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Problem 1 (with suggested solution) 

In a classical experiment carried out by the American physicist R. A. Millikan i 1916 (Phys. Rev. 7, 
355), a sodium surface was irradiated with monochromatic light of different wavelengths  and the 
emitted photoelectrons were analyzed according to their kinetic energy. 

 
 
Millikan used an experimental setup where the photoelectrons hit an electrically conducting screen 
(collector).  The energy of the emitted electrons was determined by measuring the voltage V  that 
should be applied to the screen relative to the sodium surface in order just to stop the photoelectron 
current (“the stopping voltage”). The kinetic energy of the photoelectrons ½mv2 (Joule) is equal to 
eV, where  e  is the elementary charge in Coulomb and  V  is the stopping voltage (note that 1 Joule 
= 1 Coulomb Volt). The following values of wavelength  λ  and voltage  V  were measured (1 nm = 
10-9 m):  
 

λ (nm) V  (Volt) 

312.5 2.128 

365.0 1.595 

404.7 1.215 

433.9 1.025 

 
 
Photoelectron data like these lead to the first precise determination of Planck’s constant  h  
 (± 0.5%).  Derive a value of Planck’s constant from Millikan’s data.. 



 
ANSWER: 
 
Millikan, data for sodium (1916): 
 
 (nm)  = c/ (s-1) V (Volt) Ekin = eV (J)
312.5 9.5934 1014 2.128 3.409 10–19 
365.0 8.2135 1014 1.595 2.555 10–19 
404.7 7.4078 1014 1.215 1.947 10–19 
433.9 6.9093 1014 1.025 1.642 10–19 
 

Einsteins equation for the photoelectric effect (1905): 

IhEEIh kinkin    
 
A plot of  Ekin  as a function of frequency   should thus yield a straight line with slope equal to 
Planck’s constant, h. 
 
Plot of data points for Ekin (J) against frequency  (s–1): 

 
 
The slope of the LS regression line is h = 6.644 10–34 J s,  

yielding an estimate of Planck’s constant close to the table value: h = 6.62608 10–34 J s. 



 

Problem 3 (suggested solution) 

In this problem we consider electronic transitions in linear, conjugated polyenes. It is 
assumed that the so-called π-electrons associated with the double bonds move freely within 
the length of the conjugated system ("Free-Electron Molecular Orbital" model), and energy 
levels and wavefunctions are approximated by using the particle in a one-dimensional box-
model. 

n  1

L = (2n + 1)d 

H
2
C

HC

CH

CH2

 

Assume that the length L of the box is given by L = (2n + 1)d, where d = 1.4 Å is the 
average CC bond length in a linear polyene and n is the number of formal double bonds. In 
the electronic ground state, the 2n  π-electrons (2 per double bond) occupy the n lowest 
energy levels, since each level can contain no more than two electrons (Pauli principle). 

Show that the energy difference between the lowest unoccupied level εn+1 and the highest 
occupied level εn is equal to 
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The energy difference corresponds to the transition energy ΔE for the most longwave 
absorption band in the UV-VIS region. Compute the theoretical transition energies ΔE  [J, 
eV] and the corresponding wavenumbers ~  [cm-1] and wavelengths λ [nm] for n = 1, 2, 3, 
and 4 (ethene, butadiene, hexatriene, and octatetraene). Compare with the experimental 
wavelengths: 163, 210, 247, and 286 nm, respectively.  

 



ANSWER:  
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n (2n + 1)-1  [J]  [eV]  [cm-1]  [nm] Obsd. [cm-1] Obsd. [nm]
1 1/3 1.03·10-18 6.40 51600 194 61000 163 
2 1/5 6.15·10-19 3.84 30900 323 48000 210 
3 1/7 4.39·10-19 2.74 22100 452 40000 247 
4 1/9 3.42·10-19 2.13 17200 582 35000 286 

Order of magnitude and the decrease of transition energy (increase of wavelength) on 
extension of the length of the polyene are quite well reproduced, considering the simplicity 
of the model!   

 

 



Problem 5 (with suggested solution) 

Let us consider a description of the energy levels in the hydrogen atom by using a three-
dimensional “particle in a box”-model. The eigenfunctions and eigenvalues for a particle 
in a rectangular box with side lengths I, J, and K are given by 
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where i, j, and k are quantum numbers that independently may adopt any positive integer 
value.  

a. Assume that the box has the shape of a cube. Indicate the approximate shape of the 
wavefunctions for the two lowest energy levels and express the energy difference 
between them as a function of the side length L of the cube. 

ANSWER: 
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b. The corresponding spectroscopic transition in atomic hydrogen has a wavelength of 
122 nm (the first line in the Lyman series). Which volume V = L3 should our simple 
cube model have in order to reproduce this wavelength?  Compare V with 
experimental estimates of the volume of the hydrogen atom (e.g., the van der Waals 
radius rw of hydrogen is estimated to be 1.2 Å, corresponding to a volume 4πrw

3/3 = 
7.2 Å3 ). 

ANSWER: 
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c. The “particle in a box”-model for hydrogen is less successful than the FEMO-model 
for linear polyenes (Problem 3). Why? 

ANSWER: 

Consider the potential energy assumptions in the two cases! 

 
 



Problem 6 (with suggested solution) 
 

In the harmonic approximation, the stationary vibrational energy levels for a diatomic 
molecule A–B are given by 

 

 ,2,1,0v,½)v(½)v(v 


 k
E  

 
where  k  is the “force constant” for the chemical bond between the atoms A and B (the force 
constant is a measure of the rigidity of the bond, typically in the order of 500 N m-1),    is the 
reduced mass,  = mAmB/(mA + mB), and  v  is the vibrational quantum number.  The 
parameter   is equal to the classical angular frequency, 2 [radian s-1], where   is the 
classical frequency [s-1 (Hz)].  The corresponding vibrational period is given by  =  -1 [s]. 

