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Abstract This study develops non-pulsatile and pulsatile models for pre-
diction of blood flow and pressure during head-up tilt (HUT). This test is
used to diagnose potential pathologies within the autonomic control system,
which acts to keep the cardiovascular system at homeostasis. We show that
mathematical modeling can be used to predict changes in cardiac contrac-
tility, vascular resistance, and arterial compliance, quantities that cannot be
measured, but are useful to assess the system’s state. These quantities are
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predicted as time-varying parameters modeled using piecewise linear splines.
Having models with various levels of complexity formulated with a common
set of parameters, allows us to combine long-term non-pulsatile simulations
with pulsatile simulations on a shorter time-scale. We illustrate results for a
representative subject tilted head-up from supine position to a 60 degree angle.
The tilt is maintained for 5 minutes before the subject is tilted back down. Re-
sults show that if volume data is available for all vascular compartments three
parameters can be identified, cardiovascular resistance, vascular compliance,
and ventricular contractility, whereas if model predictions are made against
arterial pressure and cardiac output data alone, only two parameters can be
estimated either resistance and contractility or resistance and compliance.

Keywords Cardiovascular dynamics modeling · head-up tilt · pulsatile vs.
non-pulsatile modeling · parameter estimation · orthostatic intolerance

Mathematics Subject Classification (2000) 92C30 · 92C35 · 92C42 ·
92C50 · 76Z05

1 Introduction

Emergency rooms and syncope clinics see a large number of patients who ex-
perience chronic episodes of dizziness and syncope. These symptoms may be
associated with orthostatic intolerance: the inability to maintain blood pres-
sure and flow in response to active standing or head-up tilt (HUT). Ortho-
static intolerance is triggered by a number of factors, the most important being
dysautonomia, a disorder associated with the autonomic nervous system [12].
This phenomenon is difficult to diagnose not only due to the ambiguity of the
disorder, but also due to the inability to obtain clinical data for quantities
pertinent to cardiovascular regulation. The HUT protocol typically includes
continuous measurements of heart rate and blood pressure, and sometimes
cardiac output. The protocol starts by measuring these quantities while the
subject is resting in supine position. After steady oscillating values for heart
rate and blood pressure are recorded, the subject is tilted head up to a 60
degree angle. After a period of 5-30 minutes, the subject is tilted back to
supine position. Upon HUT, blood is pooled in the lower extremities causing
a drop in blood pressure in the upper body, while blood pressure in the lower
body is increased. When the subject is returned to supine position, the blood
pressure returns to supine levels. In response to HUT, the autonomic nervous
system elicits an increase in heart rate, cardiac contractility, and peripheral re-
sistance, redistributing blood volume and thereby re-establishing homeostasis.
It is known that the cardiovascular control system modulates the aforemen-
tioned parameters in response to an orthostatic stimulus. This modulation
can be attenuated or accentuated in disease, yet these quantities cannot be
measured. Therefore, diagnosis is made from system level measurements such
as heart rate, blood pressure, and cardiac output.

Several groups have successfully developed mathematical models of the car-
diovascular system and its control (e.g. [8,9,14,17,22,21,27,25]). Only some
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of these compare predictions to data and only a few have attempted to predict
HUT dynamics [13,14,22]. These models vary in complexity; there is a clear
trade-off between simplicity and the number of model parameters. For exam-
ple, models by Olufsen [19] and Lim [13] include 100 parameters, while the
model by Pope et al. [21] uses 15 parameters to predict cerebral blood flow
and arterial blood pressure. Other contributions include the model by TenVo-
order [27] predicting short-term blood pressure and heart rate variability for a
healthy young male, and models by Ursino predicting heart rate regulation [28,
29,25]. The latter compared the model output with experimental data but did
not address parameter estimation. Moreover, to our knowledge no previous
studies have developed a set of models (pulsatile and non-pulsatile) that can
be simulated using a single parameter set. The same applies to non-pulsatile
models. Several non-pulsatile models exist [5,30,1], yet most incorporate an ad-
ditional equation (derived from Frank-Starling’s law [26,6]) that relates stroke
volume to arterial and venous pressure and volume.

This study develops a lumped parameter model that predicts controlled
quantities from patient-specific measurements of heart rate and blood pressure.
To do so, we develop pulsatile and non-pulsatile models predicting dynamics
over short (1-3 minutes) and long (> 5 minutes) time scales. The novelty
is the development of a non-pulsatile model obtained by averaging the pul-
satile model over each cardiac cycle. This methodology allows us to identify
a parameter set that can represent the same physiological quantities across
two models. The non-pulsatile and pulsatile models are compared, and results
show that the two models elicit similar dynamics. The non-pulsatile model has
multiple advantages. It is less complex making it easier to run simulations over
long time intervals (15-45 minutes), e.g. to study the system collapse during
fainting. Secondly, the non-pulsatile model can easily be coupled with models
representing other parts of the physiological response, e.g. the respiratory sys-
tem, with a time-scale of hours, the renal system, which acts on a time-scale
of hours-days, or the hormonal system, which has a time-scale of hours [3,6].
Finally, having both models allows us to speed up computations in studies for
which it is not necessary to account for discrete events associated with opening
and closing of the heart valves, and to identify short segments over which we
can predict the more complex pulsatile dynamics.

2 Methods

This study develops simple patient-specific pulsatile and non-pulsatile models
that use heart rate as an input to estimate arterial blood pressure during
HUT. We first describe the data used for model predictions, followed by a
description of the model development. Next, we discuss gravitational effects
and autonomic regulation associated with the HUT procedure.
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2.1 Data

Pulsatile measurements include ECG signals recorded using standard precor-
dial leads and blood pressure recorded using photoplethysmography (Finapres
Medical Systems B.V.). Data was collected at the Coordinating Research Cen-
tre at Frederiksberg and Bispebjerg Hospital, Frederiksberg, Denmark from a
healthy young male volunteer with no known heart or vascular diseases. The
subject was left to rest in supine position for 10 minutes. Subsequently, he was
tilted to an angle of 60 degrees at a speed of 15 degrees per second measured
by way of an electronic marker. The subject remained tilted for five minutes,
and was then tilted back to supine position at the same tilt speed.

