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Some Finite Sample Properties and Assumptions of 
Methods for Determining Treatment Effects: 

Ordinary Least Squares Regression, Propensity Score Matching, 
and Inverse Probability Weighing Compared 

 

Erik Petrovski1, 2016 

Introduction 
There is a growing interest in determining the exact effects of policies, programs, and other 

social interventions within the social sciences. In order to do so, researchers have a variety of 

econometric techniques at their disposal. However, the choice between them may be obscure. 

In this paper, I will compare assumptions and properties of select methods for 

determining treatment effects with Monte Carlo simulation. The comparison will  highlight 

the pros and cons of using one method over another and the assumptions that researchers 

need to make for the method they choose. 

To limit the scope of this paper, three popular methods for determining treatment effects 

were chosen: ordinary least squares regression, propensity score matching, and inverse 

probability weighting. The assumptions and properties tested across these methods are: 

unconfoundedness, differences in average treatment effects and treatment effects on the 

treated, overlap, and robustness. 

Methods 

The treatment effect (𝜏") for the person, i, is defined as what a person’s potential outcome (yi) 

would have been under treatment (w) versus what their outcome would have been had they 

not been treated: 

𝜏" = 𝐸 𝑦" 𝑤" = 1 − 𝐸 𝑦" 𝑤" = 0 	

In practice, this problem cannot be solved since we only observe yi for w=1 or w=0—i.e. the 

counterfactual is unobservable and we therefore face a problem of missing data. This forces us 

to estimate treatment effects alternatively and one appealing solution is to simply compare 

different individuals with and without treatment. 

Under experimental circumstances—where treatment assignment is random—this 

comparison is mathematically straightforward, since:  

𝐸[𝑥|𝑤 = 1] − 𝐸[𝑥|𝑤 = 0] = 0,	

where x represents pretreatment characteristics of individuals that could possibly confound 

the relationship between w and y. In this case, the average treatment effect (ATE) can simply 

be calculated as a difference in means of y, given w: 
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𝐴𝑇𝐸234567"895 = 𝐸 𝑦|𝑤 = 1 − 𝐸 𝑦|𝑤 = 0 	

Treatment effects models are relevant for observational studies in which such randomized 

circumstances are not present and we therefore need to control for confounding factors, such 

that: 

𝐴𝑇𝐸(𝑥) = 𝐸[𝑦|𝒙, 𝑤 = 1] − 𝐸[𝑦|𝒙, 𝑤 = 0]	

 I will now account for how these models address the issue of confounding factors in order to 

determine treatment effects. 

In practice, the most widely used method for determining a treatment effect in 

observational studies—such as the effect of higher education on income for a population—is 

OLS regression. Using OLS, the effect of a given treatment can simply be determined as the 

addition (𝛽>) of a binary treatment variable (w) to the slope (𝛽?) between a dependent variable 

(y) and confounding factors (x): 

𝑦 = 𝛼 + 𝛽>𝑤 + 𝛽?𝑥 + 𝑢,	

where 𝛼 is the constant and u is the error term. 

Other methods, such as matching and inverse probability weighing, have furthermore 

been developed for estimating treatment effects. These methods more closely emulate the 

actual process of treatment assignment by using propensity scores. With propensity score 

methods, we first estimate the propensity for receiving treatment (𝑝(𝑥)), given pre-treatment 

characteristics (x): 

𝑝(𝑥) 	= 	𝑝𝑟𝑜𝑏	(𝑤 = 1	|	𝑥),	

which could be stated as a logit model—which I do in this study, rather than the alternative 

probit model. The resulting propensity scores are then assigned to all units. 

 With propensity score methods, we can then define the ATE as: 

𝐴𝑇𝐸	|	𝑝 𝑥 = 	𝐸[𝑦	|	𝑝(𝑥), 𝑤	 = 	1]	– 	𝐸[𝑦	|	𝑝(𝑥), 𝑤	 = 	0],	

With propensity score matching (or just matching), the ATE is empirically estimated as: 

𝐴𝑇𝐸73HIJ = 𝑁L> [𝑦"> − 𝑦"M]
N

"O>

,	

where 𝑦">	 and 𝑦"M  are retrieved by solving min ∥ p"> − p"M ∥	 over all treated observations, 

thereby matching each treated observations with—in this case—a single most similar non-

treated observation, since I will use nearest neighbor matching. 