The energy of the vibrational ground state, E0, is called the “zero-point energy” (ZPE). 
The lowest excited vibrational level, E1, is called the “fundamental level”, and the following 
levels, E2, E3, etc., are called “overtone levels”.  In the harmonic approximation, the energy 
difference  E = Ev+1 – Ev  between two neigbouring levels is constant, corresponding to the 
vibrational energy quantum EΔ . 

 
a) What is the zero-point energy E0 and the vibrational energy quantum   for hydrogen 

iodide (1H127I), when the force constant k is equal to 314 N m-1?  Give the results in J, eV, 
and cm-1.  In which spectral region does transition from the zero-point level to the 
fundamental level occur?  What is the classical vibrational period?  

 

ANSWER: 

Hydrogen iodide, 1H127I: 
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b) Compute the ratio between the vibrational energy quanta for hydrogen iodide (1H127I) and 
deuterium iodide (2H127I), when it is assumed that the force constant is the same in the 
two molecules. 

 

ANSWER: 
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Hence, the predicted energy quantum, and thus the corresponding vibrational wavenumber, is 

reduced to ca. 2%100  ≈ 71% as a result of the isotope effect!    (2309 → 1640 cm-1) 
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c) Compute the relative population n1/n0 of the fundamental level of hydrogen iodide at T = 
298 K and T = 1000 K. It is assumed that at thermal equilibrium, the population is 
determined by the Bolzmann distribution: n1/n0 = exp[–(E1 – E0)/kBT]. 

 

ANSWER: 
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 1 

Problem 7 (with suggested solution) 
 

The vibrational energies for a diatomic molecule in the harmonic approximation are, as 
mentioned in Problem 6, given by ωh½)v(v +=E . A more accurate model based on the “Morse 
potential” where anharmonic effects are taken into account yields the vibrational energies  
Ev = [(v + ½) – (v + ½)2 xe] ωh ,  or in units of wavenumber [cm-1]: 

 

eexG ν~]½)v(½)v[()v(
~ 2+−+= . 

 
The quantities )v(

~
G  are known as the “vibrational terms” of the molecule. The parameters xe and 

eν~  are called the “anharmonicity constant” and the “vibrational wavenumber”, respectively. The 
wavenumbers of vibrational transitions are obtained as differences between terms; transitions from 
the ground state are thus obtained as )0(

~
)v(

~
GG − . Note that eν~  is merely a parameter, it does not 

correspond to the wavenumber of a vibrational transition! The relation between eν~  and the “force 
constant” k is given by eν~  = ω /2π c = (2π c)-1 (k /µ)1/2, where µ is the reduced mass. 
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c) For the molecule 14N16O, the fundamental band is observed at 1876.06 cm-1 and the first 
overtone band at 3724.20 cm-1. Estimate the vibrational wavenumber eν~ , the anharmonicity 
constant xe, and the force constant k for 14N16O. 

ANSWER: 
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Problem 8 (with suggested solution) 

For a classical rotating body, the magnitude of the angular momentum is given by J = Iω, where I  
is the moment of inertia with respect to the axis of rotation and ω  is the angular frequency. In the 
vector representation, the angular momentum is represented by a vector J

r
 in the direction of the 

rotation axis and with length J
r

 = J.  The sign convention for J
r

 is given by a right-hand rule. The 
rotational energy is given by E = Iω 2/2 = J/2I. 

The quantum mechanical description of a rigid linear rotor that may rotate freely in the three 
dimensions of space leads to quantization of the length J of the angular momentum vector, and of 
the projection Jz of the vector on an external axis of reference:   

444 3444 21
Lh

Lh

 valuespossible12

,,2,1,0,

,3,2,1,0,)1(

+

±±±=⋅=
=⋅+=

j

jjz jmmJ

jjjJ
 

For a moment vector J
r

 corresponding to the quantum number j there are 2j + 1 possible projections 
Jz, corresponding to the possible mj quantum numbers. This amounts to a quantization of space! But 
in the absence of external fields, the rotation energy is independent of mj:  

I
jj

I

J
E j 2

)1(
2

22
h⋅+==  

The constant quantity I2/2
h is often expressed in wavenumbers [cm-1] and is then called the 

rotational constant, cIhcIB π4//)2/(
~ 2 hh == . The multiplicity (degeneracy) gj of the j’th energy 

level is the number of rotational states with the same energy E j , i.e., g j = 2j + 1.  At thermal 
equilibrium, the relative population nj/n0 of the j’th and the 0’th energy level is determined by the 
Boltzmann distribution: 
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                               (1) 

where kB is the Boltzmann constant [J/K] and T the thermodynamical temperature [K].  

a. Compute the five lowest rotational energies Ej [kJ/mol, cm-1] for hydrogen iodide, HI, and the 
corresponding relative populations nj/n0 at 100 K, 298 K, and 1000 K. The molecule is 
considered as a rigid rotor. The moment of inertia for a rigid diatomic molecule A-B rotating 
around an axis through its centre of gravity perpendicular to its bond axis is I = µR2, where µ = 
mAmB/(mA + mB) and R is the bond length (R = 1.6 Å for HI). 

b. Show by differentiation of (1) that the quantum number jmax corresponding to the most 
populated level is given by  

