
Roskilde
University

Interpolant tree automata and their application in Horn clause verification

Kafle, Bishoksan; Gallagher, John Patrick

Published in:
Electronic Proceedings in Theoretical Computer Science

DOI:
10.4204/EPTCS.216.6

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Kafle, B., & Gallagher, J. P. (2016). Interpolant tree automata and their application in Horn clause verification.
Electronic Proceedings in Theoretical Computer Science, 216, 104-117. https://doi.org/10.4204/EPTCS.216.6

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 13. Mar. 2024

https://doi.org/10.4204/EPTCS.216.6
https://doi.org/10.4204/EPTCS.216.6

G.W. Hamilton, A. Lisitsa, A.P. Nemytykh (Eds): VPT 2016
EPTCS 216, 2016, pp. 104–117, doi:10.4204/EPTCS.216.6

c© Kafle & Gallagher

Interpolant Tree Automata and their Application in Horn
Clause Verification ∗

Bishoksan Kafle
Roskilde University, Denmark

kafle@ruc.dk

John P. Gallagher
Roskilde University, Denmark

IMDEA Software Institute, Spain

jpg@ruc.dk

This paper investigates the combination of abstract interpretation over the domain of convex polyhe-
dra with interpolant tree automata, in an abstraction-refinement scheme for Horn clause verification.
These techniques have been previously applied separately, but are combined in a new way in this
paper. The role of an interpolant tree automaton is to provide a generalisation of a spurious coun-
terexample during refinement, capturing a possibly infinite set of spurious counterexample traces.
In our approach these traces are then eliminated using a transformation of the Horn clauses. We
compare this approach with two other methods; one of them uses interpolant tree automata in an
algorithm for trace abstraction and refinement, while the other uses abstract interpretation over the
domain of convex polyhedra without the generalisation step. Evaluation of the results of experiments
on a number of Horn clause verification problems indicates that the combination of interpolant tree
automaton with abstract interpretation gives some increase in the power of the verification tool, while
sometimes incurring a performance overhead.
Keywords: Interpolant tree automata, Horn clauses, abstraction-refinement, trace abstraction.

1 Introduction

In this paper we combine two existing techniques, namely abstract interpretation over the domain of
convex polyhedra and interpolant tree automata in a new way for Horn clause verification. Abstract
interpretation is a scalable program analysis technique which computes invariants allowing many pro-
gram properties to be proven, but suffers from false alarms; safe but not provably safe programs may be
indistinguishable from unsafe programs. Refinement is considered in this case. In previous work [27]
we described an abstraction-refinement scheme for Horn clause verification using abstract interpretation
and refinement with finite tree automata. In that approach refinement eliminates a single spurious coun-
terexample in each iteration of the abstraction-refinement loop, using a clause transformation based on
a tree automata difference operation. In contrast to that work, we apply the method of Wang and Jiao
[33] for constructing an interpolant tree automaton from an infeasible trace. This generalises the trace of
a spurious counterexample, recognising a possibly infinite number of spurious counterexamples, which
can then be eliminated in one iteration of the abstraction-refinement loop. We combine this construction
in the framework of [27]. The experimental results on a set of Horn clause verification problems are
reported, and compared with both [27] and the results of Wang and Jiao [33] using trace abstraction and
refinement.

In Section 2 we introduce the key concepts of constrained Horn clauses and finite tree automata.
Section 3 contains the definitions of interpolants and the construction of a tree interpolant automaton

∗The research leading to these results has been supported by the EU FP7 project 318337, ENTRA - Whole-Systems Energy
Transparency and the EU FP7 project 611004, coordination and support action ICT-Energy.

http://dx.doi.org/10.4204/EPTCS.216.6

Kafle & Gallagher 105

c1. fib(A, B):- A>=0, A=<1, B=1.

c2. fib(A, B) :- A>1, A2=A-2,

A1=A-1, B=B1+B2, fib(A1,B1), fib(A2,B2).

c3. false:- A>5, B<A, fib(A,B).

Figure 1: Example CHCs (Fib) defining a Fibonacci function.

following the techniques of Wang and Jiao [33]. In Section 4 we describe our algorithm combining
abstract interpretation with tree interpolant automata, including in Section 4.1 an experimental evaluation
and comparison with other approaches. Finally in Section 5 we discuss related work.

2 Preliminaries

A constrained Horn clause (CHC) is a first order predicate logic formula of the form ∀(φ ∧ p1(X1)∧ . . .∧
pk(Xk)→ p(X)) (k ≥ 0), where φ is a first order logic formula (constraint) with respect to some back-
ground theory and p1, . . . , pk, p are predicate symbols. We assume (wlog) that Xi,X are (possibly empty)
tuples of distinct variables and φ is expressed in terms of Xi, X , which can be achieved by adding equali-
ties to φ . p(X) is the head of the clause and φ ∧ p1(X1)∧ . . .∧ pk(Xk) is the body. There is a distinguished
predicate symbol false which is interpreted as false. Clauses whose head is false are called integrity con-
straints. Following the notation used in constraint logic programming a clause is usually written as
H ← φ ,B1, . . . ,Bk where H,B1, ...,Bk stand for atomic formulas (atoms) p(X), p1(X1), ..., pk(Xk). A set
of CHCs is sometimes called a (constraint logic) program.

An interpretation of a set of CHCs is represented as a set of constrained facts of the form A← φ

where A is an atom and φ is a formula with respect to some background theory. A← φ represents a set
of ground facts Aθ such that φθ holds in the background theory (θ is called a grounding substitution).
An interpretation that satisfies each clause in P is called a model of P. In some works [6, 28], a model is
also called a solution and we use them interchangeably in this paper.

Horn clause verification problem. Given a set of CHCs P, the CHC verification problem is to check
whether there exists a model of P. It can easily be shown that P has a model if and only if the fact false
is not a consequence of P.

An example set of CHCs, encoding the Fibonacci function is shown in Figure 1. Since its derivations
are trees, it serves as an interesting example from the point of view of interpolant tree automata.