Another propensity based method for determining treatment effects is inverse propensity 

weighting (IPW), which simply utilizes regression weights (w) on the basis of estimated 

propensity scores 	𝑝 , for which 𝑤 = 	 	>
	U

  for treated and 𝑤 = 	>
>L	U

 for untreated individuals. 

Individuals who receive a treatment status that they have a low probability of receiving are 

thus given greater weight and this creates comparative treatment and control groups. 

With IPW, the estimation of the ATE is defined as: 
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𝐴𝑇𝐸 = 𝐸
𝑤 − 	𝑝 𝑥 𝑦

	𝑝 𝑥 1 − 𝑝 𝑥
	, 

which is estimated by: 

𝐴𝑇𝐸 = 𝑁L> 𝑤" − 	𝑝 𝑥" 𝑦"
	𝑝 𝑥" 1 − 𝑝 𝑥"

N

"O>

.	

The principal difference between matching and IPW then becomes that IPW is a weighted 

estimate over all relevant data points, whereas matching is looking for pairs of single 

observations to calculate differences (i.e. treatment effects) from. 

Unconfoundedness 
Treatment effects models—propensity based or not—fundamentally rest on our ability to 

control for confounding factors. This requirement can be defined strictly as the conditional 

independence assumption: 

𝑦M, 𝑦> ⊥ 𝑤|𝑥,	

which states that conditional on x, w and potential outcome (y0 & y1) are independent. 

However, it suffices that we use the milder conditional mean independence assumption 

in order to solve for the treatment effect: 

𝐸 𝑦M|𝑥, 𝑤 = 	𝐸 𝑦M|𝑥 	𝑎𝑛𝑑	𝐸 𝑦>|𝑥, 𝑤 = 𝐸[𝑦>|𝑥].	

This assumption asserts that potential outcome is the same for a treated and non-treated 

observation when all confounding pretreatment characteristics (x) have been controlled for. 

Conditional mean independence (or unconfoundedness) cannot be asserted in the very 

likely case where y, in addition to being determined by x, is also determined by unobserved 

factors (z). Whether this is the case is fundamentally untestable when we only observe (y, w, 

x). 

Lack of unconfoundedness is defined in the following Monte Carlo simulation, where 

selection into treatment is determined as: 

𝑤 = 3𝑥 + 𝑧 − 2 + e,	

and treatment is given as: 

𝑦 = 0 + 𝟎𝒘 + 𝑥 + 0.5𝑧 + 0.2𝑢,	

where e and u are error terms. 

Treatment is in this case worthless and any observed effect of w on y may be entirely 

attributed to selection of individuals for treatment on the basis of x and z, both of which are 

correlated with y.  

In the real world, this setup could mirror something like the Spence argument for 

education as social signaling. According to Spence, higher education does not attribute to 

productivity but since productive individuals go for higher education, higher educated 
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individuals have higher earnings (Spence 1973). In our case, y could measure earnings, w 

higher education, and x and z aspects of individual productivity. 

I use Monte Carlo simulation to create 1,000 finite samples of (n=1,000) according to the 

definitions of w and y above. In scenario 1, I run OLS regression, matching and IPW with all 

relevant variables (x & z) included in order to fully satisfy the assumption of mean 

independence. The estimated average treatment effects from each model are shown in table 1 

below: 

 

Table 1: Mean Std. Dev. Min Max 
Regression 0.000 0.015 -0.051 0.052 
Matching (ATE) 0.009 0.020 -0.058 0.078 
IPW (ATE) 0.008 0.023 -0.071 0.074 

 

Clearly, all three methods provide identical and correct estimates for the ATE equal to zero. 

This is due to the fact that we have controlled for—or in the case of matching, balanced the 

treatment and control group—on x and z. 

In scenario 2, I have run the models on the same simulated datasets but the z variable has 

been dropped from the matching and regression models, thus emulating an omitted variable 

bias and thereby a breach of the conditional mean independence assumption. The results are 

shown in table 2 below: 

 

Table 2: Mean Std. Dev. Min Max 
Regression 0.068 0.018 0.013 0.121 
Matching (ATE) 0.069 0.023 -0.008 0.137 
IPW (ATE) 0.073 0.021 0.006 0.134 

 

The results in table 2 highlight that all estimation methods are biased when the conditional 

independence assumption does not hold. Not surprisingly, there is nothing to be gained from 

matching and IPW since these methods rest on similar assumptions of unconfoundedness as 

OLS (Heckman 2005).  

