

Roskilde University

Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium

Espinel, Irene Cartas; Guerra, Priscila Regina; Jelsbak, Lotte

Published in: Microbial Pathogenesis

DOI:

10.1016/j.micpath.2016.03.008

Publication date: 2016

Document Version Peer reviewed version

Citation for published version (APA): Espinel, I. C., Guerra, P. R., & Jelsbak, L. (2016). Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium. *Microbial Pathogenesis*, 95, 117–123. https://doi.org/10.1016/j.micpath.2016.03.008

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 You may not further distribute the material or use it for any profit-making activity or commercial gain.
 You may freely distribute the URL identifying the publication in the public portal.

Take down policy

If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 05. Dec. 2025

Accepted Manuscript

Multiple roles of putrescine and spermidine in stress resistance and virulence of *Salmonella enterica* serovar Typhimurium

Irene Cartas Espinel, Priscila Regina Guerra, Lotte Jelsbak

PII: S0882-4010(16)30073-0

DOI: 10.1016/j.micpath.2016.03.008

Reference: YMPAT 1802

To appear in: Microbial Pathogenesis

Received Date: 4 February 2016

Revised Date: 9 March 2016

Accepted Date: 22 March 2016

Please cite this article as: Espinel IC, Guerra PR, Jelsbak L, Multiple roles of putrescine and spermidine in stress resistance and virulence of *Salmonella enterica* serovar Typhimurium, *Microbial Pathogenesis* (2016), doi: 10.1016/j.micpath.2016.03.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 2	Multiple roles of putrescine and spermidine in stress resistance and virulence of Salmonella enterica serovar Typhimurium
3 4 5	Irene Cartas Espinel ¹ , Priscila Regina Guerra ¹ , and Lotte Jelsbak ^{1,2} *
6	1: Department of Veterinary Disease Biology, Faculty of Life Sciences, University of
7	Copenhagen, Frederiksberg C, Denmark.
8	2: Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark.
9	*Corresponding author: Department of Science, Roskilde University, Universitetsvej 1, DK-
10	4000 Roskilde, Denmark. Phone: (+45) 46742216; E-mail: ljelsbak@ruc.dk
11	
12 13	Keywords: Polyamines; nitric oxide stress; virulence; intracellular pathogens.
14 15	Abstract
16	Polyamines (putrescine and spermidine) are small-cationic amines ubiquitous in nature
17	and present in most living cells. In recent years they have been linked to virulence of
18	several human pathogens including Shigella spp and Salmonella enterica serovar
19	Typhimurium (S. Typhimurium). Central to S. Typhimurium virulence is the ability to
20	survive and replicate inside macrophages and resisting the antimicrobial attacks in the
21	form of oxidative and nitrosative stress elicited from these cells. In the present study, we
22	have investigated the role of polyamines in intracellular survival and systemic infections of
23	mice. Using a S. Typhimurium mutant defective for putrescine and spermidine
24	biosynthesis, we show that polyamines are essential for coping with reactive nitrogen
25	species, possibly linking polyamines to increased intracellular stress resistance. However,
26	using a mouse model defective for nitric oxide production, we find that polyamines are
27	required for systemic infections independently of host-produced reactive nitrogen species.
28	To distinguish between the physiological roles of putrescine and spermidine, we

29	constructed a strain deficient for spermidine biosynthesis and uptake, but with retained
30	ability to produce and import putrescine. Interestingly, in this mutant we observe a strong
31	attenuation of virulence during infection of mice proficient and deficient for nitric oxide
32	production suggesting that spermidine, specifically, is essential for virulence of S.
33	Typhimurium.
34	
35	1. Introduction
36	Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative facultative
37	intracellular pathogen able to cause a wide variety of food- and water-borne diseases
38	ranging from self-limiting gastroenteritis to systemic and life-threatening infections. As S.
39	Typhimurium, causes a systemic typhoid-like disease in mice, it serves as an important
40	model for studying the often fatal human illness typhoid fever. Virulence of S. Typhimurium
41	is dependent on the ability to survive and replicate inside host cells. Following type three
42	secretion mediated invasion of the epithelial cell-layer [15], S. Typhimurium bacteria are

secretion mediated invasion of the epithelial cell-layer [15], *S.* Typhimurium bacteria are
able to escape to the underlying layer where they are taken up by macrophages and
dendritic cells of the host immune system, reviewed in [16]. Inside these cells, *S.*Typhimurium is able to survive and replicate within a membrane bound compartment. The
bacteria will rapidly spread through the lymphoid and blood systems to the spleen and liver
resulting in a life-threatening systemic infection. Formation of the intracellular niche and
replication is facilitated by the *Salmonella* Pathogenicity Island 2 (SPI2) encoded type

three secretion system and its secreted virulence factors [22]. Inside the macrophages,

Salmonella is sequentially exposed to the antimicrobial activity of first the NADPH oxidase generating a burst of the bactericidal superoxide (O2⁻) radicals followed by a more

sustained activation of the inducible nitric oxide synthase (iNOS) generating the