2

1
~

2

~

2

1
~

2
max −=−=

B

Tk

Bhc

Tk
j BB    (rounded off to nearest integer value), 

and determine jmax for HI at 100 K, 298 K, and 1000 K.  
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ANSWERS: 
 
Hydrogen iodide:  H—I 

R = 1.6 Å = 1.6·10-10 m 
mH = 1.0078 u  
mI  = 126.9 u 
1 u = 1.6606·10-27 kg 
 
a. 
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j 0 1 2 3 4 

j(j + 1) 0  2 6 12 20 
Ej    kJ mol-1 0 0.1576 0.4727 0.9454 1.576 
            cm-1 0 13.17 39.51 79.03 131.71 
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kB = 1.38066·10-23 J K-1; Bk
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= kB/hc = 0.69503 cm-1 K-1 
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j 0 1 2 3 4 

2j + 1 1 3 5 7 9 
j(j + 1) 0 2 6 12 20 

nj/n0
   T =   100 K (1) 2.48 2.83 2.25 1.35 

          T =   298 K (1) 2.83 4.13 4.78 4.77 
          T = 1000 K (1) 2.94 4.72 6.25 7.45 
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b. 
 














+−+=

Tk

B
jjj

n

n

B

j
~

~
)1(exp)12(

0

: 

 

0~

~
)1(exp~

~
)12(~

~
)1(exp2 2

0

=










+−+−











+−⋅=









Tk

B
jj

Tk

B
j

Tk

B
jj

n

n

dj

d

BBB

j  

0~

~
)12(2 2 =+−⇒

Tk

B
j

B

 

0~
2

~

4

12 =










−++⇒

B

Tk
jj B  














+−±−=⇒

B

Tk
j B

~

~
2

111
2

1
 

j must be positive, select plus-sign: 
 

...
2

1
~

2

~

~

~
2

1
2

1
max deq

B

Tk

B

Tk
j BB −=














+−=  

 
T = 100 K:   jmax = 1.80 → 2 
T = 298 K:   jmax = 3.47 → 3 
T = 1000 K:   jmax = 6.76 → 7 
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Problem 9 (with suggested solution) 

For a linear molecule considered as a rigid rotor, the magnitude of the angular momentum is given 
by ⋅+= )1( jjJ  and the rotational energy by  Ej IjjIJ 2/)1(2/ 22 ⋅+== , where  j  is the 
angular momentum quantum number and  I  is the moment of inertia.  If the molecule has a 
permanent electric dipole moment, transitions between different rotational states can be observed by 
optical spectroscopy (in the far IR and microwave regions).  However, not all rotational transitions 
are spectroscopically allowed; the selection rule is ∆j = 1. Hence, absorption of electromagnetic 
radiation can occur only for transitions corresponding to j → j + 1.  

a. Show that the wavenumber ν~  for an allowed rotational transition j → j + 1 is given by 
)1(~2~ += jBν , where B~  is the rotational constant  ( cIIhcB π4/2/~ 2  == ). The interval ν~∆  

between two neighbouring lines in the rotational spectrum is thus constant, B~2~ =∆ν . 

ANSWER: 
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b. For hydrogen chloride 1H35Cl in the gas phase the following absorption lines have been 
measured: 83.32, 104.13, 124.73, 145.37, 165.89, 186.23, 206.60 and 226.86 cm-1 (R. L. 
Hausler & R. A. Oetjen: J. Chem. Phys. 21, 1340 (1953)). Compute the bond length R for 
hydrogen chloride.  

ANSWER: 

The 7 intervals between the 8 wavenumbers are approximately equal: 
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Additional question:  What are the j-values for the transition with ν~ = 83.32 cm-1? 
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~
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jjBjj

νν   the transition is  3 → 4. 
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c. Predict the wavenumbers for the corresponding lines in the spectrum of deuterium chloride 
2H35Cl, when it is assumed that deuterium chloride has the same bond length R as hydrogen 
chloride. 

 
ANSWER: 
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Problem 11 (with suggested solution) 
 

1

2
3 4

 
 
The hydrocarbon methylenecyclopropene (C4H4) is a very reactive species, but in 1984 
Staley and Norden (J. Am. Chem. Soc. 106, 3699 (1984)) succeeded in isolation of the 
compound by trapping it in a cryogenic matrix. In this problem we perform a population 
analysis of the π-electron system of methylenecyclopropene within the Hückel model. The 
computed molecular orbitals (MOs) μμψ pc iii Σ= and their energies εi are given below: 
 

ε-2 = α – 1.48β,     ψ-2 = 0.30 p1 + 0.30 p2 – 0.75 p3 + 0.51 p4 

ε-1 = α – 1.00β,  ψ-1 = 0.71 p1 – 0.71 p2       

ε1 = α + 0.31β,  ψ1 = 0.37 p1 + 0.37 p2 – 0.25 p3 – 0.82 p4 

ε2 = α + 2.17β,  ψ2 = 0.52 p1 + 0.52 p2 + 0.61 p3 + 0.28 p4 
 
a) The π-electron population 2

iii cnP μμ Σ=  is a measure of the π-electron density on the 
atomic centre μ.  The summation is over all MOs i, and ni is the occupation number of 
the i’th MO (we have ,NnP ii =Σ=Σ μμ  where N is the total number of electrons in the 
π-system).   Compute the four π-electron populations Pμ  for the ground configuration of 
methylene-cyclobutene, and for the lowest excited configuration 11 −→ . 

