed – just as Dardi’s model reader was accustomed to the use of the rule of
three.

There is a difference, however, and that difference is elucidated by another passage
from Dardi. Here, Dardi wants to “prove by a numerical example” that “minus times
minus makes plus”:6

meaningfully: q must cost p/P as much as Q; and Q/P is as much as can be bought for one
monetary unit.

6 Ed. [Franci 2001: 44]. The words are “dimostrare per numero” and “meno via meno fa più” –
in the Chigi manuscript (fol. 5v) “demostrar per numero” and “men via men fa più”. Dardi
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I shall say, 8 times 8 makes 64, and this 8 is two less than 10, and multiply it by another
8, which is still 2 less than 10, which similarly shall make 64. This is the proof, multiply
10 times 10, it makes 100, and 10 times 2 less, it makes 20 less, and the other 10 times
2 less, it still makes 20 less, and you have 40 less, which 40 less detract from 100,
remains 60. And to finish the multiplication, multiply 2 less times 2 less, which makes
4 more [più], join it above 60, and you have 64. And if 2 less times 2 less made 4 less,
one should detract 〈it〉 from 60, and 56 would remain. Then it would seem that 10 less
2 times 10 less 2 would make 56, which is not true. And so it would be if 2 less times
2 less made nothing, then the multiplication of 10 less 2 times 10 less 2 would come
to make 60, which is still false. So less times less by necessity needs to make plus [più].

This is followed in the Chigi and the Arizona manuscripts by a diagram

One may wonder at the stumbling logic in the final part of the argument – why not
just derive that “less 2 times less 2” must make the 4 that has to be added to 60 in order
to produce 64?7. The other objection that might be raised – that a numerical example
cannot be a proof – is easily discarded: the numerical values are just as peripheral as
the actual lengths of lines entering a Euclidean proof. As Aristotle points out in
Metaphysics M, 1078a17–21 (trans. Ross in [Aristotle, Works, VIII]),

if we suppose attributes separated from their fellow-attributes and make any inquiry
concerning them as such, we shall not for this reason be in error, any more than when
one draws a line on the ground and calls it a foot long when it is not; for the error
is not included in the premisses.

As long as the argument does not depend on the actual numerical values but these
just serve to carry its structure, a proof “per numero” is as good or as bad as any
Euclidean demonstration by diagram.

Let us therefore concentrate on the structure. One might argue (from the meaning
of multiplication as repeated addition) that adding 10 2 times less amounts to adding
20 less, and that adding 2 10 times less also amounts to adding 20 less. However, Dardi
offers no argument, and in the preceding section (where number less root is multiplied
by number less root, with the example (3–√5) (4–√7)) one can see that the explanation
[ed. Franci 2001: 43] is merely

You shall at first multiply the numbers one by the other, that is, 3 times 4, which makes
12, and save it. And then multiply in cross the numbers times the roots, which is less,
and what results is root less. Therefore multiply 3 times less root of 7, which makes
root of 63, [...].

It is in the sequel that the need to multiply less by less arises. In contrast, less times
more and more times less are treated as in need of no argument. They are familiar
matter, just like the rule of three.

distinguishes between mostrar, “to show”, and demostrar, “to prove”.

7 Luca Pacioli, in [1494: I 113r] actually does no better – he adds yet another possibility to be ruled
out, namely that (–2) (–2) = –2 (Pacioli operates with negative, not just subtractive numbers),
and is even more loquacious here than he usually is (to the point of being obscure).
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So, be it in reasoned procedure, be it in demonstration, the explanation makes use
of what the learner (the presupposed or model learner) can be assumed to accept as
evident – not necessarily because of preceding argument, the intuitively obvious may
do as well; that is what I shall call the locally obvious. And, this is the crux of what
precedes: habit creates intuition (though certainly not in one-to-one correspondence).
The advice attributed to d’Alembert, “Allez en avant, et la foi vous viendra”, is not
too far away. Habits, on the other hand, are often linked to a particular practice, and
thereby to the particular institutions that wield this practice. Dardi’s use of the rule
of three is an example, visible to us because we do not participate in abbacus school
practice. Locally, it was obvious; at our distance, something that itself needs argument.

Critique

What is obvious for one person (for instance, the teacher) may not be obvious to
another one (for instance, the student); and what at first seems obvious may even
become doubtful for the same person at second thoughts. That is where critique sets
in, reflections about Möglichkeit und Grenzen, in Kant’s words from the opening of the
Third Critique [ed. Vorländer 1922: 1]. I shall illustrate this with an Old Babylonian
example8 – the text YBC 6967, from somewhere between 1750 BCE and 1600 BCE. I quote
the translation from [Høyrup 2017: 45f].

Obv.
1. The igibûm over the igûm, 7 it goes beyond
2. igûm and igibûm what?
3. You, 7 which the igibûm
4. over the igûm goes beyond
5. to two break: 3°30´;
6. 3°30´ together with 3°30´
7. make hold: 12°15´.
8. To 12°15´ which comes up for you
9. 1` the surface join: 1`12°15´.