Definition 1 (Finite tree automaton [7]) An FTA A is a tuple (Q,Q f ,Σ,∆), where Q is a finite set of
states, Q f ⊆ Q is a set of final states, Σ is a set of function symbols, and ∆ is a set of transitions of the
form f (q1, . . . ,qn)→ q with q,q1, . . . ,qn ∈ Q and f ∈ Σ. We assume that Q and Σ are disjoint.

We assume that each CHC in a program P is associated with an identifier by a mapping idP : P→ Σ.
An identifier (an element of Σ) is a function symbol whose arity is the same as the number of atoms in
the clause body. For instance a clause p(X)← φ , p1(X1), . . . , pk(Xk) is assigned a function symbol with
arity k. As will be seen later, these identifiers are used to build trees that represent derivations using
the clauses. A set of derivation trees (traces) of a set of atoms of a program P can be abstracted and
represented by an FTA. We provide such a construction in Definition 2.

Definition 2 (Trace FTA for a set of CHCs) Let P be a set of CHCs. Define the trace FTA for P as
AP = (Q,Q f ,Σ,∆) where

106 Interpolant Tree Automata and their Application in Horn Clause Verification

• Q = {p | p is a predicate symbol o f P}∪{false};
• Q f = {false};
• Σ is a set of function symbols;

• ∆ = {c j(p1, . . . , pk) → p | where c j ∈ Σ, p(X) ← φ , p1(X1), . . . , pk(Xk) ∈ P, c j = idP(p(X) ←
φ , p1(X1), . . . , pk(Xk))}.

The elements of L (AP) are called trace-terms or trace-trees or simply traces of P rooted at false.

Example 1 Let Fib be the set of CHCs in Figure 1. Let idFib map the clauses to identifiers c1,c2,c3
respectively. Then AFib = (Q,Q f ,Σ,∆) where:

Q = {fib,false}
Q f = {false}
Σ = {c1,c2,c3}
∆ = {c1→ fib, c2(fib,fib)→ fib,

c3(fib)→ false}

Similarly, we can also construct an FTA representing a single trace. It should be noted that the whole
idea of representing program traces by FTAs is to use automata theoretic operations for dealing with
program traces, for example, removal of an undesirable trace from a set of program traces. Let P be
a set of CHCs and let t ∈L (AP). There exists an FTA At such that L (At) = {t}. We illustrate the
construction with an example.

Example 2 (Trace FTA) Consider the FTA in Example 1. Let t = c3(c2(c1,c1)) ∈L (AP). Then At =
(Q,Q f ,Σ,∆) is defined as:

Q = {e1,e2,e3,e4}
Q f = {e1}
Σ = {c1,c2,c3,c4}
∆ = {c1→ e3, c1→ e4, c2(e3,e4)→ e2,

c3(e2)→ e1}

where Σ is the same as in AP and the states ei (i = 1 . . .4) represent the nodes in the trace-tree, with root
node e1 as the final state.

A trace-term is a representation of a derivation trees, called an AND-tree [32, 13] giving a proof of
an atomic formula from a set of CHCs.

Definition 3 (AND-tree for a trace term T (t) (adapted from [27])) Let P be a set of CHCs and let t ∈
L (AP). An AND-tree corresponding to t, denote by T (t), is the following labelled tree, where each
node of T (t) is labelled by an atom, a clause identifier and a constraint.

1. For each sub-term c j(t1, . . . , tk) of t there is a corresponding node in T (t) labelled by an atom p(X),
an identifier c j such that c j = idP(p(X)← φ , p1(X1), . . . , pk(Xk)), and a constraint φ ; the node’s
children (if k > 0) are the nodes corresponding to t1, . . . , tk and are labelled by p1(X1), . . . , pk(Xk).

2. The variables in the labels are chosen such that if a node n is labelled by a clause, the local
variables in the clause body do not occur outside the subtree rooted at n.

We assume that each node in T (t) is uniquely identified by a natural number. We omit t from T (t) when
it is clear from the context.

Kafle & Gallagher 107

c3

c2

c1 c1

1 c3 false φ1

2 c2 fib(A,B) φ2

3 c1 fib(A2,B2) φ3 4 c1 fib(A1,B1) φ4

Figure 2: A trace-term c3(c2(c1,c1)) of Fib (left) and its AND-tree (right), where φ1 ≡ A> 5 ∧
B< A; φ2 ≡ A> 1 ∧ A2= A−2 ∧ A1= A−1 ∧ B= B1+B2; φ3 ≡ A2≥ 0 ∧ A2≤ 1 ∧ B2= 1; φ4 ≡
A1≥ 0∧A1≤ 1∧B1= 1.

The formula represented by an AND-tree T , represented by F(T) is

1. φ , if T is a single leaf node labelled by a constraint φ ; or

2. φ ∧
∧

i=1..n(F(Ti)) if the root node of T is labelled by the constraint φ and has subtrees T1, . . . ,Tn.

The formula F(T) where T is the AND-tree in Figure 2 is

A> 5∧B< A∧A> 1∧A2= A−2∧A1= A−1∧B= B1+B2

A2≥ 0∧A2≤ 1∧B2= 1∧A1≥ 0∧A1≤ 1∧B1= 1

We say that an AND-tree T is satisfiable or feasible if F(T) is satisfiable, otherwise unsatisfiable or
infeasible. Similarly, we say a trace-term is satisfiable (unsatisfiable) iff its corresponding AND-tree is
satisfiable (unsatisfiable). The trace-term c3(c2(c1,c1)) in Figure 2 is unsatisfiable since F(c3(c2(c1,c1)))
is unsatisfiable.

3 Interpolant tree automata

Refinement of trace abstraction is an approach to program verification [19]. In this approach, if a prop-
erty is not provable in an abstraction of program traces then an abstract trace showing the violation of
the property is emitted. If such a trace is not feasible with respect to the original program, it is elim-
inated from the trace abstraction which is viewed as a refinement of the trace abstraction. The notion
of interpolant automata [19] allows one to generalise an infeasible trace to capture possibly infinitely
many infeasible traces which can then be eliminated in one refinement step. In this section, we revisit the
construction of an interpolant tree automaton [33] from an infeasible trace-tree. The automaton serves
as a generalisation of the trace-tree; and we apply this construction in Horn clause verification.

