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Michaelis - Menten equation for degradation of
insoluble substrate

Morten Andersena, Jeppe Karia, Kim Borchb, Peter Westha

aDepartment of Science and Environment, Roskilde University, Universitetsvej 1, Denmark
bNovozymes A/S, Krogshøjvej 36, Denmark

Abstract

Kinetic studies of homogeneous enzyme reactions where both the substrate and
enzyme are soluble have been well described by the Michaelis Menten (MM)
equation for more than a century. However, many reactions are taking place at
the interface of a solid substrate and enzyme in solution. Such heterogeneous
reactions are abundant both in vivo and in industrial application of enzymes
but it is not clear whether traditional enzyme kinetic theory developed for ho-
mogeneous catalysis can be applied. Since the molar concentration of surface
accessible sites (attack-sites) often is unknown for a solid substrate it is difficult
to assess whether the requirement of the MM equation is met. In this paper
we study a simple kinetic model, where removal of attack sites expose new ones
which preserve the total accessible substrate, and denote this approach the sub-
strate conserving model. The kinetic equations are solved in closed form, both
steady states and progress curves, for any admissible values of initial conditions
and rate constants. The model is shown to merge with the MM equation and
the reverse MM equation when these are valid. The relation between avail-
able molar concentration of attack sites and mass load of substrate is analyzed
and this introduces an extra parameter to the equations. Various experimental
setups to practically and reliably estimate all parameters are discussed.

Keywords: Enzyme kinetics, Michaelis Menten, parameter estimation

1. Introduction

Kinetic studies of enzyme catalysis make up a cornerstone in quantitative
biochemistry, which has fueled the development of both fundamental under-
standing and technical applications of enzymes. The vast majority of work in
this area addresses homogenous reactions in the aqueous bulk. This implies5

that enzyme, substrate(s) and product(s) are diffusible species, and that the
rate of their interconversion can be described by conventional rate equations.
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The simplest possible enzyme reaction may be described by the microkinetic
scheme

e+ s
k1⇀↽
k−1

es
k2→ e+ p , (1)

which has been used for more than a century to rationalize experimental10

measurements [1, 2]. Typically, this reaction implies a fast formation of com-
plex, es, followed by a longer lasting state where d

dtes ≈ 0. This is known as
the quasi steady state condition and it may prevail until substrate depletion
becomes important [3, 4, 5]. This timescale separation puts the study of scheme
(1) into the mathematical framework of singular perturbed systems [6, 7] where15

constructing short term and long term solutions of the system is a typical ap-
proach.

During the quasi steady state, the rate of product formation, vmm
ss can be

computed by the Michaelis Menten (MM) equation

vmm
ss =

k2E0S0

S0 +Km
. (2)

A sufficient criterion to infer quasi steady state leading to equation (2) is ([8, 9])

E0 << S0 +Km . (3)

Equation (2) allows estimation of Km and k2 by performing a series of experi-
ments with different substrate concentrations provided inequality (3) is fulfilled.
A voluminous amount of work has been put in mathematical analysis and ap-20

proximation of reaction (1), based on pseudo first order kinetics, slow-fast dy-
namics, clever use of a new variable S + ES leading to the total quasi steady
state assumption, and discussion of the importance of almost constant substrate
concentration during the initial phase [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22]. We recommend the review [5] for an introduction and overview.25

While equation (2) underlies the typical experimental approach where en-
zyme is saturated with substrate, one can deduce a similar expression as sub-
strate is saturated with enzyme, the reverse Michaelis Menten (rMM) equation

vrmm
ss =

k2E0S0

E0 +Km
, (4)

with validity criterion [23]

S0 << E0 +Km . (5)

However, the underlying premise of a homogeneous environment is not justi-
fied for a large group of enzyme reactions both in vivo [24] and industrial appli-
cations [25]. The group includes enzymes in a well mixed, homogeneous liquid
interacting with an interface of a solid substrate, and it is not clear whether
traditional enzyme kinetic theory developed for homogeneous catalysis can be30

applied in such cases. Examples of this type of enzyme process include digestive
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reactions in the intestine and numerous technical enzyme applications such as
stain removal, dough conditioning and textile bleaching [25].

