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DK-4000 Roskilde, Denmark
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This paper derives and discusses the configuration-space Langevin equation describing a physically
aging R-simple system and the corresponding Smoluchowski equation. Externally controlled ther-
modynamic variables like temperature, density, and pressure enter the description via the single
parameter T s/T, in which T is the bath temperature and T s is the “systemic” temperature defined at
any time t as the thermodynamic equilibrium temperature of the state point with density ρ(t) and
potential energy U(t). In equilibrium, T s � T with fluctuations that vanish in the thermodynamic
limit. In contrast to Tool’s fictive temperature and other effective temperatures in glass science, the
systemic temperature is defined for any configuration with a well-defined density, even if it is not
close to equilibrium. Density and systemic temperature define an aging phase diagram, in which
the aging system traces out a curve. Predictions are discussed for aging following various density-
temperature and pressure-temperature jumps from one equilibrium state to another, as well as for a few
other scenarios. The proposed theory implies that R-simple glass-forming liquids are characterized
by the dynamic Prigogine-Defay ratio being equal to unity. © 2018 Author(s). All article content,
except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5022999

I. INTRODUCTION

Aging is the general term used for gradual changes of
material properties. In practice, aging is often caused by chem-
ical reactions, but in certain cases the “physical” aging due to
slight adjustments of molecular positions is more important.1

For decades, phenomenological models have been used in
industry to predict the physical aging of inorganic glasses and
polymers, both during production and in subsequent use.1–9

A number of theories of physical aging have been developed
in different contexts,1,3,7,10–21 but there are still fundamental
scientific challenges and limitations to the models used. Given
this fact and the significant technological interest in the sub-
ject, it is surprising that physical aging is not more widely
studied in academia. This may be because aging experiments
are quite challenging. A setup studying minute changes of
material properties, which take place over weeks or months,
severely limits the number of experiments that can be car-
ried out. This frustrates the experimentalist when something
goes wrong or it turns out, for instance, that a slightly different
annealing temperature should have been used and months may
have been wasted.

The present paper is motivated by Niss’ recent study
of physical aging of molecular weight 390 polyisobuty-
lene, a seven unit “polymer.”22 Her experiments utilized
high-precision dielectric spectroscopy to monitor slight den-
sity changes following temperature jumps small enough to
be virtually linear, i.e., below 0.2 K, as well as jumps
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resulting in nonlinear structural relaxation (maximum jump:
2 K). The findings were rationalized by assuming that aging
states can be mapped onto the equilibrium temperature-density
phase diagram. In this diagram, Niss proposed the existence
of “isostructural” lines along which the system jumps after a
temperature or pressure change, subsequently relaxing toward
equilibrium.

The existence of isostructural lines in the equilibrium ther-
modynamic phase diagram is a prediction of the isomorph
theory,23 so an obvious question that arises is, can Niss’ phys-
ical picture be interpreted within this framework? The present
paper develops a general isomorph theory of physical aging
and shows that it gives rise to a mapping into a phase diagram
similar to that envisaged by Niss. The proposed framework is
limited to systems obeying the isomorph theory, though, i.e.,
those with hidden scale invariance. Such so-called R-simple
systems24–38 include the solid and liquid phases of most met-
als, van der Waals bonded systems, and weakly ionic or dipolar
systems, whereas systems with strong directional bonds like
covalently or hydrogen-bonded glass-forming liquids are not
R-simple.39 In particular, the traditional oxide glasses are not
expected to be described by the theory developed below.

After briefly reviewing the isomorph theory in Sec. II,
Sec. III derives the general equations describing the physi-
cal aging of R-simple systems within a Langevin equation
framework, which gives rise to the concept of a systemic tem-
perature. Section IV compares the systemic temperature to
Tool’s fictive temperature from 1946 and introduces an “aging
phase diagram” defined by density and systemic temperature.
Section V discusses predictions for different scenarios
embodying a sudden change of thermodynamic parameters to
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new constant values, and Sec. VI discusses a few other predic-
tions. Finally, Sec. VII gives a brief discussion. The Appendix
connects to the characterization of single-order-parameter sys-
tems in terms of their linear-response thermoviscoelastic prop-
erties40 by showing that the theory developed here implies a
dynamic Prigogine-Defay ratio that is equal to unity.

II. ISOMORPH THEORY

If the vector of all N particle coordinates is denoted by
R ≡ (r1, . . ., rN ) and the potential-energy function by U(R), an
R-simple system by definition obeys the following condition
for uniform scaling of same density configurations Ra and
Rb:41

U(Ra) < U(Rb)⇒ U(λRa) < U(λRb). (1)

Here λ is a scaling parameter. For realistic R-simple systems,
the scale-invariance property Eq. (1) is only obeyed for λ’s
not too different from unity and only for the majority of the
system’s physically relevant configurations; how well the the-
ory applies depends on the state points in question. For most
systems obeying Eq. (1) to a good approximation, this is not
obvious from the mathematical expression for the potential
energy, which is why the term “hidden scale invariance” is
sometimes used.39

R-simple systems have isomorphs in their thermodynamic
phase diagram, which are lines along which the system’s
structure and dynamics are invariant to a good approxima-
tion.39 Due to its isomorphs, an R-simple system has a phase
diagram that is one-dimensional in regard to many proper-
ties. This excludes convoluted variation of physical quantities
throughout the phase diagram; hence the name “R-simple” for
systems that have isomorphs (the term “simple system” implies
a system of particles interacting via pair potentials42–55).

Isomorph theory is based on the use of reduced units.
These are macroscopically defined and different from the units
usually used in reporting results from computer simulations
based on the parameters of the interaction potential. At any
given thermodynamic state point, reduced units are defined
from the length l0, in which ρ = N /V is the particle number
density,

l0 ≡ ρ
−1/3, (2)

the thermal energy e0, in which T is the temperature,

e0 ≡ kBT , (3)

and the time t0, in which µ is the generalized mobility defined
in the Langevin equation (15),

t0 ≡ l2
0/(µe0) = ρ−2/3/(µkBT ). (4)

These units are state-point dependent, but experimen-
tally accessible without knowing the system’s Hamilto-
nian (Newtonian dynamics lead to the different time unit
t0 = ρ−1/3

√
m/kBT , where m is the average particle mass23,55).