In empirical studies, researchers investigate complex social phenomena that are 

influenced by almost countless factors. Scenario 2 is therefore much more likely than scenario 

1. This is important for researchers to be aware of since any omitted variable bias on the basis 

of unobservables is untestable and we therefore need to account for the extent that we expect 

unconfoundedness to have been broken. 

Treatment effects 
Up until now, I have limited my focus to the ATE. However, there are two types of treatment 

effects that are of interest to researchers: the average treatment effect (ATE) and the average 

treatment effect on the treated (ATT). In the previous simulation, by design ATT=ATE (See 

appendix 1). This was due to the fact that benefit of treatment was not conditional on the 
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mechanism used for treatment assignment. In other words, it is the same stochastic process, 

which determines the potential outcome of treatment given x for individuals who have been 

treated as the process that determines potential outcome given x for all individuals who are 

not treated, so that: 

𝐴𝑇𝐸 = 𝐴𝑇𝑇 = 𝐸 𝑦 𝑥, 𝑤 = 1 − 𝐸[𝑦|𝑥, 𝑤 = 0]	

This assumption is true by design in randomized studies but rarely true for observational 

studies since it is often the case that individuals participating in treatment have either been 

selected or have self-selected into treatment on the basis of an increased expectation of benefit. 

In such cases, the magnitude of the treatment effect is dependent on pretreatment 

characteristics and therefore ATT≠ATE.  

The distinguish between the two treatment effects, the following formal definitions may 

be used: 

ATE = 𝐸[𝑦> − 𝑦M|𝑥]	

ATT = 𝐸[𝑦> − 𝑦M|𝑥, 𝑤 = 1]	

From these definitions, it becomes apparent that even though the average difference on the 

outcome variable for the two groups are estimated in both the ATE and ATT, only the ATT 

conditions this on individuals for which treatment is actually observed. 

To empirically explore the difference between the ATE and ATT, I proceed to define a 

treatment selection process where: 

𝑤 = −𝟒𝒙 + 2 + e,	

and response to treatment is defined as: 

𝑦 = 0 + (𝟏 − 𝒙)𝒘 + 0.5𝑧 + 0.4𝑢	

The above creates a process where, when the value of x is low, the more likely an individual is 

of receiving treatment and the lower x, the larger the benefit of w. In this case: 

𝐴𝑇𝑇 = 𝐴𝑇𝐸 + 𝐸 𝑣1 − 𝑣0|𝑤 = 1 ,		

which formally determines that the two treatment effects differ by the expected person specific 

gain (v1-v0) from treatment for those who have participated. 

In such circumstances matching and IPW have clear benefits over standard OLS, since 

they make it possible to calculate the average treatment effects for the treated as well as the 

average treatment effects for the entire sample.  

In the case of matching this is done by empirically estimating: 

𝐴𝑇𝑇73HIJ = 𝑤"[𝑦" − 𝑦"M]
N

"O>

.	

In the case of IPW, this is done by estimating: 
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𝐴𝑇𝑇 = NL>
(𝑤" − 𝑝(𝑥"))𝑦"
𝜌(1 − 𝜌(𝑥"))

N

"O>

,	

with 𝜌 = 𝑁L> 𝑤"" 	. 

Naturally, the ability of IPW and matching to correctly calculate the ATT only holds under 

the assumption that we are actually able to control entirely for all factors (x) that determine 

both treatment effect size and selection into treatment. If not, we run into a similar omitted 

variable bias as discussed in the previous chapter. 

In my case, I have controlled entirely for all relevant variables. The correct difference 

between ATT and ATE is therefore recovered in the following Monte Carlo simulation of 1,000 

datasets of n=1,000 according to the definitions of w and y above. Results are shown in table 

3 below: 

 

Table 3: Mean Std. Dev. Min Max 
Regression 0.499 0.036 0.366 0.611 
Matching (ATT) 0.695 0.060 0.472 0.892 
Matching (ATE) 0.508 0.046 0.357 0.691 
IPW (ATT) 0.694 0.054 0.537 0.889 
IPW (ATE) 0.507 0.045 0.344 0.664 
True ATT 0.692 0.010 0.660 0.730 
True ATE 0.500 0.009 0.471 0.528 

 

In table 3, it is shown that regression provides a treatment effect of .5 whereas matching and 

IPW both provide correct estimates of ATE=.5 and ATT=.69. 

