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Abstract 

We determined the excess partial molar enthalpy and the excess partial molar volume, HTFE
E, 

VTFE
E, of 2,2,2-trifluoroethanol (TFE) in TFE-H2O at 25.0 ˚C.  We then evaluate the TFE-

TFE interactions in terms of enthalpy and volume, HTFE-TFE
E and VTFE-TFE

E, graphically 

without resorting to any model dependent fitting functions.  Both model-free third 

derivatives indicate that TFE is a hydrophobic solute and that as other hydrophobic alkyl 

mono-ols there are three distinct mixing schemes, Mixing Scheme I, II, and III in their 

aqueous solutions. The relative strength in hydrophobicity between TFE and tert-

butylalcohol (TBA), for example, gave a mixed message within the behavior of these third 

derivative quantities.  We thus applied the 1-propanol(1P) probing methodology (Koga, Y. 

Phys. Chem. Chem. Phys. 2013, 15, 14548) and quantified the degree of hydrophobicity of 

TFE.  It turned out that TFE is a stronger hydrophobe than 1P and ethanol (ET), and has 

approximately the same hydrophobicity as TBA within the estimated uncertainty.  These 

findings were compared with the ability reported in literature to denature -lactoglobulin and 

to induce -helices in melittin in their aqueous solutions.  
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Introduction 

The wordings, hydrophilicity, amphiphilicity and hydrophobicity are loosely defined based 

on human experiences.  Even at the present time, what dissolves readily in water is often 

called “hydrophilic” and what does not “hydrophobic”.  “Amphiphiles” are understood to 

combine moieties that are typically seen in respectively soluble- an insoluble compounds and 

sometimes form micelles.  A step towards more scientific definition is to take the sign and 

the value of the hydration free energy of a given solute as a one-dimensional scale for 

hydrophilicity/amphiphilicity/hydrophobicity.1, 2 In an attempt to provide a more detailed 

quantification of hydrophobicity and hydrophilicity, we have developed a differential 

approach in solution thermodynamics and applied it to study aqueous solutions.  We believe 

that the higher the order of derivative of G, the resulting thermodynamic quantity contains 

more detailed information.  Thus, we have experimentally determined the second derivative 

quantities, excess partial molar enthalpy, 
E

iH , entropy, 
E

iS , and volume, 
E

iV , of solute i, 

and response functions, Cp,   and p.  We then raise one more derivative with respect to 

molar amount of solute i and obtain for example the enthalpic interaction, 
E

iiH   (defined 

below), numerically or graphically without resorting to any model dependent fitting function.  

We learned from the behavior of these model-free third derivative quantities a variety of new 



4 

 

insights into the molecular level scenario of mixing or mixing schemes in aqueous solutions.3, 

4  We learned first that aqueous solutions are in general consisting of three distinctive mole 

fraction regions in each of which the mixing scheme is qualitatively different from the other 

two.  In the most H2O-rich region, what we call Mixing Scheme I is operative whereby the 

integrity as liquid H2O is retained.  By that we mean liquid H2O is an assembly of H2O 

molecules via highly fluctuating hydrogen bonds and yet the hydrogen bond network is bond-

percolated under ambient conditions.  Within Mixing Scheme I the solute modifies the 

molecular organization of H2O somewhat crucially depending on the nature of solute; its 

hydrophobicity/amphiphilicity/hydrophilicity, but the hydrogen bond percolation is not yet 

broken.  In the intermediate mole fraction region, two kinds of clusters mix physically; one 

rich in H2O and the other in solute molecules.  One may say the solute molecules start to 

aggregates together in this region.  We call this Mixing Scheme II.  In the most solute-rich 

region, where Mixing Scheme III is operative, solute molecules cluster together as in its pure 

liquid state to which H2O molecules interact almost as a single gas-like molecule. 