The isomorph concept is derived from Eq. (1) as follows.
Recall that the excess entropy Sex is the entropy minus that of
an ideal gas at the same temperature and density56 (Sex < 0
because a liquid is always more ordered than a gas). One
defines the microscopic excess entropy function Sex(R) as the
thermodynamic excess entropy of the equilibrium state with

density ρ and average potential energy U(R).41 Thus two con-
figurations have the same excess entropy if they have the same
density and potential energy (it is assumed that all physically
relevant configurations fill out the volume V with no holes
and thus define a unique density). Utilizing the microcanoni-
cal expression for the excess entropy Sex, Ref. 41 showed from
Eq. (1) that Sex(R) depends only on a configuration’s reduced
coordinate vector R̃ ≡ R/l0 = ρ1/3R, i.e.,

Sex(R) = Sex(R̃). (5)

If U(ρ, Sex) is the thermodynamic average potential energy
regarded as a function of density and excess entropy, the
definition of Sex(R) in conjunction with Eq. (5) leads to

U(R) = U(ρ, Sex(R̃)). (6)

Equation (6) implies invariance of the reduced-unit struc-
ture and dynamics along the curves of constant Sex in the
thermodynamic phase diagram.41 These curves are termed
isomorphs.23,41

Although the isomorph theory is exact only for systems
with an Euler-homogeneous potential-energy function plus a
constant, its predictions have been confirmed in computer sim-
ulations of Lennard-Jones type systems,23,57 simple molecular
models,58 crystals,59 nano-confined liquids,60 non-linear shear
flows,61 zero-temperature plastic flows of glasses,62 polymer-
like flexible molecules,63,64 metals studied by density func-
tional theory (DFT) ab initio computer simulations,65 plas-
mas,66 non-viscous liquids,55,67 and the Lennard-Jones fluid
in four dimensions.68 Moreover, the theory recently provided
the basis for quantitative predictions for the thermodynamics
of freezing and melting and how various quantities change
along the melting line.69,70 Experimental confirmations of
isomorph-theory predictions have been presented in Refs. 22
and 71–75. In particular, the density-scaling relation obeyed by
many glass-forming liquids76–79 and the so-called isochronal
superposition property33,74,80,81 are both consequences of the
theory.23

Consider now two state points (ρ1, T1) and (ρ2, T2) on
the isomorph with excess entropy S0

ex, and suppose R1 and
R2 are configurations of these state points corresponding to
different densities but with the same reduced coordinates, i.e.,
R̃1 = R̃2. Since (∂U/∂Sex)ρ = T ,41 first-order Taylor expan-
sions of Eq. (6) lead to

U(R1) = U1 + T1

(
Sex(R̃1) − S0

ex

)
,

U(R2) = U2 + T2

(
Sex(R̃2) − S0

ex

)
.

(7)

Here U1 and U2 are the average potential energies at the two
state points (henceforth, whenever we write a quantity without
reference to a configuration R, the equilibrium thermal average
of this quantity at the state point in question is implied, e.g.,
U = 〈U(R)〉, etc.). Eliminating Sex(R̃1) − S0

ex = Sex(R̃2) − S0
ex,

one gets

U(R1) − U1

T1
=

U(R2) − U2

T2
. (8)

In this approximation, the Boltzmann canonical probabilities
of configurations from two isomorphic state points, which can
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be scaled uniformly into one another, are thus proportional,23

i.e.,

e−U(R1)/kBT1 = C12 e−U(R2)/kBT2 whenever ρ1/3
1 R1 = ρ

1/3
2 R2.

(9)

Here C12 is a constant that does not depend on the two con-
figurations. The formalism developed below assumes the first-
order expansion Eq. (7) and, consequently, the invariance of
the canonical probabilities of scaled configurations along an
isomorph that follows from Eq. (9).

Important roles are played in the isomorph theory by the
potential energy U and the virial W. Recall that the latter quan-
tity gives the term added in the ideal-gas equation to reflect
particle interactions,56,82

pV = NkBT + W . (10)

The microscopic virial W (R) is defined from the potential-
energy change for a uniform scaling of all particle coordi-
nates,82 i.e., keeping R̃ fixed,

W (R) ≡

(
∂U(R)
∂ ln ρ

)
R̃

. (11)

Equation (6) implies

W (R) =
∂U(ρ, Sex)
∂ ln ρ

�����Sex=Sex(R̃)
. (12)

Thus the microscopic virial has a form analogous to that of
the potential energy [Eq. (6)], W (R) = W (ρ, Sex(R̃)), in which
W (ρ, Sex) is the thermodynamic average virial as a function
of density and excess entropy. Since Sex(R̃) is by definition a
function of ρ and U(R), W (R) is a function of ρ and U(R).
Summarizing one has

W (R) = W (ρ, Sex(R̃)) = W (ρ, U(R)). (13)

Via Eq. (10), this implies for the pressure of the configuration
R of density ρ,

p(R) = ρ
(
kBT + W (ρ, Sex(R̃))/N

)
. (14)

The above equations implicitly assume that the configurations
are typical for a liquid or a solid, i.e., that they do not have large
holes and fill out space uniformly. In this way, any given con-
figuration R defines a density ρ(R) though we for simplicity
just write ρ.

Equation (13) implies perfect correlations between virial
and potential energy fluctuations at constant density,41 the
property that originally defined an ideal R-simple (strongly
correlating) system.83–85 Since the isomorph theory is usu-
ally only approximate, Eq. (13) does not apply rigorously for
all configurations and at all densities. This means that real-
istic R-simple systems are characterized by strong, but not
perfect correlations between the virial and potential-energy
constant-volume equilibrium fluctuations.39,84

When applying the below aging theory to density and pres-
sure jumps in Sec. V, we make use of the fact that compressing
an R-simple system from the outside results in a uniform scal-
ing of all particle coordinates. This follows from Eqs. (6) and
(13), which imply that a uniform compression results in a
force distribution throughout the sample that is proportional to

the original one. An alternative way of proving uniform com-
pression for R-simple systems makes use of the fact that the
reduced forces are functions only of the reduced coordinates.55

The uniform compression requirement is not restrictive. In
particular, this requirement does not imply spatial homogene-
ity of the forces between particles, and the R-simple system
in question may very well be characterized by force-chains as
found, e.g., in granular media.86 An example of this is a mixture
of different particles interacting via inverse-power-law pair
potentials. This system rigorously obeys the uniform compres-
sion requirement, but may nevertheless have nearest-neighbor
forces varying by several orders of magnitude, depending on
the range of pair-potential parameters.

For more on the isomorph theory and its applications to
different fields, the reader is referred to the reviews given in
Refs. 39, 54, 55, and 87.