49

50

51

53	bacteriostatic nitric oxide (NO) radicals. Combination of superoxide and NO can produce
54	the highly reactive and bactericidal product peroxynitrite (ONOO ⁻).
55	
56	Polyamines are small poly-cationic amines present in almost all cell-types. In recent years
57	they have emerged as major modulators of bacterial physiology, including biofilm
58	formation and motility and are essential for virulence of several bacterial pathogens [1, 6,
59	9, 13, 18-20]. Acquisition of polyamines can be mediated by either biosynthesis (Fig. A.1)
60	or uptake by dedicated transporters. We have previously shown that polyamine
61	biosynthesis is essential for virulence of Salmonella [12, 13, 20]. This observation could be
62	linked to a severe reduction of the polyamine biosynthesis mutant's ability to invade and
63	survive/replicate inside cultured epithelial cells. However, despite a modest reduction in
64	virulence gene expression [13], the mechanisms for polyamine dependent systemic
65	Salmonella infections remain elusive. In recent papers it has been demonstrated that
66	polyamines can protect against oxidative and nitrosative stress in other bacterial species
67	[3, 14] providing a possible link to polyamine dependent virulence of S. Typhimurium. In
68	the present study, we have investigated the role of polyamines in protection against
69	oxidative and nitrosative stress. We find that the polyamine biosynthesis mutant is only
70	modestly affected, at a level similar to the wild type, by oxidative stress. In contrast, the
71	mutant is severely affected by the presence of two different nitrosative stresses (NO and
72	ONOO ⁻). However, during infection of mice lacking the iNOS system, the polyamine
73	biosynthesis mutant is still highly attenuated pointing to that although polyamines may
74	contribute to resistance against nitrosative stress during infection, polyamines have
75	multiple roles in virulence of S. Typhimurium.

2. Materials and methods

- 78 2.1. Bacterial strains and growth conditions.
- A list of strains used in the current study can be found in table 1. S. Typhimurium ST4/74
- was used as wild-type strain in all experiments. This strain has been described previously
- and its virulence is well defined [24].

Strain	Relevant genotype	Reference
S. Typhimurium ST4/74	virulent reference strain	[24]
S. Typhimurium KP1274	Restriction deficient strain, used	[7]
	for introduction of plasmids.	
LJ268	ST4/74::Δ <i>potCD</i> ;Δ <i>speE</i> . Kan ^R .	This work.
LJ318	ST4/74::ΔspeB;ΔspeC;	[13]
	ΔspeE;ΔspeF. Cam ^R , Kan ^R .	
LJ328	ST4/74::ΔspeB;ΔspeC;	[13]
	ΔspeE;ΔspeF/pACYC-speB.	
	Amp ^R , Cam ^R , Kan ^R .	
LJ251	ST4/74::ΔpotCD.	This work.
LJ336	ST4/74::Δ <i>potCD</i> ;Δ <i>speE</i> /pACYC- <i>potCD</i> . Amp ^R , Kan ^R .	This work.
	potCD. Amp ^R , Kan ^R .	
LJ238	ST4/74::Δ <i>speE</i> . Cam ^R .	This work.
LJ607	ST4/74::ΔssaV. Kan ^R .	[25]

82

- Construction of the polyamine biosynthesis mutant ($\triangle speB; \triangle speC; \triangle speE; \triangle speF$) has
- been previously described [13]. The strain is deleted for the speB gene (STM474 3225),
- the speC gene (STM474_3262), the speF gene (STM474_0722), and the speE gene
- 86 (STM474 0175). These genes were deleted by Lambda-Red mediated recombination
- using either pKD3 or pKD4 as templates for the PCR reaction, as previously described [5].
- Together these genes facilitate the biosynthesis of putrescine and spermidine in *S*.
- Typhimurium (figure A.1). The spermidine biosynthesis mutant ($\triangle speE$), and the uptake
- 90 mutant (Δ*potCD*) have been deleted for the *speE* gene (STM474_0175) and the *potCD*-
- 91 genes (STM474 1220, STM474 1219), respectively. Primers used to construct and verify
- these strains can be found in table A.1. The spermidine biosynthesis and uptake mutant
- 93 (\triangle speE; \triangle potCD) was generated by P22 phage mediated transduction of the \triangle speE locus