2.2 Lumped parameter cardiovascular models

Similar to our previous study [31], we use a lumped parameter model estimat-
ing volume (V ), flow (q), and pressure (p), in five compartments within the
systemic circulation, see Figure 2 and Table 1. The model includes four com-
partments representing arteries and veins in the upper and lower body, as well
as a compartment representing the heart. As in our previous studies, we omit
the pulmonary circuit from our model since we do not have any pulmonary
circulation data and our work focuses on aspects of the systemic circulation.
However, with available data there is no reason why that the pulmonary circuit
could not be included in future work.

For each compartment, a pressure-volume relation can be defined as

Vi,s = Vi − Vi,us = Ci(pi − pi,us), (1)

where Vi,s denotes the stressed volume in compartment i, Vi (ml) is the total
volume, Vi,us (ml) the unstressed volume, Ci (ml/mmHg) the compartment
compliance, pi (mmHg) the instantaneous blood pressure, and pi,us (mmHg)
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Fig. 1: (a) Pulsatile carotid blood pressure (light gray) and heart rate (dark gray) over the
entire experiment (head-up tilt (HUT) followed by head-down tilt). (b) Dynamics during
supine position (before HUT), and (c) Blood pressure and heart rate dynamics during the
initial HUT phase.
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(assumed constant) is the associated unstressed pressure. For each compart-
ment, the change in volume is given by

dVi
dt

= qin − qout, (2)

where qin and qout denote the flow in and out of the compartment. Using
a linear relationship analogous to Ohm’s law, the volumetric flow q (ml/s)
between compartments can be computed as

q =
pin − pout

R
, (3)

(a) (b)

Fig. 2: (a) Compartment model. For each compartment we denote blood pressure by p
(mmHg), volume by V (ml), and compliance by C (ml/mmHg). The compartments represent
the upper body arteries (subscript au), lower body arteries (subscript al), upper body veins
(subscript vu), lower body veins (subscript vl), and the left heart (subscript lh). Resistances
R (mmHg s/ml) are placed between all compartments: Ral denotes the resistance between
arteries in the upper and lower body, Raup and Ralp denote resistance between arteries and
veins in the upper and lower body, respectively, while Rmv and Rav denote the resistance to
flow entering and leaving the heart. For the pulsatile model, the two heart valves, the mitral
valve and the aortic valve, are modeled as diodes. (b) Differences between the pulsatile (top
panel) and non-pulsatile (center panel) models in the left heart compartment, and a sketch
of a generic model component (bottom panel).

Table 1: Abbreviations (subscripts) used in the compartmental model.

Abbreviation Name
au upper body arteries
al lower body arteries
aup upper body ”peripheral” arteries (vascular bed)
alp lower body ”peripheral” arteries (vascular bed)
vu upper body veins
vl lower body veins
lh the left heart (ventricle and atrium)
av aortic valve
mv mitral valve
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where pin and pout are the pressures on either side of the resistor R (mmHg
s/ml).

Similar to [31], the left ventricular pressure is given by

plh = Elh(t)Vlh,s, Vlh,s = Vlh − Vlh,us, (4)

where Elh (mmHg/ml) is the left heart elastance (the reciprocal of its com-
pliance) and Vlh,s is the stressed left heart volume, Vlh the total volume and
Vlh,us is the unstressed volume. Pumping is achieved by introducing a variable
elastance function [4] of the form

Elh(t̃) =


EM−Em

2

(
1− cos

(
πt̃
TS

))
+ Em, t̃ ≤ TS

EM−Em

2

(
cos

(
π(t̃−TS)
TR−TS

)
+ 1

)
+ Em, TS ≤ t̃ ≤ TR

Em, TR ≤ t̃ ≤ T,

(5)

where t̃ is the time within a cardiac cycle T = 1/H, for the heart rate H.
Parameters Em and EM denote the minimum and maximum elastance, re-
spectively. TS = αST and TR = αRT denote the time at which maximum
elastance and minimum elastance occur, respectively. For each cardiac cycle,
elastance is increased for 0 < t̃ < TS and decreased for TS < t̃ < TR, while for
TR < t̃ < T elastance is kept constant at its minimum value. Values for T and
αS are obtained from data, while αR is a model parameter. The time-varying
elastance function is illustrated in Figure 3(d). Finally, heart valves are mod-
eled as the electrical current in a diode, i.e. the flow through the valve is given
by (3) when the valve is open and is zero otherwise. Figure 3(c) shows flow in
and out of the valves over a cardiac cycle.

2.2.1 Non-pulsatile Model

The non-pulsatile model is derived by integrating the pulsatile model during
filling and ejection. The derivation presented here is specific to the elastance
function (5), but can be generalized to any function that can be integrated
during filling and ejection. Integration during the two phases allows us to elim-
inate the differential equation predicting volume in the heart, replacing it with
an empirical equation relating venous and arterial pressures and volume. The
derivation is carried out in two steps first determining relations characterizing
filling followed by integration during ejection.

They are all build on the assumption that the change in left ventricular
volume (2), is given by

dVlh
dt

= qmv − qav,

where during filling (pvu > plh) the mitral valve is open, i.e.,

dVlh
dt

= qmv =
pvu − plh
Rmv

, (6)
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whereas during ejection (plh > pau), the aortic valve is open, i.e.,

dVlh
dt

= −qav = −plh − pau
Rav

. (7)

To obtain the non-pulsatile model, we integrate over one period computing
the average flow through the heart Q, which during filling is given by

Q = qmv =
1

T

∫ T

TR

dVlh
dt

dt.

The latter holds since the mitral valve is closed for 0 < t < TR (as shown in
Figure 3). Integration gives

Q =
1

T

[
VED − VES

]
, (8)

where VED and VES denote the end-diastolic and end-systolic ventricular vol-
umes, respectively.

Similarly, during ejection the average flow through the heart, which by
conservation of flow, also amounts to Q, can be computed from

Q = qav = − 1

T

∫ TS

0

dVlh
dt

dt.

