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Abstract Here we demonstrate a novel method to physically integrate radiometric surface temperature
(TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes
(H and kE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combines TR data
with standard energy balance closure models for deriving a hybrid scheme that does not require parameter-
ization of the surface (or stomatal) and aerodynamic conductances (gS and gB). STIC is formed by the simul-
taneous solution of four state equations and it uses TR as an additional data source for retrieving the ‘‘near
surface’’ moisture availability (M) and the Priestley-Taylor coefficient (a). The performance of STIC is tested
using high-temporal resolution TR observations collected from different international surface energy flux
experiments in conjunction with corresponding net radiation (RN), ground heat flux (G), air temperature (TA),
and relative humidity (RH) measurements. A comparison of the STIC outputs with the eddy covariance meas-
urements of kE and H revealed RMSDs of 7–16% and 40–74% in half-hourly kE and H estimates. These statis-
tics were 5–13% and 10–44% in daily kE and H. The errors and uncertainties in both surface fluxes are
comparable to the models that typically use land surface parameterizations for determining the unobserved
components (gS and gB) of the surface energy balance models. However, the scheme is simpler, has the
capabilities for generating spatially explicit surface energy fluxes and independent of submodels for bound-
ary layer developments.

1. Introduction

Radiometric surface temperature (TR) measured via thermal infrared (TIR) remote sensing provides direct
information on the land surface moisture status and surface energy balance (SEB) partitioning [Norman
et al., 1995; Kustas and Anderson, 2009]. It sets the boundary condition for the transfer of latent and sensible
heat through soil, vegetation, and atmosphere. The Penman-Monteith (PM) equation [Penman, 1948; Mon-
teith, 1965] is the most pragmatic method for estimating surface to air latent heat flux (kE) (or evapotranspi-
ration, E, in mm) from terrestrial vegetation, and the intrinsic link of the PM model with TR emanates
through the first-order dependence of the physical-ecophysiological conductances on TR, surface moisture,
and radiative fluxes [Mallick et al., 2014]. This equation treats the vegetation canopy as a ‘‘big-leaf’’ and cal-
culates kE by combining the surface energy balance equation with a conductance-based diffusion equation.
The fundamental assumption in the derivation of the PM equation was the approximation of linearity of the
vapor pressure versus temperature curve (@e*/@T), which Penman [1948] considered to be the derivative of
the saturation vapor pressure curve at the air temperature (TA) [Lascano and van Bavel, 2007]. The underly-
ing objective of this assumption was to eliminate TR from the PM formulation for calculating kE. The elimina-
tion of TR was originally motivated by the fact that observations of TR were not available for the scales at
which estimates of kE are required [Penman, 1948; Monteith, 1965].

Despite the elimination of TR from the PM formulation, a large number of studies have demonstrated that
the internal states (e.g., soil moisture and conductances) regulating kE are strongly temperature dependent
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[Monteith, 1981; Huband and Monteith, 1986; Blonquist et al., 2009], making TR a primary state variable of sur-
face energy balance closures [Norman et al., 1995; Anderson et al., 1997, 2007; Bastiaanssen et al., 1998; Kustas
and Norman, 1999; Kustas and Anderson, 2009]. Therefore, in situations where observations of TR are available,
they can provide a rich source of information that can be used to estimate the components of the surface
energy balance with in the PM model framework [Monteith, 1981]. However, main hindrance in implementing
the PM model in TIR based SEB modeling arises because there is no direct physical method to integrate TR

information into this model. Determining the aerodynamic and surface (canopy for full vegetation, stomata
for single leaf) conductance terms (gB and gS) is also problematic when estimating the surface fluxes using the
PM framework because of the lack of robust physical models expressing gB and gS as a function of TR. Given
that gB and gS are generally not measurable at scales in which the PM equation is applied, an alternative solu-
tion to this problem so far has been the adoption of locally derived semiempirical models [Cleugh et al., 2007;
Mu et al., 2007, 2011], potentially degrading the predictive quality of the physically based PM model. Major
drawbacks with these classes of gB models include their vague description, empiricism, and the requirement
of substantial tuning and parameterization in order to make them applicable over the intended biomes and
land surface types [Raupach and Finnigan, 1995; Liu et al., 2007; van der Tol et al., 2009; van der Kwast et al.,
2009; Ershadi et al., 2014]. In addition, these parameterizations are not stationary due to the dynamics of the
near surface boundary layer. For gS, the situation is more problematic because gS models are generally over-
parameterized with respect to the amount of calibration data actually available [Beven, 1979]. Predicting gS