This is due to the fact that whereas treatment on the treated estimators, such as matching 

and IPW, are able to put most weight on covariates of those who are most likely to receive 

treatment, regression on the other hand puts most weight on covariates where the conditional 

variance of treatment status is greatest (Angrist & Pischke 2008). 

To put the importance of this distinction into practical terms, it may be appropriate with 

a short example. Say that a company wanted to implement a motivational program (w) and x 

measures pre-treatment motivation level. The ATT would be the benefit to expect from the 

program had it been administered to the most demotivated employees only, whereas ATE 

would have been the average expected benefit for all employees had the program been 

administered to everyone. In a cost-benefit situation, the difference in ATT and ATE may be 

crucial in determining whether to administer a motivational program to select employees only. 

Finally, we should also comment on the consistency of the models. The standard deviation 

of the estimates for OLS is noticeably smaller than that of both matching and IPW. This is due 

to the fact that OLS uses x of all observations as a regressor, whereas propensity based methods 

use p(x) of treated observations and n most similar non-treated observations. In order to 

reduce bias, we match on small numbers of n but this results in greater variance, which 

translates into larger standard errors and therefore larger risk of type-I errors in singular 
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empirical applications. This is even more evident when looking at the estimation of the ATT, 

which comes with the least consistency due to the fact that the ATT makes the strictest limits 

on which observations to include in its calculation. 

Overlap 
It follows from the procedures for estimating the ATE, which were accounted for in the 

“Methods” chapter that we need to observe treated and non-treated observation on a common 

overlap of x with 𝑥 ∈ ℑ, where ℑ is the support of the covariates. Formally, Wooldridge (2010) 

states this assumption as ATE.2: 

0 < 𝑃 𝑤 = 1 𝑥 < 1	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑥 ∈ ℑ	,	

which explicates that there needs to be a positive probability of treatment for all values of x.  

I will now explore the overlap assumption further by creating a scenario of insufficient 

overlap by defining a dataset where selection into treatment depends strongly on x: 

𝑤 = 9𝑥 − 4 + 𝑒,	

and the effect treatment is further dependent upon the value of w, thus making treatment 

effects non-constant over x: 

𝑦 = 0 + 1 − 𝑥 ∗ 𝑤 + 𝑧 + 0.4𝑢.	

In order to show that the overlap assumption has been clearly violated for large parts of x, I 

have plotted treatment status (w) against its determining variable (x) for a single randomly 

generated dataset of n=1,000: 

	

Figure 1 

In figure 1, it is clearly seen that the overlap assumption is only fully satisfied on the small 

stretch of x from circa .2 to .6, leaving a large span of the variable without full overlap. 

In the following, I choose to ignore the fact that ATE.2 had been violated and run OLS, 

matching, and IPW on 1000 simulated datasets of n=1,000. The results of which are shown in 

table 4 below: 

 

0
.2

.4
.6

.8
1

w

0 .2 .4 .6 .8 1
x
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Table 4: Mean Std. Dev. Min Max 
Regression 0.592 0.046 0.459 0.747 
Matching (ATE) 0.464 0.092 0.168 0.754 
IPW (ATE) 0.427 0.094 -0.136 1.219 
True ATE 0.501 0.009 0.472 0.527 

 

Table 4 shows that had a researcher attempted to run an OLS regression model, on average a 

treatment effect for w at .59 would have been estimated. However, the true ATE≈.5. The 

misestimating of the treatment effect is due to the fact that the effect of w on y has been 

extrapolated out of bounds by OLS to the full span of x from the small stretch on which overlap 

is observed (Wooldridge, 2010). A similar biased estimate of the ATE is provided by the 

propensity score models.  

However, matching and IPW do allow for a correct estimation of the ATT when only the 

following milder overlap assumption ATT.2 in (Wooldridge 2010) holds: 

𝑃 𝑤 = 1 𝑥 < 1	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑥 ∈ ℑ		

ATT.2 simply states that there may be parts of the population which are never likely to be 

treated, but not parts of the population that are always treated. 