III. PHYSICAL AGING OF R-SIMPLE SYSTEMS:
GENERAL FORMALISM

In experimental studies of aging, the temperature T is
externally controlled and identified as the phonon “bath” tem-
perature measured on a thermometer. This quantity is defined
whenever there is thermal equilibrium among the system’s
fast degrees of freedom. Given this role of the bath temper-
ature, it is simplest to describe the microscopic dynamics by a
Langevin equation of motion, also known as Brownian dynam-
ics.88 There is evidence from computer simulations that for
glass-forming liquids, i.e., liquids with much longer relax-
ation times than phonon times, Newtonian, Brownian, and
NVU dynamics89 give virtually the same physics.90,91

In the Langevin equation, the mean particle velocity is
proportional to the force (“Aristotle’s law”). The actual veloc-
ity is the mean velocity plus a white noise term, the magnitude
of which is determined by the bath temperature. The Langevin
equation is88,92

Ṙ = −µ∇U(R) + η(t), (15)

in which µ is a generalized mobility, i.e., velocity over force,
and the noise vector η(t) is composed of Gaussian random
variables ηi(t), obeying

〈ηi(t)ηj(t
′)〉 = 2µ kBT δijδ(t − t ′). (16)

The corresponding Smoluchowski equation for the prob-
ability distribution P(R, t) is the generalized diffusion
equation88,92

∂P(R, t)
∂t

= µ∇ ·
((
∇U(R)

)
P(R, t) + kBT∇P(R, t)

)
, (17)

the equilibrium solution of which is the canonical distribution

Peq(R) ∝ e−U(R)/kBT . (18)

The above is general. We now restrict to R-simple systems.
First, the Langevin equation is made dimensionless using the
reduced units of Eqs. (2)–(4). As above, a tilde signals that
the quantity in question is reduced and dimensionless, e.g.,
R̃ = ρ1/3R. Equation (15) is made dimensionless by multi-
plying by t0/l0 on each side, after which the left-hand side
becomes (t0/l0)Ṙ = dR̃/dt̃ ≡ ˙̃R. For the first term on the
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right-hand side, since ∇ = ∇̃/l0, it follows from Eq. (6) that
∇U(R) = (Ts(R)/l0)∇̃Sex(R̃), in which T s(R) is the thermody-
namic equilibrium temperature of the state point with density
ρ and excess entropy Sex(R̃),

Ts(R) ≡
∂U(ρ, Sex)

∂Sex

�����Sex=Sex(R̃)
. (19)

T s may be regarded as the system’s excess entropy tempera-
ture. We refer to T s as the “systemic temperature” because it
is a global, not locally defined temperature.

In equilibrium, T s � T with fluctuations that vanish in the
thermodynamic limit. The systemic temperature is a function
of the density ρ and of Sex(R̃). Equivalently, via Eq. (6) T s may
be regarded as a function of the density and potential energy
U(R). Depending on the situation, one or the other represen-
tation is most convenient to use. Summarizing, the systemic
temperature is given by [compare the analogous identities for
the virial Eq. (13)]

Ts(R) = Ts(ρ, Sex(R̃)) = Ts(ρ, U(R)). (20)

After the multiplication by t0/l0 on the right-hand side
of Eq. (15), since µt0/l2

0 = 1/kBT by Eq. (4), the first term
becomes −(Ts/T )∇̃S̃ex(R̃), in which S̃ex ≡ Sex/kB. The second
term becomes η̃(t̃) ≡ (t0/l0)η(t) with autocorrelation given by
(recall that Cδ(Cx) = δ(x))

〈η̃i(t̃)ηj(t̃
′)〉 =

t2
0

l2
0

2µ kBTδijδ(t − t ′) = 2 δijδ(t̃ − t̃ ′). (21)

In conjunction with Eq. (21), the reduced Langevin equation
is thus

˙̃R = −
Ts(ρ(t̃), Sex(R̃))

T (t̃)
∇̃S̃ex(R̃) + η̃(t̃). (22)

Equation (22) is the Langevin equation for an R-simple system.
It applies generally, i.e., in equilibrium as well as during aging.
The corresponding Smoluchowski equation is

∂P(R̃, t̃)
∂ t̃

= ∇̃ ·

(
Ts(ρ(t̃), Sex(R̃))

T (t̃)
(
∇̃S̃ex(R̃)

)
P(R̃, t̃) + ∇̃P(R̃, t̃)

)
.

(23)

Note that at any given time the reduced time is defined by
reference to the density and temperature at that time. Thus,
with Eq. (4) in mind, the definition of t̃ may be written as

dt̃ =
dt

t0(ρ(t), T (t))
. (24)

The systemic temperature is an intensive quantity and
consequently its fluctuations are insignificant in the thermo-
dynamic limit. This suggests a mean-field approximation that
replaces Ts(ρ(t̃), Sex(R̃)) by its ensemble average, i.e.,

∂P(R̃, t̃)
∂ t̃

= ∇̃ ·

(
Ts(t̃)
T (t̃)

(
∇̃S̃ex(R̃)

)
P(R̃, t̃) + ∇̃P(R̃, t̃)

)
, (25)

in which Ts(t̃) ≡ ∫ Ts(ρ(t̃), Sex(R̃))P(R̃, t̃)dR̃. This is a good
approximation in all situations except in and very close to
thermal equilibrium. We end this section by turning to this
situation, in which one must refer to Eqs. (22) and (23).

In equilibrium T s � T, so in the thermodynamic limit
Eq. (22) apparently reduces to

˙̃R = −∇̃S̃ex(R̃) + η̃(t̃). (26)

This cannot be correct, however, because Eq. (26) has no refer-
ence to the thermodynamic state point. In fact, Eq. (26) implies
that all excess entropy values are equally likely: the equilib-
rium probability distribution of the Smoluchowski equation
corresponding to Eq. (26) is proportional to exp(−S̃ex(R̃)), the
density of states is proportional to exp(S̃ex(R̃)) by the definition
of entropy, and their product is a constant. Keeping the factor
T s/T in Eq. (22) is thus necessary also when studying equi-
librium fluctuations. This factor prevents the excess entropy
from drifting away by increasing the damping whenever the
excess entropy (equivalently: potential energy) is larger than its
state-point average, corresponding to T s > T, thus taking more
potential energy away from the system than required to balance
the noise. Conversely, the damping is decreased whenever the
excess entropy goes below its state-point average, resulting in
increasing excess entropy and potential energy.