 We learned these mixing schemes from the behavior of the i-i enthalpic interaction, 

E

iiH  , defined as, 

Hi-i
E ≡ N (∂Hi

E / ∂ni) = (1-xi) (∂Hi
E / ∂xi),    (1) 
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where superscript E stands for excess quantity, N = ∑ni is the total molar amount, xi represents 

the mole fraction of i-th component, and the excess partial molar enthalpy of solute i, 
E

iH is 

defined as, 

     Hi
E ≡ (∂HE / ∂ni).      (2) 

Since HE is obtained from the first derivative of G with T, Hi
E is the second and Hi-i

E the third 

derivatives respectively.  Analogously, the third derivative quantities for entropy, and 

volume are expressed by changing H to S and V respectively.  The mole fraction dependence 

pattern of 
E

iiH   for various kinds of solute can be summarized schematically as shown in 

Fig. 1.  Although mono-ols do contain a hydrophilic moiety, -OH, together with a 

hydrophobic alkyl group, all mono-ols except for methanol show the hall mark of 

hydrophobic solutes as shown in Fig. 1.  Namely, they show a peak type anomalies in 
E

iiH   

pattern and its peak top grows higher and its xi-locus of the peak becomes smaller as the size 

of alkyl group increases.  Similar trends have been observed recently for alkyl-amines.5, 6  

We realized that just as for alkyl carboxylate anions,7 the hydrophilic end is hydrated with 

probably a single H2O molecules and leaves the bulk H2O away from the hydrated 

hydrophilic end unperturbed, which leaves the hydrophobic end to interact with H2O 

hydrophobically.  Typical hydrophiles such as urea and glycerol show the 
E

iiH   pattern (d), 
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a complete opposite of hydrophobes in the most H2O-rich region bounded at point X in the 

figure.  Amphiphiles show type (b) or type (c), in between types (a) and (d).  We note that 

the values and their xi-dependences are similar in Mixing Scheme II and III regardless of the 

nature of solute.  Thus, we propose to use the findings sketched in Fig. 1 to redefine 

hydrophilicity/amphiphilicity/hydrophobicity of a given solute i within Mixing Scheme I.3, 8 

 The manner by which the solute modifies the molecular organization of H2O within 

Mixing Scheme I depends crucially on the nature of solute, as mentioned above. 

Hydrophobes form hydration shells, the hydrogen bond probability of which is enhanced 

somewhat, but more importantly the hydrogen bond probability of bulk H2O away from the 

hydration shells is reduced progressively. .  As the solute mole fraction increases to the 

threshold value depending on the strength of the solute’s hydrophobicity, the hydrogen bond 

network is no longer bond-percolated and the system goes into the crossover region from 

point X to Y.  Mixing Scheme II then becomes operative beyond point Y.  

Hydrophiles, on the other hand, form hydrogen bonds directly to the existing 

hydrogen bond network of H2O and pin down the inherent S-V cross fluctuation of pure H2O 

by breaking the H donor-acceptor symmetry of pure H2O.  When the solute mole fraction 

reaches about 0.1, there is no more bulk H2O available to speak of percolated hydrogen bond 
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network and the system crossover to Mixing II more gradually than for hydrophobes.  

Amphiphiles’ hydrophobic and hydrophilic moieties seem to work additively on the 

molecular organization of H2O.  These findings are from accumulation of a large number of 

experimental observations of the behavior of the second and the third derivative qunatities.3, 

4, 8-12 

 Here we use the same methodology to study aqueous solutions of 2,2,2-

trifluoroethanol (TFE).  TFE has been receiving much attention for its marked ability to 

change structures of various proteins and peptides in aqueous solutions.13-21 Its effect is 

greater than estimated from relative dielectric constants of respective alcohols. For example, 

although TFE and ethanol (ET) have almost the same dielectric constants, structural changes 

of proteins and peptides in aqueous solutions need a lesser concentration of TFE than ethanol; 

the amount needed for TFE is less than a half of that of ethanol in the mole fraction of 

alcohol.20, 21 Molecular mechanisms responsible for this have been debated for about five 

decades,15 and yet the debate is far from reaching a consensus.  For TFE-H2O, there have 

been a number of thermodynamic,22, 23 scattering and NMR,24, 25 and MD simulation 

studies.26, 27  To our knowledge, none except ref. 24 recognized the three distinct mole 

fraction dependent mixing schemes.  Takamuku et al. using scattering techniques concluded 
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that in the range of the mole fraction of TFE, xTFE < 0.1 the tetrahedral-like structure of H2O 

is enhanced, at xTFE ≈ 0.15 TFE clusters form and at xTFE ≈ 0.7 there is a break in the number 

of O∙∙∙O hydrogen bonds.24  Though not explicitly stated, in effect there are three distinct 

mixing schemes in TFE – H2O, including the I - II crossover region from point X to Y and 

that TFE is a hydrophobe.  Their boundary values are listed in Table 1.  Here we reexamine 