Note that during ejection, the volume in the left ventricle is decreasing, in-
dicated by a minus in front of the integral. Again, this holds since the aortic
valve is closed for TS < t < T, i.e.

Q =
1

T

[
VED − VES

]
.

Keeping in mind that heart rate H = 1/T , the stroke volume Vstr can be
computed from

Vstr = VED − VES . (9)

Finally, using (8) cardiac output Q can be computed as

Q = HVstr. (10)

To approximate values for VED and VES , we integrate (6) and (7) during
filling and ejection, respectively.
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Filling: Inserting (4) in (6) gives

V̇lh +
Elh
Rmv

Vlh =
pvu + ElhVlh,us

Rmv
.

Assuming pvu = pvu is constant and Elh(t) = Em, integration gives

Vlh(t) ≈ pvu
Em

+ Vlh,us + Ce−Emt/Rmv . (11)

Assuming Vlh(0) = VES (start of filling), evaluation of (11) at end-diastolic
volume V = VED gives

VED ≈ VESe−EmTD/Rmv +
(pvu
Em

+ Vlh,us

)(
1− e−EmTD/Rmv

)
, (12)

where TD = T − TR is the time to fill, as shown in Figure 3.

Ejection: Inserting (4) in (7) gives

V̇lh +
Elh
Rav

Vlh =
ElhVlh,us + pau

Rav
.

Assuming pau = pau is constant and Elh(t) = EM , integrating gives

Vlh(t) ≈ pau
EM

+ Vlh,us + Ce−EM t/Rav . (13)

Assuming Vlh(0) = VED (start of ejection), evaluation of (13) at end-systolic
volume V = VES gives

VES ≈ e−EMTR/RavVED +
( pau
EM

+ Vlh,us

)(
1− e−EMTR/Rav

)
, (14)

where TR is the time at end-systole.

Integrated model: Defining

k1 = e−EMTR/Rav and k2 = e−EmTD/Rmv ,

allows us to rewrite (12) and (14) as

VED = k2VES +
(pvu
Em

+ Vlh,us

)(
1− k2

)
(15)

VES = k1VED +
( pau
EM

+ Vlh,us

)(
1− k1

)
. (16)

Solving (15) and (16) gives

VED =
( pau
EM

+ Vlh,us

) (1− k1)k2
(1− k1k2)

+
(pvu
Em

+ Vlh,us

) (1− k2)

(1− k1k2)
.

VES =
(pvu
Em

+ Vlh,us

) (1− k2)k1
(1− k1k2)

+
( pau
EM

+ Vlh,us

) (1− k1)

(1− k1k2)
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Fig. 3: Systolic and diastolic phases of the cardiac cycle of length T (scaled to 1 sec). (a)
Left ventricular (black) and aortic (blue dashed) pressures. (b) Left ventricular volume. The
horizontal dashed lines represent end-diastolic (VED) and end-systolic (VES) volumes. (c)
Flow through the mitral (qmv) and aortic (qav) valves, note these are zero when valves are
closed. (d) Time-varying elastance during a cardiac cycle. The maximum elastance is found
at t̃ = TS and the minimal elastance at t̃ = TR.

for k1k2 6= 1. Finally, using (17) stroke volume becomes

Vstr =
(1− k1)(1− k2)

k1k2 − 1

( pau
EM
− pvu
Em

)
.

Note, that for the exponentials we have k1 ≈ k2 ≈ 0 (since the resistances Rav
and Rmv are small). Thus, assuming that (k1, k2) → (0, 0) the stroke volume
can be approximated by

Vstroke ≈ −
( pau
EM
− pvu
Em

)
. (17)

Pulsatile and non-pulsatile models: Using these relations, the pulsatile
and non-pulsatile differential equations can be summarized as

Pulsatile

dVau
dt

= qav − qaup − qal
dVal
dt

= qal − qalp
dVvl
dt

= qalp − qvl
dVvu
dt

= qvl + qaup − qmv
dVlh
dt

= qmv − qav

Non-pulsatile

dVau
dt

= Q− qaup − qal (18)

dVal
dt

= qal − qalp (19)

dVvl
dt

= qalp − qvl (20)

dVvu
dt

= qvl + qaup −Q (21)
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where

qaup =
pau − pvu
Raup

qal =
pau − pal
Ral

qalp =
pal − pvl
Ralp

qvl =
pvl − pvu
Rvl

qav =
plh − pau
Rav

qmv =
pvu − plh
Rmv

Q = H Vstr = H

(
pvu
Em
− pau
EM

)
,

where piCi = Vi − Vi,us by equation (1) with i referring to the compartments
in question i = {au, vu, al, vl, aup, alp, lh} listed in Table 1 and illustrated in
Figure 2. Note we use the same notation for the pulsatile and non-pulsatile
models, yet for the non-pulsatile models flows q, volumes V and pressures p
refer to quantities averaged over the cardiac cycle, fulfilling assumptions (that
the aortic and venous pressure is constant during filling and ejection, respec-
tively) for the derivation of the non-pulsatile model.

The main differences between the two models are highlighted in blue (pul-
satile) and red (non-pulsatile). For the pulsatile model, the left ventricular
pressure (plh) is predicted from (4), while the non-pulsatile model does not
have a heart compartment. These equations were solved in Matlab using
ODE15s.

2.2.2 Initial conditions

Both pulsatile and non pulsatile models conserve volume, hence the systems
of equations can be reduced. For the pulsatile model Vtot = Vau + Val + Vvl +
Vvu+Vlh, whereas for the non-pulsatile model the total volume is Vtot = Vau+
Val+Vvl+Vvu. For the non-pulsatile model, we let Val = Vtot−Vau−Vvl−Vvu
allowing us to rewrite the system of equations as

dx

dt
= Ax + b, (22)

where x = {Vau, Vvl, Vvu}, A is a constant coefficient matrix, and b (a vector
function of the total volume Vtot). At nominal parameter values (assuming
a constant heart rate), the eigenvalues of A are real and negative, i.e. the
system reaches a steady state. We set initial conditions for the model to this
equilibrium point. Note, in general, heart rate is an input that varies with
time.

