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Abstract. Leaf nitrogen and leaf surface area influence theN; concentrations in 93 fields representing crop- and grass-
exchange of gases between terrestrial ecosystems and the &nds of the five landscapes. Furthermore, empirical rela-
mosphere, and play a significant role in the global cycles oftionships between field measurements (LAI, Ghind N)
carbon, nitrogen and water. The purpose of this study is tcand five spectral vegetation indices (the Normalized Dif-
use field-based and satellite remote-sensing-based methoéisrence Vegetation Index, the Simple Ratio, the Enhanced
to assess leaf nitrogen pools in five diverse European agriculMegetation Index-2, the Green Normalized Difference Veg-
tural landscapes located in Denmark, Scotland (United King-etation Index, and the green chlorophyll index) were used
dom), Poland, the Netherlands and Italy. REGFLEC (REG-to assess field data coherence and to serve as a compari-
ularized canopy reFLECtance) is an advanced image-basesbn basis for assessing REGFLEC model performance. The
inverse canopy radiative transfer modelling system whichfield measurements showed strong vertical ¢idtadient

has shown proficiency for regional mapping of leaf area in-profiles in 26 % of fields which affected REGFLEC perfor-
dex (LAI) and leaf chlorophyll (CHD using remote sens- mance as well as the relationships between spectral vegeta-
ing data. In this study, high spatial resolution (10—20 m) re-tion indices (SVIs) and field measurements. When the range
mote sensing images acquired from the multispectral senef surface types increased, the REGFLEC results were in
sors aboard the SPOT (Satellite For Observation of Earthpetter agreement with field data than the empirical SVI re-
satellites were used to assess the capability of REGFLE@ression models. Selecting only homogeneous canopies with
for mapping spatial variations in LAl, CHLand the rela- uniform CHL distributions as reference data for evaluation,
tion to leaf nitrogen (N data in five diverse European agri- REGFLEC was able to explain 69% of LAl observations
cultural landscapes. REGFLEC is based on physical lawgrmse=0.76), 46 % of measured canopy chlorophyll con-
and includes an automatic model parameterization schemgents (rmse=719 mgn1t2) and 51% of measured canopy
which makes the tool independent of field data for modelnitrogen contents (rmse2.7 gnt2). Better results were
calibration. In this study, REGFLEC performance was eval-obtained for individual landscapes, except for Italy, where
uated using LAI measurements and non-destructive meaREGFLEC performed poorly due to a lack of dense vegeta-
surements (using a SPAD meter) of leaf-scale €ldhd  tion canopies at the time of satellite recording. Presence of
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vegetation is needed to parameterize the REGFLEC modethe light-use efficiency (Houborg et al., 2011; Peng and Gi-
Combining REGFLEC- and SVI-based model results to min-telson, 2012) and the maximum Rubisco capacity (Boegh et
imize errors for a “snap-shot” assessment of total leaf nitro-al., 2002) in photosynthesis modelling.
gen pools in the five landscapes, results varied from 0.6 to Most remote-sensing-based methods for estimating,CHL
4.0tkn 2. Differences in leaf nitrogen pools between land- and N were developed for single species using leaf-scale
scapes are attributed to seasonal variations, extents of agrilata to develop SVIs that are closely correlated with CHL
cultural area, species variations, and spatial variations in nuand N (e.g. Sims and Gamon, 2002; Zhao et al., 2005b;
trient availability. In order to facilitate a substantial assess-and Main et al., 2011). As for CHLremote sensing of N
ment of variations in Npools and their relation to landscape performs best in the visible spectral bands. Its estimation
based nitrogen and carbon cycling processes, time series @fin be indirect due to Nassociation with CHL(Yoder and
satellite data are needed. The upcoming Sentinel-2 satellit®ettigrew-Crosby, 1995), however N is also included in other
mission will provide new multiple narrowband data opportu- pigments such as carotenoids and anthocyanin which have
nities at high spatio-temporal resolution which are expectedifferent spectral signatures than CH{Sims and Gamon,
to further improve remote sensing capabilities for mapping2002). In the absence of N, plants degrade their chlorophyll
LAI, CHL| and N. molecules, and CHLis determined by the availability of|N
(Filella et al., 1995), thereby causing a close relationship be-
tween CHL and N measurements (e.g. Boegh et al., 2002;
and Zhao et al., 2005b). Physiological investment of N in
1 Introduction light-harvesting CHL.and Rubisco aims to maximize photo-
synthesis, and the N partitioning of leaves between Citid
Nutrient availability is highly variable and related to land Rubisco is therefore light dependent and varies with plant
use, farming systems, soil type and topography (Duretz egrowth form and between species (e.g. Hallik et al., 2012).
al., 2011) as well as the atmospheric deposition of ammo+or instance, leaves grown at high light intensity tend to al-
nia and nitrogen oxides (Churkina et al., 2010). Despite thdocate more N to Rubisco, therefore increasing the photosyn-
excessive use of nitrogen fertilizers in many European cropthetic capacity per leaf area, whereas shade-tolerant species
lands (Eurostat, 2012), water and nutrient resource availabiltend to have higher CHLN; ratios.
ity is responsible for large inter-plant-species spatial varia- Photosynthesis optimization theory suggests that plants
tion in photosynthetic capacity and carbon exchange ratesvill distribute their N resources in proportion to the light gra-
(Moors et al., 2010). This causes the carbon balance of fieldslient within the canopy (e.g. dePury and Farquhar, 1997).
to either be a source or a sink (Ciais et al., 2010). RemoteThis complicates the evaluation of remote-sensing-based
sensing-based spectral vegetation indices (SVIs) calculatedanopy CHL and N estimation methodologies because
from broadband satellite sensors have been used to reprground truth measurements are based on leaf-scale data.
sent the resource constrained leaf area index (LAI) and lighSome remote sensing studies measure CoéflLthe upper
absorption for photosynthesis modelling (Field et al., 1995;leaf, which is then multiplied by the green LAI to repre-
Zhao et al., 2005a). However, the maximum light-use effi- sent canopy chlorophyll (CH{) content (e.g. Gitelson et al.,
ciencies as well as the maximum Rubisco capacities whict2005; and Atzberger et al., 2010). Other studies use ran-
are catalysing the Cffixation, can vary by a factor of 2 dom sampling (e.g. Darvishzadeh et al., 2008; and Dash et
for European crops (Chen et al., 2011; Moors et al., 2010)al., 2010) or integrate over the canopy height (e.g. Broge
Because the bulk of leaf nitrogen is associated with Rubiscoand LeBlanc, 2000). Measuring conditions at canopy and
leaf nitrogen is considered a critical determinant of the maxi-regional scales is further complicated by variations in soil
mum Rubisco capacity in photosynthesis modelling (e.g. Farbackground reflectance and canopy structures of the differ-
quhar et al., 1980; dePury and Farquhar, 1997; Boegh et algnt land cover types, and it is often found that different
2002; and Kattge et al., 2009), and it also plays an importanSVIs have different capabilities for estimating LAI, CHL and
role for the NH; exchange between vegetation and the atmo-N (e.g. Broge and LeBlanc, 2000). Mismatch in the spa-
sphere (Mattson et al., 2009; Massad et al., 2010), which idial resolution of ground truth field data and satellite based
an important component of the nitrogen (N) cycle and closelySVIs over extended regions also challenges the evaluation of
coupled to the carbon cycle. Due to the characteristic spectrabVlIs (Garrigues et al., 2008; Dash et al., 2010), and many
signature of leaf pigments and their N contents, remote sensstudies have used leaf and canopy radiative transfer models
ing of leaf chlorophyll (CHL) and leaf nitrogen (N is feasi-  (CRTMSs) to study the sensitivity of SVIs when exposed to
ble (e.g. Blackburn, 1998; Broge and LeBlanc, , 2000; Boeghdifferent external factors at canopy scale (e.g. Carlson and
et al., 2002; Hansen and Schjoerring, 2002; Sims and GaRipley, 1997; Broge and LeBlanc, 2000; and Haboudane et
mon, 2002; Gitelson et al., 2005; Zhao et al., 2005b; Houborgal., 2004). CRTMs are physically based models that consider
and Boegh, 2008; Houborg et al., 2009; Dash et al., 2010soil and leaf properties, stand geometry and clumping for
Main et al., 2011; and Peng and Gitelson, 2012), and it hasnodelling spectral surface reflectance, however the canopy
been found that such variables can be used as measures igftypically assumed to consist of a homogeneous layer of

Biogeosciences, 10, 6276307, 2013 www.biogeosciences.net/10/6279/2013/



E. Boegh et al.: Remote sensing of LAI, chlorophyll and leaf nitrogen pools 6281

vegetation, although a two-layer version of the CRTM model, ping which included automatic parameterization of a com-
SAIL, has been developed (Verhoef and Bach, 2012). Furbined leaf optics—CRTM model (PROSPECT-ACRM). The
thermore, very few studies report on the vertical detectionmethod identifies bare soil and dense vegetation fields, and
footprint of remote sensors (Ciganda et al., 2012; Winter-the spectral signatures of these fields are then used to con-
halter et al., 2012). It is well known that dense canopiesstrain the model inversion for class-specific parameteriza-
effectively absorb red light, which leads to diminishing re- tion. Very good results were obtained for LAl (rms).4—
flectance and saturation effect in the red chlorophyll peak0.7) and leaf-scale CHL (rmse5-9pug cnm?) when ap-
absorption band, and that most SVIs saturate at high LAlplied at a regional scale (Houborg et al., 2007; Houborg and
values (e.g. Yoder and Waring, 1994; and Huete, 1988). ABoegh, 2008; Houborg and Anderson, 2009), and even bet-
recent experiment aimed at detecting the vertical footprintter results were achieved when applied to field-scale image
of a red edge SVI to provide information on b a maize  data with 1 m spatial resolution (rmse0.25 for LAI and
canopy showed, however, that the remote sensor was abk.4 pugcnt? for CHL) due to the efficient model parame-
to detect Nl down to the lowest levels (Winterhalter et al., terization scheme (Houborg et al., 2009). The method has
2012). Another recent study showed that a SVI (the red-edgéeen developed into a user-friendly tool, REGFLEC (REGu-
chlorophyll index) sensed only the upper 8-9 leaf layers inlarized canopy reFLECtance), which combines atmospheric
a maize canopy. Even though the SVI was empirically re-and canopy radiative transfer modelling to estimate LAl and
lated to canopy chlorophyll content, the upper 8-9 leaf layersCHL, directly from at-satellite radiance data (Houborg and
represented just 55-65 % of total canopy chlorophyll contentAnderson, 2009).
(Ciganda et al., 2012).