TFE – H2O by our differential approach in solution thermodynamics.  In particular, we first 

experimentally determine the excess partial molar enthalpy of TFE, HTFE
E, and take 

derivative with respect to xTFE graphically without resorting to any fitting functions to obtain 

the model-free TFE-TFE enthalpic interaction by, 

     HTFE-TFE
E ≡ N (∂HTFE

E / ∂nTFE) = (1-xTFE) (∂HTFE
E / ∂xTFE).  (3) 

To calculate the volumetric third derivative, VTFE-TFE
E, we determine the density, ρ of TFE-

H2O binary mixture very accurately and then the excess molar volumes are calculated by, 

 Vm
E = {(xTFE MTFE

* + xw Mw
*) / ρ} – {xTFE VTFE

* + xw Vw
*},  (4) 

where MTFE
* and Mw

* are the molecular weights of TFE and H2O respectively, and VTFE
* and 

Vw
* are the molar volumes of pure components. We obtain the excess partial molar volumes 

of TFE and H2O, VTFE
E

 and Vw
E, from Vm

E as,  

 VTFE
E = (1-xTFE) (∂Vm

E / ∂xTFE) + Vm
E,    (5) 
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 Vw
E = (1-xw) (∂Vm

E / ∂xw) + Vm
E.      (6) 

VTFE-TFE
E is then calculated according to,  

 VTFE-TFE
E ≡ N (∂VTFE

E / ∂nTFE) = (1-xTFE) (∂VTFE
E / ∂xTFE).  (7) 

     Furthermore, we evaluate the degree of TFE’s hydrophobicity by the 1-propanol (1P) 

probing methodology, detailed elsewhere.12  Briefly, we first dissolve the chosen test sample 

(S) within its Mixing Scheme I with the initial mole fraction of test sample S, xs
0 = ns / (ns + 

nw) and let S modifies H2O.  We then evaluate the nature and the degree of its modification 

by the induced changes in the pattern of E

PPH 11   by the presence of S.  After experimentally 

determining E

P1H , we calculate the 1P-1P enthalpic interaction, H1P-1P
E, in the ternary 1P-S-

H2O system in a similar manner as in eq. (3) as, 

 H1P-1P
E ≡ N (∂H1P

E / ∂n1P) = (1-x1P) (∂H1P
E / ∂x1P).    (8) 

As discussed elsewhere,12 the x1P–dependence pattern of H1P-1P
E shifts in the direction and 

the degree depending on the nature of S. Namely the peak top of H1P-1P
E shifts to the west (to 

a smaller value of x1P) when test sample S is hydrophobic and to the south if S is hydrophilic. 

The former westward shift is related to forming hydration shells, and the latter shift is related 

to how strongly the solute affects the S-V cross fluctuation of the system.  The shifts of the 

peak top are linear to xs
0.  We thus call the slope of westward shift of point X against xs

0 as 
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the index of hydrophobicity, a.  That of northward/southward is the index of hydrophilicity, 

b (the northward shift is regarded as negative hydrophilicity).  Using these two indices, 

hydrophobicity and hydrophilicity of the test sample S are displayed on a two-dimensional 

map.  We point out that this 1P-probong methodology seeks the variation of E

PPH 11  , the 

third derivative quantity, on addition of the test sample S.  In effect, therefore, this 

methodology uses the fourth derivative of G. 