For a large system in equilibrium at constant volume, T s

may be expanded as follows:

Ts = T +

(
∂T
∂Sex

)
ρ

(Sex(R̃) − Sex). (27)

Since (∂Sex/∂T )ρ = CV
ex/T , this implies with C̃ex

V ≡ CV
ex/kB

and S̃ex ≡ Sex/kB that

Ts

T
= 1 +

S̃ex(R̃) − S̃ex

C̃ex
V

. (28)

Hence, Eq. (22) becomes

˙̃R = −
(
1 +

S̃ex(R̃) − S̃ex

C̃ex
V

)
∇̃S̃ex(R̃) + η̃(t̃). (29)

The corresponding Smoluchowski equation is

∂P(R̃, t̃)
∂ t̃

= ∇̃ · *
,

(
1 +

S̃ex(R̃) − S̃ex

C̃ex
V

) (
∇̃S̃ex(R̃)

)
× P(R̃, t̃) + ∇̃P(R̃, t̃)+

-
. (30)

There is now a reference to the state point in question via
its reduced excess entropy S̃ex. Equation (30) implies that the
equilibrium distribution is given by

Peq(R̃) ∝ exp *
,
−S̃ex(R̃) −

(S̃ex(R̃) − S̃ex)2

2 C̃ex
V

+
-

. (31)

Both Eq. (30) and its equilibrium solution Eq. (31) are iso-
morph invariant because C̃ex

V is isomorph invariant in the first-
order approximation leading to Eq. (8).23 Since the density of
states is proportional to exp(S̃ex(R̃)), Eq. (31) implies a Gaus-
sian equilibrium probability distribution of the reduced excess
entropy with standard deviation C̃ex

V , compare the discussion
of entropy fluctuations in Ref. 93.

IV. AGING PHASE DIAGRAM DEFINED
FROM DENSITY AND SYSTEMIC TEMPERATURE

In his seminal 1946 paper,10 Tool defined the “equilib-
rium or fictive temperature” of a glass T f as the “temperature
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at which the glass would be in equilibrium if heated or cooled
very rapidly to it.” It is a non-trivial assumption that such a tem-
perature exists. The appealing physical idea is that structure
may be quantified in terms of a temperature that in equilibrium
is identical to the actual temperature. In the simplest case, it
is assumed that the glass’ volume and temperature determine
T f.10,11,94,95 Similar structural “effective” temperatures have
been discussed in various contexts.96–101

Tool did not state whether the imagined rapid heating
or cooling is supposed to take place at constant pressure or
constant volume, but given the ambient pressure conditions
of most experiments he most likely had the former in mind.
As discussed by Niss,22 the two scenarios differ in important
respects that are not accounted for by Tool’s fictive temperature
concept. Niss concluded that “the classical fictive temperature
definition de facto ignores that the equilibrium phase diagram
has two dimensions.”22 Equation (19) resolves this challenge
by introducing the systemic temperature T s, which allows for
describing both density and pressure jumps unambiguously
(Sec. V). The price paid is that T s is, most likely, only a useful
concept for R-simple systems, which excludes the technolog-
ically important case of oxide glasses. On the other hand, the
definition Eq. (19) does not assume that the system is close
to equilibrium as is implicitly assumed in the definition of
Tool’s fictive temperature T f and most other effective temper-
atures.97,99–101 The systemic temperature also differs from T f

in other respects. For instance, due to the entropy associated
with the phonon degrees of freedom, T s varies with the actual
temperature even deep into the glassy state.

Before proceeding, we briefly reflect on how the sys-
temic temperature may be calculated from experimental or
computer simulation data. The systemic temperature is a new
concept with no one-to-one relation to previously discussed
structural temperatures like the configurational or effective
temperature.96–101 The definition of T s via Sex given in Eq. (19)
is of little use in practice, but fortunately Eq. (20) implies
that knowledge of density and potential energy is enough to
determine T s. In a computer simulation, one may map out the
equilibrium average potential energy as a function of density
and temperature. Inverting these data determines the equi-
librium temperature as a function of density and potential
energy, which is the functional dependence that defines T s.
Once this has been established, at any given time during an
aging computer simulation, T s is given from the density and
potential energy. In experiments, the situation is more chal-
lenging because the potential energy is not directly measurable
and some model must be used to estimate it as a function of
density and temperature (a further challenge is to monitor the
density of the system with sufficient accuracy).

Because the configuration R determines both the den-
sity and the systemic temperature T s = T s(ρ, U(R)), at any
given time an aging system is characterized by a point in the
“aging phase diagram,” defined as the (ρ, T s) plane. Just as
the equilibrium phase diagram, the aging phase diagram has
isomorphs defined as curves of constant excess entropy. This
follows from the fact that by inversion of Eq. (20) the excess
entropy is a unique function of density and systemic temper-
ature, Sex(R̃) = Sex(ρ, Ts(R)). Substituting this into Eqs. (6)
and (13), one concludes that the aging phase diagram likewise

has curves of constant potential energy and curves of constant
virial. Note that while these are mathematically well-defined
curves in the aging phase diagram, their existence does not
imply that the potential energy or the virial is constant during
aging.

By definition, the aging phase diagram and the equilib-
rium (ρ, T ) phase diagram have the same isomorphs, iso-
potential-energy curves, and iso-virial curves, i.e., these curves
fall on top of each other if the (ρ, T s) and the (ρ, T ) coordi-
nate systems are put on top of each other. In this sense, the
aging phase diagram realizes Niss’ idea of mapping the aging
system onto the equilibrium phase diagram. In particular, the
aging phase diagram has the isostructural lines conjectured by
Niss—these are the isomorphs. Note, however, that the iso-
virial lines in the aging phase diagram are not isobars since
the kinetic contribution to the pressure depends on the temper-
ature T [Eq. (10)] that is not represented in the diagram. The
aging phase diagram would be more complete if T was added
as a third dimension, leading to well-defined isobaric surfaces,
but we stick here to defining the aging phase diagram as the
two-dimensional (ρ, T s) plane.

To summarize, at any given time an R-simple system
defines a point in the aging phase diagram, no matter whether
the system is far out of equilibrium, is aging and approach-
ing equilibrium smoothly, or is in thermal equilibrium. In
the latter case the system’s point in the aging phase diagram
stays constant and is given by the equilibrium density and
temperature (T s = T ). The only requirement that needs to be
obeyed for mapping an R-simple system into its aging phase
diagram is the above-mentioned assumption that the system
has no holes and homogeneously fills out space to define a
density.