 

ANSWER:  

Ground configuration 

For the ground configuration, .0,2 2112 ==== −− nnnn  Hence, we have for position 1: 
2

2,1
2

1,1
2
1,1

2
2,1

2
,11 0022 −− ⋅+⋅+⋅+⋅=Σ= cccccnP iii ,  and so forth!  ⇒  

P1 = 2 · 0.522  +  2 · 0.372  = 0.82   P2 = 2 · 0.522  +  2 · 0.372  = 0.82 

P3 = 2 · 0.612 + 2 · (– 0.25)2 = 0.88   P4 = 2 · 0.282  +  2 · (– 0.82)2  = 1.49 

                                  Populations  Pμ                   Net charges  qμ = 1 − Pμ  
 

 

 

 

 

Dipole:   + → –     

0.82

0.82 
0.88 1.49

+ 0.18 

+ 0.18 
+ 0.12     – 0.49 



 
Excited configuration 

For the excited configuration, .0,1,1,2 2112 ==== −− nnnn    ⇒  

P1
* = 2 · 0.522 + 1 · 0.372 + 1 · 0.712  = 1.18  P2

* = 2 · 0.522 + 1 · 0.372 + 1 · (– 0.71)2  = 1.18 

P3
* = 2 · 0.612 + 1 · (– 0.25)2  = 0.81   P4

* = 2 · 0.282  +  1· (– 0.82)2  = 0.82 

 

                                  Populations  Pμ
∗
                   Net charges  qμ *= 1 − Pμ 

∗
  

 

 

 

 
 

                                                                                      Dipole:   – ← +     

Discuss in qualitative terms how the transition energy is expected to be influenced by a 
shift from non-polar to polar solvent. Experimentally, an extremely large solvent effect 
is observed: λmax = 309 nm in n-pentane and λmax = 210 nm in methanol. 

ANSWER:  

The computed charge distributions indicate reversal of the molecular dipole moment on 
excitation. Relative to the situation in a non-polar solvent, the ground state will be stabilized 
and the (vertically) excited state destabilized in a polar solvent, leading to the prediction of a 
shift towards higher transition energy = lower wavelength (“blue shift”) in polar solvents.  
 

b) The π-electron bond order iiii ccnP νμμν Σ=  is a measure of the π-electron density in the 
bond between the centres μ and ν.  There is an approximate, empirical correlation 
between experimentally determined bond lengths )Å(μνR  and Hückel bond orders μνP  
for conjugated hydrocarbons: 

μνμν PR 18.052.1)Å( −≅  
Compute the bond orders μνP  for the ground configuration and for the lowest excited 
configuration of methylenecyclopropene. Is the usual constitutional formula for the 
compound consistent with the computed bond orders?  What change in bond lengths is 
predicted by excitation from the ground configuration to the excited configuration? 
 

ANSWER: 

Ground configuration 

     P12 = 2 · 0.52 · 0.52  +  2 · 0.37 · 0.37 = 0.82 

     P13 = 2 · 0.52 · 0.61  +  2 · 0.37 · (– 0.25) = 0.45 

     P23 = 2 · 0.52 · 0.61  +  2 · 0.37 · (– 0.25) = 0.45 

     P34 = 2 · 0.61 · 0.28  +  2 · (– 0.25) · (– 0.82) = 0.76  

1.18

1.18 
0.81 0.82

– 0.18 

– 0.18 
+ 0.19 + 0.18



                              Bond orders μνP                           Predicted bond lengths 

 
                                                                                    R12 ≈ 1.37 Å 
                                                                                    R13 = R23 ≈ 1.43 Å 
                                                                                    R34 ≈ 1.38 Å 
 
 
The computed bond orders indicate high double bond character in the 1-2 and 3-4 positions, 
consistent with the usual constitutional formula. 
 
Excited configuration 

     P12
* = 2 · 0.52 · 0.52  +  1 · 0.37 · 0.37  +  1 · 0.71 · (– 0.71) = 0.18 

     P13
* = 2 · 0.52 · 0.61  +  1 · 0.37 · (– 0.25) = 0.55 

     P23
* = 2 · 0.52 · 0.61  +  1 · 0.37 · (– 0.25) = 0.55 

     P34
* = 2 · 0.61 · 0.28  +  1 · (– 0.25) · (– 0.82) = 0.55  

 

                              Bond orders Pμν
∗                          Predicted bond lengths 

 
 
                                                                                      R12

* ≈ 1.47 Å 
                                                                                      R13

* = R23
* ≈ 1.41 Å 

                                                                                      R34
* ≈ 1.41 Å 

 
 
The bond orders indicate a significant weakening of the 1-2 bond in the excited 
configuration, corresponding to lengthening in the order of one tenth of an Å. 

0.18
0.55 

0.55 

0.55 

0.82
0.76 

0.45 

0.45 
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Problem 12 (with suggested solution) 

 
 
In this problem we perform population analyses of the π-electron systems in 1,3-butadiene and 
acroleïn within the Hückel model. 
 
a) Write the secular equations and the secular determinant for the π-electron system of butadiene 

(the equations must not be solved). 

ANSWER: 
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Secular determinant: 

χ
χ
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χ
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b) Below are given the molecular orbitals (MOs) μμψ pc iii Σ= and their energies εi determined by 
solution of the secular problem defined in question a). 

ε-2 = α – 1.618β,     ψ-2 = 0.372 p1 – 0.602 p2 + 0.602 p3 – 0.372 p4 
ε-1 = α – 0.618β,  ψ-1 = 0.602 p1 – 0.372 p2 – 0.372 p3 + 0.602 p3 
ε1 = α + 0.618β,  ψ1 = 0.602 p1 + 0.372 p2 – 0.372 p3 – 0.602 p4 
ε2 = α + 1.618β,  ψ2 = 0.372 p1 + 0.602 p2 + 0.602 p3 + 0.372 p4 

Show that the π-electron populations 2
iii cnP μμ Σ=  for the ground electronic configuration of 

butadiene all are equal to unity,  P1 = P2 = P3 = P4 = 1.  This is a general result for neutral 
alternant hydrocarbons, i.e., conjugated hydrocarbons with no odd-membered rings. The 
Hückel model thus predicts that these compounds are distinctly “non-polar” (in contrast, e.g., to 
the results for methylenecyclopropene, se Problem 11). Is this prediction in agreement with 
experimental evidence? 