10. The equal of 1`12°15´ what? 8°30´.
11. 8°30´ and 8°30´, its counterpart, lay down.

Rev.
1. 3°30´, the made-hold,
2. from one tear out,
3. to one join.
4. The first is 12, the second is 5.
5. 12 is the igibûm, 5 is the igûm.

This asks for explanation – that is the price of
Verfremdung. On the tablet, numbers are written in a
floating-point place-value system with base 60. In the
translation, they have been provided with an absolute order of magnitude. In this
translation, ´ indicates decreasing and ` increasing order of magnitude; “1`12°15´” thus
stands for 1 601+12 600+15 60–1 (when not needed for separation or clarity, “°” is
omitted; “12” is thus the same as “12°”).

8 The “Old Babylonian period” is the period 2000–1600 BCE (according to the “middle chronology”);
the mathematical texts come from its second half.
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The problem deals with two numbers belonging together in the table of reciprocals –
igûm and igibûm, meaning “the reciprocal” and “its reciprocal”. We should expect their
product to be 1, but it is actually meant to be 1` = 60 (as mentioned, the system was
floating-point). Moreover, the igibûm exceeds the igûm by 7. The words (“to make hold”,
“surface”, “counterpart” – see imminently) show the procedure to be geometric – the
two numbers are represented by the sides of a rectangle with area 1` = 60. That is shown
in A. In B, the excess 7 of the igibûm over the igûm is “broken”, that is, bisected – not
only the segment representing it but also the appurtenant part of the rectangle, resulting
in two rectangles with one side equal to the igûm and the other to 3°30´ = 31/2. In C,
the outer of these rectangles is moved – the two segments of 3°30´ are “made hold”,
that is, arranged so that they contain a rectangle (here a square) of area 3°30´×3°30´ =
12°15´. To this square is joined the original rectangle transformed into a gnomon; the
result is a square with area 1`+12°15´ = 1`12°15´. Then the “equal” of this larger area
is found, that is, one of the two equal sides that contain it. It is 8°30´ = 81/2. This is
“laid down” together with its “counterpart” – the term may mean “to draw” or “to
write”, possibly also to lay down on a reckoning board (in the actual case two boards,
one for each). However that may be, in D the “made-hold”, that is, the part that was
moved, is put back into its original place. Removing 3°30´ from 8°30´ leaves 5, which
is the igûm. Putting it back yields 12, the igûm. We may describe the whole procedure
as “cut-and-paste geometry in a square grid”.

On the surface, everything here is just “seen” to be correct – but since the drawing
is not found on the tablet but either just imagined by “mental geometry” or sketched
on a dust board or in sand strewn on the brick-laid courtyard, even this is an instance
of the locally obvious, made obvious for us by being transferred to our familiar medium
of drawings in true proportions.

Yet one thing hides below the surface. Normally, the Babylonian reckoners, as we,
would mention addition before subtraction. This is also reflected in the reversal of the
order in the last two lines, 12 resulting from addition, 5 from subtraction. But in lines
rev. 1–3, subtraction is performed first. The reason is regard for concrete meaningfulness:
we cannot put something back in place before it is made available.

This is not evidence of “a primitive mind not yet prepared for abstraction”, as has
been supposed. In analogous situations, earlier texts (from around 1775 BCE) simply
say “to one join, from the other tear out” (as still reflected in the order to the last two
lines). At some moment, some teacher, perhaps challenged by a student, perhaps as
a result of his own second thoughts, has discovered that the inherited way of speaking
is deprived of concrete meaning; that is, he has engaged in critique.

Critique is not a conspicuous characteristic of Old Babylonian mathematical texts.
I know of one other instance. Some early problems add sides of squares or rectangles
to their areas without qualms, and then proceed like here, treating the segments in
question as “broad lines” provided with an inherent breadth of one length unit that
can be bisected.9 Even here, later texts change their way, providing explicitly the
segments with a width equal to one. Since this is done in three different ways, it seems
that no less than three different teachers with each his own school tradition have
engaged independently in critique.

9 This notion of “broad lines” and its rather widespread occurrence is discussed in [Høyrup 1995].
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But this is all I have noticed in the Old Babylonian mathematical corpus as far as
indubitable critique is concerned. After all, mathematics was basically taught as a means
for administration, and even though it created a higher level of “supra-utilitarian”
problems, the norms governing the practice out of which these grew asked for finding
“the right number”, not for theoretical justification beyond what might be didactically
useful.

Demonstration, critique, and the culture of liberal arts

From Classical Antiquity we have the concept and ideal of “liberal arts”, knowledge
bodies that have no technical use but are considered goals in themselves. We may leave
aside what later times did to the concept, from the Latin Middle Ages to our own world,
and stick to the ancient ideal and its reality.