To simulate this circumstance, I define treatment selection as: 

𝑤 = 5𝑥 − 4 + 𝑒	

And response as: 

𝑦 = 0 + (1 − 𝑥)𝑤 + 0.5𝑧 + 0.4𝑢	

Which provides the following overlap between w and x, where overlap is lacking only in the 

lower end and not the high end of the specter of the x variable: 

	

Figure 2 

Figure 2 illustrates that the weaker assumption for estimating ATT should hold in this case, 

and I may therefore proceed with estimating the ATT by propensity score methods. In table 4 

below, I have provided the results from the Monte Carlo simulation of 1,000 datasets with 

n=1,000:  

0
.2

.4
.6

.8
1

w

0 .2 .4 .6 .8 1
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Table 5: Mean Std. Dev. Min Max 
Matching, ATT 0.178 0.057 -0.016 0.362 
IPW, ATT 0.176 0.049 0.021 0.341 
True ATT 0.178 0.009 0.144 0.210 

 

The results in table 5 show that both matching and IPW provide correct estimates of the true 

ATT, even when only the weaker overlap assumption holds. 

The ability to estimate treatment effects under ATT.2 is an attractive feature of propensity 

score methods since it is often the case that targeted social policies, which we may wish to 

estimate the effect of, are only relevant for a particular subset of the population, thus leaving 

large parts untreated, which is in breach of ATE.2 and thus hinders the reliable estimation of 

the ATE. 

Robustness 
In econometrics, results equal data plus assumptions. Though assumptions do enable many 

efficient calculations, it is also generally the case that the fewer assumptions made, the more 

likely results will reflect the underlying data structure rather than the assumptions made by 

the researcher. One issue with OLS is that it enforces strict assumptions on the linear 

functional form of the relationship between y and its covariates and deviations from this form 

must be explicated in the model (Cameron & Trivedi 2005). Matching and IPW methods, on 

the other hand, do not make such assumptions since the relationship between w and y is 

treated as one-dimensional (Wooldridge 2010). This follows from the already stated 

conditional mean independence, in which it is assumed that: 

	𝐸(𝑦M	|𝑥, 𝑤) 	= 	𝐸(𝑦M	|𝑥)	𝑎𝑛𝑑	𝐸(𝑦>	|𝑥, 𝑤) 	= 	𝐸(𝑦>	|𝑥).	

Robustness is achieved due to the fact that the definition above does not preclude higher 

moments of x to depend on w. 

I test the robustness of matching and IPW by defining datasets where treatment selection 

is given by a linear function: 

𝑤 = 2𝑥 − 2 + e,	

but the distribution of y is given by a non-linear function of the form: 

𝑦 = 0 + 1𝑤 + 𝟏𝟒(𝒙 − 𝟎. 𝟓)𝟐 + 0.5𝑧 + 0.4𝑢	

The effect of the non-linearity of the x control variable on the estimation of the treatment effect 

of w, which is 1, can be seen in table 6 below, which are results from the models from Monte 

Carlo simulation of 1,000 datasets of n=1,000: 
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Table 6: Mean Std. Dev. Min Max 
Regression 1.245 0.099 0.957 1.565 
Matching (ATT) 1.010 0.049 0.868 1.180 
Matching (ATE) 0.931 0.066 0.703 1.106 
IPW (ATT) 0.958 0.086 0.691 1.269 
IPW (ATE) 0.939 0.127 0.603 1.447 

 

In this case, regression has produced an upward bias of ~20 % for the effect of w since the 

effect of x on y is non-linear and w is absorbing this nonlinear relationship due to the fact that 

w is partly determined by x. As expected, both matching and IPW generally provided good 

estimates of the true ATT and ATE≈1, thereby underlining their robust properties. 

If researchers have a good understanding of how treatment is assigned — but not of how 

response arises — propensity score methods therefore provide a good robust estimation 

approach. 

Furthermore, covariate based (not propensity score) matching is said to be doubly robust, 

which means that it provides unbiased estimates even when the functional form of the 

treatment model is not correctly specified, however, the researcher does need to correctly 

specify either the treatment or response model. In order to achieve doubly robustness with 

IPW, we need to combine IPW with regression adjustment (Wooldridge 2010) but this 

technique is beyond the scope of this paper. 

Conclusion 
This paper shows that OLS, matching, and IPW provide identical results in cases where only 

the ATE is of interest (or ATE=ATT), the functional form has been correctly specified, and the 

strong overlap assumption holds. If such assumptions can forcefully be made, researchers 

could just apply an OLS model—and thereby furthermore reap its efficiency gains. However, 

in likely variations of these circumstances, both matching and IPW have provided more correct 

and/or desirable results. 