Another important case is biomass conversion where cellulose is hydrolyzed
by selected cellulases. This process is essential for natural carbon cycling and for35

industrial production of large scale biofuels based on lignocellulosic feedstocks
[26, 27]. A review of kinetic models for these processes can be found in [28] and
an example of stochastic modelling can be found in [29]. One specific enzyme-
substrate system is illustrated in figure 1.

The current work pivots around the hypothesis that when a soluble enzyme40

degrades an insoluble substrate like cellulose, it is likely that a temporary condi-
tion occurs in which s is nearly constant. See [30] (supporting information) for
an experimental validation. In this study it was found that cellulolytic enzymes,
which work at the solid-liquid interface show steady-state kinetics even when
the accessible surface of the substrate was covered with enzyme (substrate sat-45

uration). This stationarity relies on the balance between the enzymatic removal
of substrate attack sites that are initially accessible and the exposure of new
(originally inaccessible) attack sites as a result of the enzymatic break-down.
This may happen as the enzyme-substrate complex only converts some of the
attacked cellulose strand hence leaving a free attack site when the complex dis-50

sociates, or it may happen through a complete removal of a layer of substrate,
with the subjacent layer having as many free attack sites as the substrate layer
just removed. This type of stationarity is unknown for homogeneous reactions
and fundamentally different from quasi steady-state in such systems. We will
call this approach the substrate conserving model, and in its simplest form it55

may be captured by the microkinetic scheme

e+ s
k1⇀↽
k−1

es
k2→ e+ s+ p , (6)

which is presented here for the first time to our knowledge. It is important to
note that from a molecular point of view the substrate, s, at the left side of
the scheme is not the same as the substrate s on the right side of the scheme.
However, from a kinetic point of view they are the same. The substrate reappear60

on the right side due to the nature of an insoluble substrate and not due to an
autocatalytic step. In that sense our scheme is fundamentally different from
a cyclic or replicative system [12, 31], where the product of the reaction is
resynthesized or reused as substrate for other reactions. Experimental work on
cellubiohydrolase supporting reaction scheme (6) is in progress by our group.65

One key challenge for any kinetic description of a reaction with insoluble
substrate reaction arises from ambiguities regarding the molar concentration of
the substrate [28, 32]. Thus, some measure of the number-density of substrate
is needed in conventional rate equations, and this problem becomes particularly
intricate in attempts to apply a quasi steady-state assumption, which has proven
extremely useful in enzyme kinetics. Specific problems with this assumption
occurs because a condition for its validity, inequality (3), becomes abstruse
for an insoluble particle. Inspired by basic ideas within traditional adsorption
theory, we address this by introducing the density of attack sites for the enzyme
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Figure 1: Illustration of the substrate conserving model for a cellulose degrading enzyme
such as the cellobiohydrolase Cel7A (cartoon representation). The enzyme attacks accessible
reducing ends (attack-sites) on the surface of the cellulose crystal. These attack sites are
shown as red sticks. Following the attack of these sites the enzyme degrades the cellulose
strands (green). Degradation of the strands exposes other attack sites (blue sticks) that were
initially inaccessible. This in turn opens up for degradation of hidden substrate. The substrate
conserving model assumes that this leads to a constant number of accessible attack sites for
a limited time. The figure was made in Pymol(R) using the PDB files 4C4C and 2MWK).

on the substrate surface. By attack sites we mean loci on the substrate surface
that can combine productively with the enzyme. Although such sites are not
evenly distributed in the suspension, we suggest that their overall density makes
up a useful surrogate of a molar substrate concentration. Therefore, the molar
concentration of substrate, S, is assumed to be related to the mass load (i.e.
concentration in units of g/L) of substrate Ŝ by

S = ΓŜ , (7)

where Γ is a conversion factor of available attack sites per mass unit substrate
which can be determined from adsorption experiment of the substrate. In the
discussion we will return to an alternative way of estimating Γ.

The remainder of the paper is organized as follows: The differential equations
corresponding to (6) are formulated, and first the steady state equations are70

considered. This leads to simple and realistic equations that can readily be
applied to experimental data. Then, the time dependent solution is derived for
any values of initial conditions and rate constants. The results are compared to
the MM and rMM equations subject to their specific conditions of validity.