2.2.3 Nominal parameter values

Literature values and subject specific information were integrated to identify
nominal values for all model parameters (resistances, compliances, heart, and
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HUT parameters). Similar to calculations by Hoppensteadt and Peskin [10],
nominal parameter values were obtained by backward calculation of ( 1) and
(3) using mean approximations for all pressures, flows, and volumes at rest
(i.e. before HUT).

Pressure. The mean pressure in the upper arteries, p̄au, was estimated from
the averaged pressure data. The pressure drop along the large arteries is small.
As a result, in supine position, the lower body arterial pressure is of the same
magnitude as the upper body pressure [6,3].

To enforce flow in the right direction, we let p̄al = 0.98p̄au. No data are
available for the venous pressures, therefore these were approximated from
literature [6,3]. As suggested by [10], we set the upper body venous pressure
p̄vu = 3.5 and the lower body venous pressure p̄vl = 3.75.

Volume. The total blood volume was estimated from body surface area [24]
as

Vtot =

{
(3.47 · BSA− 1.954) 1000, Female
(3.29 · BSA− 1.229) 1000, Male

(23)

where BSA =
√
hw/3600 denotes the body surface area, h (cm) the height

and w (kg) the weight of the subject studied. We use common physiological
approximations for the distribution of blood volume, assuming that 85% of
the total blood volume is in the systemic circuit (the pulmonary circuit is not
included in the model), with 20% in the arteries and 80% in the veins [6,3].
We further assume that 85% of the blood volume is in the upper body and
15% is in the lower body. Finally, for each compartment, we distribute the
stressed and unstressed blood volume as proposed by [2], given in Table 2.

Table 2: For each compartment, the volume is estimated as fractions of the total volume Vtot,
and the total compartment blood volume is separated between a stressed and an unstressed
volume, i.e., Vtot,i = Vi,s + Vi,us for i ∈ {au, al, vu, vl}. Stressed volumes are calculated
as a fraction of the total systemic volume. Values are computed using volume distributions
reported by [2]. In this study, the upper body compartments contain arteries and veins in
the head, thorax, and abdomen, while the lower body compartments contain arteries and
veins in the legs.

Volume Position Value
Vtot,sys Total systemic circuit 0.85 Vtot
Vtot,a Total systemic arteries 0.20 Vtot,sys
Vtot,v Total systemis veins 0.80 Vtot,sys
Vtot,au Total upper body arteries 0.85 Vtot,a
Vtot,al Total lower body arteries 0.15 Vtot,a
Vtot,vu Total upper body veins 0.85 Vtot,v
Vtot,vl Total lower body veins 0.15 Vtot,v
Vau,s Stressed upper body arteries 0.18 Vtot,au
Val,s Stressed lower body arteries 0.18 Vtot,al
Vvu,s Stressed upper body veins 0.05 Vtot,vu
Vvl,s Stressed lower body veins 0.05 Vtot,vl
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Cardiac output was estimated from the assumption that the entire volume
is circulated in the body within one minute [4]. The average flow between
the upper and lower body is determined under the assumption that in supine
position, 80% of the blood flows between the upper body arteries and veins,
while 20% of the blood flow supports the lower extremities [2].

Parameters. Using these assumptions combined with Ohm’s Law (3) and the
pressure volume equation (1), we are able to estimate resistors and capacitors
(in supine position) as

R =
p̄in − p̄out

q̄
,

C =
V̄ − V̄us

p̄
=
Vs
p̄
,

where p̄, q̄, V̄ denote mean values for the blood pressures, flow, and volumes.

Finally, for the heart model, parameters representing the minimum and
maximum elastance, as well as timing of the pump function, must be estimated.
The minimum left ventricular elastance can be calculated using the pressure-
volume relation (1), where the left ventricular volume equals the end-diastolic
volume (VED), i.e.

p̄vu = Em (VED − Vlh,us).

Similarly, the maximum left ventricular elastance can be predicted by assessing
the same relation at the end-systolic phase. For this case,

p̄au = EM (VES − Vlh,us).

For both parameters, we assume that the unstressed value of the ventricular
volume Vlh,us = 10 ml, which was used in previous studies (e.g. [4]).

The timing of the pump is achieved via parameters TS = αST, TR = αRT
and T , where αS (estimated from data) denotes the fraction of the cardiac
cycle at which the elastance is maximal and αR (a parameter) determines the
fraction of the cardiac cycle at which elastance is minimal. Table 3 specifies
parameter values and units for all model parameters.

2.2.4 Modeling HUT

As the subject is tilted head up (shown in Figure 4), blood is pooled in the
lower extremities leading to an increase in pressure in the lower body, while
pressure in the upper body is decreased. When the subject is tilted back to
supine position, blood is returned to the upper body, decreasing pressure in
the legs and increasing pressure in the upper body. Similar to [19,18], the effect
of gravity is included by adding hydrostatic pressure to qal, and subtracting
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Table 3: Model parameters: The nominal parameter values and equations. Note, LB and UB
refer to lower body and upper body, respectively.

Name Definition Equation Nom Value Opt Value Units
Vtot total blood volume Eqn (23) 5584 – ml
l height – 186 – cm
w weight – 83 – kg
CO cardiac output Vtot/60 93.07 – ml/s
p̄au UB mean arterial bp mean(bp data) 68.08 – mmHg
p̄al LB mean arterial bp 0.98 p̄au 66.72 – mmHg
p̄vu UP mean venous bp – 3.50 – mmHg
p̄vl LB mean venous bp – 3.75 – mmHg
q̄up UB flow 0.8 CO 74.45 – ml/s
q̄low LB flow 0.2 CO 18.61 – ml/s
Rav open aortic valve – 0.001 – mmHg s/ml
Rmv open mitral valve – 0.001 – mmHg s/ml