 

Experimental 

Titration calorimetry 

     2,2,2-trifluoroethanol (TFE) (Sigma-Aldrich, >99.0%) and 1-propanol (1P) (Sigma-

Aldrich, >99.9%) were used as supplied. Deionized H2O was prepared using Milli-Q (EMD 

Millipore, Bilerica, MA). The excess partial molar enthalpies of TFE and 1P , HTFE
E and H1P

E, 

were determined by TAM III semi-isothermal titration calorimeter (TA Instrument, New 

Castle, DE) at 25.0000±0.0001 ˚C (nominal) in the dynamic correction mode.28-30 A 700 μL 

sample of water or TFE solution was quantified by weight in a 1 mL stainless steel cell and 

mounted on the calorimeter. The solution was subsequently titrated with 7.94 μL aliquots of 

TFE, or with 6.46 μL aliquots of 1P. For the case that the initial concentration of TFE was 0, 
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xTFE
0 = 0, the injection volume of 1P was 3.92 μL. The injecting duration was 10 s. The 

thermal effect of each injection was converted to the quotient δHE / δni, where δni is the titrant 

amount of i = TFE or 1P. The ratio of the titrant over the titrand was in the order of 10-2, and 

the quotient could be approximated as the partial derivative of eq. (2).31  The interval of 

injection was 15 min for the measurements of HTFE
E. For H1P

E, 15 min interval was used 

when xTFE
0 = 0. It was increased to 20 min otherwise. The uncertainty is estimated as ±0.05 

kJmol-1.  

 For the series of the 1P-probing study of the effect of TFE on H2O at xTFE
0 = 0.02499, 

a homemade titration calorimeter was used of a similar design to the LKB Bromma titration 

calorimeter, as described elsewhere,32 except that a stepping-motor-driven syringe system 

(Chemyx, Fusion 100) with a 25 mL Hamilton syringe was used to deliver the titrant 1P.  

H2O was purified by Milli-Q system. TFE (Fluorochem, 99 %) and 1P (Sigma-Aldrich, 

>99.9%) were used as supplied.  For this series the uncertainty is somewhat larger than that 

by TAM system.  As will become evident below in Fig. 6, the data seem acceptable for 

direct comparison with the series using TAM III. 

 

Density measurement 
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     TFE, (Fluorochem, 99%) was used as supplied. Solutions were prepared 

gravimetrically using deionized H2O, prepared using Milli-Q system. Densities of the TFE 

solutions were determined with DMA4500 density/specific gravity/concentration meter 

(Anton Paar, Graz, Austria), which has an oscillating U-tube. Calibration with air and water 

was performed every day before the measurement. The temperature was kept at 25.00±0.03 

˚C. The uncertainty of density is ±0.00005 gcm-3. 

 

Results and discussion 

Enthalpic interaction of TFE molecules in TFE-H2O binary mixture 

     The values of the excess partial molar enthalpy of TFE, HTFE
E are listed in Table S1 

(Supplementary data) and plotted in Fig.2 (a). As our aim is to obtain higher order derivative 

quantities, we take derivative of HTFE
E graphically with respect to xTFE and obtain the 

enthalpic TFE-TFE interaction, HTFE-TFE
E by eq. (3).  The results are shown in Fig.2 (b). 

The interval for graphical differentiation was taken as δxTFE = 0.008.31  The uncertainty is 

estimated as ±5 kJmol-1.  It is clear that HTFE-TFE
E shows a peak type anomaly, suggesting 

TFE is a hydrophobic solute as alkyl mono-ols.  The results for point X and Y are listed in 

Table 1, together with those for alkyl alcohols.33  In the table, it is evident that as the size of 
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alkyl group increases, the 
ALx (mole fraction of alkyl mono-ols) locus of point X decreases, 

and its value of E

ALALH becomes larger.  If this trend is applicable for TFE, TFE should be 

a stronger hydrophobe than ET as well as 1P, from the point of view of the mole fraction 

locus of point X.  From the peak height point of view, on the other hand, TFE is a weaker 

hydrophobe than 1P but stronger than ET.  Before settling this issue, we evaluate volumetric 

third derivatives. 

 

Volumetric interaction of TFE molecules in TFE-H2O binary mixture 

We calculated the excess partial molar volume of TFE, VTFE
E using the density data, which 

are listed in Table S2 (Supplementary data).  The resulting values of VTFE
E are shown in 

Fig.3 (a). The uncertainty is estimated as ± 0.07 cm3mol-1. As discussed extensively 

elsewhere,9-11 the initial decrease of VTFE
E is consistent with the detailed mixing scenario of 

Mixing Scheme I for hydrophobic solutes.  

