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many coastal systems, and consider its 
ecological implications as well as future 
research challenges. 

DNRA is performed both by hetero-
trophic organisms, which use organic 
carbon as the electron donor (fermenta-
tive DNRA), and by chemolithoautotro-
phic organisms, which use nitrate to oxi-
dize sulfide or other reduced inorganic 
substrates (Figure 1). Unlike hetero-
trophic or autotrophic denitrification to 
gaseous N2, DNRA conserves nitrogen 
in the ecosystem as ammonium, a form 
of biologically reactive nitrogen that 
may be taken up by plants or bacteria, 
or oxidized back to nitrate. The envi-
ronmental factors that determine the 
balance between DNRA, denitrification, 
and other pathways of nitrate uptake 
in aquatic ecosystems are not fully 
understood. The conservation of biologi-
cally available N by DNRA has major 
implications for our understanding of 
how coastal ecosystems will respond 
to increases in the nitrogen loads they 
receive from land. 

DNr a pathWay 
BiOchemiStry
Recent biochemical and genetic stud-
ies yield a great deal of information 
about the enzymes and genes involved 
in DNRA and the organisms capable 
of carrying out fermentative DNRA. 
A periplasmic nitrate reductase complex 
(NapAB) mainly catalyzes the initial 
reduction of nitrate to nitrite. Nitrite 
reduction to ammonium is mediated 
by a pentaheme cytochrome C nitrite 
reductase (NrfA) and is carried out 
without producing any intermediate N 
compound (Einsle et al., 1999). NrfA 
can also use other compounds, includ-
ing hydroxylamine, sulfite, and hydro-
gen peroxide as an alternative substrate 
(see the review of Simon et al., 2011; 
Figure 1). The functional gene nrfA 
is present in diverse bacteria, includ-
ing Proteobacteria, Planctomycetes, 
Bacteroides, and Firmicutes (Mohan 
et al., 2004). While the nrfA gene is 
frequently targeted as a marker for 
DNRA, DNRA may not be restricted 
to the bacteria carrying the nrfA 
genes. A metal-reducing bacterium, 
Shewanella oneidensis MR-1, carries 
octaheme tetrathionate reductase (Otr), 
which also catalyzes nitrite reduction 
to ammonium (Atkinson et al., 2007). 
In addition, octaheme cytochrome 
c nitrite reductase (Onr) was found 
in Thioalkalivibrio nitratireducens, a 
nitrate-reducing obligate chemolitho-
autotrophic sulfur oxidizing bacterium 
(Tikhonova et al., 2006). Although 
purified Onr catalyzes the reduction of 
nitrite and hydroxylamine to ammonia, 
T. nitratireducens is not able to grow with 
nitrite as an electron acceptor under 
anaerobic conditions. Homologous 

iNtrODuc tiON
Nitrogen (N) cycling has been inten-
sively studied in coastal ecosystems for 
decades. Until recently, the major nitro-
gen pathways were believed to be well 
understood. Most coastal ecosystems, 
with the exception of coral reefs, have 
been found to be sinks for nitrate as a 
result of gaseous N losses through quite 
high denitrification rates. However, over 
the last decade, the widespread use of 
new 15N tracer techniques and microbial 
molecular methods has revealed new 
N cycling pathways. A series of recent 
papers provides an overview of our 
changing understanding of the nitrogen 
cycle in general (Canfield et al., 2010; 
Thamdrup, 2012) and nitrate reduc-
tion processes in particular (Burgin and 
Hamilton, 2007), but these papers do not 
focus specifically on their implications 
for coastal ecosystems. Here, we discuss 
the growing evidence that dissimila-
tory nitrate reduction to ammonium 
(DNRA) is an important, and some-
times the dominant, fate of nitrate in 