Definition 4 ((Craig) Interpolant [10]) Given two formulas φ1,φ2 such that φ1 ∧ φ2 is unsatisfiable, a
(Craig) interpolant is a formula I with (1) φ1 → I; (2) I ∧ φ2 → false; and (3) vars(I) ⊆ vars(φ1) ∩
vars(φ2). An interpolant of φ1 and φ2 is represented by I(φ1,φ2).

The existence of an interpolant implies that φ1∧φ2 is unsatisfiable [29]. Similarly, if the background
theory underlying the CHCs P admits (Craig) interpolation [10], then every infeasible derivation using
the clauses in P has an interpolant [28].

108 Interpolant Tree Automata and their Application in Horn Clause Verification

Example 3 (Interpolant example) Let φ1 ≡ A2≤ 1∧ A> 1∧ A2= A−2∧ A1= A−1∧ B= B1+B2

and φ2 ≡ A> 5∧ B< A such that φ1 ∧ φ2 is unsatisfiable. Since the formula I ≡ A ≤ 3 fulfills all the
conditions of Definition 4, it is an interpolant of φ1 and φ2.

Given a node i in an AND-tree T , we call Ti the sub-tree rooted at i, φi the formula label of node i,
F(Ti) the formula of the sub-tree rooted at node i and G(Ti), the formula F(T) except the formula F(Ti),
which is defined as follows:

1. true, if T is a single leaf node labelled by constraint φ and the node is i; or

2. φ , if T is a single leaf node labelled by constraint φ and the node is different from i; or

3. true, if the root node of T is labelled by the constraint φ and the node is i; or

4. φ ∧
∧

l=1..n(G(Tl)) if the root node of T is labelled by the constraint φ , and the node is different
from i and has subtrees T1, . . . ,Tn.

Definition 5 (Tree Interpolant of an AND-tree ([33])) Let T be an infeasible AND-tree. A tree inter-
polant T I(T) for T is a tree constructed as follows:

1. The root node i of T I(T) is labelled by i, the atom of the node i of T and the formula false;

2. Each leaf node i of T I(T) is labelled by i, the atom of the node i of T and by I(F(Ti),G(Ti));

3. Let i be any other node of T . We define F1 as (φi∧
∧n

k=1 Ik) where
∧n

k=1 Ik (n≥ 1) is the conjunction
of formulas representing the interpolants of the children of the node i in T I(T). Then the node i of
T I(T) is labelled by i, the atom of the node i of T and the formula I(F1,G(Ti)).

The tree interpolant corresponding to AND tree in Figure 2(b) is shown in Figure 3(b).

1 c3 false φ1

2 c2 fib(A,B) φ2

3 c1 fib(A2,B2) φ3 4 c1 fib(A1,B1) φ4

1 c3 false false

2 c2 fib(A,B) A ≤ 3

3 c1 fib(A2,B2) A2 ≤ 1 4 c1 fib(A1,B1) true

Figure 3: AND tree of Figure 2 (left) and its tree interpolant (right). Let I j represents an interpolant of
the node j. Then I1 ≡ false; I4 ≡ I(φ4,φ3∧φ1∧φ2) ; I3 ≡ I(φ3,φ1∧φ2∧ I4); I2 ≡ I(I3∧ I4∧φ2,φ1).

Since there is a one-one correspondence between an AND-tree and a trace-term, we can define a tree
interpolant for a trace-term as follows:

Definition 6 (Tree Interpolant of a trace-term T I(t)) Given an infeasible trace-term t, its tree inter-
polant, represented as T I(t), is the tree interpolant of its corresponding AND-tree.

Definition 7 (Interpolant mapping ΠT I) Given a tree interpolant T I for some tree, ΠT I is a mapping
from the atom labels and node numbers of each node in T I to the formula label such that ΠT I(A j) = ψ

where A is the atom label and ψ is the formula label at node j.

Kafle & Gallagher 109

For our example program ΠT I is the following:

{ f alse1 7→ false, f ib2(A,B) 7→ A≤ 3, f ib3(A2,B2) 7→ A≤ 1, f ib4(A1,B1) 7→ true}

Property 1 (Tree interpolant property) Let T I(T) be a tree interpolant for some infeasible AND-tree
T . Then

1. ΠT I(ri) = false where r is the atom label of the root of T I(T);

2. for each node j with children j1, ..., jn (n≥ 0) the following property holds:
(
∧n

k=0 ΠT I(A jk))∧φ j→ΠT I(A j) where φ j is the formula label of the node j of T ;

3. for each node j the following property holds:
vars(ΠT I(A j)) ⊆ (vars(F(Tj))∩ vars(G(Tj))), where the formula F(Tj) and G(Tj) corresponds
to T .

Definition 8 (Interpolant tree automaton for Horn clauses A I
t =(Q,Q f ,Σ,∆) [33]) Let P be a set of

CHCs, t ∈L (AP) be any infeasible trace-term and T I(t) be a tree interpolant of t. Let σ : As× J→ Q
where σ maps an atom at node i ∈ J of T I(t) to an FTA state in Q. Define ρ : PredJ → Pred which
maps a predicate name with superscript to a predicate name of P. Then the interpolant automaton of t is
defined as an FTA A I

t such that

• Q = {σ(A, i) : A is the atom label o f the node i o f T I(t)};

• F = {σ(A, i) : A is the atom label o f the root o f T I(t)};

• Σ is a set of function symbols of P;

• ∆ = {c(p j1
1 , . . . , p jk

k)→ p j | cl = p(X)← φ , p1(X1), . . . , pk(Xk) ∈ P, c = idP(cl), ρ(pi) = p,
ρ(pi

m) = pm f or m = 1..k and ΠT I(p j)(X)← φ ,ΠT I(p j1
1)(X1), . . . ,ΠT I(p jk

k)(Xk)}.