1 
2 

3 
4 1

2

3
4 

O
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ANSWER: 

P1 = 2 · 0.3722  +  2 · 0.6022  = 1.00    P2 = 2 · 0.6022  +  2 · 0.3722  = 1.00 

P3 = 2 · 0.6022  +  2 · (– 0.372)2  = 1.00    P4 = 2 · 0.3722  +  2 · (– 0.602)2  = 1.00 

c) Determine the π-bond orders iiii ccnP νμμν Σ=  for butadiene, and compare them with the 
experimentally determined bond lengths R12 = R34 = 1.34 Å and R23 = 1.48. 

ANSWER: 

     P12 = 2 · 0.372 · 0.602  +  2 · 0.602 · 0.372 = 0.89            high double bond character 

     P23 = 2 · 0.602 · 0.602  +  2 · 0.372 · (– 0.372) = 0.45            low double bond character 

     P34 = 2 · 0.602 · 0.372  +  2 · (– 0.372) · (– 0.602) = 0.89      high double bond character 
 

d) The π-system of acroleïn is isoelectronic with that of butadiene, but deviates by containing a 
heteroatom, namely the oxygen atom in the carbonyl group. It is well known that oxygen has a 
much larger electronegativity than carbon. Within the Hückel model, differences in 
electronegativity may be taken into account by adjustment of the parameters involving the 
hetero centre:  The Coulomb integral for the O-atom is taken as αO = αC + hOβCC  and the 
resonance integral for the C-O bond is taken as βCO = kCOβCC.  Here αC and βCC are the standard 
parameters (α and β ) used for hydrocarbons.  In the literature, several suggestions of adequate 
numerical values of  hO and kCO may be found (as well as corresponding values hX and kCX for 
other heteroatoms X). The most frequently applied values for carbonyl type oxygen are hO = 2 
and kCO = 2 . Write the secular equations and the secular determinant for acroleïn with these 
values for hO and kCO. 

ANSWER: 
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Or, with χ = (α − ε)/β : 
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Secular determinant: 
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e) Below are given the molecular orbitals (MOs) μμψ pc iii Σ= and their energies εi determined by 
solution of the secular problem defined in question d).   

ε-2 = α – 1.593β,     ψ-2 = 0.400 p1 – 0.636 p2 + 0.614 p3 – 0.242 p4 
ε-1 = α – 0.386β,  ψ-1 = 0.686 p1 – 0.264 p2 – 0.584 p3 + 0.346 p3 
ε1 = α + 1.152β,  ψ1 = 0.605 p1 + 0.696 p2 + 0.198 p3 – 0.331 p4 
ε2 = α + 2.826β,  ψ2 = 0.071 p1 + 0.199 p2 + 0.493 p3 + 0.844 p4 

Compute the π-electron populations for acroleïn in the ground configuration, and compare with 
the corresponding results for butadiene. How is acroleïn polarized, compared with butadiene? 
Are the predictions in agreement with chemical intuition? 

ANSWER:  

P1 = 2 · 0.0712  +  2 · 0.6052  = 0.74 P2 = 2 · 0.1992  +  2 · 0.6962  = 1.05 

P3 = 2 · 0.4932  +  2 · 0.1982  = 0.56 P4 = 2 · 0.8442  +  2 · (– 0.331)2  = 1.64 

 

          Populations  Pμ                                        Net charges  qμ = 1 − Pμ  

            
The results predict the expected polarization with increased electron density on the 
electronegative oxygen center. Notice also the prediction of a positive charge on the 
β-carbon center (position 1 in the molecular graph), which is in agreement with 
“chemical intuition”. Compare with the prediction based on simple organic chemical 
resonance theory: 

+ +

− −
O O O

 
 

f) In general, an electrophilic reagent has a deficit of electrons, and a nucleophilic reagent has a 
surplus of electrons. On the basis of the predicted electronic distribution, how would you expect 
acroleïn to react with an electrophilic and a nucleophilic reagent?  Compare with characteristic 
chemical reactions for α,β-unsaturated carbonyl compounds. 

ANSWER: 

Electrophilic attack preferably on the negatively charged oxygen position, f.inst. 
protonation. Nucleophilic attack preferably on the positively charged carbons in 
positions 1 and 3. There are numerous examples of nucleophilic attack on a carbonyl 
carbon position (here position 3): Formation of hydrates, acetals, imines, etc. An 
example of attack on position 1 would be the addition of a carbanion in the β-position 
(here position 1) of an α,β-unsaturated carbonyl compound (“Michael addition”). 