94	into the $\Delta potCD$ mutant as previously described [13]. In some cases the resistance gene
95	was removed by use of the pCP20 encoded flippase [5]. All strains were verified using a
96	PCR-based sequencing strategy. Primers used for construction and verification of strains
97	are listed in supplemental table 1. Genetic complementation of the biosynthesis mutant
98	was achieved by introducing pACYC-speB. We have previously achieved
99	complementation of mice infections phenotypes of the biosynthesis mutant strain with this
100	plasmid [13]. Genetic complementation of the spermidine biosynthesis and transporter
101	mutant was achieved by introducing pACYC-potCD. Both plasmids are derivatives of
102	pACYC177 containing the speB gene including upstream promoter regions or the potCD
103	genes expressed from the promoter of the pACYC177 kanamycin resistance gene. The
104	construction of these plasmids has been described in detail elsewhere [13].
105	
106	Bacterial strains were maintained in LB-Lennox broth (LB) with 15% glycerol at -80 ℃. LB
107	agar plates (LB + 1.5 % agar) were used for growth on solid media. If not stated otherwise,
108	growth in liquid medium was performed in M9 medium containing 12.8 g l ⁻¹ Na ₂ HPO ₄ -
109	$12H_2O$, 3.0 g l $^{-1}$ KH $_2$ PO $_4$, 0.5 g l $^{-1}$ NaCl, 1.0 g l $^{-1}$ NH $_4$ Cl, 0.1 mM CaCl $_2$, 2 mM MgSO $_4$ and
110	0.4 % w/v glucose. Prior to all experiments the bacteria were grown for 16 hrs, 200 rpm,
111	37℃ in M9 minimal media to deplete for carry-over polyamines. Where indicated, M9 was
112	supplemented with 100µg ml ⁻¹ of either putrescine (11.3 mM) or spermidine (6.8 mM),
113	physiologically relevant concentrations [11]. When appropriate, media were supplemented
114	with antibiotics in the following concentrations: 50 μg ampicillin ml ⁻¹ , 50 μg kanamycin ml ⁻¹
115	and 10 µg chloramphenicol ml ⁻¹ .
116	
117	2.2. Resistance towards oxidative stress.

Resistance towards reactive oxygen species was investigated for both logarithmic and
stationary phase bacterial cultures. For stationary-phase bacteria a disk inhibition assay
was performed. Bacteria were grown 16 hrs in M9 media at 37°C with shaking (200 rpm).
The next day 100 μl of overnight culture was spread on M9 agar plates. Sterile 13-mm
filter disks were placed in the center of agar plates, 10 μ l of 10% H_2O_2 (Sigma Aldrich) was
added to the disks, and the plates were incubated at 37℃ overnight. The diameter of the
zone of growth inhibition was measured. Three replicate assays were performed for each
strain, and the data were subjected to Student's t-test to evaluate their statistical
significance. For logarithmic bacteria, after overnight growth in M9, as described above,
bacteria were harvested, washed in saline and sub-cultured in M9 media with or without 70
μM H₂O₂. The bacterial cultures were incubated at 37℃ with shaking in a Bioscreen C
reader (Thermo Labsystems) for 24 hrs. Growth was monitored every 15 minutes for the
duration of the experiment. Three replicate assays were performed for each
strain/condition.
2.3. Resistance towards nitric oxide stress.
Resistance towards nitric oxide stress was investigated in growth experiments in the
presence of either S-Nitrosoglutathione (Sigma-Aldrich) or peroxynitrite (Caymen

Resistance towards nitric oxide stress was investigated in growth experiments in the presence of either S-Nitrosoglutathione (Sigma-Aldrich) or peroxynitrite (Caymen Chemicals) using logarithmic cultures. To determine the exact concentration of peroxynitrite, absorbance at 302 nm (A) was measured and the concentration C (C = A/ (ϵ ·L)) was calculated based on the extinction coefficient ϵ = 1670 M⁻¹ cm⁻¹. Growth in the presence of S-Nitrosoglutathione was performed similar to growth in the presence of H₂O₂ as described above. For investigations of growth in the presence of peroxynitrite, after overnight growth in M9, as described above, bacteria were harvested, washed in saline

142	and sub-cultured in M9 media. The bacterial cultures were incubated at 37°C with shaking.
143	When the cultures had entered logarithmic phase (OD $_{600}$ ~0.4) 200 μM peroxynitrite was
144	added to the cultures and they were re-incubated at 37℃ with shaking for 24 hrs. Growth
145	was monitored every 15 minutes for the duration of the experiment using a Bioscreen C
146	reader. Three replicate assays were performed for each strain/condition.
147	
148	2.4. Infection of macrophage-like cells.
149	Intracellular survival/replication was investigated using J774A.1 macrophage-like cells as
150	previously described [26]. Essentially, J774A.1 cells were infected with bacteria in a
151	multiplicity of infection of 5:1. After 25 min of infection cells were washed and either cells
152	were lysed in the presence of 0.1 % (v/v) Triton-X to release intracellular bacteria (time
153	point 0h post infection) or treated with 100 µg ml ⁻¹ gentamicin for two hours to kill
154	extracellular bacteria (time point 2h post infection). At this point cells were lysed, as
155	described, or further incubated in the presence of 25 $\mu g \ ml^{-1}$ gentamicin for 19h (time point
156	21 h post infection) and then lysed. The number of intracellular bacteria was determined at
157	each time point by CFU ml ⁻¹ calculations (supplementary figure). A SPI2 mutant (ΔssaV)
158	[25] unable to propagate intracellularly [4, 23] was used as control.
159	
160	2.5. Infection of mice.
161	Infection of 6 week old iNOS ^{-/-} (B6.129P2-Nos2tm1Lau/J) mice (Jackson Laboratory) or
162	C57BL/6 mice was done as described previously [13]. Briefly, four mice were infected
163	intraperitoneally with a 1:1 mixture of 5x10 ² CFU for iNOS-/- mice and 5x10 ³ CFU for
164	C57BL/6 mice of each the wild type and the mutant strain. After 6 days mice were
165	euthanized by cervical dislocation and spleens were removed aseptically and mechanically