aBStr ac t. Until recently, it was believed that biological assimilation and gaseous 
nitrogen (N) loss through denitrification were the two major fates of nitrate entering 
or produced within most coastal ecosystems. Denitrification is often viewed as an 
important ecosystem service that removes reactive N from the ecosystem. However, 
there is a competing nitrate reduction process, dissimilatory nitrate reduction to 
ammonium (DNRA), that conserves N within the ecosystem. The recent application 
of nitrogen stable isotopes as tracers has generated growing evidence that DNRA is a 
major nitrogen pathway that cannot be ignored. Measurements comparing the impor-
tance of denitrification vs. DNRA in 55 coastal sites found that DNRA accounted for 
more than 30% of the nitrate reduction at 26 sites. DNRA was the dominant pathway 
at more than one-third of the sites. Understanding what controls the relative impor-
tance of denitrification and DNRA, and how the balance changes with increased 
nitrogen loading, is of critical importance for predicting eutrophication trajectories. 
Recent improvements in methods for assessing rates of DNRA have helped refine our 
understanding of the rates and controls of this process, but accurate measurements in 
vegetated sediment still remain a challenge.
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genes encoding Onr are found in various 
bacteria, but their physiological involve-
ments in nitrite respiration are unknown. 
Future studies are required to identify 
the enzymes and genes involved in the 
chemolithoautotrophic DNRA pathway. 
The diverse genera and multiple path-
ways that characterize DNRA suggest the 
potential for wide prevalence in different 
habitats and plasticity of the reaction to 
changing environmental conditions. 

 An important ecological implication 
of the DNRA pathway as catalyzed by 
Nrf is the lack of intermediate prod-
ucts between nitrite and ammonium. 

Therefore, DNRA should not result 
in the production of N2O, a powerful 
greenhouse gas. However, there have 
been numerous reports suggesting that 
organisms carrying out DNRA can pro-
duce N2O in both field and culture con-
ditions. More recent evidence indicates 
that some bacteria may carry both nrfA 
and dissimilatory nitrite reductase (nirK) 
genes on the same genome, suggesting 
that the prevailing view that the DNRA 
and canonical denitrification are incom-
patible may not be correct (Sanford et al., 
2012). Although this could explain the 
production of N2O by organisms capable 

of carrying out DNRA, there are many 
other possible mechanisms. Thus, the 
actual contribution of N2O production 
by organisms carrying out DNRA is cur-
rently unresolved. It is significant that 
Sanford et al. (2012) identified atypical 
nitrous oxide reductase genes (nosZ) in 
soil DNRA bacteria, which may involve 
the reduction of N2O, indicating that 
organisms carrying out DNRA can 
potentially consume N2O. 

R ates of DNR a iN estuaRiNe 
aND Coastal eNViRoNmeNts
One of the earliest reports on the occur-
rence of DNRA in the environment 
came from a study of estuarine sediment 
using 15N tracers (Buresh and Patrick, 
1978). However, over the next 20 years, 
there were only scattered reports of 
DNRA occurrence in coastal areas and 
few actual rates. While the situation 
has improved over the last decade, the 
number of studies is still low and in most 
cases derived from sediment slurries 
where potential rates were measured. 
These studies do suggest that DNRA 
is of major importance in most shal-
low coastal sediment under a variety of 
environmental conditions, as we briefly 
review below (Figure 2).