V. PREDICTIONS FOR JUMPS FROM ONE STATE
TO ANOTHER

An ideal aging experiment starts in equilibrium, changes
the thermodynamic conditions instantaneously, and keeps
them constant, while monitoring the full approach to equi-
librium.21 Such jumps are easily carried out in computer sim-
ulations but are difficult to realize in the laboratory. Approxi-
mating an ideal aging jump experiment requires that the new
temperature is established uniformly throughout the sample
on a time scale much shorter than that of any significant
relaxation. This is challenging due to the slowness of heat con-
duction and the broad relaxation time spectra involved in aging,
stretching to much shorter times than the average structural
relaxation time. The strategy used in the Glass and Time group
is to approach ideal aging conditions by working with thin
samples (0.05 mm) and using a Peltier element for controlling
the temperature. In this way, it is possible to obtain excellent
temperature equilibration within a few seconds.21,22,102

Below we detail the predictions for R-simple systems
subjected to ideal aging experiments. Two different cases
are discussed, density-temperature controlled jumps and
pressure-temperature controlled jumps. The former are sim-
plest because the density is an explicit variable in the aging
equation, whereas pressure control implies a constraint that
determines how the density evolves with time. Because aging is
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controlled by T s/T [Eq. (25)], the central quantity to keep track
of is the systemic temperature. Whenever T s < T, the aging
system increases its potential energy during aging; whenever
T s > T, the potential energy decreases.

In most aging experiments and theories it is assumed that
the structure ages much more slowly than the phonon (vibra-
tional) degrees of freedom, which equilibrate on the picosec-
ond time scale. For glass-forming liquids, one often identifies
the structure by the so-called inherent state, the mechanical-
equilibrium configuration in the potential-energy landscape
reached by steepest descent from the actual configuration.103

After a temperature change, the phonon degrees of freedom
equilibrate rapidly on a time scale at which the system is still
inside the “basin” defined by the inherent state. This physical
picture is realistic, though for a large system at any given time
barrier transitions occur somewhere in the sample, making the
picture more blurry.

We henceforth assume the above standard time-scale sep-
aration, in which the structure ages on a much longer time scale
than required for equilibrating the phonon degrees of freedom.
We discuss the predictions for T s for different types of jumps,
starting at t = 0 from a state indexed 1, instantaneously chang-
ing the thermodynamic conditions to those of a state indexed
2. The final “annealing” temperature is thus denoted by T2.
To be specific, if the jump is induced by changing one or two
thermodynamic quantities, these are assumed to increase, e.g.,
T2 ≥ T1, ρ2 ≥ ρ1, p2 ≥ p1. The opposite situations of one or
more quantities decreasing are treated analogously.

For each jump, three time regimes are considered: (1)
right after the jump indicated by writing t = 0+, (2) after
phonon equilibration, i.e., after a few picoseconds, and (3)
after full thermal equilibration. Regimes (1) and (2) cannot be
distinguished in experiments, but are easily distinguished in
computer simulations. Regimes (2) and (3), on the other hand,
are well separated in good experiments. Note that the general
aging isomorph theory does not imply or require the time-scale
separation that follows from the existence of a well-defined
phonon equilibration time scale much shorter than the time
of molecular rearrangements. Nevertheless, in order to con-
nect to the experimentally most relevant case, we will assume
time-scale separation. Another thing to be mentioned is that
the discussion below ignores thermal fluctuations. Thus when
we write, e.g., T = T s, it is understood that this equilibrium
condition applies to the extent that deviations go to zero in the
thermodynamic limit.

A. Density-temperature jumps

This section discusses three different jumps for which
density and temperature are the externally controlled ther-
modynamic variables: an isomorph jump, an isochoric (con-
stant volume) temperature increase, and an isothermal density
increase. The jump starts in equilibrium at the state point (ρ1,
T1) and ends in equilibrium at (ρ2, T2). It is assumed that
the external density control results in a uniform affine trans-
formation of the system, compare the discussion at the end
of Sec. II; this implies that right after the jump the system’s
reduced coordinate R̃ is unchanged. The predictions arrived at
below are illustrated in Fig. 1.

1. Isomorph jump

An isomorph jump takes place between two state points
on the same isomorph, i.e., with the same excess entropy,

Sex(ρ1, T1) = Sex(ρ2, T2). (32)

In this case, equilibrium is obtained instantaneously at the
new state point, no matter how large the equilibrium relax-
ation time is at the state points in question.23 To prove this,
note first that right after the jump the density is ρ2, while
R̃ and thus Sex(R̃) are unchanged, implying that Ts(t = 0+)
=Ts(ρ2, Sex(R̃)). Before the jump, the system is in equilibrium,
i.e., Sex(R̃) = Sex(ρ1, T1). From Eq. (32), we conclude that
Sex(R̃) = Sex(ρ2, T2), which means that right after the jump
Ts(t = 0+) = Ts(ρ, Sex(R̃)) = Ts(ρ2, Sex(ρ2, T2)). According
to the definition of the systemic temperature, the right-hand
side is T2, implying that

Ts(t = 0+) = T2. (33)

Thus the system is in equilibrium at the new state point (ρ2,
T2) right after the jump as far as the systemic temperature is
concerned. The equality T s = T2 by itself does not guaran-
tee equilibrium, however. This is ensured by the fact that the
equation of motion Eq. (22) involves only the reduced coor-
dinate, and since T s/T = 1 both before and after the jump, the
reduced-unit dynamics are unaffected by the jump. In other
words, the equilibrium distribution Eq. (31) applies before as
well as right after the jump. Thereafter, of course, the system
stays in equilibrium.

The prediction of instantaneous equilibration for density-
temperature isomorph jumps23 has been validated in computer
simulations of R-simple atomic, molecular, and polymeric
model liquids.23,58,63 Isomorph jumps have also been demon-
strated for the Lennard-Jones single crystal studied on the
picosecond time scale.59

2. Isochoric temperature jump

Consider next the situation in which ρ2 = ρ1 and
T2 > T1. Right after the jump, neither the density nor Sex(R̃)
has changed. Before the jump T s = T1, and since T s is a func-
tion of density and excess entropy [Eq. (20)], we conclude that
T s(t = 0+) = T1.