Despite incomplete representation of within-canopy ¢HL 1.1 Objectives
and N profiles in many remote sensing data and model stud-
ies, the sensitivity of canopy reflectance to soil backgroundThe overall purpose of this paper is to assess the differ-
reflectance and canopy geometry has been clearly demorences in vegetation N pools of five European agricultural
strated and points to the need for land-cover-specific convertandscapes affiliated to the EU project NitroEurope (Sut-
sions to estimate LAl from SVIs (Knyazikhin et al., 1998). ton et al., 2007; Cellier et al., 2011) and located in Den-
Furthermore, generalized soil adjusted SVIs have been devemark, Scotland (United Kingdom), Poland, the Netherlands
oped (Huete, 1988; Huete et al., 2002) which show improvedand Italy. Vegetation N pools are needed to quantify vari-
relationships with LAl (e.g. Boegh et al., 2002; Houborg and ations in resource availability for photosynthesis modelling
Soegaard, 2004; and Huete et al, 2006). However, becausand for nitrogen budget estimation. For this purpose, the util-
SVIs require empirical calibration to assess LAI, GHind ity of the REGFLEC approach for remote-sensing-based re-
Nj, such calibration may not be transferable to other canopiegiional mapping of LAI, CHL and N in crop- and grass-
due to variations in soil background and canopy structurelands is assessed over the large range of environmental (at-
Therefore, methods have been developed to use physicallgnospheric and soil) conditions characterizing the five land-
based CRTMs for inverse model estimation of LAl and GHL scapes. The REGFLEC model was applied to high spatial
(e.g. Jacquemoud et al., 2000; Darvishzadeh et al., 2008gesolution (10—20 m) multispectral SPOT (Satellite For Ob-
Houborg et al., 2009; and Atzberger and Richter, 2012). Theservation of Earth) satellite images (Astrium, 2012). Field
use of CRTMs is attractive because they are able to repremeasurements of LAI, CHland N were collected for crop-
sent canopy geometry and the various radiometric propertieand grasslands in each landscape. Field data coherency was
of leaves and soils and, therefore, they do not require caliassessed by comparison with five different SVIs which are
bration. However, CRTMs require many soil and vegetation-known to be closely related to LAl and chlorophyll. Finally,
specific model parameters, which may be unknown. Due tahe spatial variations in vegetation N pools of the landscapes
the number of unknown variables exceeding the number ofvere quantified and discussed using field data and the high
radiometric variables in the input data, and because differenspatial resolution SPOT satellite images.
parameter combinations can yield similar spectral reflectance
simulations, the model inversion process is mathematicallyl.2 Overview
ill-founded (Combal et al., 2002). A priori information about
model parameters or the use of additional input data type§he five landscapes are presented in Sect. 2. Satellite and
(hyperspectral or multi-angular data) can be used to confield data are described in the Methods Sects. 3.1 and 3.2,
strain the model inversion, however such information maythe SVIs are presented in Sect. 3.3, and the REGFLEC ap-
not be available at large spatial scales, and the use of addproach is described in Sect. 3.4. The Results section presents
tional radiometric input data can be redundant. Utilization of first landscape-scale variations in terms of observed vegeta-
spatial information content within remote sensing images cartion seasonality and LAl measurements at the time of SPOT
be an attractive solution (e.g. Houborg and Anderson, 2009satellite passage (Sect. 4.1). The variations in Céiid N
and Atzberger and Richter, 2012). Houborg et al. (2007) defield measurements of different crop types and landscapes are
veloped an image-based method for LAl and GHhhap-  then presented (Sect. 4.2), and the observed within-canopy
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Table 1.Overview of SPOT satellite data including sensor and atmospheric data estimated from MODIS and AIRS satellite data. Atmospheric
data include aerosol optical depth) (ozone content (6) and total precipitable water content (TPW). Spatial resolutiansg @f the SPOT
images are also shown.

Country Site Latitude Longitude Elevation SPOT SPOT SPOT SPOT SPOT MODIS MODIS AIRS AIRS AIRS
acronym EN) (°E) (mas.l) Date Time Satellite Sensor Ax Time T Time O3 TPW
(n) (m) () (=) () (Dobson)  (kgnT?)
Denmark DKO08 56.34 9.66 60 31May08 10.50 SPOT-4 HRVIR1 20 11.10 0.234 11.25 322.8 18.82
Poland PL 52.04 16.78 80 01Jun08 10.20 SPOT-4 HRG1 10 10.20 0.177 12.06 353.4 15.43
Netherlands NL 53.14 6.13 2 09Jun08 10.46 SPOT-5 HRG2 10 11.05 0.091 1119 327.9 22.95
Italy IT 40.51 14.94 15 27Jun08 10.08 SPOT-5 HRG1 10 9.20 0.459 11.30 340.6 27.20
Scotland UK 55.78 —3.24 280 21Jul08 11.09 SPOT-4 HRVIR1 20 11.55 0.021 11.55 330.0 15.00
Denmark DKO09 56.35 9.66 60 17Apr09 1045 SPOT-5 HRG1 10 11.55 0.053 12.11 385.5 10.36

variations in CHL. are categorized (Sect. 4.3). The capabil- tosols and Dystric Gleysols (ESDB, 2010), which are indica-
ity of REGFLEC to quantify LAI, CHL. and N over a large tive of acidic soils.
range of environmental conditions in Europe is evaluated in The Dutch lowland site (NL) is located just 2m above
Sects. 4.4 and 4.5, and the distribution and size of vegetatiosea level and dominated by cultivated grassland and pasture
N pools in the five European agricultural landscapes are fi{79 %). Only a few crop fields (maize) were observed. There
nally assessed and discussed in Sect. 4.5. Section 5 discusdssno woodland in the study area, but many tree belts. Ur-
the capability of remote sensing data to assess LAI, CHL ban/suburban land use covers 17 %, and 4 % of the area is
and N (Sect. 5.1), and the contribution of remote sensing totaken up by water bodies and inland marshes..
assess landscape-scale variation in carbon—nitrogen dynam- At the DK site, land use is dominated by croplands (70 %)
ics (Sect. 5.2). intermixed with woodland (21 %) and urban/suburban areas
(6 %). The dominant crop type in this region is wheat, but
winter oilseed rape, barley and maize are also common. The
2 Landscape sites area is a lowland area (60 ma.s.l.), with fertile soils com-
posed by Haplic Podzols and Gleyic Luvisols (ESDB, 2010).
In 2006, arable land for crop production covered 25 % of the At the Polish site, 76 % of the land area is cultivated by
European land area, and grassland pastures covered an &fops, 8% by grassland, and woodland covers 13 % of the
ditional 17 %, which add up to a total European agricultural Study landscape. Crop fields are generally very small and
land area of 2286 931 Kh{EEA/ETC-LUSI, 2010). The five =~ managed as small family farms, but large fields are observed
study areas each represent regions of 10kb@km and in the few but large former cooperative farms. The area is lo-
are centered on the NitroEurope landscapes. They are gegated 80 ma.s.l., and soils are classified as Gleyic Luvisols
graphically located across a European south—north gradiengnd Gleyic Fluvisols (ESDB, 2010), indicating exposure to
ranging from 4030 N to 56°20'N and a west—east gradi- intermittent waterlogging.
entfrom 314 W to 16°46 E (Fig. 1), thereby representing 3 At the Italian site, agricultural production is dominated by
European climate zones: temperate/humid continental (Denborticulture and dairy buffalo farming. Approximately 90 %
mark and Poland), temperate oceanic (the Netherlands aneff the area is used for cultivation, with 12% having a com-
the United Kingdom), and warm Mediterranean (ltaly) (Peel plex cultivation pattern. Cultivated areas include vineyards,
et al., 2007). The climate zones reflect the agricultural landfruit trees, maize and vegetables. Vegetable fields are row-
use patterns of the selected landscape sites, which are dorfiropped with up to 1-2m between rows, and many plastic
inated by grassland in the Netherlands (NL) and Scotlanddreenhouses and bare soil fields were observed in the area
(UK), grain crops, maize and potatoes in Denmark (DK) andduring the July measurement campaign. The area is located
Poland (PL), and maize, vegetables and fruit production inl5ma.s.l., and the dominant soil type is Eutric Cambisol
Italy (IT). (ESDB, 2010).
At the UK site, agricultural land use comprises upland
pasture (38 %) and crop fields (10 %) which are intermixed
with peat bogs (38 %), semi-natural grassland, heathland angd Materials and methods
moorland (22 %) and some woodland (14 %). Agricultural
production is dominated by sheep, beef and poultry systems3.1  Satellite data
although the latter does not contribute substantially to agri-
cultural land use and cropping patterns in the landscape, beMulti-spectral high spatial resolution satellite image data
ing dependent on feeds brought in from outside the arearepresenting radiance in the green (0.5-0.59 um), red (0.61—
The landscape is located in an upland area (280 ma.s.l.), an@.68 pm) and NIR (0.79-0.89 um) spectra, as measured by
the prevailing soil types are Dystric Cambisols, Dystric His- the HRG (high resolution geometry) and HRVIR (high
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Fig. 1.Land cover and locations of five European landscape sites. Courtesy: CORINE land cover (CLC2000), European Environment Agency
(http://lwww.eea.europa.eu/legal/copyright

resolution visible and infra-red) sensors aboard the SPOT-MODIS and AIRS/AMSU sensors aboard the Terra (EOS
and SPOT-5 satellites were acquired within the NitroEuropeAM) and Aqua (EOS PM) satellites. Atmospheric data were
project and used in this study (Table 1). The acquired satelliteacquired as close as possible in time to the acquisition of the
data were processed to Level 2A which includes standard geSPOT data (Table 1). Surface reflectance is calculated con-
ometric corrections. The georeferencing quality was assessesidering directional multiple scattering using the 6SV1 at-
by overlaying the satellite images by ESRI's Streetmap Pre-mospheric radiative transfer model (Kotchenova et al., 2006),
mium Europe Tele Atlas data set, and minor deviations wereawhich is included in the REGFLEC tool. REGFLEC results
adjusted by shifting the image coordinates in ¥ direc- and SVIs were extracted for>33 pixels centered at each
tions. One satellite image is available for each landscape fofield plot for comparison with field measurements.

the period 31 May-21 July 2008, and one additional satellite

image is available for the DK site during an intensive mea-3.2 Field data

surement campaign for 19 April 2009. Image data are avail-

able at a 10 m spatial resolution for most sites, except for thén each study landscape, field measurements of LAl and
UK and the Danish site in 2008 (DK08), where images areSPAD meter indices (related to CiHand N) or N; were
available with 20 m resolution. All satellite images were at- made in 7-22 fields over 1-2 days within 4-10 days of the
mospherically corrected using data on aerosol optical depthrelevant satellite image acquisitions, to provide field refer-
ozone and atmospheric precipitable water content from theence data for evaluating the REGFLEC simulations. Field

www.biogeosciences.net/10/6279/2013/ Biogeosciences, 10, G30%-2013
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Table 2. Number of field plots and vegetation types represented by
field measurements in the landscape sites.

=3

S
o

Site n Vegetation types

DKO08 20 winter wheat, barley, maize

DKO09 22 winter wheat, winter rape

NL 22 grass, maize

PL 13 maize, barley, alfalfa, potatoes,
rye, oilseed rape

NDVI - 3x3 pixels (-)
o
=Y

o
IS

o
N

o
N

04 06 - 08 1.0
NDVI - field (-)

IT 9 maize, tomato, artichoke, alfalfa
Fig. 2. Comparison of remote-sensing-based calculations of a SVI UK 7 grass, wheat
(the Normalized Difference Vegetation Index, NDVI) averaged for all 93

3 x 3 pixels centred at field plots and averaged for the the com-
plete fields in each of the landscapes. The ArcMap function Swipe

was used to drag the remote sensing NDVI image layer back and ) o
forth over an aerial image to support the manual digitization of four light transmission measurements along a 3m transect.

fields, as illustrated in the figure. The aerial image is seen withlf the LAl estimates of the two transects varied, a third tran-
natural colours, and the grey-scale image represents NDVI calcusect (a third plot) was included. In a few cases at the grass-
lated from SPOT image data with 10 m spatial resolution. Aerial land sites in NL, up to four transects were included due to
images of each landscape were available as base maps in ArcMafigh spatial data variability. In all fields, the average LAl is
(Source: ESRI, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, ysed to represent the field plot. In the UK landscape, LAl
AEX, Getmapping, Aerogrid, IGN, IGP and the GIS User Com- 45 estimated using light transmission measurements along a
munity). 10 m transect. Based on the 2—4 sets of LAl estimates in each
field, the averaged relative uncertainty (sd/mean) is found to
be ~ 10 %, except for the UK grassland plots where LAl is
measurements were conducted in a total of 93 homogeneougery low (~ 1) and the relative uncertainty is higher (me-
field plOtS (Table 2) within the five Iandscapes. Each field plotdian 349 %) In Denmark, UK, the Netherlands, Poland and
is represented by two sub-areas of each 3&m located |taly, the averaged uncertainties for LAl measurements are
within @ 10mx 10m region. Field plots were geographi- 7.8 37.7 13.4, 10.7 and 11.5%, respectively. Considering
cally referenced with an accuracy of 0.5 m using GPS (Trim-3iso LAI-2000 estimation uncertainty, the combined instru-
ble Geo XT, Trimble, USA). Plots were generally located in ment and measurement uncertainties for LAI-2000 data are
different fields, however, at the Italian site five plots were jn the range 22-25 %.
located within a large experimental maize field exposed to
different stress treatments. The homogeneity of experimens.2.2  Chlorophyll and nitrogen
tal fields were verified by comparing remote sensing data of
field plots (3x 3 pixels) with the corresponding remote sens- At the UK site, plant sampling was undertaken in the mid-
ing data for the complete fields which were digitized for this dle 2m of the 10 m transect within a 50 cab0 cm square.

purpose (Fig. 2). Both green leaves and full plants were sampled. For each,
a total C and N analysis was carried out after weighing and
3.2.1 LAI drying, and vegetation N and dry biomass were measured.