Example 4 (Interpolant automata for c3(c2(c1,c1)))

Q = {fib2,fib3,fib4,error}
Q f = {error}
Σ = {c1,c2,c3}
∆ = {c1→ fib2,c1→ fib3,c1→ fib4,

c2(fib
2,fib2)→ fib4,c2(fib

2,fib3)→ fib2,
c2(fib

2,fib3)→ fib4,c2(fib
2,fib4)→ fib4,

c2(fib
3,fib2)→ fib2,c2(fib

3,fib2)→ fib4,
c2(fib

3,fib3)→ fib2,c2(fib
3,fib3)→ fib4,

c2(fib
3,fib4)→ fib2,c2(fib

3,fib4)→ fib4,
c2(fib

4,fib2)→ fib4,c2(fib
4,fib3)→ fib2,

c2(fib
4,fib3)→ fib4,c2(fib

4,fib4)→ fib4,
c3(fib

2)→ error,c3(fib
3)→ error}

The construction described in Definition 8 recognizes only infeasible traces terms of P as stated in
Theorem 1.

Theorem 1 (Soundness) Let P be a set of CHCs and t ∈L (AP) be any infeasible trace-term. Then the
interpolant automaton A I

t recognises only infeasible trace-terms of P.

110 Interpolant Tree Automata and their Application in Horn Clause Verification

Definition 9 (Conjunctive interpolant mapping) Given an interpolant mapping ΠT I of a tree inter-
polant T I, we define a conjunctive interpolant mapping for an atom label A of any node in T I, repre-
sented as Πc

T I(A), to be the following formula Πc
T I(A) =

∧
j ΠT I(A j), where j ranges over the nodes

of T I. It is the conjunction of interpolants of all the nodes of T I with atom label A. The conjunctive
interpolant mapping of T I is represented is Πc

T I = {Πc
T I(A) | A is the atom label o f T I}.

It is desirable that the interpolant tree automaton of a trace t ∈L (AP) recognizes as many infeasible
traces as possible, in an ideal situation, all infeasible traces of P. This is possible under the condition
described in Theorem 2.

Theorem 2 (Model and Interpolant Automata) Let t ∈L (AP) be any infeasible trace-term. If Πc
T I(t)

is a model of P, then the interpolant automaton of t recognises all infeasible trace-terms of P.

4 Application to Horn clause verification

An abstraction-refinement scheme for Horn clause verification is described in [27] which is depicted
in Figure 4. In this, a set of CHCs P is analysed using the techniques of abstract interpretation over
the domain of convex polyhedra which produces an over-approximation M of the minimal model of P.
The set of traces used during the analysis can be captured by an FTA A M

P (see Definition 10). This
automaton recognizes all trace-terms of P except some infeasible ones. Some of the infeasible trace-
terms are removed by the abstract interpretation. P is solved or safe (that is, it has a model) if false 6∈M.
If this is not the case, a trace-term t ∈L (AM

P) is selected and checked for feasibility. If the answer is
positive, P has no model, that is, P is unsafe.

Otherwise t is considered spurious and this drives the refinement process. The refinement in [27]
consists of constructing an automaton A ′

P which recognizes all traces in L (A M
P)\L (At) and generating

a refined set of clauses from P and A ′
P. The automata difference construction refines a set of traces

(abstraction), which induces refinement in the original program. The refined program is again fed to
the abstract interpreter. This process continues until the problem is safe, unsafe or the resources are
exhausted. We call this approach Refinement of Abstraction in Horn clauses using Finite Tree automata,
RAHFT in short.

The approach just described lacks generalisation of spurious counterexamples during refinement.
However, in our current approach, we generalise a spurious counterexample through the use of inter-
polant automata. Section 3 describes how to compute an interpolant automaton (taken from [33]) cor-
responding to an infeasible Horn clause derivation. We first construct an interpolant automaton viz. A I

t
corresponding to t. In Figure 4, this is shown by a blue line (in the middle) connecting the Abstraction
and Refinement boxes. The refinement proceeds as in RAHFT with the only difference that A ′

P now
recognizes all traces in L (A M

P) \L (A I
t). We call this approach Refinement of Abstraction in Horn

clauses using Interpolant Tree automata, RAHIT in short.
Next we briefly describe how to generate an FTA, A M

P , corresponding to a set of clauses P using the
approximation produced by abstract interpretation. Finally we show some experimental results using
our current approach on a set of Horn clause verification benchmarks.

Obtaining an FTA from a program and a model. Let M be a set of constrained atoms of the form
p(X)← φ where p is a program predicate and φ is a constraint over X . Given such an set M, define γM to
be the mapping from atoms to constraints such that γM(p(X)) = φ for each constrained fact p(X)← φ .

Kafle & Gallagher 111

FTAM – Finite tree automata manipulator
AI –Abstract interpretation

CG – Clauses generator

Abstraction Refinement

CHC P

AI
A M

P

M

safe
no

unsafe

yes and feasible

A M
P

A I
t

At

CHC P1P← P1

CHC P

f alse ∈M?
t ∈L (A M

P) FTAM
A ′

P
CG

Figure 4: Abstraction-refinement scheme in Horn clause verification [27]. M is an approximation pro-
duced as a result of abstract interpretation. A ′

P recognizes all traces in L (A M
P)\L (At).

M is a model of P (called a syntactic solution in [33]) if for each clause p(X)← φ , p1(X1), . . . , pn(Xn) in
P, φ ∧

∧n
i=1 γM(pi(Xi))→ γM(p(X)).

Given such an M, we construct an FTA corresponding to P, which is the same as AP (Definition 2)
except that transitions corresponding to clauses whose bodies are not satisfiable in the model are omitted,
since they cannot contribute to feasible derivations.

Definition 10 (FTA defined by a model.) Let P be a set of CHCs and M be a model defined by a set
of constrained facts. Then the FTA A M

P = (Q,Q f ,Σ,∆M) where Q,Q f and Σ are the same as for AP

(Definition 2) and ∆M is the following set of transitions.

∆M = {c(p1, . . . , pn)→ p | idP(c) = p(X)← φ , p1(X1), . . . , pn(Xn),
SAT(φ ∧

∧n
i=1 γM(pi(Xi)))

Lemma 1 Let P be a set of clauses and M be a model of P then L (A M
P) includes all feasible trace-terms

of P rooted at false.