166	homogenized in saline. Serial dilutions were made and plated on LB agar plates. 100
167	randomly picked colonies of both the inoculum and the spleen samples from each mouse
168	were streaked on LB agar plates containing the appropriate antibiotic to determine the
169	proportion of the mutant to the wild type strain. The competitive index was calculated as
170	reported [13].
171	
172	2.6. Ethics Statement
173	All mouse experiments were reviewed and approved by the Copenhagen University animal
174	experimentation unit and conducted with permission from the Animal Experiments
175	Inspectorate (http://www.dyreforsoegstilsynet.dk) under license number 2013-15-2934-
176	00761 in accordance with Danish law LBK 474 af 15/05/2014 (Animal experimentation and
177	welfare act).
178	
179	2.7. Statistical analyses.
180	Outliers with a significance of 0.05 were identified by Grubb's outlier test and removed
181	before further analysis. Statistical significance of differences between datasets was
182	determined using the GraphPad Prism® software, version 5.0 (GraphPad) using either
183	ANOVA with correction for multiple comparison with Tukey's post-test or Students T-test.
184	
185	3. Results and Discussion
186	3.1. Polyamines are required for replication in cultured macrophages
187	We have previously reported that a polyamine-biosynthesis mutant is unable to cause
188	systemic disease in a mouse model of typhoid fever and furthermore that the mutant was
189	unable to replicate inside cultured epithelial cells during an 8 hr period post infection [13].

replication. However, for both macrophages and epithelial cells we conclude that the

216	polyamine biosynthesis mutant is significantly reduced for intracellular replication, a
217	hallmark of S. Typhimurium systemic spread.
218	
219	3.2. Polyamines have minor role in protection against oxidative stress
220	One of the first antimicrobial responses of phagocytic cells is the production of the
221	bactericidal superoxide by the NADPH oxidase. In E. coli it has been shown that
222	polyamines protect against oxidative stress [3], and it is therefore possible that the
223	reduced intracellular survival of the polyamine mutant is linked to reduced oxidative stress-
224	resistance. To investigate this hypothesis, bacterial cultures of the wild type and the
225	polyamine biosynthesis mutant were subjected to oxidative stress (Fig. 2).
226	
227	Figure 2: Oxidative stress survival of the polyamine biosynthesis mutant. Indicated
228	strains were grown in M9 minimal media with (green symbols) or without (blue symbols) 70
229	μ M H ₂ O ₂ (graphs A to E). For D and E 6.8 μ M spermidine (spd) or 11.3 μ M putrescine
230	(put), respectively, were added to the cultures to test for exogenous complementation. F)
231	Disk inhibition assay. The indicated strains were spread on M9-agar-plates and a disk
232	soaked in H ₂ O ₂ was placed on top of the agar plate. Where indicated 6.8 μM spermidine
233	(spd) was added to the agar plate. After overnight incubation, the growth inhibition zone
234	diameter was measured. All experiments were performed three times with similar results.
235	For A to E a representative experiment is shown, for F, an average of three experiments is
236	shown, error bars are standard deviation. * Indicate significant differences to the wt, P<
237	0.00001.
238	
239	During exponential growth, the peroxide H ₂ O ₂ was added to actively growing cultures of
240	the wild type and polyamine mutant (Fig. 2A, B, C, D, and E). In all conditions tested, the
241	cultures are affected by oxidative stress. All strains reach a lower optical density when
242	grown in the presence of H ₂ O ₂ in stationary phase compared to growth without H ₂ O ₂ . For

243	the polyamine biosynthesis mutant, the growth-rate is also reduced in response to the
244	stress, however, not at a statistically significant level (Fig. 2B). The slight reduction in
245	growth rate is complemented by a plasmid expressing the putrescine biosynthesis gene
246	(speB) (Fig. 2C), and by addition of either spermidine (Fig. 2D) or putrescine (Fig. 2E) to
247	the cultures, respectively. In contrast, when stationary cultures are exposed to peroxide
248	using a disk inhibition assay there is a statistically significant (P<0.00001) reduced
249	tolerance towards H ₂ O ₂ in the polyamine biosynthesis mutant (Fig. 2F). In conclusion,
250	polyamines have a minor role in protection against peroxide stress in S. Typhimurium.
251	
252	3.3. Polyamines biosynthesis is required for growth in the presence of reactive nitrogen
253	species
254	After about 5 hrs of infection of cultured macrophages, the inducible nitric oxide synthase,
255	iNOS, (or NOS2), facilitates production of nitric oxide that is bacteriostatic towards
256	intracellular Salmonella [17], whereas the reaction of NO and superoxide generates the
257	bactericidal compound peroxynitrite ONOO ⁻ . To investigate if polyamines are involved in
258	coping with reactive nitrogen species in S. Typhimurium, bacterial cultures of the wild type
259	and the polyamine biosynthesis mutant were subjected to two types of reactive nitrogen
260	species, S-Nitrosoglutathione (GSNO), a bacteriostatic compound (Fig. 3B) and
261	peroxynitrite (PN), a bactericidal compound (Fig. 3C).
262	
263	Figure 3: Nitrosative stress survival. Indicated strains were grown in M9 (A), M9 with 4
264	mM S-Nitrosoglutathione (GSNO) (B) or in M9 with 200µM peroxynitrite (PN) (C). PN was
265	added to logarithmic cultures at the indicated time. The experiments were performed three
266	times with similar results.
267	