We should take note that the famous “cycle” of seven Liberal Arts (grammar,
rhetoric, dialectic; arithmetic, geometry, astromomy, harmonics) was only formed during
or after Plato’s mature years, and that the supposed “seven” were normally two and
nothing more – grammar, that is, good and correct use of language, and rhetoric.
Augustine was no exception when he had to study on his own everything beyond these
subjects (Confessions IV.xvi – ed. [Rouse 1912: 198]) – but he certainly was when
complaining about it. Nor was he an exception when, though an intellectually ambitious
teacher of the Liberal Arts, he never had students interested in anything going beyond
these matters. Things have to be reduced to due proportions.

Yet there were, as we know, people engaged in “liberal” mathematics during
Classical Antiquity – and not only Euclid, Archimedes and Apollonios. According to
Reviel Netz’s estimate [1999: 282f] of the number of those who at some moment in life
made a piece of explicitly reasoned mathematics, 144 have left at least minimal direct
or indirect traces; perhaps some 300 were still known by name in Late Antiquity – and
in total perhaps 1000, one born on the average per year, but certainly with a more
uneven distribution than simple randomness would suggest (and quite possibly
considerably fewer).

Their appearance also precedes the formation of the cycle of Liberal Arts. It almost
had to, how could the quadrivial arts (arithmetic, geometry, astronomy and harmonics)
become part of the cycle if they did not already exist? Yet we should beware that what
entered the cycle were, at least by name, Pythagorean fields of interest, and to which
extent these corresponded to the reasoned theoretical fields we know from Aristotle’s
time onward can be disputed. Even the nature of the mathematics which according
to Plato should be taught to the guardians of his republic (Republic VII, 525D5–E3) is
subject to doubt – cf. [Mendell 2008]. There is no compelling evidence (if we do not
count as such much later Neoplatonic interpretations) that his “arithmetic” was
something like the theory of Elements VII–IX – after all, the word basically means
“counting”, and how far this meaning was stretched by Plato is not clear from his text.
To Henry Mendell’s arguments we may add a passage from Aristotle’s Metaphysics
N, 1090b27–29, (which no longer concerns the state of affairs at the moment when the
Republic dialogue is supposed to have taken place but Plato’s own teaching at the
moment when Aristotle was working at the Academy or later). After other objections
against Plato’s identification of numbers with ideas it is pointed out (trans. Ross in
[Aristotle, Works, VIII]) that
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not even is any theorem true of them, unless we want to change the objects of
mathematics and invent doctrines of our own.

That is: whatever Plato maintains in his mature philosophy about number has nothing
to do with the theoretical arithmetic that had been created no later than the fourth
century BCE.10

In any case we know that some kind of theoretical mathematics existed during
the second half of the fifth century BCE. Famously, the possibility of incommensurability
had been discovered by then, most likely by Pythagorean mathematikoi, and we know
that first Theodoros and later Theaitetos worked on this topic – Plato’s dialogue
Theaetetus, though written after 370 BCE, can be considered testimony. From the reports
about and fragments from Archytas [Diels 1951: I, 429–438] we also know about
investigation of the three main mathematical means (arithmetic, geometric, harmonic).
At least irrationality is beyond what could be of interest in any productive or
administrative practice; a connection between the theory of means and the theory of
harmonics can be presupposed, but then the theory of harmonics was a mathematical
theory, and its relation to practiced music questionable (questioned indeed by
Aristoxenos). The theory of means was also linked to the search for two mean
proportionals, which Archytas treated; even this was of no interest for administrators
or master builders.

We are ignorant, however, not only of the precise arguments used by Theodoros
and Archytas but also of their overall argumentative style. As regards Meton and
Euctemon, we are even worse off concerning the kind of mathematical argument (if
any) they used together with their astronomical observations; in any case we cannot
say that their work belonged under the heading theory, the calendar was certainly a
practical concern.

Happily, we know more about Hippocrates of Chios. We have his investigation
of the lunules as rendered via Eudemos by Simplicios [ed. trans. Thomas 1939: I,
239–253]. It is obviously reasoned – the three “classical problems”, one of which (the
squaring of the circle) is the inspiring background to Hippocrates’s question – only
make sense as theoretical problems. But there is no trace of axiomatics, the argument
makes use of two principal tools, together with some properties of his diagrams which
he tacitly takes for granted as intuitively obvious. One tool is that the square on the
hypotenuse of a right-angled triangle equals the sum of the squares on the legs of the
right angle – the “Pythagorean theorem”; the other is that the area of a circle is
proportional to the square on the diameter.11 Both had been staple knowledge for Near

10 A number of attempts have been made to save Plato by proving that Aristotle does not
understand him – see, for instance, [Tarán 1978] with references to others sharing his view, or
the list in [Cherniss 1944: X]. Such attempts are misguided, what Aristotle does is to point out
that the numbers Plato speaks about have nothing to do with what others mean by number –
no more, indeed, than the “self-moving number” which the Pythagoreans identify with the soul
(De anima 408b32f).