In the TFE-rich region, i.e. xTFE > 0.72, VTFE
E is almost zero and constant, the 

boundary of which is shown by the arrow in Fig.3 (a).  This means that in this TFE-rich 

region, TFE molecules breaking away from its pure state settle in TFE-H2O solution, and 

see no difference in terms of its volumetric situation.  Thus, we suggest that TFE 
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molecules form clusters of their own kind, as in its pure state.8  This corresponds to 

Mixing Scheme III and the Mixing Scheme II-III boundary is at about xTFE ~ 0.72. This 

boundary is rather hard to pin point as is evident from Fig.3 (a).  We thus calculate the 

excess partial molar volume of H2O, Vw
E, taking an advantage that the II-III boundary is 

more conspicuous in Vw
E.  As shown in Fig.3 (b), we now identify the II-III boundary to 

be at xTFE ~ 0.73 with more confidence.  

Next, we evaluate the volumetric TFE-TFE interaction, VTFE-TFE
E, by taking 

derivative of VTFE
E graphically again.  The results are shown in Fig. 4.  The interval for 

graphical differentiation was taken as δxTFE = 0.00831 for 0 < xTFE < 0.40 and δxTFE = 0.04 

for 0.40 < xTFE < 1.  The peak type anomaly evident in the figure,  is typical for 

hydrophobic solutes.8  The point X appears at xTFE = 0.04 with VTFE-TFE
E = 94 cm3 mol-1. 

The locus of xTFE at point X is the same as that from HTFE-TFE
E, Fig.2 (b), as it should be, 

although that of point Y is about 0.1, a little larger than that determined by HTFE-TFE
E, Fig. 

2(b).  Considering the fact that VTFE-TFE
E, Fig. 4, is the results of double graphical 

differentiation of the experimental density data, we take the value of 0.07 from the behavior 

of HTFE-TFE
E, Fig. 2(b), which is the result of a single differentiation of the experimental 

data, HTFE
E.  Since the information given by the behavior of point X of the 

E

iiH   pattern is 
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rather mixed, in the next section we make an attempt at quantifying the difference in 

hydrophobicity between alkyl mono-ols and TFE, by using the 1P-probing methodology, 

which in effect utilizes the fourth derivative quantity. 

 

1-propanol probing methodology for TFE 

We apply the 1-propanol (1P) probing methodology detailed elsewhere12 in order to quantify 

the degree of hydrophobicity of TFE in two dimensional scale for comparison with those of 

alkyl mono-ols.  The methodology utilize the variation of the x1P-dependence pattern of H1P-

1P
E, a third derivative quantity, on addition of TFE in the ternary system 1P-TFE-H2O. Thus, 

it can be regarded in effect as using the fourth derivative, as mentioned above.  Hence a 

more quantitative distinction could be expected.12  Briefly we deal with a three-component 

system, 1P-S-H2O, where S is the test sample the degree of hydrophobicity/hydrophilicity of 

which is to be determined.  In the present case, S is TFE. 

Fig.5 is a schematic description of H1P-1P
E patterns against x1P and their induced 

changes on addition of hydrophobic test samples, S.12   In this figure, the broken line 

(marked [0]) represents H1P-1P
E for binary 1P-H2O. The case [A] represents the effect of 

almost equally hydrophobic 2-propanol (2P) as 1P.  Consider the case where 1P itself is 
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treated as S, then 1P added as S brings the system a part way to the north-east along the dotted 

line [0] in the figure and the probing 1P then takes the system the remaining way to point X. 