over a wide range of hydrometeorological conditions introduces too many degrees of freedom in the form of
an excessive number of physical and physiological parameters needed to be specified in the gS models [Jarvis,
1976; Beven, 1979; Ball et al., 1987; Dewar, 1995; Leuning, 1995; Katul et al., 2010].

Recognizing this, and motivated by the advent of thermal remote sensing, an alternative modeling strategy
for kE focussed on using TR to solve the aerodynamic equation of the sensible heat flux (H) and then esti-
mate kE as a residual of the surface energy balance [Norman et al., 1995; Anderson et al., 1997, 2007; Bas-
tiaanssen et al., 1998; Kustas and Norman, 1999; Su, 2002; Colaizzi et al., 2012]. Although some of the
outdated modeling approaches [Hall et al., 1992; Cleugh et al., 2007] have perpetrated unwarranted doubts
regarding the use of TR measurements in aerodynamic transfer equations because of the existence of large
differences between TR and aerodynamic surface temperatures (T0) [Troufleau et al., 1997], advanced models
using the dual-source soil-canopy framework [Norman et al., 1995; Anderson et al., 1997, 2007; Colaizzi et al.,
2012] or the inclusion of an ‘‘extra conductance’’ concept in the single-source framework [Lhomme et al.,
2000; Su, 2002; Boegh et al., 2002] appeared to accommodate the effects due to the differences between TR

and T0. One of the core objectives of these advancements was also to by-pass the complexities associated
with gS parameterization and instead to rely on the determination of gB for developing a thermal based kE
modeling framework with ‘‘intermediate complexity’’.

Despite making significant advancements, the single-source and dual-source models still rely on the specifi-
cations of gB as an external input, despite it being an internal state that provides physical feedback to both
kE and H. Hence, an alternative strategy is to revisit the PM equation and attempting to reintroduce TR into
the PM formulation in a way that eliminates the need to parameterize both gB and gS. A recent attempt by
Mallick et al. [2014] has elaborated on such possibilities and demonstrated a TR based ‘closure’ of the PM
equation in a framework referred to as the Surface Temperature Initiated Closure (STIC). STIC is formed by
the simultaneous solution of four state equations where both the gB and gS are treated as internal states
and TR information (in conjunction with meteorological and radiation variables) is used to find their analyti-
cal solutions. STIC uses TR as an additional data source for retrieving the ‘‘near surface’’ moisture availability
(M) and ‘‘effective’’ vapor pressure at the evaporating front (e0). STIC also combines the PM framework with
the advection-aridity hypothesis [Brutsaert and Stricker, 1979] to find an expression of the evaporative frac-
tion (K) in order to obtain the system closure (for detail please see Mallick et al. [2014]). The results from this
initial formulation were interpreted with coarse temporal resolution (8 days) data from a large number of
FLUXNET [Baldocchi et al., 2001] eddy covariance (EC) sites. The results showed a tendency of the STIC
approach to overestimate kE under extremely dry land surface conditions. We thought such overestimation
to be originating from; (a) neglecting the kE versus atmospheric vapor pressure deficit hysteresis [Zhang
et al., 2014; Zheng et al., 2014] in the surface moisture availability (M) retrieval framework; (b) the use of a
single value of Priestley-Taylor parameter (a); and (c) also due to overlooking the effects of moisture avail-
ability into the advection-aridity hypothesis [Brutsaert and Stricker, 1979] that was used for finding the state
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equation of K. These factors are crucial when modeling kE in many regions, particularly arid, semiarid, and
hyper-arid landscapes. Therefore, the original framework of STIC is modified in the present study by incor-
porating these important effects. The objectives of this study are as follows:

1. Reintroduction of TR into the PM formulation for estimating kE and H by deriving surface energy balance
closure expressions in order to eliminate the need of exogenous submodels for both gB and gS, while
incorporating additional modifications in the retrieval of M, a and the evaporative fraction state equation
of the original STIC framework.