A different question, which however does not concern us here, is whether the traces we
have of Plato’s views can be given a coherent and historically possible interpretation. Beyond
the discussion and references in Tarán and Cherniss, see [Mendell 2008: 128 n.3].

11 Thomas Heath [1921: I, 201] argues from Hippocrates’s text that he knew what was to become
propositions III.20–22, 26–29 and 31 in Euclid’s Elements. This would not be amazing, they can
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Eastern surveyor scribes at least since the Old Babylonian period – both are indeed
used in mathematical problems from that epoch, and the proportionality of the areas
of similar figures to the square of a characteristic linear dimension (side of a square,
perimeter or diameter of a circle) is the fundament for the geometric part of the tables
of technical constants. So, Hippocrates may have made use (systematic use, which is
where he differs from for example Dardi) of the locally obvious); to believe that he
must have known or produced a proof, for instance for the proportionality of the
circular area to the square on the diameter is a petitio principii, proving that Greek
geometry already had the character we know from the third century BCE from the tacit
assumption that it had.

Further, we have Eudemos’s ascription to Hippocrates of a first collection of
elements – an ascription we know from Proclos’s Commentary on Book I of the Elements
66 [trans. Morrow 1970: 54]. This collection is likely to have been connected to
Hippocrates’s teaching in Athens. The direct evidence for such teaching is a reference
in Aristotle’s Meteorology to “those around Hippocrates and his disciple Aischylos”.12

The members of this circle cannot have been engaged in practical mathematics: firstly,
then they would have had no need for a collection of elements: secondly, Aristotle
speaks about their opinions concerning comets. So, this earliest almost direct reference
to teaching of geometry also shows it to have been teaching of geometry as a “liberal”
subject.

We have no direct evidence concerning the possible teaching of Oinopides, also
from Chios and slightly older than Hippocrates – at most the suggestion of Paul Tannery
[1887: 109] that Hippocrates learned from him. Relying on Eudemos, however, Theon
of Smyrna [ed. trans. Dupuis 1892: 320f] states that Oinopides discovered the obliquity
of the ecliptic. That the planets do not move on the celestial equator was too obvious
to be a discovery, so two interpretations of this passage are possible: Oinopides may
have discovered that the motions of the planets not only run through a specific sequence
of celestial signs (that is how matters were seen by Babylonian mathematical
astronomers) but describe a great circle (which the Babylonians could not think, not
possessing the notion of the heavenly vault as a sphere or hemisphere); or he may have
measured the obliquity of the ecliptic (which is however so easy to do once the idea
of an oblique great circle is conceived that it can hardly count as an independent
discovery13). Our present point is a scene depicted in Plato’s Erastae [ed. trans. Lamb
1927: 312f], set in the later fifth century BCE. It portrays two boys in “the grammar school

be derived from the equality of the angles at the basis of an isosceles triangle by means of the
same kind of counting as Hippocrates wields when applying the Pythagorean theorem. But it
is equally possible – not least because Hippocrates makes use of these properties of figures
without noticing that an argument might be needed – that he made use of what could “be seen”
without having recourse to formulated propositions.

12 [Bekker 1831: 342b36–343a1]. “Those around” was the standard way to refer to the circle of those
who studied with a philosopher or similar teacher. Strangely, the Loeb as well as the Ross
translation omit “those around”, even though the Loeb edition conserves it in its Greek text.
The secondary literature, on the other hand (including myself on earlier occasions) has spoken
about Hippocrates’s teaching without questioning it.

13 All that is needed is to measure the culmination of the sun at summer and winter solstice and
to halve the difference.
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of the teacher Dionysios” eagerly discussing an astronomical problem “either about
Anaxagoras or about Oinopides” involving the obliquity of the ecliptic. This school
(also Plato’s own school according to Diogenes Laërtios [ed. trans. Hicks 1925: I, 278f])
was a school for “the young men who are accounted the most comely in form and of
distinguished family” (thus Erastae), not one teaching banausic trades; here, things like
Oinopides’s astronomy were thus taught at least at a level that allowed eager discussion.

A different kind of evidence comes from Aristotle’s writings.14 The ideal
organization of a field of knowledge as prescribed in the Posterior Analytic is obviously
inspired by geometry15 – not just reasoned geometry but axiomatic geometry. During
the century or so that had passed since Hippocrates wrote his elements, many things
could of course have changed, and Aristotle presents much material elucidating the
process.