For conversion to area-based bf the natural grasses, a
LAl was measured with the LAI-2000 instrument (LAI- leaf specific weight of 40 g % was used. In the four other
2000, LiCor, USA) which uses canopy transmission datalandscapes, non-destructive measurements of Gidd N
measured along a transect. Despite being an indirect estiwvere made using hand-held, non-destructive SPAD meter
mate of LAI, measurements from the LAI-2000 instrument measurements. The SPAD meter (SPAD 502-DL, Minolta,
were shown to be in very good agreement with destructivelyUSA) emits and measures leaf transmittance in the red (0.6—
sampled LAl of maize, wheat and barley until the senescenf.7 um) and NIR (0.86—1.06 um) spectra and provides a ra-
phase sets in (eg. Boegh et al., 2004). In this study, meatio that is closely correlated with CHland N (Wang et al.,
surements were conducted in the beginning or middle of the2004). In order to convert the SPAD index to GHind N
growing season (Table 1) where LAI estimation uncertaintycontents, calibration was conducted on sampled leaves for
is low. Using data published in Boegh et al. (2004), the LAI- maize, wheat, barley, oilseed rape, grasses, tomatoes, arti-
2000 instrument explained 96 % of direct LAI estimates in chokes and alfalfa. For SPAD meter calibration of tomatoes,
the vegetative period, and the LAI-2000 estimation uncer-artichokes and alfalfa, 10-15 SPAD indices were measured
tainty, assessed as the relative standard error, was found for leaves of different “greenness”, with the samples sub-
be 21%. LAl was measured in two neighbouring plots of sequently analysed in the laboratory for GHind N. For
each field (Sect. 3.2), with each LAI estimate being based orSPAD meter calibration of wheat, barley, grass, maize and
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oilseed rape, SPAD indices were thoroughly measured in the 1200

laboratory and leaves cut into small (1-2 cm) pieces for simi- a) @ wheat

lar SPAD values. Leaf pieces were divided into pools of sim- O barley

ilar SPAD index ranges (ie. 6-10, 11-15,, 66-70), and % 800 - : o

each pool was further split into two samples for Gldhd N 2 O artichokes oY
estimation, respectively. The samples for Gldhalysis were . & alfalfa

kept frozen until analysis, while the samples foreéstima- Sl

tion were oven dried at 8Gor 24 h. Chlorophyll (a+ b) con-

tent was extracted using ethanol and extinction coefficients r’=0.87
published by Lichtenthaler (1987). Nitrogen was estimated e 0 2'0 4‘0 6'0 20

using a CHNS-O Elemental Analyzer (CE Instruments, UK).
Leaf areas were measured using a scanner (EPSON Expres:
sion 1680 Professional, Seiko Epson Corporation, US), and 10 ¥
specific weights estimated for the same leaf samples were b) Ll
used to convert the mass-based chlorophyll and leaf N con- ?JZZ
centrations to leaf area based GHind N. CHL, was found 'R 6 - tomato
to be exponentially related to SPAD value$ & 0.73-0.93), arfichokes
as also shown in other studies, whilg \Nas linearly related

SPAD index (-)

O4mOe@

N (gm

alfalfa

to the SPAD indicesr = 0.62—0.89). Due to the close sim-
ilarity of SPAD—CHL; calibration curves for all vegetation 2 1

types (Fig. 3a), it was decided to use one single calibra- 0 . . ]

tion curve for all crops. Tht_e resu_lting calibration curve fit all 0 20 40 60 80
data quite well £2 = 0.87), including the few data that were SPAD index (-)

available for artichokes, tomatoes and alfalfa, however the

standard error of estimates is quite high (23.7 %) compared 0 wheat

to some other studies where a SPAD meter was applied for — — —  maze

species-specific CHlestimation (e.g. Markwell et al., 1995; 1200 — e ?;2:5 )
and Houborg and Anderson, 2009). Excellent agreementwas «—~ |  — —. —.— tomato artichokes /'
however found when comparing the calibration curve estab- g OO0 R0r o alfalfa /
lished for this study with that of the same SPAD meterinan E Ly § ya
independent study (Houborg and Boegh, 2008). This strongly £ ‘_/ ya

indicates that one single SPAD—CHtalibration curve can o 400 - s e

be used for leaf area-based estimation of chlorophyll over a ' _/-/

large range of crop types, even when being at different devel- -

opment stages. Uddling et al. (2007) also found that SPAD— 0 ‘ , , .

CHL, calibration curves collapsed for wheat and birch leaves 0 2 4 6 8 10
when data were expressed on a leaf area basis, but that this N, (g m?)

was not the case for potato which has thicker leaves. In the
current study, the range of leaf specific weights is quite narig. 3. SPAD meter calibration curves fdg) leaf chlorophyll
row (52-58 g ). (CHL)) and (b) leaf nitrogen density (N, and(c) empirical rela-
For N, species-specific SPAD meter calibration curves aretionships between Nand CHL derived by combining SPAD cali-
needed (Fig. 3b). Based on the data shown in Fig. 3b, thération equations for CHLand N.
relative standard error of Nestimates is 12.9 %. The better
estimates for Nthan CHL may be due to the larger samples
for N; estimation (69) than for CHLestimation (30) and the
use of species-specific SPADi-Balibration curves. Com-  (this was not always possible for the NL grass fields, due to
bining the SPAD—-CHL and SPAD-N calibration curves, low canopy heights and narrow leaves). At each level, two
the species-specific nitrogen partitioning is clearly illustratedmeasurements were conducted on the same leaf to identify
(Fig. 3c). The CHIL—N; relationships (Fig. 3c) were used to deviating data caused by erroneous data resulting from mea-
convert REGFLEC CHLsimulations to N surement on veins or, for small grass leaves, insufficient leaf
In each field plot, 30—70 SPAD meter measurements wereover of the sensor. If one of the paired measurements ap-
conducted depending on the variability of the data. In orderproached zero, and the other did not, the lower measurement
to assess the possible impact of vertical GMéariability on  was discarded.
the total chlorophyll content of the canopy, measurements Canopy chlorophyll (CHL) and canopy nitrogen @
were conducted on green leaves at five heights in the canopgontents are computed by multiplication of LAl and the
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averaged leaf-scale measurements, ie. wherep is spectral surface reflectance. Despite inherent nor-
malization of NDVI to reduce soil background and atmo-
CHLc = LAI x CHL, (1) spheric sensitivity of SR, the NDVI remains sensitive to soil

reflectance. A soil-adjusted vegetation index (SAVI) was de-
veloped, which uses a soil-adjustment factor to shift the ori-
Nc=LAI x N, (2)  9inofthe NIR-red spectral space and accounts for first-order
soil-vegetation interactions and differential NIR and red ra-
whereCHL, is the average CHLmeasured at five height lev- diative transfer through a canopy (Huete, 1988). The En-
els in the canopy, andV; is the corresponding average.N hanced Vegetation Index (EVI) is derived from SAVI and
Since the variation in CHLand N with height is not all due  includes a blue spectral band to reduce sensitivity to atmo-
to measurement uncertainty, but related to vertical data strucspheric aerosol contents (Huete et al., 2002). EVI was found
ture, relative measurement uncertaintias)(for CHL, and  to have a good correlation with LAI of agricultural fields
N, are calculated by propagating absolute data uncertaintyBoegh et al., 2002). Both the NDVI and the EVI are avail-
(o) at each measurement level: able from the MODIS satellite sensors as global 8 day prod-
1 ucts at a 1km resolution. Because many satellites, includ-
Al = z \/(0-(20.2) +g(20_4) + 0(20_6) +g(20.8) +0(2140))/x|, (3) |bng the SPOT satellltes_, do not measure radiance in the blue
and, a two-band EVI index (EVI2, Jiang et al., 2008) was
whereo, is the standard deviation of leaf-scale measure-developed, which is closely related to EVI. The EVI2 is cal-
ments (CHL or N)) at the relative heights (hr) 0.2, 0.4, 0.6, culated as
0.8 and 1.0, and representHL, or N . The relative to-
tal uncertainties for the bulk canopy estimatasg)of CHL EVI2=2(pniR — pred) / (NIR + prea+ D). @
and N; are given by

Since the strong absorption of red light by the bulk chloro-
phyll content of dense canopies can cause data saturation in

Ac= \/A|2 + A%papt Afar + Afaiz000 (4)  the peak (red) absorption band of chlorophyll, the far-red or

i ) ) i green reflectance was found to be more sensitive to canopy-

where ASPAD is the qahbrauon uncertainty of the _SPAD scale chlorophyll variations thapeq (Yoder and Waring,

meter (Fig. 3),Aial is the measurement uncertainty of jq94. Gitelson et al., 1996). This led to the proposal of a

LAI, and Aial-2000 is the LAI-2000 instrument uncertainty  reen NDVI which uses a green reflectanpgiden instead
(Sect. 3.2.1). Overall, average measurement uncertainties fqi; pred and was closely related to CHLGitelson et al.,
CHL, are 12, 9, 9, 24 and 11 % for the landscapes DK08,1996):

DKO9, IT, NL and PL respectively, and fd¥| the average
measurement uncertainties are 8, 5, 4, 10 and 7% respeGNDVI = (pniR — pgreen) / (ONIR + Pgreer) - (8)
tively. This propagates to total (averaged) uncertainties of

29-47 % for CHI, and to total (averaged) uncertainties of A related measure, the green Chlorophyll Index (CI) was
25-32% for N of the five landscapes. Uncertainty of N Proposed to estimate the total canopy chlorophyll content
data in UK are not known, but are set similar to the LAl un- (€.9. Gitelson et al., 2005):

certainty of UK plots (average 38 %). It should be noted that
vertical profile measurements were not conducted for grasse

in NL, and that in-canopy CHL structure may explain the  pmany other SVIs for CHior N; estimation combine three
higher measurement uncertainties calculateddbit; and o more narrowband reflectance data in the the red—NIR tran-
N; estimates at this site. sition zone of vegetation reflectance (the “red-edge” region),
such as the MERIS Terrestrial Chlorophyll Index (MTCI)
(Dash et al., 2010). However, such data are not yet available
with the spatial resolution and coverage required for the cur-

= PNIR/Pgreen— 1. 9

3.3 Spectral vegetation indices

Five different SVIs were calculated from each of the six q
satellite images in order to assess field data consistency arfgnt study.
evaluate REGFLEC performance. The Simplified Ratio (SR)3

. . o .4 The REGFLEC model
and the Normalized Difference Vegetation index (NDVI)

were the earliest SVIs to be developed, and are frequenthREGFLEC nww.regflec.com is an automatic image-

used indices. They are calculated as based methodology for regional CHand LAl mapping.
REGFLEC version 1.0 (Houborg and Anderson, 2009) is

SR= PR/ Pred, ®) " Used here, which requires multi-spectral data measured in
green, red and NIR bands. REGFLEC combines the atmo-
spheric radiative transfer model 6SV1 (Kotchenova et al.,

NDVI = (pNIR — pred) / (ONIR + Pred) s (6) 2006; Vermote et al., 1997), the canopy radiative transfer
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Table 3.Means and standard deviations (sd) of SPOT NDVI for the crop- and grasslands, measured LAI, leaf chlorophyll dengitje@HL
nitrogen density (N, canopy chlorophyll density (CHL) and canopy nitrogen density {Nwithin the European landscape sites. Standard
deviations of leaf-scale measurements are shown to represent variability between field canopies (sd1) and the mean variability within field
canopies (sd2): Tomato fields not included.