– 0.05

+0.26          +0.44 

– 0.64
O1.05 

0.74            0.56 

1.64 
O 



1,3-Butadiene: 

 

Hückel secular equations for the π-electron system: 
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Or with 
β
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Molecular orbitals (MOs) µµψ pciii Σ= and energies εi : 

ε −2 = α – 1.618β ,     ψ −2 = 0.372 p1 – 0.602 p2 + 0.602 p3 – 0.372 p4 
ε −1 = α – 0.618β ,  ψ −1 = 0.602 p1 – 0.372 p2 – 0.372 p3 + 0.602 p3 
ε 1 = α + 0.618β ,  ψ 1 = 0.602 p1 + 0.372 p2 – 0.372 p3 – 0.602 p4 
ε 2 = α + 1.618β ,  ψ 2 = 0.372 p1 + 0.602 p2 + 0.602 p3 + 0.372 p4 

 

Or MOs equivalently :            
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Heteroatoms in the Hückel MO model (HMO): 

In the standard version for planar, conjugated hydrocarbons, a common “coulomb” parameter  is adopted 

for all carbon centers and a common “resonance” parameter  for all linkages in the  system. This leads to 

the classical Hückel secular equations 

0)(  


  cc  

With 






 :              0



 cc  

In systems where one or more carbon atoms are replaced by “heteroatoms” X (e.g., X = O or N), the Hückel 

parameters for these centers may be modified to reflect the difference in electronegativity of the hetero-

center relative to that of carbon. In general, the parameters X and CX for the centers affected by the 

hetero-substitution may be written: 





CXCX

XX

k

h




 

Here  and  are the standard parameters for hydrocarbons, and hX and kCX are empirical parameters 

adjusted to reflect the nature of the heteroatom X (several parameter suggestions can be found in the 

literature). This leads to the secular equations and HMO matrix: 
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Or with  
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The parameters hare taken as h = 0 for carbon and h = hX for hetero-centers X, and for the parameters k 

we have k = 1 for bonds between carbon centers and k = kCX for bonds between carbon and X 

(parameters may of course also be defined for bonds between two hetero-centers, if necessary). 

Formaldehyde 

Let us consider a simple example, the  system of formaldehyde, H2C=O. The  system comprises just the 

two centers of the carbonyl group. For carbonyl-type oxygen, the parameters hO = 2 and kCO = 2 have been 

suggested:     
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The HMO equations are                           
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Expansion of the secular determinant yields 

02222)2(
22

2 2 






    










732.2

732.0

2

12
1  

and we obtain the MO energies and wavefunctions: 

*    1 =  – 0.732     1 = 0.888 pC – 0.460 pO 

    1 =  + 2.732     1 = 0.460 pC + 0.888 pO 

 

We see that the bonding  MO of the carbonyl group is strongly polarized, with high amplitude on the 

oxygen center. This is a result of increasing the effective electronegativity of oxygen relative to carbon in 

our model. On the other hand, the antibonding * MO has large amplitude on carbon. These results lead to 

the predictions that electrophilic reagents will attack the carbonyl oxygen, and nucleophilic reagents will 

attack the carbonyl carbon. This is of course consistent with common chemical experience. – We can also 

see that transfer of an electron from the  to the * MO, resulting in an excited electronic configuration, is 

predicted to lead to a transfer of electron density from the oxygen to the carbon atom, and this will affect the 

reactivity pattern. 

 

For comparison, illustration of the results of a more sophisticated MO procedure; the MO contour diagrams 

are viewed in a plane containing the C=O bond axis, perpendicular to the molecular plane: 

 

  

     
 

                                                                 *  
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Problem 13 (with suggested solution) 
 
Determine the symmetry operations of the following molecules. What are their symmetry point 
groups? Which compounds may have a permanent dipole moment? Which compounds are chiral? 
 
 
a) Formaldehyde, CH2O  → ⇒′vvCE σσ ˆ,ˆ,ˆ,ˆ

2 C2v 

b) Ammonia, NH3  → ⇒vCE σ̂3,ˆ2,ˆ
3 C3v 

c) Ethylene, H2C=CH2  → ⇒)(ˆ),(ˆ),(ˆ,ˆ),(ˆ),(ˆ),(ˆ,ˆ
222 yzxzxyixCyCzCE σσσ D2h 

d) Hydrogen peroxide, HO–OH  → ⇒2
ˆ,ˆ CE  C2 

e) Bromobenzene, C6H5Br   → ⇒′vvCE σσ ˆ,ˆ,ˆ,ˆ
2 C2v 

f) 1,4-Dibromobenzene, C6H4Br2  → ⇒)(ˆ),(ˆ),(ˆ,ˆ),(ˆ),(ˆ),(ˆ,ˆ
222 yzxzxyixCyCzCE σσσ D2h 

g) 1,4-Dibromo-2,5-dichlorobenzene, C6H2Br2Cl2  → ⇒hiCE σ̂,ˆ,ˆ,ˆ
2  C2h 

 
Only molecules with Cn, Cnv, or Cs symmetry may have a permanent dipole moment, i.e., a), b), d), 
and e). – A molecule may be chiral if it neither has a centre of inversion nor a mirror plane. Here, d) 
is the only chiral molecule (see Atkins’, 11.3). 

 
a) b)

c) d)

e) f) g)

C
O

HH
N
H

HH

HH
C C

HH

HH
O O

Br Br

Br

Br

Cl

Br

Cl
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Problem 14 (with suggested solution) 
 
In its electronic groundstate, formaldehyde (H2CO) is a planar molecule with C2v symmetry: 
 
 
 
 
 
 
a) What are the symmetries (irreducible representations) of the 10 molecular orbitals (MOs) that 

can be constructed on the basis of the 10 valence atomic orbitals H(1s), H’(1s), C(2s, 2px, 2py, 
2pz) and O(2s, 2px, 2py, 2pz)?  Hint: Determine the characters of the reducible representation Γ 
based on the 10 atomic orbitals, and decompose Γ to irreducible representations.  