Quite a few of Euclid’s definitions (or alternatives referred to by commentators)
were known to Aristotle. I shall mention only two examples. Firstly, Topica 143b11f refers
to those who define the line as a “length without breadth”, μηκος απλατες, exactly
Euclid’s definition I.1.16 Secondly, though paraphrased and contracted, the definition
of geometrical similarity referred to in Analytica posteriora 99a13f is obviously the one
offered in Elements VI.17

Definitions had been a concern in Greek philosophy for quite some time. According
to Aristotle’s Metaphysics 987b3, (trans. Ross in [Aristotle, Works, VIII]), “Socrates [...]
fixed thought for the first time on definitions”. Whether he was really the first or
inspired by contemporary mathematicians is probably not to be decided – not least
because Aristotle speaks of ορισμοí but Euclid (and plausibly geometers before him)
of οροι, which rather means “delimitations”. Aristotle is likely to have been aware that
the difference was more than just a choice between synonyms.

Among Euclid’s common notions, the third (“if equals be subtracted from equals,
the remainders are equal” [trans. Heath 1926: I, 223]) is Aristotle’s paradigm for an
axiom or “peculiar truth” valid within a particular genus. It serves as such in Analytica
posteriora 76a41, and again in 76b20f, but also in Analytica priora 41b21f as an example
of a presupposition that has to be made explicit in order to avoid a petitio principii.

Further, Aristotle knew Euclid’s second postulate – that can be seen in Physica
207b29–31 (trans. Hardie & Gaye in [Aristotle, Works, II]):

[mathematicians] do not need the infinite and do not use it. They postulate only that
the finite straight line may be produced as far as they wish.

Euclid [trans. Heath 1926: I, 154] requests (that is the meaning of “postulate”) that it
be possible “to produce a finite straight line continuously in a straight line”.

As far as I know, the other postulates are not quoted (nor paraphrased) in the
Aristotelian corpus; one, moreover, is absent where it would have been adequate to

14 From Plato’s dialogues, too. But they are often (already, and perhaps mainly, because of the
half-poetic genre) too ambiguous to be of much use in the present discussion.

15 “Inspired”, not copying, already for the reason that Aristotelian syllogistic logic does not fit
the way geometric proofs are argued. But also for other reasons, cf. [McKirahan 1992: 135–143].

16 Respectively [Bekker 1831: I, 143] and [Heiberg 1883: I, 2].

17 Respectively [Bekker 1831: I, 99] and [Heiberg 1883: II, 72].
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mention it, namely in Analytica priora 65a4–7 (trans. Jenkinson in [Aristotle, Works, I]).
This passage refers, as an example of hidden circular reasoning, to

those persons [...] who suppose that they are constructing parallel straight lines: for
they fail to see that they are assuming facts which it is impossible to demonstrate unless
the parallels exist.

Postulate 5 [trans. Heath 1926: I, 155],

if a straight line falling on two straight lines make the interior angles on the same side
less than two right angles, the two straight lines, if produced indefinitely, meet on that
side on which are the angles less than the two right angles

was obviously meant to repair that calamity. Actually, it only does so halfway. It
excludes hyperbolic but not elliptic geometries (precisely those where parallels do not
exist). For this purpose, one has to presuppose, for example, that two straight lines
cannot enclose a space, which some geometers indeed added as an axiom according
to Proclos, Commentary on Book I of the Elements 183 [trans. Morrow 1970: 143], and which
in fact is used in a dubious passage in the proof of Elements I.4 [trans. Heath 1926: I,
248, cf. p. 249] (apparently a scholion that has crept into the text).

What can we derive from these observations? In general that geometry as known
to Aristotle was already striving for axiomatization – no wonder, we know from
Eudemos as quoted by Proclos (Commentary 67, trans. [Morrow 1970: 56]) that at least
Theudios made a new, better arranged collection of elements, and that a number of
mathematicians worked together at the Academy in Plato’s time. But we also see that
the enterprise had not yet led to the goal, at least not as a social undertaking – those
who undertook to construct parallel straight lines while presupposing unconsciously
that such lines exist were still building their reasoning on the locally obvious – and
so was even Euclid in many cases, for example when he took it for granted that two
lines cannot enclose a space (not to speak of his many topological intuitions).

We may also have a look at Euclid’s postulate 4 [trans. Heath 1926: 155], “That
all right angles are equal to each other”. For us, this is locally obvious – “of course,
they are all 90°”. Apparently, it was just as obvious until the mid-fifth century BCE –
and for a similar reason. Then, according to Proclos (Commentary 283, trans. [Morrow
1970: 220f]),18 Oinopides introduced the construction of the perpendicular by means
of ruler and compass, calling the perpendicular a line drawn “gnomonwise” – implying
that until then it had been made by means of a set square (γνωμων), in which case the
equality seems obvious. However, with the new construction arose the need for a
definition of what a right angle is. In Euclid we find this (Elements I, def. 10, [trans. Heath
1926: I, 153]):

When a straight line set up on a straight line makes the adjacent angles equal to one
another, each of the equal angles is right, and the straight line standing on the other
is called a perpendicular to that on which it stands.