In our experiments, the abstract interpretation was over the domain of convex polyhedra, yielding a set of
constrained facts where each constraints is a conjunction of linear equalities and inequalities representing
a convex polyhedron.

Example 5 (FTA produced as a result of abstract interpretation) For our example program in Figure
1, the convex polyhedral abstraction produces an over-approximation M which is represented as

M = {fib(A,B)← A >= 0,B >= 1,−A+B >= 0}

Since there is no constrained fact for false in M, this is a model for the example program. Our abstraction-
refinement approach terminates at this point. However for the purpose of example, we show the FTA
constructed for the example program using M. Since the bodies of each clauses except the integrity con-
straint are satisfied under M, the FTA is same as the one depicted in Example 1 except the transition
c3(fib)→ false, which is removed because of abstract interpretation.

112 Interpolant Tree Automata and their Application in Horn Clause Verification

4.1 Experiments

For our experiment, we have collected a set of 68 programs from different sources.

1. A set of 30 programs from SV-COMP’15 repository1 [3] (recursive category) and translated them
to Horn clauses using inter-procedural encoding of SeaHorn [18, 17] producing (mostly) non-linear
Horn clauses.

2. A set of 38 problems taken from the source repository2, compiled by the authors of the tool El-
darica [23]. This set consists of problems, among others, from the NECLA static analysis suite,
from the paper [25]. These tasks are also considered in [33] and are interpreted over integer linear
arithmetic.

We made the following comparison between the tools.

1. We compare RAHIT with RAHFT, which compares the effect of removing a set of traces rather
than a single trace.

2. We compare RAHIT with the trace-abstraction tool [33] (TAR from now on). RAHIT uses poly-
hedral approximation combined with trace abstraction refinement whereas TAR uses only trace
abstraction refinement.

The results are summarized in Table 1.

Implementation: Most of the tools in our tool-chain depicted in Figure 4 are implemented in Ciao
Prolog [22] except the one for determinisation of FTA, which is implemented in Java following the
algorithm described in [14]. Our tool-chain obtained by combining various tools using a shell script
serves as a proof of concept which is not optimised at all. For handling constraints, we use the Parma
polyhedra library [1] and the Yices SMT solver [12] over linear real arithmetic. The construction of
tree interpolation uses constrained based algorithm presented in [30] for computing interpolant of two
formulas.

Description: In Table 1, Program represents a verification task, Time (secs) RAHFT and Time (secs)
RAHIT - respectively represent the time in seconds taken by the the tool RAHFT and RAHIT respectively
for solving a given task. Similarly, the number of abstraction-refinement iteration needed in these cases
to solve a task are represented by #Itr. RAHFT and #Itr. RAHIT. Similarly, Time (secs) TAR and #Itr. TAR
represent the time taken and the number of iterations needed by the tool TAR. The experiments were run
on a MAC computer running OS X on 2.3 GHz Intel core i7 processor and 8 GB memory.

Discussion: The comparison between RAHFT and RAHIT would reflect purely the role of interpolant
tree automata in Horn clause verification (Table 1) since the only difference between them is the refine-
ment part using (interpolant) tree automata. The results show that RAHIT is more effective in practice
than its counterpart RAHFT. This is justified by the number of tasks 61/68 solved by RAHIT using fewer
iterations compared to RAHFT, which only solves 56/68 tasks. This is due to the generalisation of a spu-
rious counterexample during refinement, which also captures other infeasible traces. Since these traces
can be removed in the same iteration, it (possibly) reduces the number of refinements, however the solv-
ing time goes up because of the cost of computing an interpolant automaton. It is not always the case

1http://sv-comp.sosy-lab.org/2015/benchmarks.php
2https://github.com/sosy-lab/sv-benchmarks/tree/master/clauses/LIA/Eldarica

Kafle & Gallagher 113

that RAHIT takes less iterations for a task (for example Addition03 false-unreach) than RAHFT. This is
because the restructuring of the program obtained as a result of removing a set of traces may or may not
favour polyhedral approximation. It is still not clear to us how to produce a right restructuring which
favours polyhedral approximation. RAHIT times out on cggmp2005 true-unreach whereas RAHFT

solves it in 5 iterations. We suspect that this is due to the cost of generating interpolant automata. We
are not sure about the complexity of interpolant generation algorithm we used (the size of the formula
generated was quite large with respect to the original program, magnitude not known) and there are sev-
eral calls to the theorem prover to label each tree node with interpolants. So the bigger is the trace-tree,
the longer it takes to compute the interpolant tree. In average, RAHIT needs 2.08 iterations and 11.40
seconds time to solve a task whereas RAHFT needs 2.32 iterations and 10.55 seconds.

The use of interpolant tree automata for trace generalisation and the tree automata based operations
for trace-refinement are same in both RAHIT and TAR. Since TAR is not publicly available, we chose the
same set of benchmarks used by TAR for the purpose of comparison and presented the results (the results
corresponding to TAR are taken from [33]). The computer used in our experiments and in TAR [33]
have similar characteristics. RAHIT solves more than half of the problems only with abstract interpre-
tation over the domain of convex polyhedra without needing any refinement, which indicates its power.
RAHIT solves 33/38 problems where as TAR solves 28/38 problems. In average, RAHIT takes less time
than TAR. In many cases TAR solves a task faster than RAHIT, however it spends much longer time in
some tasks. Our current constraint solver is over linear real arithmetic. If we use it over linear integer
arithmetic then the results may differ. We made some observation with the problems boustrophedon.c,
boustrophedon expansed.c and cousot.correct (which are supposed to be interpreted over integers). In
them, if we replace strict inequalities (>,<) with non-strict inequalities (≥,≤) over integers (for exam-
ple replace X > Y with X ≥ Y + 1), then we can solve them only with abstract interpretation without
refinement which were not solved before the transformation using our solver. On the other hand, RAHIT

times out for mergesort.error whereas TAR solves it in a single iteration. This indicates that the choice
of a spurious counterexample and the quality of interpolant generated from it for generalisation have
some effects on verification.