Raup UB peripheral resist
p̄au − p̄vu

q̄up
0.8673 0.9290 mmHg s/ml

Ralp LB peripheral resist
p̄al − p̄vl
q̄low

3.3828 – mmHg s/ml

Ral UB arterial resist
p̄au − p̄al
q̄low

0.0731 – mmHg s/ml

Rvl LB venous resist
p̄vl − p̄vu
q̄low

0.0134 – mmHg s/ml

Cau UB arterial comp V̄au,s/p̄au 2.1334 2.1366 ml/mmHg
Cal LB arterial comp V̄al,s/p̄al 0.3765 – ml/mmHg
Cvu UB venous comp V̄vu,s/p̄vu 46.1081 – ml/mmHg
Cvl LB venous comp V̄vl,s/p̄vl 7.5943 – ml/mmHg
VED end-diastolic vol – 142 – ml
VES end-systolic vol – 47 – ml
Vlh,us unst ventricular vol – 10 – ml

Em min elastance
p̄vu

VED − Vlh,us
0.0265 0.0265 mmHg/ml

EM max elastance
p̄au

VES − Vlh,us
1.8399 – mmHg/ml

T cardiac cycle length data 0.98 – s

ND (non dimensional), ∗ ratio of T

it from qvl in Ohm’s law (3), determining the flow q as the ratio of pressure p
to resistance R as

q =
ρghtilt sin (φ(t)) + pin − pout

R
, (24)

φ(t) =
π

180


0 t < tus
vt(t− tus) tus ≤ t < tus + tue
60 tus + tue ≤ t < tds
−vt(t− tds) tds ≤ t ≤ tds + tde
0 t > tds + tde,

where ρ (g/ml) is the blood density, g (cm/s2) is the gravitational acceleration
constant, htilt (cm) is the absolute height between the upper body and lower
body compartments, φ(t) is the tilt angle (in radians), vt = 15 degrees/s is
the tilt speed, while tus, tue, tds, and tde denote the times at which HUT is
started and ended for tilting up and back down, respectively. The combined
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term ρghtilt sin (φ(t)) denotes the hydrostatic pressure between the upper and
lower body compartments.

2.2.5 Modeling effects of cardiovascular regulation

Upon HUT, the baroreceptor nerve firing is modulated by the aortic and
carotid sinus baroreceptors sensing changes in the stretch of the arterial wall.
Typically, HUT leads to a decrease in blood pressure mediating an increase
in sympathetic outflow along with parasympathetic withdrawal. Sympathetic
stimulation elicits changes in peripheral vascular resistance (Raup and Ralp),
vascular tone (represented by compliance C), and cardiac contractility (de-
termined from the elastance parameters EM and Em), while parasympathetic
withdrawal primarily affects heart rate (H) and cardiac contractility (again
EM and Em), [3]. Tilting back to supine position elicits the opposite response.
Heart rate is used as an input, consequently, parasympathetic regulation is
implicitly accounted for in the model. Regulation of cardiac contractility was
modeled by allowing the minimum elastance Em of the left heart to vary with
time, while keeping the maximal elastance constant. All capacitors appear in
series. As a result only one is identifiable. Given that data is available for the
upper body arterial pressure, we chose to let Cau vary with time. Within the
pulsatile model this allows us to accurately fit pulse pressure. Finally, vascular
resistance in both the upper and lower body (Raup and Ralp, respectively)
are also varied with time. The resistances associated with compartments rep-
resenting the upper and lower body arteries appear in parallel, hence both
resistances are not identifiable. Thus, Raup is controlled directly, while we let
Ralp = kRaup, where k is the ratio of the optimized supine values of Raup and
Ralp.

Fig. 4: The HUT test: The subject depicted is tilted to an angle of 60 degrees at a constant
speed of 15 degrees per second.
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Similar to [18] we predict Raup (and indirectly Ralp), Cau and Em as time-
varying quantities expressed using piecewise linear functions defined by

X(t) =

N∑
i=1

γiKi(t), (25)

Ki(t) =


t− ti−1

ti − ti−1
, ti−1 ≤ t ≤ ti

ti+1 − t
ti+1 − ti

ti ≤ t ≤ ti+1

0, otherwise

where the unknown coefficients γi, i = 1, . . . , N are the new parameters to
be estimated to predict the control. N is the number of nodes along the time
span analyzed. As shown in Figure 5 gridpoints are equidistant during rest
(in supine position) and after HUT (∆t = 5 s), but more dense during and
immediately following the tilt up (and back down), where ∆t = 2 s. The actual
tilt-time ( 14 s) is marked by a red marker on the Figure.

2.3 Model Summary

The nonpulsatile model, summarized in equations (18-21) can be written on
the form

dx

dt
= f(x, t; θ), (26)

where x = Vau, Val, Vvl, Vvu contains 11 parameters

θ = {Raup, Ral, Rvl, Ralp, Cau, Cal, Cvl, Cvu, Em, EM , TR}. (27)

This model is first solved during rest (before head-up tilt) with constant pa-
rameters and constant heart rate, i.e. the model will take the form (22) used

0 20 40 60 80 100 120 140 160 180 200

time (s)

0.6

0.8

1

1.2

1.4

t i

t i

marker

∆t

Fig. 5: Position of the nodes before, during, and after head-up tilt. Nodes are distributed
uniformly during sitting and standing (∆t15s), while node intervals are decreased to ∆t = 2
s immediately before and after the tilt. A similar pattern is used when the subject is tilted
back down. The marker line indicates the duration of the tilt (∆t = 14 sec), noting how
long it takes to tilt the subject up, a similar interval applies to the time when the subject
is tilted back down.
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to determine initial conditions. Subsequently, we solve the model during head-
up tilt, assuming that parameters controlled by the baroreflex system vary in
time.

For this study, we assume that the output data ydata can be described fully
by the model plus an error term representing the measurement noise, i.e.

ydata = g(x, t; θ) + ε, (28)

where ymodel = g(x, t; θ) denotes the model output.
For validation simulations we use surrogate data obtained from the pul-

satile model for all states as well as arterial pressure, i.e.

ydata = {Vau, Val, Vvl, Vvu, pau}. (29)

For predictions we use the actual data, i.e.

ydata = {pau, CO}. (30)

2.4 Model Analysis

To analyze the proposed model we employed sensitivity analysis to determine
the sensitivity of the model output to the parameters; subset selection to de-
termine if sensitive parameters are correlated, and parameter estimation to
minimize the least squares error between model predictions and data. Two
approaches were used: a local approach analyzing the model in a small neigh-
borhood around known parameter values and a global approach examining
the model behavior over the entire parameter space. More detailed discussion
of this type of approach can be found in our resent study [15]. The analysis
was done using both for the surrogate model output defined in (29) and for
actual model output defined in (30). Due to computational constraints, we
only performed the analysis during steady state (before HUT) where the pa-
rameters are assumed constant. We justified this by noting that at any short
time-interval (during the HUT) the parameters are approximately constant
and therefore we expect that results found during rest can be transferred to
HUT.