The fact that T s < T2 right after the jump implies that the
system on average increases its potential energy when it equi-
librates on the phonon time scale. This leads to a stabilization
of T s on some value obeying T1 < T s < T2. After this, on the
longer time scale of structural equilibration, the system fur-
ther increases its potential energy until equilibrium has been
reached at which T s = T2.

3. Isothermal density jump

In this case, T2 = T1 and ρ2 > ρ1. Right after the jump,
Sex is unchanged, implying that Sex(ρ2, T s(t = 0+)) = Sex(ρ1,
T1). This means that at t = 0 the system jumps along an iso-
morph in the aging phase diagram (as shown in Ref. 104,
this fact may be used to rationalize the long-standing mys-
tery that the effective temperature of a glass in computer
simulations depends only on the final density jumped to105).
Because (∂T/∂ρ)Sex > 0, T s jumps at t = 0 to a larger value,
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FIG. 1. Aging phase diagrams for the three different density-temperature jumps detailed in the text, starting in equilibrium at the state point (ρ1, T1) and ending
in equilibrium at the state point (ρ2, T2). The figure relates to the typical situation of physical aging, in which there is a clear separation of the phonon time scale
and the much slower time scale of structural relaxation. The red dashed lines are the isomorphs through the initial state points. States are marked by a black
point immediately before and after the jump, after equilibration on the phonon time scale of order picoseconds (t ∼ ps), and when the system is fully equilibrated
at which point T s = T2 (t → ∞). (a) Isomorph density jump. In this case, the system is instantaneously in equilibrium at the new density and temperature. (b)
Isochoric temperature jump. The system does not jump immediately, but gradually thermalizes by increasing the potential energy (and thus T s), first on the
phonon time scale at which partial equilibration takes place and subsequently as the system equilibrates its structural degrees of freedom. (c) Isothermal density
jump. In this case, the system is instantaneously compressed to density ρ2 by jumping along the isomorph, after which it subsequently thermalizes.

T s > T2 = T1. When the phonon degrees of freedom subse-
quently equilibrate, the potential energy decreases. This lowers
T s, initially not to the equilibrium value T2 that is reached
only much later when the structural degrees of freedom
equilibrate.

B. Pressure-temperature jumps

Consider next the common experimental situation in
which the pressure and temperature are externally controlled.
Recall that in terms of the virial W (ρ, Sex(R̃)) the pressure is
given by Eq. (14), which involves also the density and temper-
ature. A pressure-temperature jump starts from equilibrium at
the state point (p1, T1) and ends in equilibrium in (p2, T2).
It is assumed that external pressure changes result in affine
transformations of the sample (compare the discussion at the
end of Sec. II), i.e., right after the jump the system’s reduced
coordinate R̃ and thus its excess entropy are unchanged. The
predictions arrived at below are illustrated in Fig. 2.

1. Isomorph jump

A pressure-temperature jump between isomorphic states,
i.e., states characterized by Sex(p1, T1) = Sex(p2, T2), leads to
instantaneous equilibration just as for a density-temperature
isomorph jump. To see this, note first that if ρ2 is the
equilibrium density of the state point (p2, T2), one has by
Eq. (14)

p2 = ρ2
(
kBT2 + W (ρ2, Sex(p2, T2))/N

)
. (34)

Since Sex(R̃) = Sex(p1, T1) does not change at t = 0, the density
right after the jump is determined by

p2 = ρ(t = 0+)
(
kBT2 + W (ρ(t = 0+), Sex(p1, T1))/N

)
. (35)

For given pressure, temperature, and excess entropy, Eq. (14)
determines the density. Comparing Eqs. (34) and (35), because
Sex(p1, T1) = Sex(p2, T2), we conclude that

ρ(t = 0+) = ρ2. (36)
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FIG. 2. Aging phase diagrams for the three different pressure-temperature jumps detailed in the text, starting in equilibrium at the state point (p1, T1) and
ending in equilibrium at the state point (p2, T2). The corresponding equilibrium densities are denoted by ρ1 and ρ2. The figure relates to the typical situation
of physical aging, in which there is a clear separation of the phonon time scale and the much slower time scale of structural relaxation. The red dashed lines
are the isomorphs through the initial state points; the green dashed lines are isobars defined by p2 and T2 [Eq. (39)]. States are marked by a black point
immediately before and after the jump, after equilibration on the phonon time scale of order picoseconds (t ∼ ps), and when the system is fully equilibrated at
which point T s = T2 (t →∞). (a) Isomorph pressure jump. In this case, the system is instantaneously in equilibrium at the new pressure and temperature, just
as for the isomorph density jump. (b) Isobaric temperature jump. The system jumps immediately along the isomorph through the initial state point leading to
an initial decrease of the systemic temperature. After that, the system thermalizes by increasing the potential energy and thus T s by moving along the isobar
defined by p2 and T2. This happens first on the phonon time scale at which partial equilibration takes place and subsequently as the system equilibrates its
structural degrees of freedom. (c) Isothermal pressure jump. In this case, there is also an instantaneous isomorph jump, followed by thermalization at constant
pressure.

This means that after applying the external pressure p2, the
system immediately jumps to the equilibrium density at the
state point (p2, T2). In effect, the system performs a density-
temperature isomorph jump, leading as we have already seen
to instantaneous equilibration.

2. Isobaric temperature jump

Consider next the situation, in which p2 = p1 and T2 > T1.
The density jumps to ρ(t = 0+) determined by Eq. (14),

p2 = ρ(t = 0+)
(
kBT2 + W (ρ(t = 0+), Sex(R̃))/N

)
. (37)

Right before the jump, one has

p1 = ρ1
(
kBT1 + W (ρ1, Sex(R̃))/N

)
. (38)

The temperature increase is compensated by a density
decrease, i.e., to keep the pressure constant there is an
instantaneous thermal expansion, implying ρ(t = 0+) < ρ1.

Since Sex does not change at t = 0, the density decrease
translates via Eq. (20) to a decrease in T s, i.e., T s(t = 0+)
< T1. In effect, the system at t = 0 performs an isomorph
jump to a state of lower density and lower systemic temper-
ature. This initial decrease of the systemic temperature upon
isobaric heating may appear counterintuitive, but we note that
it is consistent with Niss’ discussion of her proposed mapping
into the equilibrium phase diagram.22

The subsequent equilibration takes place along the iso-
baric curve defined in the (ρ, T s) aging phase diagram by p2

and T2, in which W (ρ, Sex) is the equilibrium virial function,
compare Eq. (14),

p2 = ρ
(
kBT2 + W (ρ, Sex(ρ, Ts))/N

)
. (39)

Since T s(t = 0+)< T1 < T2, one has T s(t = 0+)/T2 < 1, meaning
that the system increases its potential energy when the phonon
degrees of freedom equilibrate, i.e., T s increases and stabilizes
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on some value lower than T2. Finally, as t → ∞ the system
approaches equilibrium and T s→ T2. Both equilibration pro-
cesses take place along the isobaric curve Eq. (39) defined by
p2 and T2.