This results in case [A], a parallel shift to the west, to a smaller value of x1P.  The case [B] 

is found with a weaker hydrophobe than 1P such as ethanol (ET).  The case [C] occurs with 

a stronger hydrophobic S than 1P such as tert-butylalcohol (TBA).  These north-south shifts 

of point X are related to the effect of hydrophobic S on the hydrogen bond probability of bulk 

H2O away from hydration shells.12 

The results of excess partial molar enthalpies of 1P, H1P
E, in the mixed solvent TFE-

H2O are listed in Table S3 (Supplementary data) and plotted in Fig.6.  As indicated in the 

figure, the data were taken by two sets of equipment.  This was described in the 

experimental section.  As is evident in Fig. 6, the results for the binary case, i.e. xTFE
0 = 0, 

by the both systems can be regarded consistent with each other, and a single smooth curve 

can be drawn.  Thus, the data for the case of xTFE = 0.02499 by the home-made system could 

be equally utilized together with those by TAM III.  Given the data of H1P
E we drew smooth 

curves through all the data points of Fig. 6 using a flexible ruler and read the data off the 

smooth curves drawn at the interval of x1P = 0.004.31  We did this in duplicate 

independently, and calculated the enthalpic 1P-1P interaction, H1P-1P
E with the intervals of 
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x1P = 0.008.  The result is shown in Fig.7.  Only the results from a single data analysis 

are displayed in the figure for clarity of display.  The uncertainty for H1P-1P
E is estimated 

from the discrepancy between both sets of results as ± 6 kJmol-1.  As the figure indicates, 

the peak tops, point X, shifts westward progressively and northward slightly on increasing 

the initial mole fraction of TFE, xTFE
0.  The westward and northward shifts of point X 

against xTFE
0 are plotted in Fig. 8 (a) and (b).  The slope of the x1P loci against xTFE in Fig.8(a) 

corresponds to the hydrophobicity index, a, and that in Fig.8(b) is the hydrophilicity index, 

b.12  We determined the indices as a = -1.07 ± 0.05 and b = 910 ± 300 kJmol-1.  

These values of a and b are listed in Table 2 together with those for alkyl mono-ols 

determined earlier,12, 34-40 and plotted in Fig 9.  The origin of the map corresponds to H2O, 

and the probing 1P should be at (-1, 0).  Relative to these two points, stronger hydrophobes 

than the probing 1P spread to the north-west direction.  In addition, weaker hydrophobes 

are placed in the south-west quadrant. If ethanol (ET) was to be used as the probe, for 

example, then ethanol must be plotted at (-1, 0) and the remaining mono-ols must spread 

towards the north-west.  About methanol (ME), however, we found recently that it should 

be classified as amphiphile.40  As is evident from Table 2 and Fig. 9, TFE turns out to be a 

stronger hydrophobe than ET, 2P and 1P, but has almost the same hydrophobicity as for TBA. 
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It is also obvious from the figure that TFE is more hydrophobic than ethanol even though the 

number of carbon atoms is the same.  Fluorine atoms attached to C are known to induce 

hydrophobicity in molecules.41-43  Indeed, the recent report using the 1P-probing 

methodology found that trifluoroacetate, CF3COO-, ions are more hydrophobic than acetate, 

CH3COO- ions.44  

In order to quantify the relative hydrophobicity on the map, we evaluate the unitless 

distance of each plot from the origin, D defined as,12  

D = ± { ( a / 1.25 )2 + ( b / 7000 )2 }1/2. (9) 

The sign is given with a positive sign when the plot is in the north-west quadrant including 

the abscissa. Those in the south-west quadrant including the negative ordinate are given with 

a negative sign.12  It was observed among alkyl mono-ols that the absolute value ranking of 

D is parallel to that of the hydrophobicity.12  For TFE, the absolute value of D = 0.87 ± 0.09, 

is larger than ET, 2P, and 1P and almost the same as that for TBA, 0.94 ± 0.07. (See the 

footnote of Table 2). Thus the absolute value of D ranks as  

ME < ET < 2P < 1P < TFE ≈ TBA < BE.   (10) 

where BE is the C6 ether, 2-butoxyethanol. This ranking is by the 1P-probing methodology, 

which is equivalent to using the fourth derivative of G.  Commonly termed 
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“hydrophobicity/hydrophilicity” uses hydration free energy or hydration chemical potential.  

They are zero-th and the first derivative of G. Thus, the ranking (10) above by utilizing in 

effect a fourth derivative could be a finer scale for hydrophobicity.  ME being actually an 

amphiphile,40 its weakest ranking is only natural. 