NDVI NDVI LAl LAI CHL | CHL, CHL, N| N N CHLc  CHLc Nc Nc
mean sd  mean sd mean sdl sd2 mean sdl sd2 mean sdl mean sdl
=) (=) (=) () (mgm?) (mgm?) (mgm2) (gm3) (gm?) (gm ) (mgm2) (mgm?) (gm2) (gm2)

DKO08 0.73 034 29 14 391 78 105 2.13 0.33 0.47 1095 588 6.10 3.24
DKO09 0.72 0.39 2.2 1.1 434 96 164 2.27 0.19 0.24 1041 733 497 237
NL 0.73 034 3.0 15 350 121 121 1.71 0.23 0.22 1037 698 5.12 3.15
PL 0.67 0.42 2.1 1.1 402 102 67 2.27 0.97 0.35 832 633 5.10 5.36
IT 0.49 0.42 2.0* 0.7* 647 151 131 4.20 2.87 0.45 1870 498 5.5 292

UK 0.74 0.3 1.8 1.9 - - - 1.11 0.44 - - - 2.52 3.38

model ACRM (Kuusk, 2001) and the leaf optical proper- these by running the model in LUT-based inverse mode for
ties model PROSPECT (Baret and Fourty, 1997; Jacquemoud limited number of averaged spectral reflectance values rep-
and Baret, 1990) to predict Chiland LAI directly from at-  resenting each soil class. For the sparsely vegetated pixels
sensor radiance data measured in three spectral bands (gre€bAl < 0.5), a mismatch in LAl estimated using observations
red and NIR). The models used by REGFLEC are based omf pnir (LAI- pnir), NDVI (LAI-NDVI) and GNDVI (LAI-
physical laws that describe the transfer and interaction ofGNDVI) is most likely due to soil reflectance errors. Con-
spectral radiation within the atmospheric column and canopysequently, the soil reflectance value which is providing the
to provide a connection between the radiance signal meabest fit between the three independent LAI estimates is re-
sured at the satellite sensor and the biophysical properties dhined and used to assign representative estimates for each
the canopy which are responsible for the surface reflectancanapped soil type. Next, ACRM-PROSPECT is run in in-
In this process, the observed satellite reflectance observationserse mode for high NDVI pixels of each land use class in
are matched with the simulated spectral reflectance to idenerder to estimate four class-specific vegetation parameters
tify the combination of soil and vegetation variables provid- (leaf structure, leaf angle distribution, fraction of senescent
ing the best reflectance fit (Houborg and Anderson, 2009)leaves and Markov clumping parameter). Following model
The strength of the REGFLEC tool is that it is independentparameterization of class-specific soil and vegetation charac-
of field data for model calibration, and it estimates automati-teristics, ACRM-PROSPECT is finally run in forward mode
cally the vegetation- and soil-specific parameters for mappedor pixel-wise mapping of LAl and CHLusing appropriate

soil and vegetation types in the area, which helps to constraifREGFLEC established predictive spectral reflectance rela-
the inversion process and improve the estimation accuracyionships (LUTSs), which are specific to each scene acquisi-
of biophysical parameters (Houborg and Anderson, 2009)tion and dependent on land use class, soil background and
For this purpose, REGFLEC requires as inputs (a) a land usatmospheric conditions.

map that defines classes of uniform canopy characteristics Input land cover maps with spectrally homogeneous and
(i.e. leaf structure, Markov clumping parameter, leaf incli- functionally different land use classes were produced using
nation angle, brown pigment concentration of senescent leathe ISODATA unsupervised image classification algorithm of
material) which is needed to constrain the retrieval of LAl the image analysis software ENVI (ENVI 4.8, Exelis, UK).
and CHL and (b) a soil map to assist the regional extrapo-The number of land cover classes was initially set high and
lation of soil background reflectance (the acquisition of landthen reduced stepwise until the classification algorithm pro-
use and soil maps is described in the end of this section)vided homogeneous classes which visually satisfied the rep-
Furthermore, atmospheric state data and solar and sensoesentation of the surveyed fields and other fields in the land-
view angle geometries must be specified. Following atmo-scapes. Water bodies, forest, urban/suburban area, roads and
spheric correction of satellite data (using the 6SV1 model),railways were further masked using the CORINE land cover
the ACRM-PROSPECT modelis first run in forward mode to map which has a spatial resolution of 100 m (Fig. 1) and
build lookup tables representing relationships between speahe ESRI Streetmap Premium Europe Tele Atlas data set, us-
tral reflectance, CHLand LAI. This includes model gener- ing buffer zones of one pixel (10 or 20 m). Greenhouses and
ated curves of LAl as a function @fyr, NDVI and GNDVI, polytunnels in the IT landscape were visually identified and
in addition to curves of CHLas a function ofogreen The masked using the SPOT image data.

lookup tables (LUTS) are built using a wide parameter space Soil maps (1:1.100.000) from the European Soil Database
representative of a full range of soil and vegetation param{ESDB) of the European Soil Data Centédattp://eusoils.
eters (Houborg and Anderson, 2009). REGFLEC then idenjrc.ec.europa.eyivere used as base soil maps for all land-
tifies bare soil pixels or low vegetation pixels (LAIO.5) scapes except for Denmark, where a more detailed map com-
and estimates a single soil reflectance parameter for each gfrising three classes (instead of two classes in the ESDB
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map) was available. For the UK site, it was observed that -
the CORINE category “peat bogs” was not well repre- L _ 11l L
sented by the European soil map. The high organic content N 3 J }H ﬂ 1 )/IMN .
of these soils is likely to influence soil reflectance, and it 5 08 1,'{ [yt~ M ‘ G 1}
was therefore decided to add the higher spatial resolution oa {l Y
(100 m) CORINE “peat bogs” class as an additional soil class et S5
to the ESDB soil map. 02
The REGFLEC model was run using version 3 of the e
leaf optical properties model PROSPECT (Baret and Fourty, s ,H’ “{ o
1997). The NDVI threshold for intermediate vegetation den- < 06171] lj i T L‘J\ T
sity was set to 0.65 (used for selecting dense canopy pixels), 2 'T‘t{ﬁ i T 1{4\,
and the leaf dry matter content was set uniformly to 55¢m 04 | 12 A
corresponding to the mean value estimated for leaf samples, Denmark 2008 ' :
except for the UK landscape, where it was set slightly lower 0.2 ¢ y —
(50 gnT2) due to the lower dry matter contents of natural - H W11
grasses. ' 1 P L hh{
é 0.6 I“} {"’, }IT II\‘
4 Results 04 Iél [
Scotland 2008
4.1 Landscape variations: vegetation index and LAI ey
08 |
The mean and standard deviation (sd) of SPOT NDVI for L {,{ I
the crop- and grassland areas within each 10&b® km s 06 *J{' H}H‘:
study landscape is shown in relation to the NDVI season- 2 I r - "‘”* : | [=Lh
ality represented by MODIS data (Fig. 4). The seasonality o4t - L1 [ [
appeared quite similar in Denmark and Poland, with the max- Poland 2008
imal NDVI around 1 June 2008 corresponding to the timing gt i
of the SPOT image acquisitions. MODIS NDVI slowly in- 081117+ %H\ f{"iﬂ'#\{l
creases towards the end of the year in both Denmark and .‘H 1 f N

Poland, due to emergence of autumn-sown crops such as 06

wheat, barley and oilseed rape. Abrupt reductions in MODIS
NDVI during winter are related to low solar angles and high
frequency of overcast weather.

In the early-season SPOT image of DK09, peak NDVI
has not yet been reached (Fig. 4), and lower overall vege- 0.8
tation cover is indicated by both NDVI and LAI compared # }k o
with the DKO08 landscape (Table 3). Nevertheless, the high- eaq | .\},_ H+ { 1]/
est pyr values are observed in DK09, which indicates the . v[ ’-"?H 1/ ‘1

NOVI

04

0.2

NDVI

presence of very dense fields (Fig. 5). Two other groupings o

of high-density (red to dark green colourgkdponir data 63

sets occur in the DK09 landscape (Fig. 5): one located at o 100 200 200

the lower boundary line of thereqpnr Scatterplot (de- Dy sumbie)

noted the “soil-line”), indicating presence of bare soils due ] ) o

to the low NIR reflectance of soils relative to the characteris-719: 4- Time series of average and standard deviation of NDVI
for the agricultural area of each landscape extracted from MODIS

.“C high N.IR reflectance of.leaves,. and another,. Ioc;atgd In thedata. The average and standard deviation NDVI calculated from
intermediateonr range with relatively lowpreg, indicating

. . each SPOT image of the agricultural region of NitroEurope land-
the presence of less densely vegetated fields. The mixture Qf.apes is also shown. Due to different spatial resolutions of land use
bare fields (maize not yet sown), intermediate density fieldsyaps used for masking non-agricultural areas (1 km for MODIS),
(winter wheat) and very dense fields (winter oilseed rape)spoT NDVI and MODIS NDVI are not representing exactly the
in DKO9 results in largely contrasting values in this early- same areas.
season satellite image.

Other landscapes with high-density soil-line formations
(due to exposure of bare soils) are the IT and UK sitesby low reflectance data, which likely represents dark organic
(Fig. 5). The UK site has a very short soil line represented(peat) soils, whereas the IT site has a much larger data spread

ltaly 2008
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pNIR (-)

0.10

pred (-)

0.08 0.00
pred (-)

005 0w
pred (-)

Fig. 5. Near infrared §NIR) versus red surface reflectangadd) of crop and grassland areas within each of the landscape sites calculated
from SPOT satellite data. Data are shown as density scatter plots where the reddish and dark-green colours indicate the larger number (o
density) of pixels representing the plottettéd, oNIR) data within each landscape.

(extended red region) along the soil line, which indicatesdark (organic-rich) soils tends to increase the NDVI relative
larger spatial variability in soil background reflectance. Theto the NDVI of a similar vegetation canopy with a bright soil
soil line of IT includes very low reflectance data, which is background (Huete, 1988).
in good agreement with the prevailing Cambisols, also called The grasslands of NL are characterized by high NDVI with
brown soils, of this region. In IT, NDVI is lowest in sum- low seasonal variation. However, NDVI was slightly reduced
mertime, and the NDVI seasonality indicates that harvestingat the time of the SPOT satellite imaging, which may be in-
takes place 2-3 times per year (Fig. 4). The low NDVI at dicative of recent grass cutting. A secondary group of high-
the time of SPOT satellite imaging agrees with low LAI ob- density reflectance pairs (red colours) in the lower part of
servations of widely spaced row-cropped vegetables in ITthe preq—onir Scatterplot (Fig. 5) supports the presence of re-
and many bare fields were observed in the area. The overatiently cut fields with low residual vegetation cover.
lower vegetation cover of IT is also visualized by the+
pNIR Scatterplot (Fig. 5), whergnr is clearly lower than 4.2 Landscape variations: chlorophyll and leaf nitrogen
for the other landscapes, and the bulk reflectance data (red
colours) are indicating a prevalence of bare soils and sparsd>espite the low vegetation coverage in IT, the vegetables cul-
to-intermediate vegetation cover. tivated at this site were characterized by the highest CHL
In the Scottish landscape (UK), the MODIS NDVI time se- and N concentrations (Table 3). The largest megnchin-
ries indicate that vegetation development started later in theentrations occurred in artichokes (7.82g%n tomatoes
year, compared with the DK and PL landscapes. SPOT satek7.05gnT?) and alfalfa (4.37 gm?), followed by oilseed
lite imaging took place about one month after peak NDVI rape (3.11gm?), wheat and barley (2.22g™), grass
is reached in UK (Table 1). Compared with the LAl mea- (1.54gn7T?) and maize (1.44gmn?). Measured canopy
surements of the UK landscape, MODIS and SPOT NDVIN contents (N) are lowest in the UK landscape, which
are very high (Fig. 4 and Table 3) which indicates higheris dominated by semi-natural grassland, and highest in
vegetation cover of the landscape than indicated by thddK08 (Table 3). The N estimate of fields in IT (Ta-
LAl measurements of the seven fields (five grassland andle 3) does not fully represent the field sites, due to in-
two arable fields). NDVI is however sensitive to soil back- complete representation of LAI for widely spaced row-
ground reflectance, and the low background reflectance o€ropped tomato fields. For ChiLoilseed rape had the high-
est concentrations (mean 842 mgm This was followed

www.biogeosciences.net/10/6279/2013/ Biogeosciences, 10, G30%-2013



E. Boegh et al.: Remote sensing of LAI, chlorophyll and leaf nitrogen pools

6290
10 —e—
a)
0.8 -
~ 08
£ 04 Wheat (DKO8)
LAl= 4.5
0.2 h=07m
5 =0.003 (= 0.84)
0.0 T T T T T }
100 200 300 400 500 600 700
CHL, {mg m™)
1.0 - —eo—
b)
0.8 —e—
—~ 086 %
X
04 b @————| Wheat (DKO9)
LAI=48
0.2 prorpe] 117 0.4
5=0.003 (= 0.03)
0.0
100 200 300 400 500 600 700
CHL, (mg m™)
1.0 - 2 &
C) Maize (IT)
0.8 LAI=25
h=2.2m
o 06 | 5=-0.003 (F=0.97)
< 04 : ° ;
02 | \ i
0.0 ‘ ; , }
400 600 800 1000 1200
CHL, (mg m™)

Fig. 6. Examples of three different characteristic vertical leaf
chlorophyll (CHL) profiles based on field measurements within

viation CHL; at relative measurement heights. & measurement

area index (LAI), canopy heighk}, and the slopes) and determi-

nation coefficient2) of linear regression slopes are indicated in

each graph. Note that the slope(b) is not statistically significant.

by artichokes (743mgn?), tomatoes (608 mgnt), al-
falfa (572 mgn12), wheat and barley (390 mgTd), pota-
toes (372 mg m?) and grasses (340 mgT).