3. Isothermal pressure jump

In this case, T2 = T1 and p2 > p1. Again, because Sex

is continuous at t = 0, the initial jump takes place along an
isomorph. According to Eq. (14), in order to increase the pres-
sure, the density must jump to a larger value at t = 0. Since
the density increases and Sex is unchanged, T s increases, i.e.,
T s(t = 0+) > T2 = T1.

The fact that T s(t = 0+)/T2 > 1 implies a subsequent
decrease in the potential energy, first when the phonon degrees
of freedom equilibrate and subsequently when the structural
degrees of freedom equilibrate. Both equilibration processes
take place along the isobaric curve Eq. (39) defined by p2

and T2.

VI. OTHER PREDICTIONS

Consider jumps from two state points (ρ1a, T1a) and (ρ1b,
T1b) on an isomorph with excess entropy Sex,1 to state points
(ρ2a, T2a) and (ρ2b, T2b), respectively, on a different isomorph
with excess entropy Sex,2. We now show that these jumps are
described by the same equation of motion Eq. (22), i.e., in this
equation, the factor T s/T is the same at any given reduced time
t̃ defined from the final state point’s density and temperature
[Eq. (24)]. Note first that for any Sex one has

Ts(ρ2a, Sex)
T2a

=
Ts(ρ2b, Sex)

T2b
. (40)

To show this, recall that CV
ex = (∂Sex/∂ ln T )ρ. Since CV

ex is
an isomorph invariant in the first-order approximation assumed
throughout this paper (Sec. II), CV

ex is a function only of
Sex.106 This implies that (∂ ln T/∂Sex)ρ = 1/CV

ex(Sex). By inte-
gration from Sex,2 to the arbitrary value Sex at densities ρ2a and
ρ2b, respectively, one obtains for the equilibrium temperature
function T (ρ, Sex) and thus for T s(ρ, Sex)

ln Ts(ρ2a, Sex) − ln Ts(ρ2a, Sex, 2)

= ln Ts(ρ2b, Sex) − ln Ts(ρ2b, Sex, 2). (41)

Since T s(ρ2a, Sex,2) = T2a and T s(ρ2b, Sex,2) = T2b, Eq. (40)
follows. Substituting Sex = Sex(R̃(t̃)) into Eq. (40) one con-
cludes that the two jump scenarios, since they start from the
same excess entropy, are described by the same equation of
motion, Eq. (22). Thus the two scenarios age identically as
functions of the reduced time t̃.23

Since a continuous function of the control parameters
may be regarded as composed of many small sudden steps,
the above reasoning generalizes to continuous thermodynamic
control-parameter variations. Suppose that starting from equi-
librium at some state point (ρ, T ), the system is subjected to
two different thermal histories, (ρa(t), T a(t)) and (ρb(t), Tb(t)).
Identical aging behavior is then predicted if and only if one
has at all reduced times t̃,

Ts(ρa(t̃), Ua(t̃))
Ta(t̃)

=
Ts(ρb(t̃), Ub(t̃))

Tb(t̃)
. (42)

It is understood that the reduced units at any given time t are
defined by reference to the density and temperature at that
time, compare Eq. (24).

The above argument applies also for constant-pressure
situations. For instance, if Eq. (42) is obeyed for experiments
cooling a liquid through the glass transition at different pres-
sures, the resulting glasses are predicted to be identical if taken
to ambient pressure. In particular, no so-called pressure densi-
fication107 is predicted for glasses produced by subjecting R-
simple glass-forming liquids to cooling histories characterized
by Eq. (42).107

VII. CONCLUDING REMARKS

This paper has derived the Langevin equation describing
physical aging of R-simple systems Eq. (22) and its corre-
sponding Smoluchowski equation (25). The external thermo-
dynamic control parameters enter the description via the single
number T s/T. The formalism confirms the conjecture from
2007 that R-simple systems are single-parameter systems40,108

(Appendix).
Any R-simple system, in equilibrium as well as out of

equilibrium, defines a point in the (ρ, T s) aging phase dia-
gram. This phase diagram is close in spirit to that suggested by
Niss, who proposed that an aging system may be mapped onto
the equilibrium density-temperature phase diagram.22 Niss
argued that isostructural lines exist in this phase diagram; these
correspond to the isomorphs of the aging phase diagram. A dif-
ference is that Niss’ phase diagram is the equilibrium phase
diagram and consequently has well-defined isobars, whereas
the aging phase diagram’s isobars depend on the annealing
temperature. Instead, the aging phase diagram has well-defined
isovirial lines. A more complete description of aging would
be arrived at by mapping the system into a three-dimensional
phase diagram with temperature as the third dimension.

The aging scenarios following a jump in the thermody-
namic phase diagram (Sec. V) lead to instantaneous equili-
bration in the cases of isomorph jumps. In all other cases, the
system ages towards equilibrium after the jump. The rapid
aging on the picosecond time scale is a consequence of the
use of Langevin dynamics, with its temperature bath that can
quickly add or remove energy. In an experiment, this cannot
happen because energy must be added or removed via heat con-
duction. Thus, the relaxations on the picosecond time scale in
Figs. 1 and 2 are specific to Langevin dynamics.

For density-temperature jump experiments, the aging
behavior of an R-simple system depends only on the starting
and ending isomorph. Since isomorphs in experiments may
be identified as the isochrones (lines of constant relaxation
time), this prediction suggests experiments on aging van der
Waals molecular glasses or metallic glasses testing the pre-
dicted equivalence of different jumps between two isochrones.
The isomorph theory is not expected to work for covalently
bonded glasses, but it might be worthwhile for comparison to
perform similar experiments on such systems.