This seems to solve the problem, now we know what a right angle is, much better than
the Old Babylonian surveyor-scribes (and probably the surveyor-scribes of the mid-first
millennium), whose field plans show them to have distinguished between “wrong”
and “right” angles, the former – those which are evidently skew – being irrelevant for

18 Cf. also [von Fritz 1937: 2265f].
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area calculation and the latter – right for practical purposes – essential; see for example
[Høyrup 2002: 228].

But it creates a new problem: Now it is no longer obvious that all right angles are
equal, and that is needed in many proofs.

The preceding three paragraphs lapsed into old-style historiography of mathematics,
which tended to forget that mathematical knowledge and practice do not exist per se
but have social carriers – or, if mentioning persons, would take it for granted that these,
as “mathematicians”, would think “like mathematicians”. The reader who had no
objections will recognize how easily this lapse occurs.

Yet a problem is only one if it is a problem for somebody, and it only becomes a
problem in the encounter with that somebody. Here, we may return to the boys from
Erastae. It they could discuss eagerly about Oinopides and his work on the obliquity
of the ecliptic, they might also challenge their teacher, and ask (this was shortly after
Oinopides introduced his construction) what this right angle is in itself which he
constructs (apart from being supposedly useful in astronomy, as Proclos says Oinopides
had thought). The answer would be something like the Euclidean definition. And then,
at a later moment, similar eager students might discover that with this definition, the
equality of right angles is no longer obvious. This is critique, born as an endeavour from
the character of the environment.

We may further remember that the environment of philosophers (to which we may
count the theory-oriented mathematicians teaching elite youth just as did other
philosophers) did not strive for truth in peaceful collaboration but in competition and
strife. Here, critique would coincide with criticism or challenge of colleague-competitors.

Axiomatization

Critique had been a driving force in the axiomatization of geometry – axiomatization
as a goal had not been imaginable when Oinopides and Hippocrates made their work.
Not only was axiomatization the outcome of a process yet in their future; so was the
discovery of the idea of axiomatization as a possibility. Plato’s reproach to geometricians
in the Republic (533C–D, trans. [Shorey 1930: II, 203], that they are

dreaming about being, but the clear waking vision of it is impossible for them as long
as they leave the assumptions which they employ undisturbed and cannot give any
account of them. For where the starting-point is something that the reasoner does not
know, and the conclusion and all that intervenes is a tissue of things not really known,
what possibility is there that assent in such cases can ever be converted into true
knowledge or science?

– this reproach may look as if Plato had observed the strivings of contemporary
mathematicians to achieve axiomatic order (even though the “assumptions”/υποθεσις
he speaks about may also be local, as in Hippocrates’s text). Whether an axiomatic
structure or just locally coherent argument is meant, Plato does not accept such
geometry as more than a mere mental exercise preparing the best souls for the study
of dialectics,

the only process of inquiry that advances in this manner, doing away with hypotheses,
up to the first principle itself in order to find confirmation there,

which first principle is insight in “the good”, no formulated axiom; and dialectic as
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imagined by Plato is in consequence no axiomatic system.19

Aristotle understood that this was a pipe dream, and that explicit axiomatization
is the maximum that can be achieved. This is indeed pointed out in the very first
sentences of his Analytica posteriora (71a1–9, trans. Mure in [Aristotle, Works, I]):

All instruction given or received by way of argument proceeds from pre-existent
knowledge. This becomes evident upon a survey of all the species of such instruction.
The mathematical sciences and all other speculative disciplines are acquired in this
way, and so are the two forms of dialectical reasoning, syllogistic and inductive; for
each of these latter makes use of old knowledge to impart new, the syllogism assuming
an audience that accepts its premisses, induction exhibiting the universal as implicit
in the clearly known particular.

As we notice, this is in itself an instance of inductive dialectic as here explained.
In spite of the ambiguity of Plato’s polemics (which we need not reproach him,

his discourse has other concerns), these words together with the rest of the Analytica
posteriora leave no doubt that in the mid-fourth century BCE not only Aristotle but also
the geometers were familiar with the axiomatic ideal. From now on, it provided a
possible format when new fields were taken up and did not need to be the unplanned
outcome of a process driven by other forces. As we know, this format was to be used
for example by Archimedes.

Critique, as argued above, had been a motive force in the process ending up in
axiomatization before this process could be driven by a recognized aim. But critique
was more than that. A look at Elements II.6 [trans. Heath 1926: I, 385] will illustrate
it:

If a straight line be bisected and a straight line be added to it in a straight line, the
rectangle contained by the whole with the added straight line and the added straight
line together with the square on the half is equal to the square on the straight line made
up of the half and the added straight line.

Whoever encounters these lines for the
first time is likely to ask why this
seemingly abstruse theorem is interesting.
However, if we look at the diagram that
accompanies the proof we recognize a
familiar situation (I follow Heath, but
emphasize some lines and weaken
another one for clarity of the argument).
Here, the bisected line is represented by
AB and the added line by BD. DM,
perpendicular to AD, equals BD. AB is
thus the excess of length over width in
the rectangle ADMK. If we identify AD with the igibûm and DM with the igûm, we
are back at the Old Babylonian problem discussed above, and AB must be 7.