2. Analysis75

We will derive the governing equations of reaction (6) using the molar con-
centration of substrate, S. After derivations we will convert to substrate load
by (7) which is the quantity that is normally known and controllable in experi-
ments.
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Using the convention ẋ = dx(t)
dt and capital letters for concentrations of80

species, the reaction scheme (6) leads from the law of mass action to the equa-
tions

Ė = −k1E · S + (k−1 + k2)ES (8a)

ĖS = k1E · S − (k−1 + k2)ES (8b)

Ṡ = −k1E · S + (k−1 + k2)ES (8c)

Ṗ = k2ES (8d)

with E(0) = E0, S(0) = S0, ES(0) = P (0) = 0. The two conserved quantities
(substrate preservation, enzyme preservation), Ṡ + ĖS = 0, Ė + ĖS = 0 means
equation (8) is equivalent to85

Ė = −k1E · S + (k−1 + k2)ES (9a)

ES = E0 − E (9b)

S = E − E0 + S0 (9c)

Ṗ = k2 (E0 − E) . (9d)

The equation of Ė is uncoupled, hence the differential equation for P can be
solved after E is calculated. Rewriting Ė using the expressions for ES and S
gives

Ė = −k1E
2 − bE + c (10)

with
b = k1 (S0 − E0) + k2 + k−1 , c = (k−1 + k2)E0 . (11)

Using the Michaelis - Menten constant

Km =
k−1 + k2

k1
(12)

the roots of equation (10) can be formulated for any positive parameter values
and initial conditions

E± =
1

2

(
− (S0 − E0 +Km)±

√
(S0 − E0 +Km)

2
+ 4KmE0

)
. (13)

As E− < 0, E+ > 0, then E+ is the only physical realizable solution to Ė =
0, and it is globally stable since Ė > 0 for 0 ≤ E < E+ and Ė < 0 for90

E > E+. The globally stable solution is a consequence of the conservation
of enzyme and substrate in scheme 6. Hence, E+ represents the free enzyme
concentration at steady state, which we will denote Ess. The formulation in
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equation (13) illustrates that the argument to the square root is always positive,
but an equivalent useful formulation is95

Ess =
1

2

(
− (S0 − E0 +Km) + (S0 + E0 +Km)

√
1− 4

S0E0

(S0 + E0 +Km)
2

)
.

(14)
The steady state concentration of the complex ES is then by equation (9b)

ESss =
1

2
(S0 + E0 +Km)

(
1−

√
1− 4

S0E0

(S0 + E0 +Km)
2

)
, (15)

and vss is k2 times this expression by equation (8d)

vss =
1

2
k2 (S0 + E0 +Km)

(
1−

√
1− 4

S0E0

(S0 + E0 +Km)
2

)
, (16)

which is a main result of the present work. Examples of vss for varying ini-
tial conditions are shown in figure 2. The steady state solutions (14), (15),
(16) are globally valid and attracting for any positive E0, S0, k1, k−1, k2. These
expressions may be particularly practical for insoluble substrates because the
free enzyme concentration can readily be measured after substrate and bound
enzyme have been removed by centrifugation. Then, from measurements of vss
and Ess, one may estimate k2 as

k2 =
vss

E0 − Ess
. (17)

2.0.1. Approximation of steady state solution

A simpler expression of vss may be practical for parameter estimation based
on experimental data. Such an approximation will now be considered. The
argument to the square root in the steady state equations is strictly positive by
equation (13) which means the power series of the square root is always valid
in the variable

y =
S0E0

(S0 + E0 +Km)
2 (18)

with explicit expression

1−
√

1− 4y =

∞∑
n=1

(2n)!