 

Effects of alcohols on proteins and peptides 

As discussed in Introduction, TFE is effective to denature proteins and to induce helices in 

peptides.  Hirota et al. 45 - 47 monitored the structural changes on addition of alcohols of -

lactogulobulin and melittin by following the content of -helix determined by circular 

dichroism (CD) spectroscopy at 20 ˚C.  They argued that denaturation of protein and the 

conversion of melittin to -helices share the same fundamental mechanism and that it is the 

hydrophobic alkyl groups and halogen atoms that are responsible for the processes, while –

OH group has a retarding effect.  They then defined the effectiveness of each alcohol by 

the slope of linear fit of the degree of conversion expressed by G against the molarity of 

alcohol.  They calculated the degree of conversion, G, by assuming the conversion 

process being described by the two state model.  Hence, the resulting slopes for each 

alcohol represent its effectiveness.  In terms of the order of derivative, this corresponds to 
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the first derivative of G.  They ranked the “alcohol effects” as,47 

 ME(1.97) < ET(3.92) < 2P(6.01) < 1P(8.45) < TFE(9.15) < TBA(12.0),  (11) 

for denaturation of -lactoguloblin, and 

 ME(0.78) < ET(1.57) < 2P(3.25) < 1P(3.68) < TBA(4.75) < TFE(5.05), (12) 

for induction of -helices of melittin.   The numbers in brackets are the slopes of G 

against the molarity of alcohol taken from Table 1 of ref. [47].  Thus, their rankings are 

based on the first derivative of G.  They claimed that the correlation between the ranking 

(11) and (12) is good enough to conclude that both processes share the same fundamental 

mechanism.47    On the other hand, the D-ranking, eq.(10) based on the fourth derivative 

of G, is equally similar to the both observations (11) and (12).  This suggests an importance 

of the D-ranking based on the fourth derivative of G, eq.(10) of aqueous alcohols, on the so 

called “alcohol effects” on the processes involving biopolymers.  Clearly there must be an 

enormous number of factors which are involved in such processes, working not 

independently but holistically.  We suggest that the details of mole fraction dependent 

mixing schemes in the aqueous alcohols themselves and the D-ranking by the 1P-probing 

methodology ought to be taken into account as one such factor. 
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Fig. 1  Schematic sketch of the xi-dependence patterns of 
E

iiH  , the enthalpic solute-solute 

interaction for various solutes i at room temperature.  The first break point X is the end of 

Mixing Scheme I.  After crossover region to point Y, Mixing Scheme II starts.  We note 

that the values and the mole fraction dependences in Mixing Schemes II and III are similar 

independent of the nature of solute i.  The boundary between Mixing Scheme II and III is 

rather blurred.  This seems to be a reasonable interpretation of the observations sketched 

in this figure.  See text.  
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Fig.2 (a)  Excess partial molar enthalpy of TFE, HTFE
E, in TFE-H2O mixture at 25.0 ˚C.  

(b) Enthalpic TFE-TFE interaction, HTFE-TFE
E, in TFE-H2O mixture at 25.0 ̊ C.  The fact that 

the xTFE-dependence pattern takes a peak-type anomaly suggests TFE is a hydrophobic solute 

in aqueous solution. 
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Fig.3 (a) Excess partial molar volume of TFE, VTFE
E, in TFE-H2O mixture at 25.0 ˚C. The 

inset shows the graph in which the H2O rich region is expanded. VTEF
E shows a clear initial 

decrease in the inset, which is the same behavior as other alkyl mono-ols, typical 

hydrophobes. (b) Excess partial molar volume of H2O, Vw
E, in TFE-H2O mixture at 25.0 ˚C.  