Addition of S-Nitrosoglutathione to growing cultures severely inhibits growth of the
polyamine mutant compared to the wild type (Fig. 3B). This inhibition is relieved by
addition of putrescine or spermidine to the cultures and by genetic complementation of
putrescine biosynthesis (the speB-gene). Similarly, addition of peroxynitrite to growing
cultures completely attenuates growth of the polyamine mutant (Fig. 3C). Together, these
data show that in S. Typhimurium, polyamines are essential for protection against the toxic
effects of reactive nitrogen species. The biochemical and genetic complementation of
these phenotypes strongly indicate that the increased stress sensitivity of the polyamine
biosynthesis mutant is, in fact, caused by the lack of polyamines in this strain when grown
in media without polyamines. Further, recovery from peroxynitrite stress (Fig 3C) is
enhanced, compared to the wild type, by the exogenous addition of polyamines as well as
by the presence of the putrescine biosynthesis gene, speB, encoded in trans. This could
indicate that polyamines confer partial protection against peroxynitrite stress in S.
Typhimurium. Similarly, in uropathogenic E. coli it has been reported that polyamines
rescue growth in the presence of reactive nitrogen species [2].
3.4. Polyamine biosynthesis is required for systemic infection of mice independently of
host-produced nitric-oxide
We have previously shown that polyamines are required for virulence of S. Typhimurium in
the mouse model of systemic infection [13]. To investigate if the reduced virulence of the
polyamine mutant is linked to its increased sensitivity to reactive nitrogen species, mice
deficient for iNOS were infected with equal amounts of the wild type and the polyamine
biosynthesis mutant (Figure 4).

292	Figure 4: Mice infections. C57BL/6 or iNOS-/- mice (as indicated above the bars) were		
293	infected via the intraperitoneal route with equal numbers of indicated mutant and wild type		
294	bacteria (5x10 ³ CFU for C57BL/6 and 5x10 ² CFU for iNOS-/-). After 6 days, mice were		
295	sacrificed and spleens were removed. Competitive indices (C.I.) were calculated as		
296	previously described [13]. The results are shown as mean values, error-bars are standar		
297	deviation. Significant differences from 1.0 (*P<0.005, **P<0.001) were determined by two		
298	sample t-test analysis.		
299			
300	After 6 days of infection mice were euthanized and bacteria recovered from the spleens		
301	were used to determine the competitive index as described previously [13]. The		
302	competitive index of the polyamine mutant versus the wild type was calculated to be		
303	0.06+/-0.06, significantly different from 1.0, P=0.002, indicating that polyamine		
304	biosynthesis is required for virulence of S. Typhimurium even in the absence of host		
305	produced reactive nitrogen species.		
306			
307	3.5. Spermidine biosynthesis and transport is required for systemic infections of mice		
308	In the polyamine biosynthesis mutant, both putrescine and spermidine biosynthesis genes		
309	are deleted. However, as the two polyamines differ in their net charge, with spermidine		
310	having three amine groups and putrescine only two [10], it could affect interactions with		
311	other molecules. Hence, the two polyamines may have distinct physiological roles in the		
312	cell. In support of this, a distinct role for spermidine in virulence of the related intracellular		
313	pathogen Shigella spp, has previously been reported [1]. Hence, to investigate if either of		
314	the polyamines contributes differently to virulence of S. Typhimurium, we constructed a		
315	spermidine biosynthesis mutant ($\Delta speE$), a spermidine transport mutant ($\Delta potCD$), and a		
316	spermidine biosynthesis and spermidine transport double mutant ($\Delta speE;\Delta potCD$). This		
317	double mutant is unable to synthesize and import spermidine, but retains the ability to		