2. Evaluating the performance of the modified STIC framework by comparing the kE and H estimates with
high-temporal resolution (half-hourly and hourly) measurements of kE and H from four different experi-
mental sites featuring a wide range of environmental and surface variability.

3. Analyzing the errors in the STIC derived kE and H estimates by comparing the residual errors in the sur-
face flux estimates against environmental and land surface variables.

Section 2 describes the STIC equations along with the novel part of the M and a retrieval and the derivation
of the K state equation as an improvement of the original STIC methodology. The field experiments and
data sources used to validate the results are also described in the same section. This will be followed by an
evaluation of the STIC results against EC measurements (section 3). A discussion on the results, strengths,
and weaknesses of the STIC methodology and potential applicability of STIC for global change research is
detailed at the end.

2. Description of STIC

STIC is based on finding an analytical solution of the surface and atmospheric conductances to obtain ‘‘clo-
sure’’ of the Penman-Monteith (PM) equation by integrating the radiometric surface temperature into the
PM equation. A conceptual framework of STIC is given in Figure 1. It is a single-source approach where gS

represents both soil and vegetation conductances when there is partial canopy cover conditions. Under the
conditions of full vegetation and (or) bare surface, gS represents the canopy conductance and (or) bare sur-
face conductance, respectively. A detailed derivation of the STIC equations is given in Mallick et al. [2014].

The PM equation states [Monteith, 1965],

kE5
s/ 1 qcPgBDA

s 1 c 1 1
gB
gS

� � (1)

where q is the density of dry air (kg m23), cP is the specific heat of dry air (MJ kg21 K21), c is the psychro-
metric constant (hPa K21), s is the slope of the saturation vapor pressure versus air temperature (hPa K21),
DA is the saturation deficit of the air (hPa) at the reference level or atmospheric vapor pressure deficit, and
/ is the net available energy (W m22). A list of symbols used in the present study is given in Table 1.

The main assumption of the PM equation is that Monteith [1965] applied equation (1) to a stand of vegeta-
tion assuming the canopy to exchange H and kE with the atmosphere from a theoretical surface located at
the same level as the effective sink of momentum (zM 5 d 1 z0; d is displacement height; z0 is roughness
length) [Lhomme and Montes, 2014]. The aerodynamic conductance (gB) is assumed to be the same for both
H and kE, and gB is calculated between zM and the reference height (zR), where DA is measured [Lhomme
and Montes, 2014]. Monteith [1965] also assumed the surface conductance (gS) to be a plant factor depend-
ing on the stomatal conductance of individual leaves and foliage area (soil evaporation was neglected) and
there is a similarity between the bulk stomatal conductance and integrated component stomatal conduc-
tances under dry conditions. gS is interpreted as the effective stomatal conductance of all the leaves acting
as conductances in parallel connectivity [Lhomme and Montes, 2014]. The whole canopy is treated a ‘‘big-
leaf’’ located at level d 1 z0 and with the surface conductance gS [Lhomme and Montes, 2014].

The two unknowns in equation (1) are gB and gS. Our aim is to derive analytical expressions of both the con-
ductances while exploiting TR as an external input, which will automatically integrate TR information into
the PM model. Neglecting horizontal advection and energy storage, the surface energy balance equation is
written as follows:
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/5kE1H (2)

where / ffi RN 2 G, with RN

being net radiation, and G
being the conductive surface
heat flux or ground heat flux.
All fluxes have units of W m22.