However, no noticeable difference in the estimated treatment effects were detected 

between the two propensity score based techniques, IPW and matching, in these admittedly 

very limited simulations. 

References 
Angrist, J. D., & Pischke, J.-S. (2008): Mostly Harmless Econometrics: An Empiricists 

Companion (pp. 1–290). 

Heckman, James J. (2005): “The Scientific Model of Causality”. Sociological 

Methodology, 35:1-97. 

Spence, Michael (1973): "Job Market Signaling". Quarterly Journal of Economics 87 

(3): 355–374. 

Cameron, Colin & Trivedi, Pravin. (2005): Microeconometrics, 1–1058. 



11 

Wooldridge, J. M. (2010): Econometric Analysis of Cross Section and Panel Data. MIT 

Press. 

Appendix 1 

Table a.1: Mean Std. Dev. Min Max 
Regression 0.000 0.015 -0.051 0.052 
Matching (ATT) 0.008 0.026 -0.067 0.103 
Matching (ATE) 0.009 0.020 -0.058 0.078 
IPW (ATT) 0.007 0.031 -0.108 0.094 
IPW (ATE) 0.008 0.023 -0.071 0.074 

 

Table a.2: Mean Std. Dev. Min Max 
Regression 0.068 0.018 0.013 0.121 
Matching (ATT) 0.069 0.028 -0.021 0.146 
Matching (ATE) 0.069 0.023 -0.008 0.137 
IPW (ATT) 0.072 0.027 -0.013 0.148 
IPW (ATE) 0.073 0.021 0.006 0.134 

 

Appendix 2 
This appendix contains a Stata script for running all Monte Carlo simulations presented in the 

paper. The script was written in Stata 13.1. 
 

ssc install labsumm 

 

************************************ 
*SELECTION INTO WORTHLESS TREATMENT* 
************************************ 
 
clear all 
 
program define sim1, rclass 
 
drop _all 
 
set obs 1000 
 
gen x=runiform() 
gen z=runiform() 
gen w=rbinomial(1,normal(3*x+z-2)) 
gen u=rnormal() 
gen y=0+0*w+x+0.5*z+0.2*u 
 
reg y w x z 
return scalar a=_b[w] 
 
teffects psmatch (y) (w x z), atet 
return scalar b=[ATET]_b[r1vs0.w] 
 
teffects psmatch (y) (w x z), ate 
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return scalar c=[ATE]_b[r1vs0.w] 
 
teffects ipw (y) (w x z), atet 
return scalar d=[ATET]_b[r1vs0.w] 
 
teffects ipw (y) (w x z), ate 
return scalar e=[ATE]_b[r1vs0.w] 
 
reg y w x 
return scalar f=_b[w] 
 
teffects psmatch (y) (w x), atet 
return scalar g=[ATET]_b[r1vs0.w] 
 
teffects psmatch (y) (w x), ate 
return scalar h=[ATE]_b[r1vs0.w] 
 
teffects ipw (y) (w x), atet 
return scalar i=[ATET]_b[r1vs0.w] 
 
teffects ipw (y) (w x), ate 
return scalar j=[ATE]_b[r1vs0.w] 
 
end 
 
simulate a=r(a) b=r(b) c=r(c) d=r(d) e=r(e) f=r(f) g=r(g) h=r(h) 
i=r(i) j=r(j), reps(1000): sim1 
 
label variable a "Regression" 
label variable b "Matching (ATT)" 
label variable c "Matching (ATE)" 
label variable d "IPW (ATT)" 
label variable e "IPW (ATE)" 
 
label variable f "Regression" 
label variable g "Matching (ATT)" 
label variable h "Matching (ATE)" 
label variable i "IPW (ATT)" 
label variable j "IPW (ATE)" 
 
labsumm a c e 
labsumm a b c d e 
labsumm f h j 
labsumm f g h i j 
 
********************************************************* 
*SELECTION INTO TREATMENT FOR THOSE WHO BENEFIT THE MOST* 
********************************************************* 
 
clear all 
 
program define sim2, rclass 
 
drop _all 
 
set obs 1000 
 
gen x=runiform() 
gen z=runiform() 
gen w=rbinomial(1,normal(-4*x+2)) 
gen u=rnormal() 
gen y=0+(1-x)*w+0.5*z+0.4*u 
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gen atet=1-x if w==1 
sum atet 
return scalar atet=r(mean) 
 