From the locus of the arrow the boundary from Mixing Scheme II to III was determined as 

xTFE = 0.73.  See text. 
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Fig.4 Volumetric TFE-TFE interaction, VTFE-TFE
E, in TFE-H2O mixture at 25.0 ˚C. The inset 

shows the graph in which the H2O rich region is expanded.  A peak type anomaly is evident 

suggesting that TFE is a hydrophobe. 
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Fig.5 The H1P-1P
E pattern changes by the presence of hydrophobic samples (S) in 1P-S-H2O 

mixture. [0]; binary 1P-H2O. [A]; the mixture with an equally hydrophobic S as 1P. [B]; the 

mixture with a weaker hydrophobic S than 1P. [C]; the mixture with a stronger hydrophobic 

S than 1P. 
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Fig.6 Excess partial molar enthalpy of 1P in 1P-TFE-H2O mixture at 25.0 ˚C.  For all the 

series, sigmoidal increases are evident with inflection points.  The series designated as 

(TAM) were obtained using a TAM III calorimeter, while those as (Home) were the results 

by using the home-made calorimeter.  See text for detail. 
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Fig.7  Enthalpic 1P-1P interaction, H1P-1P
E, in 1P-TFE-H2O mixture at 25.0 ˚C and its 

induced shifts by the presence of TFE.  Peak tops shift to the west (to a smaller value of x1P) 

and slightly to the north (to a larger value of H1P-1P
E) as xTFE increases.  This indicates TFE 

is a stronger hydrophobe than probing 1P. 
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Fig.8 (a) The x1P loci of point X against the initial mole fraction of TFE, xTFE
0. The plots are 

linear and its slope is defined as the hydrophobicity index, a. (b) The H1P-1P
E loci of point X 

against the initial mole fraction of TFE, xTFE
0.  The plots seem to be linear, the slope of 

which provides the hydrophilicity index, b/kJ∙ mol-1. 
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Fig.9 The hydrophobicity/hydrophilicity map for alcohols. The coordinates (a, b) for TFE 

are determined in this work. The remaining ones are taken from our previous works as 

referenced in Table.2.  The distance from the origin is defined as the strength of 

hydrophobicity among alkyl mono-ols larger than ET.  Its ranking runs as 

ET<2P<1P<TBA<BE, consistent with the size of alkyl group.  It is therefore striking that 

TFE has about the same strength as TBA.  See text. 
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Table 1.  Summary of the behaviors of HAL-AL
E for AL = TFE and other alkyl mono-ols at 

25 oC.   

 

AL* xAL at point X HAL-AL
E at X xAL at Y    HAL-AL

E at Y    
ALx      Ref. 

   kJ∙ mol-1            kJ∙ mol-1      at II-III 

TFE 0.040  150  0.072  5    0.73     This 

TFE <0.1    ~0.15      ~0.7     [24] 

ME 0.07  32  0.25      0.57     [33]  

ET 0.06  73  0.19      0.76     [33] 

2P 0.05  180  0.11      0.88     [33] 

1P 0.049  210  0.09      0.80     [33] 

TBA 0.045  350  0.065      none     [33] 

BE 0.017  1100  0.021      0.65     [33] 

*The abbreviations for alcohols (AL) are 2,2,2-trifluoroethanol (TFE), methanol (ME), 

ethanol (ET), 2-propanol (2P), 1-propanol (1P), tert-butanol (TBA) and 2-butoxyethanol 

(BE). 

 

Table.2 The coordinates of each sample in the hydrophobicity/hydrophilicity map by the 1P-

probing methodology and distance from the origin, D. 

Symbols 

in Fig. 8 

Samples a b / kJmol-1 D Ref. 

0 H2O 0 0 0.00 [34] 

1 ME -0.21 -905 -0.21 [35] 

2 ET -0.47 -788 -0.39 [36] 

3 2P -0.80 -167 -0.64 [37] 

4 1P -1.00 0 0.80 [34] 

5 TBA* -1.16 890 0.94 This* 

6 BE -2.83 0 2.26 [39] 

  TFE -1.07 910 0.87 This 

*In the process of the present discussion, we realized numerical errors in the original paper 

ref. [38]. The present list values are duly corrected. The uncertainties in the values of a, b, 

and D are a = -1.07 ± 0.05, b = 910 ± 300 kJ/mol and D = 0.87 ±0.09 for TFE, and a = -1.16 

± 0.03, b = 890 ± 300 kJ/mol and D = 0.94± 0.07 for TBA. 
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The net hydrophobicity of TFE is the same as that of TBA within the estimated uncertainty. 

 