Despite coefficients of variation (C¥sd mean?) in the
range 20-35 % for the mean CHubf fields within individ-

mean CHL.
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Fig. 7. Comparison of REGFLEC simulated LAI, CHland N; for

all field plots (left side graphgéa), (c) and (e)) and for “uniform
field plots without strong in-canopy vertical Cidgradients (right
side graphgb), (d) and(f)). Error bars indicate the absolute total
uncertainty for field data and the standard deviatiosx Bpixels)

of REGFLEC simulations.

For nitrogen, the CV for mean|Mf fields range between
the studied landscape sites. The plots show mean and standard dg-and 68 % for the different landscapes. Due to the larger
_ -1 : _ asur species-specific variations in khan CHL, between-field
height divided by canopy height) and linear regression lines. Leaf,5riation of mean Ngrossly exceeded the within-field vari-
ation in N at the IT and UK sites. The lowest between-field
variability was observed in the DK09 (mostly wheat) and NL
(mostly grass) landscapes (Table 3), which were character-
ized by more uniform land use.

4.3 Within-canopy variations

Three major types of within-canopy vertical CH@radient
profiles were evident in the leaf measurements across the Eu-
ropean landscapes, which contribute to increase within-field
ual landscapes, the averaged within-field variation of CHL variability in CHL; and N. Profiles either had CHLincreas-

and N exceeded the between-field variability at the DK sitesing from bottom to top of the canopy (Fig. 6a), uniform ver-
(Table 3). This highlights the importance of a consistent leaftical CHL, distributions (Fig. 6b) or decreasing CHton-
measurement strategy for accurate ground-truth estimation afentrations from bottom to top (Fig. 6c). Linear regression
slope coefficients (s) and the coefficients of determination
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(r?) describing the relationships between GHiata and able to describe 71-75% of observed LAl variation of the
relative measurements heights.Y can be used to indicate major crop types, i.e. wheat, maize and barley across the
whether CHL profiles are increasing, decreasing or uniform European landscapes (rms®.5-0.67). The SVIs were also
(Fig. 6). It should be noted that distributions where GHL linearly or exponentially related to LAI of all wheat, maize,
h, regression slopes are characterized by Iéwand thus  barley and grass fields, but for wheat and maize the SVIs
characterized as uniform in this paper (Fig. 6b), are in real(except EVI2) generally explained less (36—46 %) of the ob-
ity often weakly S-formed or bell-shaped corresponding toserved LAl variations despite being fitted to all data (Fig. 9a).
what has been observed for maize in other studies (Cigand&his may be due to larger impact of variable background re-
et al.,, 2012; Winterhalter et al., 2012). In contrast, GHL flectance in these crops which are the most common Euro-
h, regression slopes with hig? ands > 0 (Fig. 6a) or  pean crop types and occur in four of the studied landscapes
s < 0 (Fig. 6¢) have strong CHLvertical gradient profiles (Table 2). This suggestion is supported by the better capabil-
with increasing or decreasing gradients. Defining a strongty of EVI2 (compared to other SVIs) to represent LAI vari-
CHL, profile as a CHI-—h, relationship characterized by a ability (49—75 %) of wheat and maize (Fig. 9a), since EVI2
statistically significant regression slop& & 0.68:; p < 0.1), has been specifically designed to account for background
it was found that 26 % of the total fields had strong verti- variability. For wheat and maize, REGFLEC-LAI is better
cal CHL gradient profiles. According to theoretical and ex- correlated with field data than any of the SVIs, and when
perimental studies, exponentially decreasing CEfintents  all landscapes’ field data are pooled, REGFLEC also repre-
from top to bottom is the norm rather than the exception forsents better the observed LAl variations than any of the SVI's
densely vegetated canopies, and it occurred particularly fre(Fig. 8). The relatively good LAl results of REGFLEC for
quently in the landscapes where crops were in a more mawheat, maize and all (pooled) landscape data indicate over-
ture stage, such as in DKO08 (barley, wheat) and PL (oilseedll good performance of REGFLEC to estimate LAl when
rape, potatoes, alfalfa and barley). Decreasing 0) CHL surface variability increases.

profiles were observed in some maize fields in IT and NL. Barley fields are in this study generally characterized
Generally the maize crops with lower canopies had moreby high LAl and thus a low range of LAI variability. For
uniform CHL profiles, whereas tallx{2 m), irrigated and these dense canopies, the chlorophyll sensitive indices ClI
fertilized maize crops had strong “negative” < 0) CHL, and GNDVI represent 90-94 % of LAl variation of the re-
vertical gradient profiles. CHLprofiles are more uniform stricted (“uniform”) data set (Fig. 9a). It is also interesting
in the early season (19 April) DK09 landscape (only oneto observe that for these relatively dense barley canopies,
field showed significant CHLvertical gradient profile), how- REGFLEC results and the SVIs are generally better related
ever decreasing CHlcontents in the upper 1-2 measurementto CHL; and N; than to LAI (Fig. 9a—c). This suggests that
levels ¢, =0.8-1) are normal and contributed to increase remote sensing of LAl of dense canopies is more sensitive

within-field CHL, variability (Table 3). to leaf chlorophyll.
The accuracy of REGFLEC LAl estimates for homo-
4.4 Remote-sensing-based LAI geneous canopies in all the landscapes (#8€/6) is

in the lower range of capabilities demonstrated in ear-

The REGFLEC model performed good for LAI estimation lier REGFLEC applications (rmse 0.4-0.75). A slight ten-
of all landscapes-€ = 0.62; rmse=0.83;1n = 93) with a lin- dency to saturate predictions for LAl values exceeding 4
ear regression slope approaching unity (0.93) and a small inmay appear (Fig. 7a), however the saturation effect is much
tercept (0.19) (Fig. 7a). Considering only uniform canopiesless than those of SVIs which are typically best related to
with no CHL; vertical gradient profilesn(= 76), the capa- LAl using exponential regression models (Table B1). Gen-
bility of REGFLEC to explain observed LAl variation fur- erally, better capability to represent LAl data variability is
ther improved £2 = 0.69; rmse=0.76; slope=1.00; inter-  found within individual landscapes{ = 0.74-0.88), except
cept=—0.02; Fig. 7b) mainly due to better results in DKO8 for Italy, where REGFLEC performed less welf (= 0.59).
and PL, where strong positive & 0) CHL, vertical gradient  In contrast, all SVIs explained between 67 and 78 % of ob-
profiles frequently occurred. Removal of canopies with verti- served LAI variation of all fields in IT (Table B1), thereby
cal gradient CHL profiles improved the agreement between confirming field data coherence. Poorer performance of
LAI data and REGFLEC estimations for all crop types (Ta- REGFLEC in IT can be due to prevailing row crops in
ble Al), including maize canopies which were characterizecthis landscape. Row crops do not comply with the homoge-
by negative { < 0) CHL, vertical gradient profiles (rmse de- neous (turbid medium) canopy representation of CRTMs like
creased from 0.82 to 0.54). The SVIs were also slightly bet-ACRM (used by REGFLEC). It may also be due to a lack
ter related to field measurements across the European lanaf image pixels representing dense vegetation of these row-
scapes when the “non-uniform” canopy field measurementgropped vegetables. The REGFLEC model requires the pres-
were ignored (Fig. 8). ence of dense vegetation fields of all land cover classes in or-

Considering only homogeneous canopies without strongder to parameterize the leaf and canopy properties that are re-
vertical CHLy gradient profiles (Table Al), REGFLEC was quired by the model to simulate LAl and CiHIFurthermore,
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hand side shows results f@a) LAI, (b) CHL¢ and(c) N¢ for differ-
Fig. 8. Determination coefficients:2 (bars with no pattern), and ent land use types and for all sites. The right hand side shows results
root mean square errors, rmse (patterned bars), describing the r&2r (d) LAl, (€) CHLc and(f) Nc for the different landscapes. The

lationships between remote-sensing-based calculations (REGFLE@orizontal lines illustrate the 95 % confidence levels for significant
simulations and five spectral vegetation indices) and field measureCOrrelation of each category examined. More detailed statistical re-

ments of(a) LAl, (b) CHL¢ and(c) N¢ in five European landscapes. Sults are included as tables in Appendices A and B.
Results are shown separately when all field data are used for evalu-
ation (brown bars) and when the field data set is restricted to com-

prise only canopies having “uniform” vertical chlorophyll profile 4 g Remote-sensing-based CHland N,
gradients (orange bars). It should be noted tHfaand rmse for

SVIs represent results when fitted to all available field data wherea

REGFLEC represents independent estimates. No significant relationships were found between remote-

sensing-based measurements (REGFLEC simulations and

SVIs) and leaf-scale CHLor N;. REGFLEC was however
the “background reflectance” of the IT site is very com- capable of reproducing 31 % of observed variability in GHL
plex, due to vegetables and fruit trees being covered byand 46 % of observeddVariation when considering all mea-
nets for pest protection. In contrast to the SVIs, REGFLECSurement sites. When restricting the evaluation to canopies
uses image information from the complete landscape, andVith uniform CHL, vertical gradient profiles, REGFLEC rep-
not only for the field plots, for model parameterization. Re- 'esents better the observed variations in GHit* = 0.46)
moving (maize) canopies with strong vertical GHpro- and N; (-2 = 0.51), and the same occurs for the SVIs (Fig. 8).
file gradients from the verification data set did not improve REGFLEC estimates were generally less well related to
the performance of REGFLEC in IT. In this case, the re- CHLc thanto LAI (Fig. 7), and they tend to be overestimated
duced field data set (only five fields) is dominated by very (fmse=719mgn7?). Overestimation of CH& may partly
sparse canopies. This decreases the range of vegetation coW due to the use of one single SPAD meter calibration curve
data for REGFLEC evaluation, and it increases the sensitivfor all crops (Fig. 3). Only for barley, where field measure-
ity of remote sensing data to the large variability in back- ments of LAl were mostly high with low variability, was the

ground reflectance which was observed for the IT landscapéinear correlation with CHk (-? = 0.84) clearly much bet-
(Sect. 4.1). ter than for LAl (2 =0.71), and the CH prediction error

was low (rmse=446 mg n12). In IT, statistical confidence
(p < 0.05) did not exist for significant correlations between
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Table 4.Percentage agricultural area (A), remote-sensing-based esscape vegetation N pools. The best regression models (with
timates of the average canopy nitrogen conterd @ agricultural lowest rmse and highes?) were derived from the restricted
regions, and the total Nof the agricultural region within each of data set representing canopies without strong Cptbfile

the 10kmx 10 km landscape sites. gradients and applied to all field plots. Generally, rmse’s of
the best performing linear or exponential regression mod-
A Nc Ne els within individual landscapes varied from 0.28 to 0.68 for
%) (@m?) () LAI. Combining the best regression models increased overall
DKO8 48 593 307.33 LAI accuracy (Fig. 10a) slightly for the six European land-
DK09 48 1.40 64.72 scape images so that 76 % of total data variability could be
UK 77 1.43 110.56 represented (rmse 0.66). Combining the best CHlregres-
PL 78 5.14 401.29 sion models results in being able to explain 64 % of total
NL 69 4.04  277.97 CHL. data variability (rmse=362 mg nT2) and 76 % of to-
al 49 5.91 198.34 tal N data variability (rmse-=1.84g n12) within the five

European landscapes (Fig. 10). Because no SyFelyres-

sion model can represent the strong species-dependent leaf
REGFLEC results and the observations of GHind N; N contents of vegetable fields in Italy, the best performing
(Fig. 9). SVI-CHL, regression model (i.e. SR is the best SVI in IT)