(2n− 1) (n!)
2 y

n (19)

All terms of the series in (19) are positive, hence a truncation at any order
will underestimate the true value. The linear order expansion is√

1− 4y = 1− 2y + ε (20)
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where the remainder or error, ε, by Taylor’s formula with Lagrange’s remainder
is

ε = 2c2 for some 0 < c < y (21)

confining ε by
ε < 2y2 . (22)

Disregarding the ε term, we use the power expansion to linear order around zero√
1− 4y ≈ 1− 2y . (23)

With the linear order approximation (denoted by superscript 1) to equations
(14), (15), (16) we get100

E1
ss = E0

E0 +Km

S0 + E0 +Km
(24a)

ES1
ss =

E0S0

S0 + E0 +Km
(24b)

v1
ss = k2

E0S0

S0 + E0 +Km
. (24c)

While easily obtained, these formulas are a useful result of the present work.
The formulas are symmetric in E0 and S0 which is to be expected from scheme
(6), meaning k2 and Km can be inferred from saturation experiments of either
substrate or enzyme. Formula (24c) which may be seen as an extended MM
equation, has been derived in [31, 23] subject to a quasi steady state assumption105

of scheme (1). In the substrate conserving model, equation (24) is simply a linear
approximation to a true steady state.

2.1. Time dependent solution

As the polynomial in equation (10) can always be factorized, we can integrate
the equation using separation of variables and partial fraction decomposition110

E(t) =
E+ − E−
1 + c1e−

t
τ

+ E− (25)

with

c1 =
E+ − E0

E0 − E−
(26)

and

τ =
1

k1 (E+ − E−)
(27)

The enzyme-substrate complex is then

ES(t) = E0 − E− −
E+ − E−
1 + c1e−

t
τ

. (28)
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Integrating Ṗ = k2ES and using P (0) = 0 then gives

P (t) = k2

(
(E0 − E−) t− τ (E+ − E−) ln

(
e
t
τ + c1
1 + c1

))
. (29)

The formulas (25), (28), (29) provide closed form expressions of the time evolu-
tion of scheme (6) for any values of the initial concentrations and rate constants.
The time scale τ describes when the system is close to steady state. Inserting
the values of E± from equation (13) in equation (27)

τ =
1

k1

√
(S0 − E0 +Km)

2
+ 4KmE0

(30)

which is identical to the formula in [33] for initial transient when analyzing
the MM equation. The lowest order approximation to the square root using
equation (23) is

τ ≈ 1

k1 (E0 + S0 +Km)
(31)

which provides an a priori estimate of the time scale for approach to the steady115

state with prior knowledge on order of magnitude of k1 and Km.

3. Discussion

3.1. Comparison to existing results

Pseudo first order approximations to nonlinear dynamics can be useful for
study of enzyme kinetics though care must be taken when considering validity120

conditions [34]. In the case of effectively constant substrate, S0 >> E0, the
reaction schemes (1) and (6) may be described by pseudo first order approxi-
mations

e
k1S0⇀↽
k−1

es
k2→ e+ p (32a)

e
k1S0⇀↽
k−1

es
k2→ e+ p+ s (32b)

where s in (32b) is redundant as subtrate is in excess. Hence these linear
differential equations with constant coefficients lead to identical expressions of
Ṗ (t)

Ṗ (t) =
k2E0S0

S0 +Km

(
1− e−k1(S0+Km)t

)
(33)

which for t >> τ1 = 1
k1(S0+Km) is close to vmm

ss , equation (2).

This match between the substrate preserving equation and the MM equation125

is evident from figure (2) when comparing the thin black curve and the grey
curve. The MM equation (2) scales linearly with E0 causing collapsing curves

8



of Vss
E0

for varying E0. This is generally not true in the substrate preserving
model except when E0 << S0 +Km. As an indicator of self consistency notice
that τ approaches τ1 with the given assumption of substrate excess.130

A realization of v1
ss, equation (24c), is compared to the MM equation and the

rMM equation. The validity of v1
ss hinges on y being small, (equation (18)). The

validity criterion of the MM equation, E0 << S0 +Km ensures y is small, hence
guaranteeing that v1

ss is a good approximation to vss (equation (16)). Applying
E0 << S0+Km directly to v1

ss, the result is vmm
ss by a simple limit consideration.135

Hence, the substrate conserving model and the MM equation merge within the
range of validity of the latter. By completely analogue argument the substrate
conserving model and the rMM equation merge within the range of validity of
the latter. To illustrate this, an arbitrary choice of ’small’ has been chosen to be
0.1 meaning that the MM equation is considered valid when E0 ≤ 0.1(S0 +Km),140

the rMM equation is considered valid when S0 ≤ 0.1(S0 +Km) and v1
ss is valid

when y ≤ 0.1. This splits the (S0/Km, E0/Km) - space in regions of validity as
seen in figure (3), with v1

ss having the largest validity domain. We stress that
equation (16) is valid in the entire (S0/Km, E0/Km) - plane.