5 Related work

Horn Clauses, as an intermediate language, have become a popular formalism for verification [5, 15],
attracting both the logic programming and software verification communities [4]. As a result of these,
several verification techniques and tools have been developed for CHCs, among others, [17, 16, 26, 11,
27, 24, 23]. To the best of our knowledge, the use of automata based approach for abstraction-refinement
of Horn clauses is relatively new [27, 33], though the original framework proposed for imperative pro-
grams goes back to [19, 20].

The work described in [27] uses FTA based approach for refining abstract interpretation over the
domain of convex polyhedra [8], which is similar to trace abstraction [19, 21, 33] with the following
differences. In [27], there is an interaction between state abstraction by abstract interpretation [9] and
trace abstraction by FTA but there is no generalisation of spurious counterexamples. On one hand,
[19, 21, 33] use trace-abstraction with the generalisation of spurious counterexamples using interpolant
automata and may diverge from the solution due to the lack of right generalisation. On the other hand,
abstract interpretation [9] is one of the most promising techniques for verification which is scalable but
suffers from false alarms. When combined with refinement false alarms can be minimized. Our current
work takes the best of both of these approaches.

114 Interpolant Tree Automata and their Application in Horn Clause Verification

Program Time (secs) RAHFT #Itr. RAHFT Time (secs) RAHIT #Itr. RAHIT Time (secs) TAR [33] #Itr. TAR
addition 1 0 1 0 0.26 3
anubhav.correct 2 0 2 0 1.72 9
bfprt 1 0 1 0 0.43 6
binarysearch 2 0 2 0 0.36 5
blast.correct 5 1 11 1 8.93 65
boustrophedon.c TO - TO - 53.65 193
boustrophedon expansed.c TO - TO - 69.06 340
buildheap 44 9 44 9 TO -
copy1.error 11 0 11 0 12.79 19
countZero 1 0 1 0 TO -
cousot.correct TO - TO - TO -
gopan.c 3 0 3 0 TO -
halbwachs.c TO - TO - TO -
identity 1 0 1 0 7.67 34
inf1.error 4 1 9 1 0.51 6
inf6.correct 5 1 5 1 1.96 33
insdel.error 2 0 2 0 0.17 1
listcounter.correct 1 0 1 0 TO
listcounter.error 9 1 9 1 0.21 1
listreversal.correct 4 0 4 0 35.79 149
listreversal.error 9 0 9 0 0.3 1
loop.error 3 0 3 0 3 3
loop1.error 8 0 8 0 10.87 19
mc91.pl 139 24 7 3 0.57 7
merge 2 0 2 0 0.86 10
mergesort.error TO - TO - 0.32 1
palindrome 2 0 2 0 0.61 6
parity 3 1 4 1 0.62 7
rate limiter.c 3 0 3 0 49.96 130
remainder 1 0 1 0 1.5 17
running 3 1 8 2 0.4 5
scan.error 3 0 3 0 TO -
string concat.error 6 0 6 0 TO -
string concat1.error TO - TO - TO -
string copy.error 3 0 3 0 TO -
substring.error 5 0 5 0 0.55 1
substring1.error 15 0 15 0 2.84 5
triple 27 10 13 1 0.86 6
average (over 38) 8.78 0.93 9.52 38.64
solved/total 33/38 - 28/38
Primes true-unreach 16 4 4 1
sum 10x0 false-unreach 5 2 12 2
afterrec false-unreach 2 1 3 1
id o3 false-unreach 6 3 7 3
cggmp2005 variant true-unreach 2 1 3 1
recHanoi01 true-unreach 8 3 10 3
cggmp2005b true-unreach 3 1 3 1
gcd02 true-unreach 11 4 11 4
diamond false-unreach 3 1 3 1
Addition03 false-unreach 6 2 13 5
diamond true-unreach-call1 2 1 3 1
id i5 o5 false-unreach 19 8 12 5
diamond true-unreach-call2 6 1 5 1
cggmp2005 true-unreach 10 5 TO -
gsv2008 true-unreach 3 1 3 1
Fibocci01 true-unreach 52 10 29 6
id b3 o2 false-unreach 5 2 3 1
Ackermann02 false-unreach 68 17 25 7
mcmillan2006 true-unreach 2 1 3 1
ddlm2013 true-unreach TO - 17 7
sum 2x3 false-unreach 2 1 3 1
fibo 5 true-unreach TO - 77 7
Addition01 true-unreach 6 2 5 2
Ackermann04 true-unreach TO - 59 8
Addition02 false-unreach 4 2 5 2
id i10 o10 false-unreach TO - 39 10
gcd01 true-unreach 9 4 5 2
id o10 false-unreach TO - 38 10
gcnr2008 false-unreach 13 4 6 2
Fibocci04 false-unreach TO - 91 11
average (over 68) 10.55 2.32 11.40 2.08
solved/total 56/68 61/68

Table 1: Experiments on software verification problems. In the table “TO” means time out which is set
for 300 seconds, “-” indicates the insignificance of the result.

Kafle & Gallagher 115

6 Conclusion

This paper brings together abstract interpretation over the domain of convex polyhedra and interpolant
tree automata in an abstraction-refinement scheme for Horn clause verification and combines them in a
new way. Experimental results on a set of software verification benchmarks using this scheme demon-
strated their usefulness in practice; showing some slight improvements over the previous approaches. In
the future, we plan to evaluate its effectiveness in a larger set of benchmarks, compare our approach with
other similar approaches and improve the implementation aspects of our tool. Further study is needed
to find a suitable combination of abstract interpretation and interpolation based techniques, based on a
deeper understanding of the interaction among interpolation, trace elimination and abstract interpreta-
tion.

References

[1] Roberto Bagnara, Patricia M. Hill & Enea Zaffanella (2008): The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware and software systems.
Sci. Comput. Program. 72(1-2), pp. 3–21, doi:10.1016/j.scico.2007.08.001.

[2] Christel Baier & Cesare Tinelli, editors (2015): TACAS . Proceedings. LNCS 9035, Springer,
doi:10.1007/978-3-662-46681-0.

[3] Dirk Beyer (2015): Software Verification and Verifiable Witnesses - (Report on SV-COMP 2015). In Baier &
Tinelli [2], pp. 401–416, doi:10.1007/978-3-662-46681-0 31.