Overall, the results based on the pooled landscape dat&as instead applied, and species-specific CNiLrelation-

are strongly deteriorated by the underestimation gfaNd  ships (Fig. 3c) were then used to convert the SR-based.CHL
CHLc in IT (Fig. 7). If IT data are excluded, REGFLEC to Nc. It should be noted that the regression models used to
performance #?) would increase from 0.51 to 0.69 forN produce Fig. 10 were notindependently validated, and the re-
and from 0.46 to 0.59 for CHL. As for the LAl estimations,  Sults represent the effects of data fitting in the different land-
REGFLEC was a stronger predictor of CHand N; data of ~ Scapes.
wheat (but not for maize due to poorer results in IT) than The resulting maps of Nillustrate large spatial variations
the SVIs (Fig. 9). This is expected to be due to the relativelyin land use structure with many small fields being responsible
better performance of REGFLEC in environments of strongfor small-scale variations in the vegetation N pools of crop-
background variability, such as in the four landscapes wherénd grasslands (Fig. 11). Generally the largest vegetation N
wheat fields occur. In IT and PL where the high land use di-pools were found in DKO8 and PL whereas the smallest veg-
versity (Table 2) causes large species-dependent variatiorgfation N pools were found in UK (Table 4). However these
in N¢, SVIs are not statistically significantly related tg.Nh overall comparisons should be interpreted with care for PL
IT, negative relationships between SVIs angda¥e achieved and IT due to the lower statistical confidence in these land-
due to the much higher N contents of vegetables. REGFLEGSCapes (Fig. 9f). The remote-sensing-based landscape aver-
is able to describe 76 % ofdVariation in PL (but not IT, as aged estimates of mean:Nor PL and IT are however in
already discussed) when using the species-specifig@#L  good agreement with the observed mear(Ng. 12).
relationships (Fig. 3c) to convert REGFLEC simulated GHL ~ Mean N; based on field measurements tended to exceed
to N;. In general, 76-91 % of Ndata variability could be the landscape averaged Nredictions in UK and NL, but
explained by REGFLEC for the individual European land- very good agreements were observed for the other sites
scapes (except IT), however the rmse’s range from 1.58 tdFig. 12). In NL, low landscape Nwas probably related to
4.37 gnT2 with errors being highest in the UK, where the the cutting of some grass fields shortly before the SPOT im-
regression line differed significantly from one (Table B3). age was taken (Fig. 4), and in UK, the extensive grasslands
When excluding data from IT, REGFLEC was capable of ex-are responsible for the low Mof this landscape (Fig. 12).

plaining 69 % of N variation in the European landscapes, The largest landscapecNvere found for DKO8, IT and PL
however rmse remains rather large (2.4tn (with lower confidence in IT and PL) where an average of

5.66t N km—2 was estimated for the agricultural area (Ta-
4.6 Vegetation nitrogen pools of European landscapes  ble 4). Due to the larger proportion of agricultural area in PL,

the total landscape {N4.01t N. km~—2) stored in crops was
Even though REGFLEC results were found to be statisticallylargest overall for this study area (Table 4). Large spatial vari-
significant related to the pooled data of LAI, CHand N ations were found in both measured and predictgavithin
in all landscapes, closer relationships between field data andnd between the landscapes which can be attributed to sea-
REGFLEC results were achieved when restricting the evalusonal variations, land use and spatial variations in resource
ation to separate landscapes (Appendix B). In order to min{water and nutrients) availability. Frequency distributions of
imize the uncertainty of vegetation N pool assessments ofN¢ (Fig. 12) are negatively skewed in DK0O8 and PL, indicat-
European landscapes in this study, the best performing lineaing prevalence of fields with dense (and mature) vegetation,
or exponential regression model in each landscape (for SVIand with N; reaching higher values in DK08 than in PL¢ N
and REGFLEC results) was used to quantify the size of land-distributions are positively skewed in NL and IT with largest
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Fig. 10. Comparison of field measurements and remote-sensing
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canopies without strong chlorophyll vertical profile development.
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5 Discussion

5.1 Remote sensing predictabilities for LAl, CHL; and
N¢

Generally it is recognized that site- or vegetation-specific
empirical corrections or model parameterizations are needed
to achieve accurate LAl and Chlkestimations from regional
applications of remote sensing data. These findings are also
reflected in the present study where the SVIs and REGFLEC
results were generally better related to vegetation measure-
ments when the data set was constrained to represent sin-
gle land use categories. The remote-sensing-based SVIs and
REGFLEC results were even better related to field measure-
ments when the comparison was constrained to represent lo-
cal (10kmx 10km) landscapes, with the exception of N
prediction for landscapes with very heterogenous land use
(IT and PL) (Fig. 9f). This highlights the important need to
account for surface type variability when applying remote
sensing methods over larger regions. The REGFLEC model
is designed to automatically correct for soil- and vegetation-
class specific properties. In this context, it was encourag-
ing to find that REGFLEC performs relatively better than
the SVIs when applied across the European landscapes de-
spite being a data-independent method. It was also noted
that REGFLEC performs best in landscapes comprising large
contrasts in vegetation cover, ranging from bare soil to dense
vegetation, such as for the early season DKQ09 landscape.
REGFLEC needs such variability to parameterize the soil-
and vegetation-class specific properties of the canopy radia-
tive transfer model that it uses.

Overall, REGFLEC results were able to describe 69, 46
and 51 % of observed variations in LAI, CHland N of all
landscapes. However, better results were obtained when ex-
cluding IT from the evaluation due to insufficient availability
of dense vegetation covers for crop parameterization, and the
row-cropped pattern is also expected to challenge REGFLEC
performance in IT. One reason for the relatively good per-
formance of both REGFLEC and SViIs is related to select-
ing a subset of field data so that only homogeneous canopies
without CHLy vertical gradient profiles were used to evaluate
predictions. Since an exponential decline in GMiith depth
i, fhe canopy is normally expected for dense canopies, this

the regression models that were best correlated with field data repdighlights the need for careful leaf measurement strategies in

resenting “uniform” canopies without strong vertical GHirofile
gradients (Appendix B). Canopies with uniform CHtrofiles are

remote sensing studies of vegetation.
For individual landscapes, except IT, REGFLEC LAl per-

represented using coloured symbols and the empty circles represefdormance (2 =0.74-0.88; rmse-0.6-1.14) was compara-

other canopies.

spatial variation in IT; and it is strongly positively skewed in

ble to or better than what was found using empirical (data-
dependent) broad-band SVIs in this (Fig. 9) and other stud-
ies. For instance, Vifia et al. (2011) evaluated the perfor-
mance of eight SVIs for LAI prediction of two crop types

DKO9 and UK due to the large fractional areas with sparseyith contrasting canopy structures (maize and soybean) and

vegetation (DK09) and/or low Ncontents of grasses (UK).

found values of rmse in the range 0.58-2.53 (median 0.88)

It was not possible to find measured or modelled estimates ofyitn, the pest results given by a narrowband red-edge chloro-

N¢ in the scientific literature for comparison.

Biogeosciences, 10, 6276307, 2013

phyll index. Better LAI accuracies (rmse down to 0.4) were
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Fig. 11. Remote-sensing-based maps ef ™ NitroEurope agricultural landscape sites located in Denmark (DK08, DK09), Scotland (UK),
Poland (PL), the Netherlands (NL) and Italy (IT). Water, urban/suburban (including streets) and forest areas are shown in dark grey. Frequency
distributions of N are shown in Fig. 12.

obtained in previous REGFLEC applications (Houborg et al., to the six landscape cases in this study (rea§e.9 mg n2).
2007; Houborg and Boegh, 2008; Houborg and Anderson]t should be mentioned however that field data uncertainties
2009) and by Atzberger and Richter (2012), who used pixelfor CHL. are quite high in the current study (Fig. 7c, d) due
neighbourhood information to regularize inverse model pre-to scarcity of laboratory CHLanalyses (in particular for al-
dictions of LAI for three crops (rmse0.54). The high accu- falfa and artichokes) and the use of one single SPAD me-
racies reported for LAI in these studies were however com-ter calibration curve for all species in all countries (Fig. 3a).
parable to the rmse of REGFLEC when applied to the DKO9However, REGFLEC predictions explain much of observed
site in the current study (rms€0.6). CHL variability in the European landscapes (61-82 %), ex-
Generally, REGFLEC performance?(and rmse) for LAl cept IT, as do also the SVIs (Fig. 9e). The best fitted SVI
estimation was better than for ClHand N.. Darvishzadeh et regression models within individual landscapes are related
al. (2008) also found that remote-sensing-based predictabilto CHL. with rmse’s in the range 244—387 mgfwhich is
ity for LAl was better than for CHL (using inverse radiative comparable to what was found in other SVI studies.
modelling of hyperspectral data), but that CHtredictabil- Some studies found that leaf-scale CHL can be predicted
ity exceeded LAl predictability when the number of speciesfrom image data with rmse in the range 40-90 mgfm
was increased. This is not the case in the current study wher@Houborg and Boegh, 2008; Houborg and Anderson, 2009;
landscape predictability of LAl tends to be better than for Atzberger and Richter, 2012). Even though REGFLEC has
CHL and N; estimation (Fig. 9d—f), however for dense bar- shown such capabilities in previous studies, it was not pos-
ley fields, both REGFLEC and SVIs explained better varia-sible to achieve statistical confidence for GHtlrediction in
tions in CHL; due to observed low LAl variation. this study. This may have been due to insufficient bare soil
Field-spectrometric studies based on hyperspectral angixels in the growing season to establish a robust soil param-
narrowband reflectance data showed that gldan be re- eterization for each soil class. In this case, a solution could be
trieved with rmse of 310-320 mgm when considering 1- to include a satellite image from before the growing season
2 species (Gitelson et al., 2005; Darvishzadeh et al., 2008)to improve the soil parameterization, as shown by Houborg
and when including more species, such as in a heterogeneoad Boegh (2008).
grassland, rmse increased to 440 mgniDarvishzadeh et While chlorophyll can be predicted using species-specific
al., 2008). Using broad-band (MODIS) reflectance data, rmsenodel parameters (as used by REGFLEC), remote-sensing-
increased to 690 mgn? (Gitelson et al., 2005). These re- based N estimation is further complicated by the depen-
sults are better than the accuracy of REGFLEC when appliedience of CHL.: N, ratios of leaves on local light climate.

www.biogeosciences.net/10/6279/2013/ Biogeosciences, 10, G30%-2013
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e i T successes and failures of different remote sensing methods to
> quantify LAI, CHL; and N..
g 201 ﬂﬂﬂﬂﬂm 1 5.2 Remote sensing and carbon-nitrogen dynamics
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e ] e 0T lenges to providing robust global and European greenhouse

gas budgets for croplands (Osborne et al., 2010). Current
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2 H ] 1 global estimates use plot-scale determinations which may
N | H %1M1ﬂug fJM[LLDUDDH have_ only Iocgl or regio_nal relevance or large-scale remote
0246 8101214160246 81121160 246 810121416 sensing techniques which do not resolve local or regional
N.(@m?) N (@m™) N (@m™?) differences (Osborne et al., 2010). Even though remote sens-

ing data are frequently used to assess chlorophyll and leaf

Fig. 12. Frequency distributions of Ncontents of crop- and grass- nitrogen for crop precision management. methods are de-
lands in NitroEurope landscapes (mapped in Fig. 11) estimated us- 9 PP 9 ’