19 One can argue from certain Platonic texts – but this would lead us astray – that this insight
in “the good” is achieved via mystical experience. As a hint, observe the force of the images
of light.
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There are differences, however. Firstly, Euclid does not solve a problem: if we
impress algebraic categories on his text, then he presents us with an identity. This
identity can of course be used to solve problems by taking some of the magnitudes
involved to be known and others unknown (for example, taking AB to be 7 and the
area ADMK to be 60 will allow us to find AD and BD).

Secondly, Euclid does not move segments or areas around. At first he constructs
the square CDFE on CD, which ensures that the angle ADM is really a right angle. He
then draws the diagonal DE, which has no place in the Old Babylonian procedure. He
then draws the line BG parallel to CE or DF; through the intersection H of BG and DE
he draws KM parallel to AB or EF, and through A the line AK parallel to CL or DM.
That allows Euclid to show that rectangle ACLK is equal to the rectangle HMFG, and
thus that the rectangle ADMK equals the gnomon CDFGHL, whence finally the equality
claimed in the enunciation. Nothing is cut, moved around and pasted, all is proved
to the best standards of theoretical geometry as these had been shaped in the late fifth
and the fourth centuries BCE. The proposition thus functions as a critique of the cut-and-
paste procedure by which the problem was traditionally solved, showing why and under
which precisely stated conditions it works – thus saving it instead of rejecting it as Plato
did when he reproached geometers their “talk of squaring and applying and adding
and the like” (Republic 527B, trans. [Shorey 1930: II, 171]).

That it was also meant as critique and saving appears to follow from analysis of
the whole sequence Elements II.1–10. A discussion in depth would lead too far, but see
[Høyrup 2002: 400–402]. A blunt summary goes like this:
– All 10 propositions correspond in the way just sketched for II.6 to riddles or basic

cut-and-paste-tricks belonging at least since ca 1800 BCE to an environment of
surveyors – riddles which once inspired the Old Babylonian scribe school, but have
also left their traces in a variety of written mathematical cultures until the Late
Middle Ages, including Greek pseudo-Heronic practical geometry (and were
therefore certainly known to Greek theoretical geometers);

– propositions 4–7 are used later in the Elements, mainly in Book X, the others not;20

like many of the definitions of Book I that are never used afterwards, they represent
something familiar that has to be saved for its own sake;

– propositions 2 and 3 are special cases of proposition 1; propositions 4 and 7 are
different formulations of what is practically the same matter; the same can be said
about propositions 5 and 6 and about propositions 9 and 10. None the less, all are
proved independently, as if not only the results but also the traditional methods
had to be saved through critique.

So, between Aristotle’s and Euclid’s times, deductivity completed as axiomatization
established itself as the norm for how mathematics should be made – obviously only
within the tiny group which we, like Netz, would normally accept as “mathematicians”.
Most of those who went through the normal syllabus of Liberal Arts would not care
about anything beyond rhetoric, as pointed out above – and within that minority which
had greater ambitions, most would stop at knowing a few concepts and enunciations
and not care for demonstrating. That is clear from the relative popularity of
Nicomachos’s writings, from handbooks like those of Martianus Capella and
Cassiodorus, and from Theon of Smyrna’s explanation of the mathematics needed for

20 Cf. [Mueller 1981: 301].
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the study of Plato. Among those who calculated or constructed for administrative or
productive purposes, the norm never took root, at most we find arguments from the
locally obvious – to see this, we may look at Vitruvius and the pseudo-Heronic writings.

In Euclid’s time already, the effects of the “liberal” curiosity of the fifth century
BCE had subsided and been replaced by institutionalized norms. For that reason, the
importance of critique as a partner and root of axiomatization seems also to have
subsided (after all, the critique in Elements II is almost certainly borrowed from late
fifth or early fourth-century predecessors, as the proportion theory in Elements V is
supposed to be borrowed from Eudoxos). Heron’s Metrica may to some extent be
considered a rewriting of practical geometry vom höheren Standpunkt aus – but only to
a quite limited extent in a way that allows us to speak of critique.

And then?

Not too long after Euclid’s third century BCE, Greek mathematics entered the age
of commentaries or, in Reviel Netz’s terms [1998], of “deuteronomic texts” (a somewhat
broader category, encompassing also epitomes etc.). In Simplicios’s presentation of the
Hippocratic fragment (early sixth century CE) he states [trans. Thomas 1939: 237] that

I shall set out what Eudemus wrote word for word, adding only for the sake of clearness
a few things taken from Euclid’s Elements on account of the summary style of Eudemus,
who set out his proofs in abridged form in conformity with the ancient practice.