Sensitivity analysis. For this study, we compute sensitivities of the model out-
put ymodelto its parameters using a local approach based on the forward
difference approximation

∂yk

∂θ̃i
=
yk(t, θ̃ + δei)− yk(t, θ̃)

δ
,

where

ei =

[
0 . . . 0

i

1̂ 0 . . .

]T
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Fig. 6: Ranked sensitivities computed for surrogate and actual model output. Except for
a few parameters, sensitivity ranking remain the same for the two models. Uncorrelated
parameters are marked with black squares. Dashed squares indicate that the two parameters
are correlated when tested with model output containing the actual data.

is the unit vector in the i-th component direction, δ =
√
ξ is the step-size, and

ξ = 10−8 is the integration tolerance.

Subsequently, we ranked the time-varying sensitivities by scaling the sen-
sitivity matrix with the two-norm allowing us to separate parameters into two
sets: sensitive and insensitive (Fig. 6).

Subset selection. To determine potential parameter correlations, expected in
a model derived from electrical circuit components with resistors and ca-
pacitors in series, we combined two approaches. First, we note that the
model contains two parallel circuits predicting the flow in the upper and
lower body. In steady state, the model can be reformulated as an equiva-
lent circuit with one branch giving a priori information on parameter cor-
relations. To eliminate these, we kept parameters associated with the lower
extremities constant, while we analyzed parameters associated with the up-
per body θ = {Raup, Cau, Cvu, TR, Em, EM , xVlh,us}. Subsequently, we used
singular value decomposition and QR factorization to identify a subset of pa-
rameters that can be identified given the model and available data [21].

For the surrogate data ydata = {Vau, Val, Vvl, Vvu, pau} three parameters

are identifiable θ̂ρ = {Raup, Cau, Em}. For the actual data ydata = {pau, CO}
the parameters Em and Cau are correlated, i.e. we can estimate two parameters
either θ̂ρ = {Raup, Cau} or θ̂ρ = {Raup, Em}. Parameters, not included in the
subset were kept constant at their nominal values.

To verify this local result, only valid near the nominal parameter values,
we tested the two subsets using a global analysis. For this analysis, we used
the Delayed Rejection Adaptive Metropolis algorithm DRAM [7], an efficient
Metropolis Hastings type Markov chain Monte Carlo (MCMC) algorithm that
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estimates parameter distributions, which can be mapped pairwise to determine
if two distributions are correlated.

Results from this method (shown in Fig. 10), confirmed our local result
that it is only possible to estimate two of the three parameters.

Parameter estimation. To fit the model to data, we estimate identifiable pa-
rameters θ̃

ˆ̃
θ = arg min

θ̃
J(θ̃), (31)

where J = rtr denotes the least squares cost and r ( is the model residual
given by

r =
1√
M

[
y1 − ỹ(t1)

ỹ(t1)
,
y2 − ỹ(t2)

ỹ(t2)
, ...,

yN − ỹ(tM )

ỹ(tM )

]T
, (32)

Here yi denotes the model output (ymodel) while ỹ(ti) denote the corresponding
data (ydata), and M is the length of the model output vector.

To estimate the identifiable model parameters (θ̂ρ), we used the Levenberg-
Marquart gradient method embedded in the Matlab function fmincon to mini-
mize the least squares error, equivalent to maximizing the Gaussian likelihood
function for the data.

3 Results

The results are separated into three parts: validation of the pulsatile (P) and
non-pulsatile (NP) models using data measured in supine position (before
HUT), in response to HUT, and over the entire experiment (head-up tilt fol-
lowed by head-down tilt).

3.1 Pulsatile and non pulsatile simulations (supine position)

The first step involved estimating the subset of parameters θ̂ρ = {Raup, Cau, Em}
minimizing the least squares error between pulsatile model predictions and
measurements of arterial blood pressure pau and cardiac output (CO) at rest
(before HUT).

Second, we computed mean pressures and volumes from the pulsatile model,
and estimated the same subset of parameters using the non-pulsatile model
minimizing the least squares error between the non-pulsatile model predictions
and the mean of predictions from the pulsatile model, i.e., the model residual
r was given by

r =
1√
M

[
xP i − xNPi

xP i

]
, x = {Vau, Val, Vvl, Vvu, pau} (33)

where the superscript P,NP refers to the pulsatile and non-pulsatile models,
respectively, see Figure 7. For these simulations 3 parameters were estimated.
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3.2 Pulsatile and non pulsatile predictions (HUT)

The next set of simulations present HUT dynamics. First, we estimate the
time-varying parameters for the pulsatile model. Nominal parameter values
for this simulations are set using estimates from supine simulations ensuring
that the models agree at rest. For these simulations, we estimate a total of
3 × N parameters where N is the number of nodes (see Figure 5). However,
given that the nodes are distributed in time, at any time interval between
nodes, only 3 parameters are estimated. For both pulsatile and non-pulsatile
models, given that the locations of nodes are larger than δt = 0.02, the problem
is well defined. To check convergence for both the pulsatile and non-pulsatile
models, we added and removed every other node and checked that the solution
remained invariant.