3.2. Estimation of parameters145

We will now discuss the typical experimental approach of measuring vss as
a function of E0 and Ŝ0, which are readily controllable. Specifically we focus
on how to derive the three parameter k2,Km and Γ from such experiment.
Equation (16) can be expressed using the mass load of the substrate (i.e. the
concentration in g/L) from equation (7) instead of molar quantity

vss =
1

2
k2

(
ΓŜ0 + E0 +Km

)1−

√√√√√1− 4
ΓŜ0E0(

ΓŜ0 + E0 +Km

)2

 , (34)

and its approximation equation (24c) may similarly be described using mass
load

v1
ss = k2Γ

E0Ŝ0

ΓŜ0 + E0 +Km

. (35)

The formula (34) (or equation (35) if y from equation (18) is small) is a
useful expression for experimentalists wishing to estimate Γ, k2 and Km.

In case of E0 << S0 +Km, equation (35) reduces to

v1
ss ≈ k2

E0Ŝ0

Ŝ0 + Km

Γ

. (36)

As Km and Γ are only appearing together as a fraction they are not structurally150

identifiable [35], meaning that no matter the quality of the experiment, they
cannot be estimated individually. However, introducing the MM constant in
mass units, K̂m = Km

Γ , equation (36) is the Michaelis Menten equation with

9



Figure 2: Example of model behaviour for Km = 0.1µM , k2 = 2s−1. Black curves are
vss computed from equation (16) with E0 being 0.1,1,2,5 µM with increasing line width
corresponding to increasing E0. The grey curve is the MM equation (2), and the red curve is
the common saturation level, k2. For decreasing E0 equation (16) approach the MM equation.
When the MM equation is valid, vss

E0
is constant for varying E0. As E0 is increased, the validity

criterion of the MM equation, (3), is not fulfilled. In this case, vss
E0

is not invariant to varying

E0 in the substrate conserving model.

Figure 3: Validity regions of the MM equation (blue curve: E0 = 0.1(S0 + Km)) , rMM
equation (red curve: S0 = 0.1(S0 + Km)), and v1ss (grey curve: y = 0.1 ) , with the criteria
of v1ss being the least restrictive. The validity of vss from equation (34) is the entire domain.
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substrate mass load instead of molar substrate concentration, and K̂m instead
of Km. Hence, k2 and K̂m are structurally and practically identifiable from155

saturation experiments with substrate excess when E0 and Ŝ0 are known.
Imposing the condition S0 << E0 +Km on equation (35), it reduces to

v1
ss ≈ k2Γ

E0Ŝ0

E0 +Km
, (37)

where onlyKm and k2Γ can be estimated. However, estimation ofKm, k2Γ, k2,
Km

Γ
can be obtained by performing separate experiments with either enzyme excess
or substrate excess. This clearly implies individual estimation of all the param-
eters Km, k2,Γ and even provides redundant information which can be used to160

estimate Γ in two different ways.
Alternatively, one may use experimental conditions with neither substrate or

enzyme in significant excess, and estimate k2,Km,Γ through non linear regres-
sion of equation (34) or equation (35) to a series of experiments with varying
E0 and S0.165

4. Conclusion

In conclusion, the biochemically motivated substrate conserving model leads
to a set of simple rate equations which may be used for enzymatic breakdown
of solid substrates. The substrate conserving model is symmetric in E and S
meaning that substrate excess and enzyme excess yields similar steady state170

curves. The substrate conserving model provides exact, closed form expressions
of steady state values and time progress curves, which are valid for any ad-
missible values of initial conditions and rate constants. Therefore, use of quasi
steady state approximations are unnecessary. The model overlaps with the MM
equation and rMM equation within their validity domains of respectively sub-175

strate or enzyme excess. Considering a linear relation between mass load of
substrate and molar substrate provides an extra parameter, Γ, to the steady
state equations. To estimate all parameters by vss measurements one cannot
restrict to cases with either substrate excess or enzyme excess. Both have to be
considered, or a range where none of them are dominant must be investigated.180
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