Open questions for future work include how the
Narayanaswamy material time concept1,11,21 fits into the for-
malism. Consider, for instance, the potential-energy clock
model of Adolf and co-workers,17,109 according to which the
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material-time clock rate is controlled by the potential energy.
This idea fits nicely into the systemic-temperature concept
because the potential-energy clock model implies that the
clock rate is a function of the state point in the aging phase dia-
gram, as also predicted by Niss.22 A related open question is
how the present approach fits into models predicting the time
dependence of the viscosity of an aging glass, an important
experimental observable in many aging studies.1,9

We finally emphasize that the isomorph theory of phys-
ical aging is a single-phase theory that ignores the fact that
most glass-forming liquids are supercooled, i.e., of higher free
energy than the crystalline phase. The statistical mechanics
behind the formalism ignores the existence of the large part of
configuration phase space corresponding to states that contain
small or large crystals. This leads to a consistent description,
but one may ask, what if local crystal-type fluctuations occur
in the supercooled liquid and are important for physics,110 e.g.,
for controlling the viscosity? In this case, assuming again the
above Langevin equation for the dynamics, there is a large
range of parameters for which the systemic temperature is
nothing but the melting temperature. This introduces a con-
stant driving force in Eq. (25), aiming to take the system to
lower potential energy by driving it toward crystallization.
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APPENDIX: SINGLE-ORDER-PARAMETER
DESCRIPTION AND UNITY DYNAMIC
PRIGOGINE-DEFAY RATIO

The purpose of this appendix is to link the reduced-unit
Langevin description of the dynamics of R-simple systems to a
paper from 200740 that proposed a single-frequency criterion
for testing whether a glass-forming liquid is described by a
single order parameter.

In the classical definition, a single-order-parameter model
of a glass-forming liquid implies exponentially decaying
time-autocorrelation functions,111 corresponding to Debye
frequency-dependent linear response functions that are rarely
observed. Reference 40 introduced a more general single-
order-parameter concept that allows for non-exponential time-
autocorrelation functions. The experimental criterion for a liq-
uid to be described to a good approximation in that framework
is that the dynamic Prigogine-Defay ratio is close to unity.40

This is equivalent to the system having strong virial potential-
energy correlations, i.e., being R-simple.85,108,112 We proceed
to show that the property of a dynamic Prigogine-Defay ratio
equal to unity follows from Eq. (25).

Consider a system subjected to small periodic temperature
and volume perturbations with complex magnitude δT (ω) and
δV (ω) around a state of thermal equilibrium [we employ the
standard notation of writing, e.g., T (t) = T0 + δT (ω)exp(iωt),
in which the real part is implied]. Different quantities have

been proposed to be the single parameter controlling the
physics of viscous liquids, e.g., the density, the configurational
entropy, the instantaneous shear modulus, etc., but interest-
ingly the single-parameter assumption may be investigated
without knowing the parameter.21,40

In the present context, a single-order-parameter system is
defined as a system that has some variable ε with the prop-
erty that the amplitudes of the periodic entropy and pressure
responses induced by small temperature and volume periodic
perturbations are given40 by

δS(ω) = γSδε(ω) + J∞ST δT (ω) + J∞SV δV (ω),

δp(ω) = γpδε(ω) + J∞pT δT (ω) − J∞pV δV (ω).
(A1)

Here γS and γp are real constants and the “instantaneous”
high-frequency in-phase responses are characterized by the
two-by-two real compliance matrix J∞ for which Onsager reci-
procity implies J∞SV = J∞pT . Relaxation processes are contained
in the δε(ω) terms. As shown in Ref. 40, Eq. (A1) implies that
the dynamic Prigogine-Defay ratio is unity at all frequencies,
i.e., −c′′V (ω)K ′′T (ω)/[T0(β′′V (ω))2] = 1, in which ′′ marks the
imaginary parts of the following three frequency-dependent
thermodynamic linear-response functions: the isochoric heat
capacity per unit volume cV (ω), the isothermal bulk modulus
KT (ω), and the isochoric pressure coefficient βV (ω).

Assuming the system is R-simple and switching from
volume to density, the response of an arbitrary quantity A to
externally imposed small temperature and density variations,
T (t) = T0 + δT (ω)exp(iωt) and ρ(t) = ρ0 + δρ(ω)exp(iωt), is
now calculated. In general, A depends on the configuration R
and on the system’s thermodynamic state point, i.e., one can
write A = A(T , ρ, R̃). The entropy as defined here is of this
form since the ideal gas entropy term is a function of tem-
perature and density and Sex is a function of R̃; the pressure
likewise has this structure; compare Eq. (14).

If the solution to the Smoluchowski equation (25) is
denoted by P(R̃, t), at time t the average of A is given by

〈A(t)〉 =
∫

A(T (t), ρ(t), R̃) P(R̃, t) dR̃. (A2)

The steady-state probability distribution has the form P(R̃, t)
=Peq(R̃) + δP(R̃,ω) exp(iωt), in which Peq(R̃) is the equi-
librium probability distribution at the state point (ρ0, T0).
According to Eq. (A2), to first order the response is given
by 〈A(t)〉 = 〈A〉eq + δA(ω)exp(iωt), in which

δA(ω) =
∫ [

∂A
∂T

(
T0, ρ0, R̃

)
δT (ω) +

∂A
∂ρ

(
T0, ρ0, R̃

)
δρ(ω)

]

×Peq(R̃) dR̃ +
∫

A(T0, ρ0, R̃) δP(R̃,ω) dR̃. (A3)

The first integral gives the in-phase J∞ terms of Eq. (A1).
The non-trivial frequency dependence comes from the sec-
ond integral. Focusing on this, note that since Eq. (25) is
controlled by Q ≡ T s/T = 1 + δQ, the steady-state periodic
term of the probability amplitude has the following structure:
δP(R̃,ω) = Φ(R̃,ω)δQ(ω). Expanding the virial in Eq. (14)
to first order, one gets p(T0, ρ0, R) = Const. +Λ(Sex(R̃)−Sex).
Substituting this into the second integral of Eq. (A3), since
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∫ δP(R̃,ω) dR̃ = 0, one finds the first terms on the right-hand
sides of Eq. (A1) with

δε(ω) ∝ δQ(ω)
∫

Sex(R̃)Φ(R̃,ω) dR̃ (A4)

and γp/γS = Λ.
How can the use of the mean-field approximation for

calculating the linear response close to equilibrium be justi-
fied, given that this approximation breaks down in equilibrium
(Sec. III)? For small but finite perturbations, the induced sys-
temic temperature variations are small but finite. This means
that for a sufficiently large system the systemic temperature
variations are much larger than the equilibrium systemic tem-
perature fluctuations. In other words, the thermodynamic limit
is taken before letting the perturbation magnitude go to zero
in order to calculate the linear response.
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