That illustrates a partial change of norms. Commentaries fill out and explain; at times
they also discuss. Even though Simplicios is engaged in a commentary to Aristotle,
he follows the commentator habits and norms even here, but mainly by filling out and,
implicitly, explaining. “Adding [...] a few things from Euclid’s Elements” means that
Simplicios inserts the Hippocratic text in the axiomatized framework.

In its own way, the addition of commentaries and the standardized structuring
of mathematical texts [Netz 1998: 268–270] is a new level of critique, arguing now why
and in which sense the classical text that is commented upon is right and conformable
to norms. But since this classical text has somewhat sacred status, this critique is
uncritical – quite different from the critical critique of fellow-philosophers or teachers
in the fifth to fourth centuries BCE.21

It is hardly necessary to point out that norms only govern practice to some extent;
many causes – conflicting norms, incompetence, personal conflicting interest, and so
forth – make actors deviate from them. Eudemos’s lack of reference to the propositions
which Simplicios feels he needs to insert may be due to fidelity to his source – he is
writing a history of geometry and may have written more like a historian than as a
mathematician. But it may also reflect that axiomatization in his time was still a
developing practice and not yet fully effective as a norm. In Simplicios’s age of
deuteronomic texts, in contrast, the norm had become so explicit that we may see it
as an ideology, an inextricable amalgam of the descriptive and the prescriptive, of “is”

21 Genuinely critical stances had not disappeared – but they had become external, attacking the
whole undertaking, not trying to save or to find the “possibility and limits” of mathematical
knowledge. The best example is probably Sextus Empiricus [ed. trans. Bury 1933: IV, 244–321].
This is harsh but informative and informed criticism – but not critique.
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and “ought to”. That ideology is still with us, admittedly more effective when governing
the writing of textbooks (deuteronomic, indeed) than in mathematical research.

This ideology not only amalgamates the descriptive and the prescriptive levels.
It also corresponds to the interpretation of ideology as “false consciousness”. Most
obviously, it disregards informatics, quantitatively the major part of 21st-century
mathematics. Already in 1970, a textbook from that field declared (quoted from the
reprint [Acton 1990: xvii]) that

It is a commonplace that numerical processes that are efficient usually cannot be proven
to converge, while those amenable to proof are inefficient [...]. The best demonstration
of convergence is convergence itself.

This was written at a moment when the students using the book were supposed to
work in FORTRAN, PL/1 or ALGOL – when programming was thus still transparent
compared to what we find today. Every time your computer screen freezes, remember
that the reason is probably an unpredicted conflict somewhere on the path from machine
code through compiler to operating system or application – thus proof that the software
has not been derived axiomatically from first principles. The role of beta-versions is
to locate the conflicts (“bugs”) that are most likely to occur – but this “critique through
practice” never succeeds in doing more. The demonstrations of algorithm design remain
local.

Even if we try to save the honour of mathematics by excluding informatics, the
ideology misrepresents reality. In [1545], Cardano’s Ars magna was printed. Then,
gradually, the power of the tools offered by Descartes’ Géométrie [1637] (also in analysis
of the infinite and the infinitely small) was revealed. First, this transformed
fundamentally what algebra could be; soon it also changed the global character of
mathematics. Until the late 19th century, this whole process was founded (when not
on controlled guess, as often happened) on arguments and demonstrations of no more
than “local” validity, that is, premises that it seemed reasonable to accept or at least
to try, but which were not built on clearly formulated first principles. Critique gradually
improved the situation (even this was an epoch of competing scholars), but only the
late 19th century was once again able to reshape mathematics on an axiomatic footing.22

In its merger of description and prescription, the ideology of thorough
demonstration and demonstrability thus becomes false consciousness. The prescriptive
aspect not only imposes a particular interpretation of the facts on the description – that
probably cannot be avoided. It distorts it in a way that is easily looked through if only
one wants to.

Recently in Italy, a nun when told by physicians that her supposed stomach ache
were birth pangs, exclaimed “it is not possible, I am a nun!” Her false consciousness
cannot have survived the next few hours. In general, false consciousness survives on
Darwinian conditions: in some way it has to be useful. The one we have looked at here
provides mathematics (that is, the mathematical establishment) with a comforting self-

22 These sweeping statement go beyond what can be documented in a few footnotes. But see
[Stedall 2010] for the development of algebra from Cardano to the early 19th century. [Høyrup
2015: 29–33] covers an often overlooked aspect of the shaping and gradual reception of a Cartesian
tool (the algebraic parenthesis). The painful advance in the foundation of infinitesimal calculus
has been amply discussed; see, for example, [Boyer 1949], [Bottazzini 1986] and [Spalt 2015] –
not to speak of the innumerable publications dealing with particular aspects or figures.
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image which can be projected (while the inconvenient baby, informatics, is given into
adoption). It also serves to ostracize mathematical cultures that deviate from what the
ideology prescribes and what we therefore claim describes our mathematics; thereby
it serves a more direct and more indisputably political “projection of power”.
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