gen ate=1-x 
sum ate 
return scalar ate=r(mean) 
 
reg y w x z 
return scalar a=_b[w] 
 
teffects psmatch (y) (w x z), atet 
return scalar b=[ATET]_b[r1vs0.w] 
 
teffects psmatch (y) (w x z), ate 
return scalar c=[ATE]_b[r1vs0.w] 
 
teffects ipw (y) (w x z), atet 
return scalar d=[ATET]_b[r1vs0.w] 
 
teffects ipw (y) (w x z), ate 
return scalar e=[ATE]_b[r1vs0.w] 
 
end 
 
simulate a=r(a) b=r(b) c=r(c) d=r(d) e=r(e) atet=r(atet) ate=r(ate), 
reps(1000): sim2 
 
label variable a "Regression" 
label variable b "Matching (ATT)" 
label variable c "Matching (ATE)" 
label variable d "IPW (ATT)" 
label variable e "IPW (ATE)" 
label variable atet "True ATT" 
label variable ate "True ATE" 
 
labsumm a b c d e atet ate 
 
******************************* 
*SEVERE LACK OF COMMON SUPPORT* 
******************************* 
 
clear all 
 
program define sim3, rclass 
 
drop _all 
 
set obs 1000 
 
gen x=runiform() 
gen z=runiform() 
gen w=rbinomial(1,normal(9*x-4)) 
gen u=rnormal() 
gen y=0+(1-x)*w+0.5*z+0.4*u 
 
plot w x 
 
gen ate=1-x 
sum ate 
return scalar ate=r(mean) 
 
reg y w x z 
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return scalar a=_b[w] 
 
teffects psmatch (y) (w x z), ate 
return scalar c=[ATE]_b[r1vs0.w] 
 
teffects ipw (y) (w x z), ate 
return scalar e=[ATE]_b[r1vs0.w] 
 
end 
 
simulate a=r(a) c=r(c) e=r(e) ate=r(ate), reps(1000): sim3 
 
label variable a "Regression" 
label variable c "Matching (ATE)" 
label variable e "IPW (ATE)" 
label variable ate "True ATE" 
 
labsumm a c e ate 
 
***************************** 
*SOME LACK OF COMMON SUPPORT* 
***************************** 
 
 
clear all 
 
program define sim4, rclass 
 
drop _all 
 
set obs 1000 
 
gen x=runiform() 
gen z=runiform() 
gen w=rbinomial(1,normal(5*x-4)) 
gen u=rnormal() 
gen y=0+(1-x)*w+0.5*z+0.4*u 
 
gen atet=1-x if w==1 
sum atet 
return scalar atet=r(mean) 
 
teffects psmatch (y) (w x z), atet 
return scalar b=[ATET]_b[r1vs0.w] 
 
teffects ipw (y) (w x z), atet 
return scalar d=[ATET]_b[r1vs0.w] 
 
end 
 
simulate b=r(b) d=r(d) atet=r(atet), reps(1000): sim4 
 
label variable b "Matching (ATT)" 
label variable d "IPW (ATT)" 
label variable atet "True ATT" 
 
labsumm b d atet 
 
************************** 
*NONLINEARITY OF RESPONSE* 
************************** 
 
clear all 
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program define sim5, rclass 
 
drop _all 
 
set obs 1000 
 
gen x=runiform() 
gen z=runiform() 
gen w=rbinomial(1,normal(2*x-2)) 
gen u=rnormal() 
gen y=0+1*w+14*((x-0.5)^2)+0.5*z+0.4*u 
 
reg y w x z 
 
return scalar a=_b[w] 
 
teffects psmatch (y) (w x z), atet 
return scalar b=[ATET]_b[r1vs0.w] 
 
teffects psmatch (y) (w x z), ate 
return scalar c=[ATE]_b[r1vs0.w] 
 
teffects ipw (y) (w x z), atet 
return scalar d=[ATET]_b[r1vs0.w] 
 
teffects ipw (y) (w x z), ate 
return scalar e=[ATE]_b[r1vs0.w] 
 
end 
 
simulate a=r(a) b=r(b) c=r(c) d=r(d) e=r(e), reps(1000): sim5 
 
label variable a "Regression" 
label variable b "Matching (ATT)" 
label variable c "Matching (ATE)" 
label variable d "IPW (ATT)" 
label variable e "IPW (ATE)" 
 
labsumm a b c d e 
 

 

 

 


