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General construction of theoretical phase-solubility diagrams 
Phase-solubility diagrams are plots of the solution-phase concentrations of solute at equilibrium, Seq, 

as a function of the initial concentration of ligand, Lt, in the dissolution medium. Less common, the 

solution-phase concentration of ligand at equilibrium, Leq, can also be plotted as a function of Lt. 

Theoretical phase-solubility diagrams are constructed by calculating Seq and/or Leq from the known 

quantities Lt and St (the total amount of added solute). Such calculations involve solving a set of 

equations expressing the relevant mass balances (eq. 1, 2, 5 and 6 in the manuscript) and laws of mass 

action (eq. 3 and 4 in the manuscript). These equations contain various equilibrium constants such as 

the solubility of solute (S0) and complex (SXY) and the equilibrium constants for the formation of 

complexes (KXY). These equilibrium constants must be determined experimentally. 

 

Theoretical expressions for Seq and/or Leq are derived for each of the regions in the phase-solubility 

diagrams. The transitions between the regions can be found as the intersections of these expressions, 

i.e. the transition between region I and II can be found as the intersection between the expression for 

Seq in region I and the plateau in region II. 

 

Solving the 3:2 model 
The relevant mass balances are (adapted from eq. 1 and 2 in the manuscript): 

Seq = [S] + [LS] + 2[L3S2]     

Leq = [L] + [LS] + 3[L3S2] 

The relevant laws of mass action are (adapted from eq. 3 and 4 in the manuscript):  

[LS] = K11*[L]*[S] 

[L3S2] = K32*[L]3*[S]2  

 

Region I: 

Since no ligand precipitates: 

Leq = Lt 

Since solid S is present: 

[S] = S0 

From the mass balances and the laws of mass action: 

Leq = [L] + [LS] + 3[L3S2] 
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= [𝐿𝐿](1 + 𝐾𝐾11 ∙ 𝑆𝑆0) + 3𝐾𝐾32[𝐿𝐿]3𝑆𝑆02 

This 3. order equation can be solved for [L], which can be inserted into: 

Seq = [S] + [LS] + 2[L3S2] 

= 𝑆𝑆0 + [𝐿𝐿] ∙ 𝐾𝐾11 ∙ 𝑆𝑆0 + 2𝐾𝐾2:3[𝐿𝐿]3𝑆𝑆02 

Now Seq is expressed as a function of S0, Lt, K11, and K23. 

 

Region II: 

Since solid solute and solid 3:2 complex is present: 

[S] = S0 

[L3S2] = S32 

[L]3[S]2 = KS
32 

Rearranging the latter equation: 

[𝐿𝐿] = �𝐾𝐾32𝑆𝑆 𝑆𝑆02⁄3
 

which can be inserted into: 

[LS] = K11*[L]*[S] 

to give: 

[𝐿𝐿𝑆𝑆] = 𝐾𝐾11 ∙ �𝐾𝐾32𝑆𝑆 ∙ 𝑆𝑆0
3

 

The solubility product can be expressed in terms of S32 and K32: 

KS
32 = S32 / K32 

so 

[𝐿𝐿𝑆𝑆] = 𝐾𝐾11 ∙ �𝑆𝑆32 𝐾𝐾32⁄ ∙ 𝑆𝑆0
3

 

This can be inserted into the mass balances: 

𝑆𝑆𝑒𝑒𝑒𝑒 = [𝑆𝑆] +  [𝐿𝐿𝑆𝑆] +  2[𝐿𝐿3𝑆𝑆2] = 𝑆𝑆0 + [𝐿𝐿𝑆𝑆] + 2𝑆𝑆32 = 𝑆𝑆0 + 𝐾𝐾11 ∙ �𝑆𝑆32 𝐾𝐾32⁄ ∙ 𝑆𝑆0
3

+ 2𝑆𝑆32 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Seq is hereby expressed as a function of S0, S32, K11, and K23. 

𝐿𝐿𝑒𝑒𝑒𝑒 = [𝑆𝑆] +  [𝐿𝐿𝑆𝑆] +  3[𝐿𝐿3𝑆𝑆2] = [𝐿𝐿𝑆𝑆] �1 +
1

𝐾𝐾11 ∙ 𝑆𝑆0
� + 3[𝐿𝐿3𝑆𝑆2] 

= 𝐾𝐾11 ∙ �𝑆𝑆32 𝐾𝐾32⁄ ∙ 𝑆𝑆0 ∙
3

�1 +
1

𝐾𝐾11 ∙ 𝑆𝑆0
� + 3𝑆𝑆32 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

Leq is hereby expressed as a function of S0, S32, K11, and K23. 

 



S4 
 

Region III: 

Adaptation of eq. 7 in the manuscript: 

2*Lt - 3*St = 2*Leq - 3*Seq 

Insertion of the mass balances: 

2*Lt - 3*St = 2*[L] + 2*[LS] + 6*[L3S2] - 3*[S] - 3*[LS] - 6*[L3S2] 

         = 2*[L] - 3*[S] - [LS] 

Two out of the three molecular species ([L], [S], and [LS]) may be eliminated by the use of: 

[L]3[S]2 = KS
32 

[LS] = K11*[L]*[S] 

The last molecular species may obtained as the appropriate solution to the resulting polynomium 

which, however, must be solved numerically. Alternatively, a solver function can be used to 

numerically solve the system of 3 equations with 3 unknowns. 