As shown in Figure 8(a), upon HUT upper body arterial blood pressure
drops due to pooling of blood in the legs. Results with estimated time-varying
parameters are shown in Figure 8(b). From these results, we calculated the
mean pressure and volumes used for predictions with the non-pulsatile model.
It should be noted that the mean values obtained from model predictions are
higher than the mean of the data (compare magenta and black lines on Fig-
ure 8(b). This can be explained from the fact that the curve computed from
the model does not account for wave-reflection, and therefore has a larger area
under the curve (see Figure 8(c)). For consistency between tests, all compar-
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Fig. 7: Prediction of blood pressure in supine position (before HUT). Upper body arterial
blood pressure data (labeled data) (pau, black) is shown in the top left panel. Pulsatile model
based predictions for the arterial (pau and pal) and venous (pvu and pvl) compartments are
shown in light gray (labeled P). The magenta lines (labeled Pm) depict the mean of the
computed pulsatile pressure. Finally, the cyan lines (labeled NP) show predictions from the
non-pulsatile model minimizing the least squares cost (33).
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isons between the pulsatile and non-pulsatile models were done against mean
values of pulsatile predictions.

Two sets of simulations were performed to compare pulsatile and non-
pulsatile model predictions: first we show that the pulsatile and non-pulsatile
models predict the same time-varying parameters when estimated against all
states (the four arterial and venous volumes) as well as the upper body arterial
pressure (pau), minimizing (33). Second, we predict time-varying parameters
minimizing the least squares error between predictions of pressure (pau) and
CO, mimicking data available. Results of these computations are shown in
Figure 9.

Time-varying parameters were determined from estimates of γRaup,i , γCau,i

and γEm,i
combined using the piecewise linear function (25). Results (Figure 9)

show that the time-varying parameters agree for both formulations. However,
this is not valid if the least squares cost function only includes arterial pressure
pau and CO. For these, both formulations give similar predictions of Raup,
while predictions of the other two variables do not agree, likely because with
the reduced data, the three parameters can no longer be identified.

To study potential parameter correlations, we conducted a DRAM sim-
ulation with 10,000 samples for the two models. Results showed that with
a least squares cost including all volume states and pau, all parameters are
identifiable, while simulations minimizing the pressure pau and CO, revealed
a pairwise correlation between Cau and Em, see Figure 10. As a result of this
analysis, we conducted pulsatile and non-pulsatile simulations estimating two
parameters (Raup and Em) and (Raup and Cau), fixing the third (correlated
parameter) at its nominal value. Results with the pulsatile model show that
when excluding Cau, we were not able to capture pulse-pressure with the pul-
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Fig. 8: Estimation of pulsatile dynamics during HUT. Panel (a) shows data (black) and
model computations with nominal parameter values (gray) of the pulsatile upper body
arterial pressure (pau) during HUT. Panel (b) shows data (black) and model computations
(gray) with time-varying parameter values of the pulsatile upper body arterial pressure
(pau) during HUT. The magenta lines (labeled P) represent the mean of the pulsatile model
computations in each panel, while the dashed black lines (labeled data mean) in panels (b)
and (c) represent the mean of the pulsatile data. Note, the mean of the pulsatile model
is higher than the mean of the data. This is because the model based predictions do not
account for the reflected wave. Panel (c) shows a zoom over four cardiac cycles illustrating
that the mean of the data is lower than the mean of the model based predictions.
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satile model (results not shown), while estimations with Raup and Cau allowed
us to predict most features in the data, see Figure 11.

3.2.1 Pulsatile model with non pulsatile controlled quantities

A goal of this study is to demonstrate that the simpler non-pulsatile cardiovas-
cular model for HUT can be used in place of the more complex pulsatile model,
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Fig. 9: Pulsatile predictions during HUT with time-varying estimates of Raup, Cau and Em.
Panels (a-d) include pulsatile model output (light gray labeled P) and its mean (magenta
curves labeled Pm), optimized non-pulsatile predictions (cyan curves labeled NP) obtained
by minimizing the least squares cost over all volumes and pau (33) as well as over pseudo data
(pau and CO, (black curves labeled NP PD)). Panel (e) depicts computations of the upper
body peripheral resistance for the pulsatile model computations (magenta curve labeled P)
and the non-pulsatile model predictions minimizing the cost function in (33) (cyan curve
labeled NP) and the cost function with pseudo data (30) (black curve labeled NP PD).
Note that predictions of the peripheral vascular resistance Raup (e) are consistent over all
simulations, while predictions of Cau and Em (f,g) vary, impacting predictions of pvu.
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while still giving accurate dynamics and pertinent information to clinicians.
The top row of Figure 12 shows model results obtained using the non pulsatile
time-varying predictions of (Raup, Cau, Em), estimated against all volumes
and pau, in the pulsatile model. Results show that pulsatile predictions agree
well for this set of parameters. Second, we used estimates of the time-varying
parameters (obtained against the cost including pau and CO, mimicking data).
Even though predictions of Cau and Em differ from those obtained with the
pulsatile model, due to their inherent correlation, pulsatile predictions are
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Fig. 10: DRAM simulations with 10,000 samples estimating Raup, Em, and Cau with the
non-pulsatile model (in supine position - before HUT). Dark gray predictions are obtained
by minimizing the least squares error between the model predictions and the pseudo data
(pau and CO), magenta estimates are obtained by minimizing over all volumes and pau.
Note that for available data pau and CO parameters Em and Cau are correlated. This
explains variation observed in predictions shown in Figure 9. (a) shows chains after burn-in
predictions have been discarded, (b) shows parameter distributions, and (c) shows pair-wise
correlations.
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still reasonable. Finally, we ran the pulsatile model with two non-pulsatile pa-
rameters (Raup and Cau). Again, the close agreement between pulsatile and
non-pulsatile predictions allowed us to predict pulsatile quantities.