ANSWER: 
 

C2v Ê  2Ĉ  )(ˆ xzvσ )(ˆ yzvσ ′ h = 4 
A1  1   1   1   1 z 
A2   1   1 –1 –1 Rz 
B1   1 –1   1 –1 x, Ry 
B2   1 –1 –1   1 y, Rx 

Γ 10   0   4   6 ni: 

Γ × A1 10   0   4   6 20/4 = 5
Γ × A2 10   0 –4 –6 0        
Γ × B1 10   0   4 –6 8/4 = 2
Γ × B2 10   0 –4   6 12/4 = 3

 
Check: 103205 =+++=∑i in       

211 325 BBA ++=Γ⇒  

 

b) The highest occupied MO in the groundstate (HOMO) can be characterized as a “lone pair” 
orbital, largely localized in the 2py orbital of the oxygen atom.  This MO contributes very little 
to the chemical bonding in the molecule; such an orbital is often called an n orbital (“n” for 
“non-bonding”). What is the symmetry Γn of formaldehydes n orbital? 

ANSWER: 

 
Γn = B2 

 

                   n 

y

z
xC O

H'

H



 2

 

 

c) The second highest MO (SHOMO) and the lowest unoccupied MO (LUMO) are the π and π∗ 
MOs, respectively, of the C=O double bond. Indicate the shape of these orbitals (you may 
compute them with the Hückel model, see Problem 12). What are their symmetries? 

ANSWER: 

 

 

         Γπ = Γπ∗ = B1 
 

 

     π                π∗ 

d) The lowest electronic transition of formaldehyde corresponds to the HOMO → LUMO 
transition, n → π∗. What is the symmetry of the excited state? 

ANSWER: 

π∗ (Β1)

π  (Β1)

n  (Β2)

ε

 
       Ground config.          n-π* excited config. 

                 A1     A2  

           The symmetry of the n-π* excited configuration is B2 × B1 = A2 

e) This transition is observed as an extremely weak absorption band near 30000 cm-1. Why is the 
transition so weak? 

ANSWER:   Transition from the ground state, A1 → A2, is forbidden by symmetry! 

 

Supplementary material is given below! 

 

C O
H

H
C O

H

H
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Drawings of some of the MOs of formaldehyde computed with ab initio Hartree-Fock theory (W.L. 
Jorgensen & L. Salem: “The Organic Chemist’s Book of Orbitals”). – Note that relative to the usage 
in Problem 14, the symmetry labels B1 and B2 are reversed. This is because the authors have 
reversed the labeling of the coordinate axes x and y. It is important that the definition of the 
coordinate system is given; otherwise the designation of symmetry labels may become ambiguous. 
– The numbers in front of the symmetry labels indicate the energy ordering of MOs with the same 
symmetry: 1A1, 2A1, 3A1, etc. The numbering starts with the inner orbitals, i.e., the MOs based on 
C(1s) and O(1s), which are not considered in Problem 14. 



 4

 
 

Qualitative representation of some of the MOs of formaldehyde (G. W. King: “Spectroscopy and 
Molecular Structure”). AO basis orbitals are indicated to the left, and the resulting MOs are given to 
the right. – Note that “small letters” are used in the MO symmetry labels, like a1, b1, etc. It is 
common practice in the spectroscopic literature to use “small letters” in the symmetry designation 
of one-electron functions like MOs, while capital letters (A1, B1, etc.) are used for the wavefunctions 
of many-electronic states. 
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Problem 15 (with suggested solution) 
 
 
 
 
 
 
 
a) How many normal vibrations has the formaldehyde molecule?   

ANSWER:  Formaldehyde is a non-linear molecule, i.e.,  NVIB = 3NATOMS – 6 = 3·4 – 6 = 6 

b) What is the symmetry point group of the molecule?    ANSWER:  C2v  

c) Define a set of  3NATOMS = 12 cartesian displacement coordinates for the four nuclei and 
determine the characters for the reducible representation Γ3N based on these coordinates.  → → 

d) Decompose Γ3N to irreducible representations (“symmetry species”) and determine which of 
those that correspond to the normal vibrations of the molecule, i.e., determine ΓVIB = Γ3N – ΓROT 
– ΓTRANS.    

ANSWER: 

 

C2v Ê  2Ĉ  )(ˆ xzvσ )(ˆ yzvσ ′ h = 4 

A1  1   1   1   1 z 

A2   1   1 –1 –1 Rz 

B1   1 –1   1 –1 x, Ry 

B2   1 –1 –1   1 y, Rx 

Γ3N 12 –2   2   4 ni: 

Γ3N × A1 12 –2   2   4 16/4 = 4

Γ3N × A2 12 –2 –2 –4 4/4 = 1

Γ3N × B1 12   2   2 –4 12/4 = 3

Γ3N × B2 12   2 –2   4 16/4 = 4

 
Check:  124314 =+++=Σ in ☺ 

Γ3N = 4 A1 + 1 A2 + 3 B1 + 4 B2 

ΓROT =   1 A2 + 1 B1 + 1 B2 

ΓTRANS = 1 A1   + 1 B1 + 1 B2 

ΓVIB = Γ3N – ΓROT – ΓTRANS = 3 A1   + B1 +  2 B2 
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e) How many of the normal vibrations are IR active? What are the polarization directions of the 
corresponding fundamental transitions?  

ANSWER:  All 6 are IR active. Fundamental transitions to levels of A1, B1, and B2 symmetry are z, 
x, and y polarized, respectively. 
 

f) The IR spectrum of formaldehyde shows peaks at 1164, 1247, 1500, 1746, 2766, and 2843 
cm-1. Try to assign these transitions with the help of tables of group frequencies. 