318	synthesize and import putrescine. Accordingly, this strain enables investigations into the		
319	specific role of spermidine during infection. Construction of a putrescine defective strain		
320	that retains the ability to synthesize spermidine is not possible as putrescine is the		
321	substrate for spermidine biosynthesis (figure A.1).		
322	During competitive infection of both C57BL/6 mice and iNOS-/- mice, the ΔspeE;ΔpotCD		
323	mutant was severely and significantly attenuated with competitive indices versus the wild		
324	type of 0.1 (P=0.0002) and 0.14 (P=0.0002), respectively (Fig 4). Interestingly, neither the		
325	spermidine biosynthesis mutant ($\Delta speE$) nor the spermidine transport mutant ($\Delta potCD$) is		
326	attenuated for infection of mice, indicating functional redundancy for providing sufficient		
327	spermidine during infection between the biosynthesis- and uptake-pathways. This is		
328	further supported by the ability of the potCD genes to complement the virulence of the		
329	$\Delta speE; \Delta potCD$ mutant when provided in trans. These data could suggest that the		
330	presence of either the PotABCD transporter or the SpeE spermidine biosynthesis enzyme		
331	is sufficient for virulence. However, our previous results of attenuation of the polyamine		
332	biosynthesis mutant (ΔspeB;ΔspeC;ΔspeE;ΔspeF) as well as attenuation of a complete		
333	polyamine transporter mutant, a ΔpotCD;ΔpotE;ΔpotI mutant strain, [13] contradict this		
334	notion and point to a highly sensitive requirement for polyamines for systemic infection		
335	where even minor imbalances from a few genetic lesions of polyamine transport or		
336	biosynthesis genes cause virulence attenuation.		
337			
338	Further phenotypic characterization of the spermidine biosynthesis and transporter mutant		
339	$(\Delta speE; \Delta potCD)$ revealed that, in contrast to the putrescine and spermidine biosynthesis		
340	mutant ($\triangle speB; \triangle speC; \triangle speE; \triangle speF$), the spermidine mutant ($\triangle speE; \triangle potCD$) does not		
341	have a growth defect in M9 (Fig 5A) and it is not more sensitive to oxidative (5B) or		

nitrosative stress (5C) than the wild type, whereas replication in macrophages was slightly
and significantly reduced for the spermidine mutant (7.4 fold replication) compared to the
wild type (16.5 fold replication), P=0.0442 (Fig 5D).
Figure 5: Phenotypic characterization of the spermidine mutant. A) Growth of the wild
type strain, and the isogenic spermidine mutant (ΔspeE;ΔpotCD) in M9 minimal media.
After overnight growth in M9 minimal media bacteria were subcultured into fresh M9 and
re-incubated. Growth was monitored using a Bioscreen C plate reader. B) The spermidine
mutant was grown in M9 minimal media with (green symbols) or without (blue symbols) 70
μM H ₂ O ₂ . The differences in final biomass reached between (A) and (B) are most likely due
to the fact that different stocks of M9-media were used for these experiments. C) Growth in
M9 with 200µM peroxynitrite (PN). PN was added to logarithmic cultures at the indicated
times. The experiments were performed three times with similar results. D) Intracellular
replication in J774A.1 macrophage-like cells of the wild type strain, the spermidine mutant
and the ΔssaV-mutant (SPI2-mutant) was assayed between 2 hrs post infection and 21 hrs
post infection (pi). The bars shows fold change in intracellular CFU between these two
time points. The experiment was performed four times with similar results. Shown is an
average of the results. Error-bars are standard deviation * Indicate significant differences
to the wild type, P< 0.05.
Together, our data signify that spermidine, independently of putrescine, is promoting
virulence in S. Typhimurium. Furthermore, our in vitro growth experiments point to that
attenuation of virulence of the spermidine deficient strain is not related to a growth defect
in the absence of spermidine. Interestingly, the results also signify that putrescine alone is
not sufficient for virulence of S. Typhimurium.

4. Conclusions

It has previously been reported that in *S*. Typhimurium polyamine biosynthesis genes are induced during infection of mammalian cells indicating a role for polyamines in intracellular replication [8]. In a previous study, we showed that polyamine biosynthesis is indeed essential for systemic infection of mice [13]. In the present study we have investigated if polyamines confer protection against oxidative and nitrosative stress and whether this ability contributes to the reduced virulence of a polyamine biosynthesis mutant [13]. While we find that polyamines are essential for coping with nitrosative stress during growth in M9 we do not see an improved infection potential of the polyamine biosynthesis mutant in mice lacking the ability to produce reactive nitrogen species (*iNOS-/-* mice) compared to our previous observations with mice proficient for this. This indicates that while polyamine mediated stress-resistance possibly contribute to virulence of *S*. Typhimurium, polyamines have additional roles in *S*. Typhimurium during infection. Interestingly, our results also reveal a unique role for spermidine during infection. This is similar to the reported spermidine requirement of the related enteric pathogen *Shigella* spp. [1].