[4] Nikolaj Bjørner, Fabio Fioravanti, Andrey Rybalchenko & Valerio Senni, editors (2014): Proceedings First
Workshop on Horn Clauses for Verification and Synthesis, HCVS 2014, Vienna, Austria, 17 July 2014. EPTCS
169, doi:10.4204/EPTCS.169.

[5] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan & Andrey Rybalchenko (2015): Horn Clause Solvers
for Program Verification. In Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz, Bernd Finkbeiner &
Wolfram Schulte, editors: Fields of Logic and Computation II - Essays Dedicated to Yuri Gurevich on the
Occasion of His 75th Birthday, LNCS 9300, Springer, pp. 24–51, doi:10.1007/978-3-319-23534-9 2.

[6] Nikolaj Bjørner, Kenneth L. McMillan & Andrey Rybalchenko (2013): On Solving Universally Quantified
Horn Clauses. In Francesco Logozzo & Manuel Fähndrich, editors: SAS, LNCS 7935, Springer, pp. 105–
125. Available at http://dx.doi.org/10.1007/978-3-642-38856-9_8.

[7] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison & M. Tommasi (2007):
Tree Automata Techniques and Applications. Available on: http://www.grappa.univ-lille3.fr/tata.
Release October, 12th 2007.

[8] P. Cousot & N. Halbwachs (1978): Automatic Discovery of Linear Restraints Among Variables of a Program.
In: Proceedings of the 5th Annual ACM Symposium on Principles of Programming Languages, pp. 84–96,
doi:10.1145/512760.512770.

[9] Patrick Cousot & Radhia Cousot (1977): Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Robert M. Graham, Michael A. Harrison
& Ravi Sethi, editors: POPL, ACM, pp. 238–252. Available at http://doi.acm.org/10.1145/512950.
512973.

[10] William Craig (1957): Linear Reasoning. A New Form of the Herbrand-Gentzen Theorem. J. Symb. Log.
22(3), pp. 250–268, doi:10.2307/2963593.

[11] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi & Maurizio Proietti (2014): VeriMAP: A Tool for
Verifying Programs through Transformations. In Erika Ábrahám & Klaus Havelund, editors: TACAS, LNCS
8413, Springer, pp. 568–574. Available at http://dx.doi.org/10.1007/978-3-642-54862-8_47.

http://dx.doi.org/10.1016/j.scico.2007.08.001
http://dx.doi.org/10.1007/978-3-662-46681-0
http://dx.doi.org/10.1007/978-3-662-46681-0_31
http://dx.doi.org/10.4204/EPTCS.169
http://dx.doi.org/10.1007/978-3-319-23534-9_2
http://dx.doi.org/10.1007/978-3-642-38856-9_8
http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1145/512760.512770
http://doi.acm.org/10.1145/512950.512973
http://doi.acm.org/10.1145/512950.512973
http://dx.doi.org/10.2307/2963593
http://dx.doi.org/10.1007/978-3-642-54862-8_47

116 Interpolant Tree Automata and their Application in Horn Clause Verification

[12] Bruno Dutertre (2014): Yices 2.2. In Armin Biere & Roderick Bloem, editors: Computer-Aided Verifica-
tion (CAV’2014), Lecture Notes in Computer Science 8559, Springer, pp. 737–744, doi:10.1007/978-3-319-
08867-9 49.

[13] J. P. Gallagher & L. Lafave (1996): Regular Approximation of Computation Paths in Logic and Functional
Languages. In O. Danvy, R. Glück & P. Thiemann, editors: Partial Evaluation, Springer-Verlag LNCS 1110,
pp. 115–136. Available at http://dx.doi.org/10.1007/3-540-61580-6_7.

[14] John P. Gallagher, Mai Ajspur & Bishoksan Kafle (2015): An Optimised Algorithm for Determinisation and
Completion of Finite Tree Automata. CoRR abs/1511.03595. Available at http://arxiv.org/abs/1511.
03595.

[15] John P. Gallagher & Bishoksan Kafle (2014): Analysis and Transformation Tools for Constrained
Horn Clause Verification. TPLP 14(4-5 (additional materials in online edition)), pp. 90–101.
Available at http://journals.cambridge.org/action/displaySuppMaterial?cupCode=1&type=

4&jid=TLP&volumeId=14&issueId=4-5&aid=9303163.

[16] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea & Andrey Rybalchenko (2012): Synthesizing soft-
ware verifiers from proof rules. In Jan Vitek, Haibo Lin & Frank Tip, editors: ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012,
ACM, pp. 405–416, doi:10.1145/2254064.2254112. Available at http://dl.acm.org/citation.cfm?
id=2254064.

[17] Arie Gurfinkel, Temesghen Kahsai, Anvesh Komuravelli & Jorge A. Navas (2015): The SeaHorn Verification
Framework. In Daniel Kroening & Corina S. Pasareanu, editors: CAV , Proceedings, Part I, LNCS 9206,
Springer, pp. 343–361, doi:10.1007/978-3-319-21690-4 20.

[18] Arie Gurfinkel, Temesghen Kahsai & Jorge A. Navas (2015): SeaHorn: A Framework for Verifying C Pro-
grams (Competition Contribution). In Baier & Tinelli [2], pp. 447–450, doi:10.1007/978-3-662-46681-0 41.

[19] Matthias Heizmann, Jochen Hoenicke & Andreas Podelski (2009): Refinement of Trace Abstraction. In Jens
Palsberg & Zhendong Su, editors: Static Analysis, 16th International Symposium, SAS 2009, LNCS 5673,
Springer, pp. 69–85, doi:10.1007/978-3-642-03237-0 7.

[20] Matthias Heizmann, Jochen Hoenicke & Andreas Podelski (2010): Nested interpolants. In Manuel V.
Hermenegildo & Jens Palsberg, editors: Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010, ACM, pp. 471–
482, doi:10.1145/1706299.1706353. Available at http://dl.acm.org/citation.cfm?id=1706299.