 

ANSWER:   

 

Picture from G. W. King: “Spectroscopy and Molecular Structure”. Note that “small letters” are 
used in the symmetry labels, like a1, b1, etc. It is common practice in the spectroscopic literature to 
use “small letters” in the symmetry designation of vibrational modes, while capital letters (A1, B1, 
etc.) are used for many-electronic states. 
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Problem 17 (with suggested solution) 
 
Below is shown the IR absorption spectrum of gaseous sulphur dioxide, SO2. The observed 
transitions are listed in the ensuing table [R.D. Shelton, A.H. Nielsen, W.H. Fletcher, J. Chem. 
Phys. 21, 2178 (1953)]:  
 
 
 
 
 
 
 
 
 
 
 
 
 

cm-1 
Relative 
intensity Polarization Assignment Symmetry 

  518       455 z ν2  

  845           0.6 *)    

1151       565 z ν1  

1362     1000 y ν3  

1535           0.1    

1665           0.1    

1876           6.0    

2296           5.5    

2500         20.0    

2715           0.2    

2808           0.8    

3011           0.02    

3431           0.01    

3630           0.8    

4054           0.03    

4751           0.006    

5166           0.02    

 
*) Temperature dependent. 
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a) The intense transitions at 518, 1151, and 1362 cm-1 can be assigned to three IR active 

fundamental levels (ν1-3).  Decide on the basis of symmetry arguments whether the molecule is 
linear (D∞h) or angular (C2v): 

 

 
 

 

 D∞h          C2v 

ANSWER: 

Linear equilibrium geometry: This situation would correspond to that previously described for the 
linear molecule carbon dioxide, CO2. We would have 4 normal modes of vibration: One symmetric 
stretching vibration, one anti-symmetric stretching vibration, and two degenerate bending 
vibrations. However, only the anti-symmetric stretching and the bending vibrations would be IR 
active, and because of the degeneracy, the two bending vibrations would give rise to only one band 
in the IR spectrum. We should thus observe only two IR active fundamental levels (as in the case of 
CO2), but three are observed for SO2. We thus conclude that the observed IR spectrum is not 
consistent with the assumption of a linear geometry of the SO2 molecule. 

Angular equilibrium geometry: For C2v symmetrical SO2, three IR active modes are expected: One 
symmetric stretching vibration, one anti-symmetric stretching vibration, and one bending vibration. 
This is consistent with the observed IR data. We conclude that the SO2 molecule has an angular 
geometry with C2v symmetry. 
 
b) Suggest an assignment of the three fundamental transitions to stretching and bending vibrations 

(the stretching frequency of a bond is generally about twice as large as the corresponding 
bending frequency). What are the symmetries (irreducible representations) of the three 
vibrations? 

ANSWER: 

ν3:  1316 cm-1,   y polarized   →   B2, anti-symmetric stretching 
ν1:  1151 cm-1,   z polarized   →   A1, symmetric stretching 
ν2:    518 cm-1,   z polarized   →   A1, bending 
 
c) Try to assign the remaining (weak) peaks in the spectrum to hot, overtone, or combination 

bands, with indication of symmetries and polarization directions. 

ANSWER: 

The literature assignment is indicated below.  

x

z
y

z

y
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ν1, ν2, and ν3 indicate the three fundamental transitions of SO2, as discussed above.  

2ν3, 3ν3, 4ν3, etc., indicate the first, second, and third overtone level of the ν3 mode, and so forth. 
Their wavenumbers are given approximately by the corresponding multiples of the fundamental 
wavenumber, i.e., 2ν3 = 2×1362  = 2724 cm-1, 3ν3 = 3×1362 = 4086 cm-1, etc. The weak transitions 
observed at 2715 and 4054 cm-1 are assigned to these levels (because of anharmonic effects, 
overtone wavenumbers predicted by simple multiples of the fundamental wavenumber are usually 
slightly overestimated). The symmetries of the overtone vibrations are given by the corresponding 
multiples of the symmetry of the fundamental: Γ(ν3) = B2;  Γ(2ν3) = Γ(ν3)×Γ(ν3) = B2×B2 = A1;  
Γ(3ν3) = Γ(ν3)×Γ(ν3)×Γ(ν3) = B2×B2×B2 = B2, etc. 

ν1 + ν2  and ν2 + ν3 are examples of combination levels. The notation ν1 + ν2  indicates that one 
quantum of the mode ν1 and one quantum of the mode ν2 are excited simultaneously. Hence, 
ν1 + ν2 + ν3 indicates a molecular vibration where one quantum of each of the three normal modes 
of SO2 are excited simultaneously. 2ν1 + ν3 indicates a vibration where the first overtone of the 
ν1 mode is excited simultaneously with the ν3 fundamental. Their wavenumbers are given 
approximately by the corresponding sums of fundamental wavenumbers, and their symmetries are 
given by the pertinent multiples of the symmetries of the involved modes, just as in the case of the 
overtones (see above). For example: Γ(2ν1 + ν3) = Γ(ν1)×Γ(ν1)×Γ(ν3) = A1×A1×B2 = B2. – Overtone 
and combination bands are referred to as summation bands. These bands are forbidden within the 
harmonic approximation, but because of anharmonic effects, they are frequently observed in the 
experimental spectra, generally as weak transitions. 

Finally, the notation ν3 – ν2 indicates a hot band. The transition is from a thermally excited 
fundamental level of the ν2 mode to a higher energy level, namely the fundamental level of the ν3 
mode. The wavenumber of the transition thus corresponds to the difference ν3 – ν2. The intensity of 
the transition is proportional to the number of molecules in the thermally excited state, and thus 
depends on the temperature (according to the Boltzmann distribution). 
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