The essentiality for polyamines during infection of several bacterial pathogens is underscored by the diverse mechanisms employed to secure acquisition of polyamines during infection. For example, in *Legionella pneumophila*, a water borne intracellular pathogen, intracellular replication depends on polyamines [18]. This bacterium does not have the functional genes for polyamine biosynthesis, but instead uses a unique chaperone to recruit a polyamine biosynthesis protein, S-adenosylmethionine decarboxylase, from the host cell. In another example, the intracellular enteric pathogen *Shigella* spp. accumulates spermidine due to evolutionary inactivation of the gene encoding the spermidine acetyltransferase, an enzyme catalyzing the conversion of

spermidine into the physiologically inert acetylspermidine [1]. And in S. Typhimurium, the
requirement for polyamines during infection is controlled by regulation of gene expression
of polyamine biosynthesis genes [8]. Furthermore, in the present and previous studies [12,
13, 20], we have shown that minor imbalances by single gene deletions only have
negligible effects, if any, on virulence, whereas, deletions of multiple polyamine genes
results in virulence attenuation. These results point to functional redundancies between
the polyamine genes, and an absolute requirement for sufficient supplies of polyamines
during infection, accommodated either through uptake, biosynthesis or both. In conclusion,
polyamines are required for virulence of several intracellular pathogens. Furthermore,
these pathogens have evolved distinct mechanisms (regulation of biosynthesis genes,
sequestration of host cell biosynthesis enzymes, and reduced degradation of polyamines)
to meet their shared requisite for polyamines during infection.

Competing interests

The authors declare that they have no competing interests.

Authors contributions

ICE carried out experiments, analysed the results and drafted the manuscript. PRG carried out experiments and analysed the data. LJ conceived the study, carried out experiments, analysed the data, provided materials, and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgement

418	This work was funded by the Danish Research Council for Technology and Production		
419	through Grant No. 12-126640.		
420			
421			
122		References	
423			
124 125 126 127	[1]	Barbagallo, M., Di Martino, M.L., Marcocci, L., Pietrangeli, P., De, C.E., Casalino, M., Colonna, B. and Prosseda, G. (2011) A New Piece of the Shigella Pathogenicity Puzzle: Spermidine Accumulation Silencing of the speG Gene. PLoS. ONE. 6, e27226.	
428 429	[2]	Bower, J.M. and Mulvey, M.A. (2006) Polyamine-mediated resistance of uropathogenic Escherichia coli to nitrosative stress. J. Bacteriol. 188, 928-933.	
430 431	[3]	Chattopadhyay, M.K., Tabor, C.W. and Tabor, H. (2003) Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc. Natl. Acad. Sci. U. S. A 100, 2261-2265.	
432 433 434	[4]	Cirillo, D.M., Valdivia, R.H., Monack, D.M. and Falkow, S. (1998) Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol. Microbiol. 30, 175-188.	
435 436 437	[5]	Datsenko, K.A. and Wanner, B.L. (2000) One step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U. S. A. 97, 6640-6645.	
438 439 440	[6]	Di Martino, M.L., Campilongo, R., Casalino, M., Micheli, G., Colonna, B. and Prosseda, G. (2013) Polyamines: Emerging players in bacteria-host interactions. Int. J. Med. Microbiol. 303, 484-491.	
441 442	[7]	Enomoto, M. and Stocker, B.A. (1974) Transduction by phage P1kc in Salmonella typhimurium. Virology 60, 503-514.	
143 144 145	[8]	Eriksson, S., Lucchini, S., Thompson, A., Rhen, M. and Hinton, J.C. (2003) Unravelling the biology of macrophage infection by gene expression profiling of intracellular Salmonella enterica. Mol. Microbiol. 47, 103-118.	
146 147	[9]	Goforth, J.B., Walter, N.E. and Karatan, E. (2013) Effects of Polyamines on Vibrio cholerae Virulence Properties. PLoS. ONE. 8, e60765.	
148 149	[10]	Igarashi, K. and Kashiwagi, K. (2000) Polyamines: mysterious modulators of cellular functions. Biochem. Biophys. Res. Commun. 271, 559-564.	
450 451	[11]	Igarashi, K. and Kashiwagi, K. (2006) Polyamine Modulon in Escherichia coli: genes involved in the stimulation of cell growth by polyamines. J. Biochem. 139, 11-16.	
452 453	[12]	Jelsbak, L., Hartman, H., Schroll, C., Rosenkrantz, J.T., Lemire, S., Wallrodt, I., Thomsen, L.E., Poolman, M., Kilstrup, M., Jensen, P.R. and Olsen, J.E. (2014) Identification of	