unvegetated Coastal sediment
In unvegetated coastal sediment, the 
percent of nitrate reduction attributed 
to DNRA covers the full range from 
0 to 100%. The importance of DNRA 
shows a fairly large seasonal variation in 
most coastal systems, often increasing 
during the summer. This increase has 
been attributed to temperature, which 
increases sediment oxygen consump-
tion, thus creating more reduced con-
ditions in the sediment (Ferrón et al., 
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figure 1. some important aspects of the nitrogen cycle emphasizing the pathways important to dis-
similatory nitrate to ammonium (DNRa). some of the enzymes known to be involved in the DNRa 
process, or known to be associated with organisms carrying out DNRa, are shown in yellow. Nap = 
Periplasmic nitrate reductase. Nrf = Cytochrome C nitrite reductase. NosZ = Nitrous oxide reductase. 
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2009; Gardner and McCarthy, 2009; 
Smyth et al., 2013). A number of studies 
have found DNRA to be favored over 
denitrification when salinity increases, 
especially when salinity changes are large 
(Gardner et al., 2006; Giblin et al., 2010). 
Others have argued that organisms that 
carry out DNRA are favored over deni-
trification at higher temperatures, pos-
sibly accounting for the large differences 
observed in the importance of DNRA 
across latitudes. For instance, increases 
in both salinity and temperature were 
linked with declines in denitrification 
and increases in DNRA in oligohaline 
estuarine sediment at the Plum Island 
Ecosystems Long Term Ecological 
Research (LTER) site in Massachusetts 
(Giblin et al., 2010). While DNRA has 
been reported to be of minimal impor-
tance in cold sediment, such as deep 
sediment in the St. Lawrence Estuary 
(Crowe et al., 2012), DNRA dominates 
in many tropical estuaries (Dong et al., 
2009, and references therein). 

The presence of benthic microalgae 
(BMA) in shallow sediment can alter 
nitrate reduction pathways. Temperate 
studies suggest that benthic algae are 
strong competitors for nitrate, and that 
while some of the nitrate can be deni-
trified, DNRA was not an important 
pathway (Tobias et al., 2003; Porubsky 
et al., 2008, 2009). In unvegetated creek 
bank sediment in the Georgia Coastal 
Ecosystems LTER, uptake of nitrate by 
BMA resulted in relatively low rates 
of both denitrification and DNRA 
(Porubsky et al., 2008). This contrasts 
with studies in systems with higher 
nitrate availability where DNRA is 
more important (Rysgaard et al., 1996). 
The predominance of DNRA can hold 
under both light and dark conditions 

(Dunn et al., 2012), and, surprisingly, 
variations in DNRA rates and light show 
no consistent pattern. 

Seagrasses
There are only a handful of measure-
ments of DNRA in submerged macro-
phyte beds. Rysgaard et al. (1996) first 
reported that DNRA exceeded deni-
trification in Zostera noltii dominated 
sediment in southern France. Boon et al. 
(1986) attributed up to 28% of nitrate 
reduction to DNRA in sediment popu-
lated with Z. capricorni. The highest 
overall nitrate reduction rates measured 
in south Texas estuaries were found in 
Thallassia spp. beds where DNRA domi-
nated denitrification by a 3:1 margin (An 
and Gardner, 2002; Gardner et al., 2006). 

The enhanced levels of DNRA observed 
during illuminated conditions, when 
photosynthetic carbon substrates would 
presumably be more available, were 
consistent with DNRA derived either 
from fermentation or sulfate reduction 
pathways. In contrast, relatively low 
rates of DNRA, accounting for no more 
than 5% of the total nitrate flux into 
the sediment, were reported for mixed 
Halodule spp. and Z. marina beds in 
North Carolina (Smyth et al., 2013).