Once [L], [S], and [LS] are determined Seq and Leq can be calculated as: 

Seq = [S] + [LS] + 2*S32     

Leq = [L] + [LS] + 3*S32 

Seq and Leq are hereby calculated as a function of S32, K11, KS
32, Lt, and St. Using the relation KS

32 = 

S32 / K32, Seq and Leq can instead be calculated as a function of S32, K11, K32, Lt, and St. 

 

Transitions: 

To construct the phase-solubility diagram it is also necessary to know the location of the transitions 

between the regions. 

The transition from region I to region II is found as the intersect between the functions for Leq in 

region I and region II. Setting these two expressions equal to each other yields: 

Leq(I) = Leq(II) 

𝐿𝐿𝑡𝑡 = 𝐾𝐾11 ∙ �𝑆𝑆32 𝐾𝐾32⁄ ∙ 𝑆𝑆0 ∙
3

�1 +
1

𝐾𝐾11 ∙ 𝑆𝑆0
� + 3𝑆𝑆32 

It is seen that this transition does not depend on St. 

In principle, the transition from region II to region III can be found as the intersect between the 

functions for Leq in region II and region III but since no analytical expression is available for Leq in 

region III another strategy is used. For notational simplicity the transition between region I and II is 

called point A, and the transition from region II to III is called point B. Region II starts when the 3:2 
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complex starts precipitating from the solution and ends when all solid S is converted to complex. 

Since L and S is converted to complex in a 3 to 2 ratio the length of region II can be calculated as: 

Lt(B) – Lt(A) = 1.5*Ssolid(A) = 1.5*(St - Seq(A)) 

where Ssolid(A) is the amount of solid S at point A which in turn is equal to the total amount of S 

minus the amount of S in solution. 

Replacing Lt(A) with the already derived expression for Leq in region II and replacing Seq(A) with 

the expression for Seq in region II allows for Lt(B) to be isolated as: 

𝐿𝐿𝑡𝑡(𝐵𝐵) = 1.5 ∙ (𝑆𝑆𝑡𝑡 − 𝑆𝑆0) ∙ 𝐾𝐾11 ∙ �𝑆𝑆32 𝐾𝐾32⁄ ∙ 𝑆𝑆0 ∙
3

�
1

𝐾𝐾11 ∙ 𝑆𝑆0
− 0.5� 

It is seen that the location of this transition depends on St. 

 

Construction of reverse phase-solubility diagrams for the 3:2 

model 
The equilibrium constants that govern the shape of the normal phase-solubility diagram also govern 

the shape of the reverse phase-solubility diagram. Further, the equations that apply to the various 

regions in the normal phase-solubility diagram also apply to the reverse phase-solubility diagram. 

Only the location of the transitions between the regions are different in the reverse phase-solubility 

diagram. Also the equations in the new region IV needs to be derived for the reverse phase-

solubility diagram but this is a trivial problem as no precipitate is formed and therefore Seq = St and 

Leq = Lt. 
 

Transition from region IV to region III: 

Transition from region IV to region III occurs when the product [L]3[S]2 exceeds the solubility 

product KS
32 and the 3:2 complex starts precipitating. No analytical expression can be found for this 

transition which can be found by numerically solving the following systems of equations, assuming 

that the concentration of 3.2 complexes in solution is negligible: 

St = [S] + [LS]     

Lt = [L] + [LS]  

[LS] = K11*[L]*[S] 

[L]3[S]2 = KS
32 
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This system of equations can be solved to provide the total amount of added solute, St, at which the 

transition occurs. This is a function of K11, KS
32, and also the total concentration of cyclodextrin in 

the medium, Lt. As Lt goes up the value of St at which the transition occurs decreases. 

 

Transition from region III to region II: 

The starting point for deriving an expression for the transition from region III to region II is the 

previously derived relation: 

2*Lt - 3*St =  2*[L] - 3*[S] - [LS] 

which is valid in region III but not in region II. Region II starts when [S] reaches S0 so the transition 

occurs when [S] = S0. 

The remaining molecular species, [L] and [LS], are then substituted. First, [L] is substituted with: 

[L] = [LS]/K11*S0 

Then [LS] is substituted with the previously derived relation: 

[𝐿𝐿𝑆𝑆] = 𝐾𝐾11 ∙ �𝐾𝐾32𝑆𝑆 ∙ 𝑆𝑆0
3

 

This results in the final expression for the transition: 

𝑆𝑆𝑡𝑡 = 𝐾𝐾11 ∙ �𝐾𝐾23𝑆𝑆 ∙ 𝑆𝑆0
3

∙ �
1
3
−

2
3 ∙ 𝐾𝐾11 ∙ 𝑆𝑆0

� + 𝑆𝑆0 +
2
3
∙ 𝐿𝐿𝑡𝑡 

It is seen that the transition depends on Lt but in a simple linear way. 
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