454 455		one. 9, e101869.
456 457 458	[13]	Jelsbak, L., Thomsen, L.E., Wallrodt, I., Jensen, P.R. and Olsen, J.E. (2012) Polyamines Are Required for Virulence in Salmonella enterica Serovar Typhimurium. PLoS. ONE. 7, e36149.
459 460 461	[14]	Johnson, L., Mulcahy, H., Kanevets, U., Shi, Y. and Lewenza, S. (2012) Surface-localized spermidine protects the Pseudomonas aeruginosa outer membrane from antibiotic treatment and oxidative stress. J. Bacteriol. 194, 813-826.
462 463 464	[15]	Kaniga, K., Tucker, S., Trollinger, D. and Galan, J.E. (1995) Homologs of the Shigella IpaB and IpaC invasins are required for Salmonella typhimurium entry into cultured epithelial cells. J. Bacteriol. 177, 3965-3971.
465 466 467	[16]	Mastroeni, P. and Grant, A.J. (2011) Spread of Salmonella enterica in the body during systemic infection: unravelling host and pathogen determinants. Expert. Rev. Mol. Med. 13, e12.
468 469 470 471	[17]	Mastroeni, P., Vazquez-Torres, A., Fang, F.C., Xu, Y., Khan, S., Hormaeche, C.E. and Dougan, G. (2000) Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. II. Effects on microbial proliferation and host survival in vivo. J. Exp. Med. 192, 237-248.
472 473 474	[18]	Nasrallah, G.K., Riveroll, A.L., Chong, A., Murray, L.E., Lewis, P.J. and Garduno, R.A. (2011) Legionella pneumophilaRequires Polyamines for Optimal Intracellular Growth. J. Bacteriol. 193, 4346-4360.
475 476 477	[19]	Russo, B.C., Horzempa, J., O'Dee, D.M., Schmitt, D.M., Brown, M.J., Carlson, P.E., Jr., Xavier, R.J. and Nau, G.J. (2011) A Francisella tularensis locus required for spermine responsiveness is necessary for virulence. Infect. Immun.
478 479 480 481	[20]	Schroll, C., Christensen, J.P., Christensen, H., Pors, S.E., Thorndahl, L., Jensen, P.R., Olsen, J.E. and Jelsbak, L. (2014) Polyamines are essential for virulence in Salmonella enterica serovar Gallinarum despite evolutionary decay of polyamine biosynthesis genes. Vet. Microbiol. 170, 144-150.
482 483	[21]	Shah, P. and Swiatlo, E. (2008) A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol. 68, 4-16.
484 485 486	[22]	Shea, J.E., Beuzon, C.R., Gleeson, C., Mundy, R. and Holden, D.W. (1999) Influence of the Salmonella typhimurium pathogenicity island 2 type III secretion system on bacterial growth in the mouse. Infect. Immun. 67, 213-219.
487 488 489	[23]	Shea, J.E., Hensel, M., Gleeson, C. and Holden, D.W. (1996) Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc. Natl. Acad. Sci. U. S. A 93, 2593-2597.
490 491 492	[24]	Wallis, T.S., Paulin, S.M., Plested, J.S., Watson, P.R. and Jones, P.W. (1995) The Salmonella dublin virulence plasmid mediates systemic but not enteric phases of salmonellosis in cattle. Infect. Immun. 63, 2755-2761.

493 494 495 496	[25]	allrodt, I., Jelsbak, L., Thomsen, L.E., Brix, L., Lemire, S., Gautier, L., Nielsen, D.S., Jovanovic, G., Buck, M. and Olsen, J.E. (2014) Removal of the phage-shock protein PspB causes reduction of virulence in Salmonella enterica serovar Typhimurium independently of NRAMP1. J. Med. Microbiol. 63, 788-795.		
497 498 499 500 501 502	[26]	odt, I., Jelsbak, L., Thorndahl, L., Thomsen, L.E., Lemire, S. and Olsen, J.E. (2013) The Putative Thiosulfate Sulfurtransferases PspE and GlpE Contribute to Virulence of Salmonella Typhimurium in the Mouse Model of Systemic Disease. PLoS. ONE. 8, e70829.		
503				

504			
505	Supplemental figure A1: Graphic presentation of the polyamine biosynthesis pathways		
506	present in S. Typhimurium, reviewed in [21]. SAM: S-adenosylmethionine.		
507			
508	Supplemental figure A2: CFU counts for indicated strains at indicated time points post		
509	infection of macrophages.		

Table 1. Strains used in the study.

Strain	Relevant genotype	Reference
S. Typhimurium ST4/74	virulent reference strain	[24]
S. Typhimurium KP1274	Restriction deficient strain, used	[7]
	for introduction of plasmids.	
LJ268	ST4/74::Δ <i>potCD</i> ;Δ <i>speE</i> . Kan ^R .	This work.
LJ318	ST4/74::ΔspeB;ΔspeC;	[13]
	ΔspeE;ΔspeF. Cam ^R , Kan ^R .	
LJ328	ST4/74::ΔspeB;ΔspeC;	[13]
	ΔspeE;ΔspeF/pACYC-speB.	
	Amp ^R , Cam ^R , Kan ^R .	
LJ251	ST4/74::Δ <i>potCD</i> .	This work.
LJ336	ST4/74::ΔpotCD;ΔspeE/pACYC-	This work.
	potCD. Amp ^R , Kan ^R .	
LJ238	ST4/74::Δ <i>speE</i> . Cam ^R .	This work.
LJ607	ST4/74::ΔssaV. Kan ^R .	[25]

Highlights for the manuscript entitled "Multiple roles of putrescine and spermidine in stress resistance and virulence of *Salmonella enterica* serovar Typhimurium" by authors Irene Cartas Espinel, Priscila Regina Guerra, and Lotte Jelsbak.

- Polyamines are required for resistance against nitrosative stress, but not oxidative stress.
- Polyamines are required for intracellular replication in macrophage-like cells.
- Polyamines are required for virulence in mice deficient for nitric oxide synthase.
- Spermidine is essential for virulence in mice, even in the presence of functional putrescine biosynthesis genes.