ing remote sensing for th@) Danish site, 31 May 2008b) Danish veloped and tested using p_Iot-scaIe data, and the_y are often
site, 19 April 2009,(c) Scottish site, 21 July 200g) Polish site, ~ cOnsidered to lack the required accuracy and precision to re-
1 June 2008(e) Dutch site, 9 June 2008 aff) Italian site, 27 June ~ flect temporal and/or spatial heterogeneity for regional car-
2008. The mean and standard deviation of field measurements afeon budget modelling of croplands (e.g. Wattenback et al.,
also indicated (green dot), and the mean and standard deviation &010). The current study showed that high spatial resolution
the remote-sensing-based estimations are shown (black dot). remote sensing of selected landscapes representing crop- and
grasslands over a large gradient of environmental conditions
in Europe can explain 69 % of LAI variation (rms€0.76),
The use of narrowband indices for a single species (with-46 % of CHL. variation (rmse=719mgnT2) and 51 % of
out variations in soil background) has given significantly bet- N variation (rmse=2.7 gn1?2) using a data-independent
ter estimates for Nthan those found for the separate land physically based model approach (REGFLEC). Better results
use categories in this study (rmsd.1-2.8gm?). For in-  could be obtained when applying regression model build-
stance, Fitzgerald et al. (2010) applied three spectral bandimg to individual landscapes (Fig. 10). The findings support
in the red-edge zone to a triangular SVI approach and foundhe use of remote sensing data to characterize spatial vari-
that N of wheat could be retrieved with rmse of 0.65gf  ability in vegetation traits thereby improving the represen-
Hansen and Schjoerring (2002) used an optimal narrowbanthtion of site-specific effects of field management practice
NDVI to achieve N for wheat with rmse of 0.8 g 7. for regional water, carbon and nitrogen cycle modelling (e.g.
Effects of within-canopy CHLvariations on surface re- Boegh et al., 2004; Houborg et al., 2007; Boegh et al., 2009;
flectance have only recently been considered in remote sen$itelson et al., 2009; Ciais et al., 2010; and Houborg et al.,
ing studies, but this study showed that it could have an effecR011). The sensitivity of model studies relative to the accu-
on the remote-sensing-based predictability of LAI, GHL racy of remote-sensing-based predictions should however be
and N.. It should be noticed that the Chlprofiles observed assessed.
in this study were frequently characterized by weak S-formed Leaf nitrogen is a key driver for biogeochemical cycling
or bell-shaped forms, and that such canopies were included ithrough its significance for photosynthesis and respiration
our reduced validation data set because of their insignificantmodelling (e.g. Boegh et al., 2002; Kattge et al., 2009; and
CHL,—4, slopes. It is possible that other criteria or more ad- Houborg et al., 2011), and it is also found to be important
vanced data integration techniques would be more effectiveo assess the stomatal NEompensation point, which deter-
to evaluate the relationships between remote sensing meanines whether vegetation canopies act as a source or a sink
surements and vegetation field data such as LAl and|CHL for NH3 (Massad et al., 2008). In a global study of leaf ni-
Some CRTMs consider vertical variation in canopy struc-trogen variability (Freschet et al., 2011), it was found that as
ture using two layers to represent colour gradients, clump-much as 50 % of the variability occurredthin communi-
ing and tree crowns (Verhoef and Bach, 2008). Also, so-ties whereas 15 % occurred between communities and 35 %
called functional—structural plant models (Godin and Sino-of global variance occurred between biomes. These results
quet, 2005) are being used to study 3-D interaction betweerndicate that a significant part of global plant trait variation
light absorption and biological processes such as canopgannot be described using broad-scale influences (e.g. cli-
growth. However these modelling approaches have focusedhate and topography) but that variations exist within plant
on representing light scattering effects of canopy structurecommunities at a fine spatial scale.
(e.g. Casa et al., 2010). The results from the current study While many natural ecosystems are nutrient limited, the
suggests that within-canopy Cliariability should be mea-  nitrogen balance of agricultural areas is generally positive in
sured in remote sensing studies of vegetation, and that sucBurope. This means that there is a nitrogen surplus which
variations may help to better understand the reasons for theontributes to nitrogen leaching, nitrous oxide emission
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(Schelde et al., 2012) and ammonia volatilization (Sutton The use of simpler SVI approaches also provided statis-
et al., 2007). However, there are large variations within dif- tically significant results when calibrated against field data
ferent European landscapes that are dependent on agriculepresenting a variety of grasses and crop types, but the data-
tural systems such as livestock production and the use ofndependent REGFLEC approach provided the best results
manure and inorganic fertilizers (e.g. Dalgaard et al., 2012)over a large range of environmental conditions (soils, sur-
Since foliage Nis closely related to nitrogen additions and face types, atmosphere). In particular, a large range in vege-
soil mineral availability (Song et al., 2011), remote-sensing-tation cover is needed by REGFLEC for each land use type
based N estimates may provide useful information to de- for successful application of the automatic spatial regular-
sign field sampling strategies and adjust the simulations ofzation technique (REGFLEC) which facilitates the parame-
agro-ecosystem models to partition deposited nitrogen beterization of an image-based atmospheric-leaf optics-CRTM
tween plants and soils. Together with measurements of nimodel. In one landscape, Italy, the range of vegetation cover
trogen emissions and flows in landscapes, spatial informawas too low to allow such parameterization for all land use
tion of biomass nitrogen pools are important to improve thetypes, and it is also suspected that the presence of row-
understanding of nitrogen availability effects on the greencropped vegetables can challenge REGFLEC performance.
house gas budget of terrestrial ecosystems (e.g. Schulze et al., It was found that vertical CHLgradient profiles within
2010). In this study, it was found that “snapshots” of biomasscanopies can reduce the capability of remote sensing meth-
nitrogen pools varied widely within and between five Euro- ods to explain variations in LAI, CHiand N.. The existence
pean agricultural landscapes, with the lowest N pool found inof vertical CHL gradient profiles violates the assumptions
the UK landscape (110.56 t krf), and the largest pool found of CRTMs, including the ACRM used by REGFLEC, but
in PL (401.29 tknT2) due to the larger proportion of agricul- also affected the SVIs. The current study used homogeneous
tural area. Despite DK having the lowest proportional area ofcanopies without positive or negative CHertical gradi-
agricultural land, the second-highest N pool was found thereents as reference data to evaluate REGFLEC performance.
(DKO08, 31-May). The largest N concentrations within agri- In the future, field spectrometric studies should be designed
cultural areas were found in DKOS8, IT and PL. to examine the effect of CHLvertical gradients on spectral
This article demonstrated the capability of high spatial res-canopy reflectance and remote-sensing-based estimations of
olution data to provide spatial estimates of LA, chlorophyll LAI, CHL, and N.
and leaf nitrogen pools with statistical confidence for a sub- Despite the demonstrated capability of REGFLEC to sim-
set of landscapes located over an extended region (Europedlate CHL in previous studies, it was not possible to achieve
With the launch of the upcoming European Sentinel-2 satel-statistically significant results for leaf-scale predictions in
lite mission (scheduled for 2013), 13 spectral bands will bethis study. The ill-posed nature of the model inversion signif-
available in the red—shortwave infrared at high spatial res-cantly complicates the process of extracting the Ckind
olution (10—-60 m) with three new bands located in the red-LAl) signal from remote sensing observations. The current
edge region. This would support the use of additional narrow-study took place in the middle of the growing season, except
bands with optimized sensitivity to changes in Gldhd with ~ for DK0O9 where REGFLEC results were good, and it is ex-
reduced sensitivity to confounding factors. The availability pected that the availability of an out-of-season satellite image
of Sentinel-2 data would significantly advance the ability to with larger soil exposure would improve the results.
monitor plant physiological condition both in terms of re-  Results achieved in the current study fof Mapping of
trieval accuracy and spatio-temporal resolution (20 m everyEuropean agricultural landscapes showed large spatial vari-
2-5 days) using SVIs and a tool such as REGFLEC. ations within and between landscapes which are attributed
to seasonal variations, extent of agricultural area, different
species, and spatial variation in nutrient availability. Such
spatial information is important to improve understanding,
modelling and upscaling of carbon and nitrogen budgets.
With the launch of the European satellite mission Sentinel-
2 in 2013, new narrowband data opportunities are expected
to improve the accuracies of LAI, CHland N assessments.
SWith these data, the mapping of seasonal variations in LA,
CHL, and N with a high spatial resolution will be possible.

6 Conclusions

The REGFLEC model was found to describe 69 % of LAI
variation, 46 % of CHL variation and 51 % of N varia-
tion when applied at high spatial resolution for five con-
trasting landscapes representing European crop- and gra
lands (LAl rmse=0.76; CHL. rmse=719mgm?; N
rmse= 2.7 gnv2). Better results were achieved for the in-
dividual landscapes, except for one very sparsely vegetated
landscape (ltaly). This strongly supports the applicability of
such products to characterize spatial variability in vegetation
traits for regional simulation and upscaling of water, carbon
and nitrogen cycles.
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S
Table Al. Determination oomm_o_m:ﬁ@mv and root mean square errors (rmse) quantifying the linear (lin) and exponential (exp) empirical relationships between SVls AZ_uSMmm_
EVI2, GNDVI, Cl) and LAI are shown together with results quantifying the capability of REGFLEC for independent LAI estimation of distinct vegetation classes across the m:mo_omm:

landscapes. Results are presented for all canopies (left) and for “uniform” canopies without strong vertical CHL profile gradients (right). Number of obspasadicagréssion  $
coefficients ¢, b) are shown { = ax + b; y = a P*) with LAI being the dependent variable. Bold numbers indicate statistically signifipaatd 05) relationships. m
©
LAI (-) All Uniform %
n r2(lin) rmse(lin) a(lin)  b(lin) r2(exp) rmse(exp) a(exp) blexp) n r2(lin) rmmse(lin) a(lin)  b(lin) r2(exp) rmse(exp) a(exp) b(exp) o
Wheat wmu
NDVI 32 0.43 095 17.24 -11.16 0.48 0.95 0.01 7.17 27 0.37 1.00 17.48 —-11.36 0.41 1.00 0.01 7.22 S
SR 32 0.47 0.92 0.35 -0.76 0.49 0.95 0.60 0.14 27 0.38 0.99 0.33 -0.55 0.40 1.02 0.66 0.13 W
EVI2 32 0.51 0.88 16.28 —5.42 0.53 0.95 0.10 6.47 27 0.48 0.90 16.12 -5.35 0.49 0.98 0.10 6.31
GNDVI 32 0.41 0.97 20.75 -—-13.59 0.47 0.96 0.00 8.69 27 0.34 1.02 20.33 -13.23 0.39 1.03 0.00 8.54
Cl 32 0.44 0.95 0.50 -1.07 0.47 0.98 0.51 0.20 27 0.35 1.02 049 -0.95 0.39 1.04 0.54 0.20
REGFLEC 32 0.71 0.73 1.08 -0.48 - - - - 27 0.75 0.67 1.20 -0.72 - - - -
Grass
NDVI 21 0.59 0.94 1098 547 0.83 0.80 0.05 521 — - - - - - — - -
SR 21 0.77 0.70 041 -0.75 0.82 0.71 0.55 0.17 — - - - - - - - -
EVI2 21 0.73 0.76 14.09 -3.46 0.86 0.69 0.16 6.10 — - - - - - — - -
GNDVI 21 0.63 0.89 16.78 —-9.54 0.86 0.74 0.01 7.78 — - — — - - — — -
Cl 21 0.76 0.71 0.71 —-1.55 0.85 0.71 0.38 0.30 — - - - - - - - -
REGFLEC 21 0.76 0.80 135 -0.91 - - - - = - — - - - — - -
Maize
NDVI 13 0.55 0.58 5.08 -1.00 0.44 0.57 0.20 3.70 8 0.40 0.50 3.47 -0.33 0.26 0.50 0.26 3.03
SR 13 0.60 0.55 055 -0.29 0.45 0.60 0.34 0.39 8 0.46 0.47 0.44 —-0.01 0.26 0.47 0.37 0.36
EVI2 13 0.73 045 1158 -1.53 0.63 0.75 0.12 8.76 8 0.75 0.32 1123 -1.51 0.58 0.42 0.07 10.81
GNDVI 13 0.54 0.59 6.80 —-2.13 0.40 0.57 0.10 474 8 0.36 0.51 448 —-1.02 0.19 0.52 0.17 3.59
Cl 13 0.61 0.55 0.67 -0.18 0.43 0.56 0.38 0.46 8 0.43 0.48 0.50 0.17 0.23 0.48 0.44 0.39
REGFLEC 13 0.64 0.82 157 -0.08 - - - - 8 0.75 0.54 1.64 -0.22 - — - -
Barley
NDVI 10 0.34 0.86 11.68 -5.97 0.49 0.86 0.06 501 6 0.69 0.48 1117 -5.77 0.82 0.42 0.06 5.06 )
SR 10 0.33 0.86 0.46 -0.54 0.47 0.89 0.64 0.19 6 0.80 0.38 049 -0.92 0.90 0.34 0.52 0.21 m
EVI2 10 0.02 1.05 3.11 1.37 0.05 1.08 1.05 1.97 6 0.67 0.48 19.34 -6.23 0.76 0.46 0.05 8.56 N
GNDVI 10 0.45 0.79 18.67 —11.03 0.56 0.78 0.01 747 6 0.79 0.39 17.30 —-10.20 0.90 0.33 0.01 7.68 ~
Cl 10 0.46 0.77 0.71 -1.37 0.55 0.78 0.52 0.28 6 0.85 0.33 0.70 —-1.46 0.94 0.28 0.42 0.30 %
REGFLEC 10 0.36 0.85 1.07 -0.13 - - - - 6 0.71 0.50 097 -0.11 - - - - N~
All plots o
NDVI 93 0.35 1.08 541 -1.44 0.30 1.09 0.31 26175 0.36 1.09 542 -1.51 0.29 1.10 0.29 2.64 =)
SR 93 0.49 0.96 0.27 0.33 0.36 0.98 0.78 0.1Z/5 0.53 0.93 0.28 0.15 0.38 0.95 0.70 0.13 1,
EVI2 93 0.35 1.08 7.00 -0.60 0.26 1.12 0.52 3.14 75 0.39 1.07 7.48 —-0.88 0.27 1.10 0.45 3.34 %
GNDVI 93 0.37 1.07 719 -2.68 0.32 1.07 0.17 3.49 75 0.37 1.08 729 -281 0.31 1.09 0.15 3.61 m
Cl 93 0.47 0.98 0.37 0.25 0.38 1.02 0.72 0.1775 0.49 0.97 0.39 0.07 0.39 1.00 0.64 0.19 @
REGFLEC 93 0.62 0.83 0.93 0.19 - - - - 75 0.69 0.76 1.00 -0.25 - - - - %
o
o)
i)
oM
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Table A3. The same as for Table Al, but forclhstead of LAl Please note that three potato fields (Poland) are not included because labgrasim&tes were not made for potato

leaves. For other crops, REGFLEC simulated Gli$L.converted to INbased on results in Fig. 3¢ (the same conversion is used for wheat and barley).