[21] Matthias Heizmann, Jochen Hoenicke & Andreas Podelski (2013): Software Model Checking for People Who
Love Automata. In Sharygina & Veith [31], pp. 36–52, doi:10.1007/978-3-642-39799-8 2.

[22] Manuel V. Hermenegildo, Francisco Bueno, Manuel Carro, Pedro López-Garcı́a, Edison Mera, José F.
Morales & Germán Puebla (2012): An overview of Ciao and its design philosophy. TPLP 12(1-2), pp.
219–252, doi:10.1017/S1471068411000457.

[23] Hossein Hojjat, Filip Konecný, Florent Garnier, Radu Iosif, Viktor Kuncak & Philipp Rümmer (2012): A
Verification Toolkit for Numerical Transition Systems - Tool Paper. In Dimitra Giannakopoulou & Dominique
Méry, editors: FM 2012: Formal Methods - 18th International Symposium, Paris, France, August 27-31,
2012. Proceedings, LNCS 7436, Springer, pp. 247–251, doi:10.1007/978-3-642-32759-9 21.

[24] Joxan Jaffar, Vijayaraghavan Murali, Jorge A. Navas & Andrew E. Santosa (2012): TRACER: A Symbolic
Execution Tool for Verification. In P. Madhusudan & Sanjit A. Seshia, editors: CAV, LNCS 7358, Springer,
pp. 758–766. Available at http://dx.doi.org/10.1007/978-3-642-31424-7_61.

[25] Ranjit Jhala & Kenneth L. McMillan (2006): A Practical and Complete Approach to Predicate Refinement.
In Holger Hermanns & Jens Palsberg, editors: TACAS, LNCS 3920, Springer, pp. 459–473. Available at
http://dx.doi.org/10.1007/11691372_33.

[26] Bishoksan Kafle & John P. Gallagher (2015): Constraint Specialisation in Horn Clause Verification.
In Kenichi Asai & Kostis Sagonas, editors: Proceedings of the 2015 Workshop on Partial Eval-

http://dx.doi.org/10.1007/978-3-319-08867-9_49
http://dx.doi.org/10.1007/978-3-319-08867-9_49
http://dx.doi.org/10.1007/3-540-61580-6_7
http://arxiv.org/abs/1511.03595
http://arxiv.org/abs/1511.03595
http://journals.cambridge.org/action/displaySuppMaterial?cupCode=1&type=4&jid=TLP&volumeId=14&issueId=4-5&aid=9303163
http://journals.cambridge.org/action/displaySuppMaterial?cupCode=1&type=4&jid=TLP&volumeId=14&issueId=4-5&aid=9303163
http://dx.doi.org/10.1145/2254064.2254112
http://dl.acm.org/citation.cfm?id=2254064
http://dl.acm.org/citation.cfm?id=2254064
http://dx.doi.org/10.1007/978-3-319-21690-4_20
http://dx.doi.org/10.1007/978-3-662-46681-0_41
http://dx.doi.org/10.1007/978-3-642-03237-0_7
http://dx.doi.org/10.1145/1706299.1706353
http://dl.acm.org/citation.cfm?id=1706299
http://dx.doi.org/10.1007/978-3-642-39799-8_2
http://dx.doi.org/10.1017/S1471068411000457
http://dx.doi.org/10.1007/978-3-642-32759-9_21
http://dx.doi.org/10.1007/978-3-642-31424-7_61
http://dx.doi.org/10.1007/11691372_33

Kafle & Gallagher 117

uation and Program Manipulation, PEPM, Mumbai, India, January 15-17, 2015, ACM, pp. 85–90,
doi:10.1145/2678015.2682544. Available at http://dl.acm.org/citation.cfm?id=2678015.

[27] Bishoksan Kafle & John P. Gallagher (2015): Horn clause verification with convex polyhedral
abstraction and tree automata-based refinement. Computer Languages, Systems & Structures,
doi:10.1016/j.cl.2015.11.001.

[28] Kenneth L. McMillan & Andrey Rybalchenko (2013): Solving Constrained Horn Clauses using Interpola-
tion. Technical Report, Microsoft Research.

[29] Philipp Rümmer, Hossein Hojjat & Viktor Kuncak (2013): Disjunctive Interpolants for Horn-Clause Verifi-
cation. In Sharygina & Veith [31], pp. 347–363, doi:10.1007/978-3-642-39799-8 24.

[30] Andrey Rybalchenko & Viorica Sofronie-Stokkermans (2010): Constraint solving for interpolation. J. Symb.
Comput. 45(11), pp. 1212–1233. Available at http://dx.doi.org/10.1016/j.jsc.2010.06.005.

[31] Natasha Sharygina & Helmut Veith, editors (2013): Computer Aided Verification - 25th International
Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings. LNCS 8044, Springer,
doi:10.1007/978-3-642-39799-8.

[32] Robert F. Stärk (1989): A Direct Proof for the Completeness of SLD-Resolution. In Egon Börger, Hans Kleine
Büning & Michael M. Richter, editors: CSL ’89, 3rd Workshop on Computer Science Logic, Kaiserslautern,
Germany, October 2-6, 1989, Proceedings, LNCS 440, Springer, pp. 382–383.

[33] Weifeng Wang & Li Jiao (2015): Trace abstraction refinement for solving Horn clauses. Technical Report
ISCAS-SKLCS-15-19, State Key Laboratory of Computer Science, Institute of Software, Chinese Academy
of Sciences. Available on: http://lcs.ios.ac.cn/~wangwf/TechReportISCAS-SKLCS-15-19.pdf.

http://dx.doi.org/10.1145/2678015.2682544
http://dl.acm.org/citation.cfm?id=2678015
http://dx.doi.org/10.1016/j.cl.2015.11.001
http://dx.doi.org/10.1007/978-3-642-39799-8_24
http://dx.doi.org/10.1016/j.jsc.2010.06.005
http://dx.doi.org/10.1007/978-3-642-39799-8
http://lcs.ios.ac.cn/~wangwf/TechReportISCAS-SKLCS-15-19.pdf

	1 Introduction
	2 Preliminaries
	3 Interpolant tree automata
	4 Application to Horn clause verification
	4.1 Experiments

	5 Related work
	6 Conclusion