marshes and mangroves
Rivera-Monroy and Twilley (1996) were 
among the first to suggest that denitrifi-
cation was not the major nitrate sink in 
mangrove sediment, and they proposed 
that immobilization and DNRA may be 
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figure 2. a compilation of the data from the literature cited in this paper showing 
the percent nitrate reduction attributed to different ecosystems or habitats. in cases 
of subtidal studies where there were seasonal studies, cold conditions (< 12°c) were 
separated from warm conditions. Data from benthic microalgae (Bma) were sepa-
rated into light and dark measurements. When data from multiple sites were pre-
sented, each site was treated as a separate point. These studies do not include older 
data obtained by acetylene block methods (reviewed by kelly-gerreyn et al., 2001). 
These data span a similar range but were not included, as experience has shown that 
acetylene block may underestimate denitrification.
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more important. Over the past decade, 
DNRA rates have been reported for just 
over a dozen different intertidal wet-
lands, including high- and mid-latitude 
Spartina spp. marshes (Poulin et al., 
2009; Koop-Jackobsen and Giblin, 2010; 
Tobias et al., 2001a; Uldahl, 2011; Smyth 
et al., 2013), mangroves (Fernandes et al., 
2012; Molnar et al., 2013), intertidal 
fresh marshes (Neubauer et al., 2005), 
and marshes receiving nitrogen delivery 
from tidal flooding or from groundwater 
(Tobias et al., 2001b; Porubsky et al., 
2011; Viellard and Fulweiller, 2012). 
Studies that consider mineralization 
and DNRA indicate that while DNRA 
can be significant relative to denitrifica-
tion, it typically remains small relative 
to NH4 produced from decomposition 
(Tobias et al. 2001a, 2003; Porubsky 
et al., 2011). As was the case for unveg-
etated sediment, the DNRA contribution 
to nitrate reduction ranges from < 3% 
to > 60–99%. To date, 30% of the studies 
reported DNRA rates in marshes and 
mangroves that exceed measured deni-
trification rates at some sites or times 
(Neubauer et al., 2005; Koop-Jackobsen 
and Giblin, 2010; Uldahl, 2011; 
Fernandes et al., 2012), and half the 
studies report DNRA rates that account 
for 25–50% of the total nitrate reduction. 
Given the small number of studies, no 
clear pattern has emerged that would 
allow generalizations about differences in 
DNRA among marsh and mangrove eco-
types. Similar to other N cycle reactions, 
including denitrification (e.g., Rivera-
Monroy et al., 2010), maximum DNRA 
rates occur nearest the marsh surface 
where labile organic matter is most 
abundant (Tobias et al., 2001a; Koop-
Jackobsen and Giblin, 2010). There have 
been few seasonal studies, but unlike 

subtidal sediment where rates are high-
est in warmest months, Uldahl (2011) 
found that DNRA was higher in the 
fall as marsh grasses were senescing, as 
opposed to summer. 

implicatiONS fOr 
cOaStal ecOSyStemS 
aND reSearch NeeDS
Denitrification is often viewed as an 
ecosystem service that removes reactive 
N from the ecosystem. Understanding 
how denitrification rates change with 
increased loading is of critical impor-
tance for understanding eutrophica-
tion trajectories (Rivera-Monroy et al., 
in press). Higher carbon loads and 
increased rates of sulfate reduction may 
favor DNRA over denitrification, lead-
ing to reduction of this removal service 
and to a negative feedback between 
increased N inputs and N removal 
in seagrass beds, as hypothesized by 
McGlathery et al. (2007). A similar 
shift toward DNRA has been proposed 
for unvegetated subtidal sediment and 
for marshes as a function of increasing 
sulfide and temperature (Gardner and 
McCarthy, 2009). Importantly, increased 
organic matter deposition from aquacul-
ture has been demonstrated to stimulate 
DNRA in a wide variety of systems. 
Christensen et al. (2000) found rates of 
DNRA were three to seven times higher 
below fish cages than in nearby refer-
ence sediment. Beggiatoa mats were 
present below the fish cage and were 
presumed to be responsible for the high 
rates of DNRA. Absolute rates of DNRA 
were considerably higher in mangroves 
receiving effluent from shrimp ponds 
than in nearby sites, and DNRA was 
two to three times more important 
as a nitrate reduction pathway than 