www.biogeosciences.net/10/6279/2013/

N¢ All Uniform
(gm™2) n r2(lin) rmse(lin) a(lin)  b(lin) r2(exp) rmse(exp) a(exp) b(exp) n r2(lin) rmse(lin) a(lin)  b(lin) r2(exp) rmse(exp) a(exp) b(exp)
Wheat
NDVI 32 0.41 2.06 3559 -—-22.77 0.44 2.05 0.02 6.79 27 0.33 2.13 33.85 —-21.40 0.34 2.14 0.03 6.27
SR 32 0.45 1.99 0.74 -1.35 0.45 2.03 1.40 0.13 27 0.35 2.10 0.66 —0.57 0.34 2.14 1.67 0.12
EVI2 32 0.38 211 29.71 -8.99 0.42 2.28 0.31 5.67 27 0.32 214 2701 -7.67 0.34 2.29 0.42 5.06
GNDVI 32 0.46 1.96 46.55 —-30.70 0.49 1.91 0.01 8.71 27 0.37 2.05 44.24 —28.85 0.38 2.03 0.01 8.12
Cl 32 0.51 1.87 1.14 —-2.83 0.50 1.88 1.09 0.21 27 0.41 1.99 1.09 -2.39 0.40 2.00 1.21 0.20
REGFLEC 32 0.65 3.11 0.70 0.00 — — — — 27 0.63 2.83 0.73 -0.01 — — — —
Grass
NDVI 20 0.59 1.68 29.25 -17.61 0.70 1.54 0.04 6.00 — — — — — — — — —
SR 20 0.73 1.35 0.80 -—-2.09 0.78 1.27 1.12 0.16 - - - - - - - - -
EVI2 20 0.7 143 30.31 -8.77 0.75 1.31 0.31 5.88 — — - — — — - — -
GNDVI 20 0.66 1.54 44.64 —28.42 0.75 1.40 0.01 8.94 - - - — - - - — -
Cl 20 0.73 1.36 1.44 —-4.05 0.78 1.30 0.77 0.28 — — - - — — - - -
REGFLEC 20 0.8 1.62 1.07 -1.58 — — — — — - — — — - — — —
Maize
NDVI 13 0.51 1.00 797 -1.71 0.44 1.02 0.24 4.01 8 0.44 0.80 5,99 -0.90 0.29 0.81 0.30 3.51
SR 13 0.51 1.00 0.84 —-0.48 0.43 1.14 0.46 0.41 8 0.49 0.76 0.75 -0.34 0.30 0.75 0.44 0.42
EVI2 13 0.60 091 17.10 -2.25 0.58 1.40 0.16 9.14 8 0.56 056 18.34 -2.68 0.60 0.69 0.08 11.89
GNDVI 13 0.50 1.01 10.67 -3.48 0.40 1.02 0.11 5.14 8 0.83 0.83 7.76 —-2.10 0.23 0.84 0.18 4.18
Cl 13 0.53 0.98 1.02 -034 0.42 1.05 0.51 0.49 8 0.78 0.78 0.85 -0.03 0.25 0.77 0.55 0.45
REGFLEC 13 0.47 1.57 1.35 0.67 - - - - 8 0.65 1.10 1.55 0.28 - - - -
Barley
NDVI 10 0.37 1.74 25.15 -12.79 0.51 1.76 0.13 5.05 0.79 0.77 24.15 —12.46 0.90 0.61 0.11 5.14
SR 10 0.35 1.76 0.97 -1.02 0.47 1.83 1.40 0.19 0.91 0.50 1.05 -1.95 0.97 0.31 1.12 0.22
EVI2 10 0.02 2.17 6.64 3.03 0.05 2.23 2.34 1.93 6 0.79 0.77 4220 —13.62 0.85 0.68 0.10 8.77 .
GNDVI 10 0.42 1.67 37.49 -21.68 0.53 1.68 0.03 7.16 6 0.87 0.61 36.56 —21.42 0.95 0.46 0.02 7.64
Cl 10 0.42 1.67 1.40 -2.12 0.50 1.70 1.24 0.26 6 0.93 0.45 146 —2.89 0.97 0.35 0.93 0.30 m
REGFLEC 10 0.34 2.21 0.70 0.97 — — — — 6 0.91 1.71 0.79 -0.10 — — — — N
All plots %
NDVI 88 0.14 3.15 9.35 -1.48 0.15 3.25 0.64 2.53 71 0.18 2.76 9.08 -1.56 0.16 2.85 0.56 2.63 m
SR 88 0.26 291 0.52 1.16 0.23 2.99 1.49 0.13 71 0.35 2.44 0.53 0.74 0.26 2.47 1.26 O.Hb&
EVI2 88 0.15 3.13 12.07 0.00 0.12 3.28 1.19 2.77 71 0.20 271 1253 -0.50 0.13 2.86 1.00 3.00 S
GNDVI 88 0.17 3.10 13.26 -4.21 0.18 3.16 0.30 3.60 71 0.21 270 13.08 -4.35 0.20 2.74 0.24 3.85 H
Cl 88 0.29 2.85 0.78 0.64 0.27 2.89 1.28 0.19 71 0.37 2.41 0.79 0.27 0.29 2.39 1.06 0210
REGFLEC 88 0.46 2.97 0.64 1.28 — — — — 71 0.51 2.70 0.65 1.07 - - - — w
o
o
3
3]
o)
2
m
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Table B2. The same as for Table B1, but for CHllnstead of LAL.

www.biogeosciences.net/10/6279/2013/

CHLc¢ All Uniform

(Mgenm?)  n o r2(lin)  rmse(lin)  a(lin) b(lin)  r2(exp) rmse(exp) a(exp) b(exp) n r2(lin) rmse(lin)  a(lin) b(lin)  r2(exp) rmse(exp) a(exp) b(exp)
DKO08

NDVI 20 0.51 37.14 350.01 —153.25 0.85 33.33 0.78 6.31 13 0.61 34.02 338.24 —140.97 0.94 26.04 0.75 6.44
SR 20 0.61 33.08 15.73 -18.61 0.64 46.71 14.31 0.23 13 0.8 24.40 19.07 —-39.99 0.79 26.73 9.03 0.29
EVI2 20 0.41 40.82 415.69 —80.36 0.72 47.64 2.64 7.70 13 0.59 34.59 481.79 —105.57 0.93 27.46 1.45 9.20
GNDVI 20 0.54 39.39 469.90 —242.71 0.84 33.25 0.19 8.19 13 0.63 36.92 452.66 —226.00 0.93 26.83 0.17 8.44
Cl 20 0.62 32.70 19.47 -20.87 0.65 46.88 13.91 0.28 13 0.76 26.62 22.67 —36.64 0.78 30.73 9.21 0.35
REGFLEC 20 0.67 95.13 0.51 14.20 - — - - 13 0.82 81.88 0.57 8.09 — - — -
DKO09

NDVI 21 0.37 56.62 967.72 —675.37 0.41 56.89 0.08 8.64 20 0.36 57.63 945.68 —656.16 0.40 58.01 0.10 8.36
SR 21 0.44 53.55 18.54 -78.71 0.45 54.16 17.71 0.16 20 0.42 54.64 18.20 —-74.26 0.43 55.29 18.87 0.16
EVI2 21 0.71 38.58 1132.65 —463.77 0.64 32.02 0.87 9.14 20 0.71 38.74 1119.69 —455.55 0.64 32.07 0.97 8.98
GNDVI 21 0.42 62.54 1227.93 —861.13 0.48 53.86 0.01 11.16 20 0.41 63.51 1203.47 —840.25 0.47 54.79 0.02 10.87
Cl 21 0.48 51.54 29.07 —118.13 0.52 51.08 11.97 0.26 20 0.47 52.48 28.57 —-112.97 0.51 52.07 12.81 0.25
REGFLEC 21 0.67 62.07 1.09 -59.81 - - - — 20 0.66 61.71 1.08 —56.99 - — — -
ITO8

NDVI 9 0.46 34.61 304.77 —29.02 0.35 34.22 40.57 2.11 5 0.1 31.21 99.42 63.80 0.03 31.88 86.02 0.48
SR 9 0.53 32.14 34.40 12.59 0.42 31.91 53.24 0.24 5 0.19 29.61 14.87 65.58 0.08 30.10 82.25 0.09
EVI2 9 0.42 35.73 528.93 -9.11 0.31 36.12 47.48 3.60 0.07 31.66 155.57 74.20 0.01 32.47 95.15 0.55
GNDVI 9 0.47 38.09 410.63 —-98.25 0.35 34.34 25.40 2.83 5 0.08 31.67 123.26 46.78 0.01 32.42 85.87 0.45
(¢]] 9 0.5 33.16 38.39 27.97 0.39 33.28 60.09 0.27 5 0.12 30.79 14.19 77.94 0.03 3152 91.99 0.07
REGFLEC 9 0.42 110.29 1.30 94.23 - - — - 5 0.09 105.00 0.42 103.61 - - - —
NLO8

NDVI 22 0.29 45.51 317.43 —141.07 0.28 45.13 7.80 3.17 21 0.34 44.84 394.65 —204.01 0.37 43.66 3.50 4.16
SR 22 0.48 38.74 11.81 -2.76 0.45 37.13 31.98 0.12 21 0.53 37.92 13.27 —-18.68 0.52 35.92 26.24 0.13
EVI2 22 0.34 43.70 331.76 —45.91 0.30 4281 22.16 3.11 21 0.4 42.78 403.54 -81.71 0.38 40.94 1455 3.96
GNDVI 22 0.28 47.84 417.05 —206.66 0.25 45.47 4.51 4.03 21 0.33 48.72 524.77 —290.30 0.33 43.82 1.62 5.35
Cl 22 0.43 40.66 18.99 -16.55 0.40 39.22 28.16 0.18 21 0.48 39.75 2191 -38.11 0.47 37.79 21.63 0.22
REGFLEC 22 0.57 77.47 0.51 22.40 - - - - 21 0.61 78.36 0.56 11.19 - - — -
PLO8

NDVI 13 0.47 43.09 210.28 -32.34 0.64 4322 19.91 2.29 9 0.71 19.46 172.08 —-13.98 0.71 19.47  22.10 2.15
SR 13 0.54 40.46 14.47 15.36 0.65 40.46  34.95 0.15 9 0.73 18.82 12.35 24.86 0.70 18.66  36.40 0.15
EVI2 13 0.44 44.36 318.76 —25.88 0.61 46.06 21.23 3.49 9 0.70 19.90 289.26 -17.71 0.72 20.41 20.81 3.66
GNDVI 13 0.52 41.10 29198 -86.97 0.70 40.40 11.09 3.16 9 0.74 18.59 231.09 -54.28 0.76 19.02 13.07 2.93
Cl 13 0.62 36.74 20.19 10.81 0.73 34.31 33.69 0.21 9 0.72 19.36 15.32 26.82 0.71 20.55 36.98 0.19
REGFLEC 13 0.56 45.71 0.74 34.88 - - - - 9 0.72 34.59 0.68 40.84 - - - -
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