3.3 Independent non pulsatile model: Estimation dynamics over the entire
experiment

To study dynamics during the entire experiment (over approximately 12 min),
we only estimated parameters with the non-pulsatile model. To avoid problems
with correlations between parameters, this simulation was done estimating the
two independent parameters Raup and Cau. For this simulation, the objective
was to capture ”long-term” dynamics. Results shown here were done using 181
nodes within the piecewise linear function (compared with 45 nodes for the
HUT computations, estimating approximately 3 minutes of data). Results of
this computation are shown in Figure 13. Note, during the initial HUT phase
results agree well with those obtained earlier, see Figure 11. Again, note that
predictions of the mean pressure data is excellent.
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Fig. 11: Optimization of pulsatile (magenta curve labeled P) and non-pulsatile (black curve
labeled NP PD) models including time-varying predictions of the peripheral resistance Raup

(b) and arterial compliance Cau (c). Panel (a) shows estimates with the pulsatile model
(gray labeled P) compared to data (black labeled data) and the non-pulsatile model (black
curve labeled NP PD) compared to the mean of the pulsatile model output (magenta curve
labeled Pm). Note since Em is kept constant the estimates immediately following HUT
overestimates pulse pressure, yet predictions of time-varying parameters with the pulsatile
and non-pulsatile models agree.
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Fig. 12: Pulsatile predictions during HUT with time-varying estimates from the pulsatile
(black) and non-pulsatile (gray) models. The rows show predictions for blood pressures pau,
pal, pvu, and pvl. The first column (panels a, d, g and j) show predictions using non-pulsatile
estimates of Raup, Cau, and Em obtained by minimizing over all volumes and pau (33). The
second column (panels b, e, h, and k) show predictions minimizing over pseudo-data pau
and CO, and the third column (panels c, f, i, and l) show predictions when only Raup and
Em are estimated.
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Fig. 13: Predictions over the full data with non-pulsatile model estimates of Raup and Em

minimizing the least squares error between measured pressure data and CO. (a-d) shows
predictions of pressure in the four compartments, (e) shows predictions of CO, (f-g) shows
the time-varying parameter estimates. Stars indicate nodes in the piecewise function. These
predictions were done using significantly fewer nodes as the validation computations during
HUT, yet results follow observations with the more dense model (Figure 11).
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4 Discussion

This study has shown that it is possible to develop interchangeable pulsatile
and non-pulsatile models that can predict dynamics during HUT, and that
time-varying parameters (Raup, Cau and Em) can be predicted by both mod-
els when accounting for all volumes and pau. To our knowledge, this is the first
study developing pulsatile and non-pulsatile models that can be represented
by the same parameter set. Results here were obtained using a compartment
model with heart rate as an input. HUT was imposed by accounting for gravi-
tational pooling of blood in the lower extremities, and the autonomic response
to HUT was included via time-varying parameters estimating vascular resis-
tance, arterial compliance, and minimum elastance. The non-pulsatile model
was compared with averages from the pulsatile model for a healthy young
adult (see Figures 7 and 9). Finally, we showed that the two models are in-
terchangeable, allowing parameter estimates obtained with the non-pulsatile
model to be used within the pulsatile model (see Figure 12).

The two models agree for parameters estimated by accounting for all vol-
umes and pau. However, in a clinical setting measurements of blood volume
are not available. As a result, we also estimated parameters minimizing the
least squares cost only including quantities that can be measured clinically
(upper body arterial pressure pau and cardiac output (CO)). Typically, HUT
studies only measure heart rate and arterial blood pressure, but as discussed
earlier [31] without measurements of CO predictions are not reliable. We rec-
ommend to include one measurement at baseline (in supine position) and one
measurement after the HUT. For the results presented here, we did not have
CO measurements. As a result, we estimated CO at rest using an allometric
calculation combined with a 20% reduction during HUT as observed in lit-
erature [32,33]. Results of these computations revealed that even though all
three parameters can be distinguished with the pulsatile model, two of the
three parameters are correlated. Therefore comparison over the entire experi-
ment (tilt-up followed by tilt-down) was done estimating only two parameters.
Physiologically, the autonomic control system does vary all three parameters
even though cardiac contractility was kept constant in this study. One way
to account for all variations would be to use information about correlation
to built a model relating cardiac contractility and arterial compliance, or add
additional measurements, e.g. of venous pressure.

Results in this study were obtained using a piecewise linear function to
estimate time-varying parameters. While this approach works [31,16], it has
the disadvantage that results critically depend on node placement. In a previ-
ous study [16], we used an ensemble Kalman filter to predict the time-varying
parameters. The advantage of this method is that it in addition to the instan-
taneous value provide a measure of uncertainty, though uncertainty can also be
calculated for the spline method, e.g. as discussed by Ramsay and Silverman
[23]. This study did not use a filtering approach as it is difficult to set up a
stable filter that can account for pulsatility within each period as well as vari-
ation in the response to the tilt. Future efforts will study if Kalman filtering
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can improve predictions presented here. An advantage of estimating the time-
varying parameters using a piecewise linear function is that they encode total
variation accounting for all mechanisms controlling the response to HUT. It
is expected that the baroreflex system is engaged in regulating the controlled
quantities, but it is likely that both cardiopulmonary receptors controlling
effectors in response to changes in volume, and the respiratory sinus center
also contribute to controlling the effectors [22]. While these controls are all
encoded in the time-varying parameters, the estimated splines do not explain
how each mechanism encode the response. One way to investigate the mecha-
nistic relations is to build a model relating changes in hemodynamic quantities
to changes in controlled parameters, a feature we plan to investigate in future
studies.

Finally, results presented here were obtained for a single healthy control
subject for which we had measurement of pressure both at the level of the
heart (where pressure increases during HUT) and at the level of the carotid
arteries, where pressure drops in response to HUT. Typically, experimental
HUT studies [11,20] only measure blood pressure at the level of the heart. Due
to the location with respect to center of gravity [31], to set up models predicting
physiological response using this type of data requires further studies. One
approach is to account for change the center of gravity to preprocess measured
data, as suggested in our previous study [31]. With this type of preprocessing
it should be possible to extend the methodology proposed here to analyze how
parameters change within a large population allowing us to determine how
controlled parameters change with disease.

5 Conclusion

In summary, we have developed a non-pulsatile model interchangeable with
a pulsatile model and shown that it can be used to predict HUT dynamics.
We showed that two time-varying parameters can be identified by simulations
analyzing typical experimental data including upper body arterial pressure
and cardiac output (CO), while estimation of the third parameters require
additional data, e.g. venous pressure, or development of a model explicitly de-
scribing the correlation between compliance and elastance. These models (the
pulsatile and non-pulsatile models) have many potential benefits in applica-
tions that require analysis of data over long time-scales, they are simpler and
faster to simulate than its pulsatile counterpart .
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