denitrification (Molnar et al., 2013). 
 Early researchers proposed that 

high organic carbon/nitrate ratios favor 
DNRA over denitrification (Tiedje et al., 
1982). Recent experiments (Streminska 
et al., 2012) and models (Algar and 
Vallino, in press) support this general 
view, and they suggest that there is a 
positive covariance between anthropo-
genic organic carbon loads and DNRA 
(Burgin and Hamilton, 2007; Ferrón 
et al., 2009). For instance, high dissolved 
organic carbon to nitrate ratios favored 
DNRA over denitrification in sediment 
at the Georgia Coastal Ecosystems LTER 
(Porubsky et al., 2008). However, DNRA 
rates across different ecosystems, and 
within marshes (Tobias et al. 2001a) 
and mangroves (Rivera-Monroy et al., 
1995; Molnar et al., 2013), cannot cur-
rently be predicted based upon carbon 
stocks alone. Shifts in nitrate reduction 
pathways are likely to be influenced less 
by carbon quantity as by quality or labil-
ity, which is more difficult to assess. In 
addition, chemolithoautotrophic DNRA 
might be favored by increased carbon 
loading, which produces more sulfide. 
The mechanisms controlling this process 
may be quite different, albeit likely cor-
related to fermentative DNRA. Increased 
nitrate should favor denitrification at the 
expense of DNRA. Although this shift 
has been observed in laboratory studies, 
the impact of increased environmental 
nitrate on N pathways in coastal systems 
has been mixed. At the Plum Island 
LTER site, a long-term whole system fer-
tilization experiment exhibits increased 
overall rates of both denitrification and 
DNRA (Koop-Jakobsen and Giblin, 
2010; Drake et al., 2009). However, in the 
early years of the study, the percent of 
nitrate reduction going through DNRA 
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was similar or lower in fertilized plots 
than in control plots (Koop-Jakobsen 
and Giblin, 2010). Uldahl (2011) also 
did not find any consistent relationship 
between the importance of DNRA and 
nitrate loading using slurry measure-
ments. Recently, however, Viellard and 
Fulweiller (2012), using mass balance, 
calculated that DNRA was more impor-
tant in fertilized than in control sites, 
although it was not directly measured. 

The available data demonstrate that 
we need to better understand how 
changes in nitrate and carbon availabil-
ity, as well as environmental conditions 
such as temperature and salinity, affect 

both fermentative and chemolithoauto-
trophic DNRA. The construction of cou-
pled biogeochemical models may be one 
way forward. These types of models are 
further needed to evaluate how hydro-
logical restoration programs can affect 
landscape-level N cycling. For example, 
it is not clear how near-canal marshes 
across the Florida Coastal Everglades 
LTER site may act to buffer downstream 
ecosystems from potential N-loading 
events, or what are the specifics of how 
these marshes internally process N to 
determine subsequent N fate (Inglett 
et al., 2011). Another factor contributing 
to our lack of understanding may come 

from the overwhelming predominance 
of studies using potential measurements 
made on slurries, which alter natural 
gradients and eliminate the normal 
activities of macrophytes (Figure 3). 
New approaches that combine 15NH4 
isotope dilution techniques in a flow-
through setting provide a powerful 
way to more fully describe ammonium 
dynamics in sediment (Lin et al., 2011) 
and are just beginning to be used more 
widely to measure DNRA. While a 
greater application of these techniques 
to coastal sediment will help advance 
our understanding of DNRA, numer-
ous experimental challenges exist when 

a b

c
figure 3. Vegetated sediment is extremely heterogeneous, and the roots 
may exert a strong but local control on N cycling pathways. (a) Sediment 
surrounding S. alterniflora roots growing against a glass plate in the lab. 
Disrupting the root-sediment system may disrupt nitrate-reducing path-
ways. Photo by Zoe Cardon (b) mangrove sediment showing similar hetero-
geneity. Photo by Jane Tucker (c) White sulfur bacteria forming a mat near an 
area of porewater drainage in a S. alterniflora marsh. Such bacteria have been 
shown to be capable of nitrate reduction by sulfide and elemental sulfur, 
and they may be other active sites of DNra. Plum Island Ecosystems Long 
Term Ecological Research Photo Gallery
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trying to apply these techniques in 
intertidal or vegetated sediment. Finally, 
our lack of understanding of the full 
diversity and metabolic potentials of 
organisms carrying out both fermenta-
tive and chemolithoautotrophic DNRA 
greatly hampers our ability to predict 
how changing environmental condi-
tions may impact N cycling pathways. 
Further application and development of 
molecular probes and tools will continue 
to add insights here. 
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