According to Figure 1, while
the sensible heat flux is
directed by a single aerody-
namic resistance (rB) (or 1/gB);
the water vapor flux encoun-
ters two resistances in series,
the surface resistance (rS) (or 1/
gS) and the aerodynamic resist-
ance to vapor transfer (rS 1 rB).
It is generally assumed that the
aerodynamic resistance of
water vapor and heat are
equal, and both the fluxes are
transported from the same
level from near surface to the
atmosphere. The sensible and
latent heat flux can be
expressed in the form of aero-
dynamic transfer equations
[Boegh et al., 2002; Boegh and
Soegaard, 2004] as follows:

H 5 qcPgBðTo2TAÞ (3)

kE 5
qcP

c
gB e02eAð Þ5 qcP

c
gS e�02e0
� �

(4)

where TA is the air temperature at the reference height (zR), eA is the atmospheric vapor pressure (hPa) at
the level at which TA is measured, e0 and T0 are the atmospheric vapor pressure and air temperature at the
source/sink height [Monteith, 1965], or at the so-called roughness length (z0), where wind speed is zero.
They represent the vapor pressure and temperature of the quasi-laminar boundary layer in the immediate
vicinity of the surface level (Figure 1), and T0 can be obtained by extrapolating the logarithmic profile of TA

down to z0 [Troufleau et al., 1997]. e�0 is the saturation vapor pressure at the evaporating front (hPa). Water
vapor transfer occurs from within the vegetation (transpiration) and from the immediate vicinity of the veg-
etation (interception evaporation) and soil surface (soil evaporation). The stomatal cavities are assumed to
be saturated with respect to water vapor, hence, it is expected that e�0 of dense canopies can always be esti-
mated from the radiometric surface temperature (TR). For sparse vegetation, the TR signal is a mixture of
both vegetation and soil, and the estimates of e�0 carry the mixed signal of both the canopy and soil. For
extremely dry bare soil, the evaporating front may be located slightly below the dry surface layer and
expressing e�0 as a function of TR can lead to errors. Given the potential of TR to capture the signals of both
surface and subsurface wetness [Anderson et al., 2008; Kustas and Anderson, 2009], e�0 is estimated from TR in
the present case.

By combining equations (2)–(4) and solving for gB, we get

gB5
/

qcP ðTo2TAÞ1 e02eA
c

� �h i (5)

Combining the aerodynamic kE expressions of equation (4) and solving for gS, we can express gS in terms of
gB, e�0, e0, and eA.

Figure 1. Schematic representation of one-dimensional description of STIC. Here rB and rS are
the aerodynamic and surface (or canopy in case of full vegetation) resistances, gB and gS are
the aerodynamic and surface conductances (reciprocal of resistances), e�S is the saturation
vapor pressure of the surface, e�0 is the saturation vapor pressure at the source-sink height, T0

is the aerodynamic surface temperature that is responsible for transferring the sensible heat
(H), e0 is the vapor pressure at the source-sink height, eS is the vapor pressure at the surface,
z0 is the roughness length, TR is the radiometric surface temperature, TSD is the surface dew-
point temperature, M is the surface moisture availability, RN and G are net radiation and
ground heat flux, TA and eA are temperature and vapor pressure at the reference height (zR),
kE is the latent heat flux, H is the sensible heat flux, respectively.
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gS5gB
e02eAð Þ
e�02e0
� � (6)

While deriving expressions for gB and gS, two more unknown variables are introduced (e0 and T0), thus there are
two equations and four unknowns. Therefore, two more equations are needed to close the system of equations.

2.1. Expression for T0

An expression for T0 is derived from the Bowen ratio (b) [Bowen, 1926] and evaporative fraction (K) [Shuttle-
worth et al., 1989] equation as described in Mallick et al. [2014].

To5TA1
e02eA

c

� �
12K

K

� �
(7)

Table 1. Table of Symbols and Their Description Used in the Study

Symbol Description

k Latent heat of vaporization of water (J kg21 K21)
kE Evaporation (evaporation 1 transpiration) as latent heat flux (W m22)
H Sensible heat flux (W m22)
RN Net radiation (W m22)
G Ground heat flux (W m22)
/ Net available energy (W m22)
E Evapotranspiration (evaporation 1 transpiration) as depth of water (mm)
kE* Potential evaporation as flux (W m22)
kEW Wet environment evaporation as flux (W m22)
kE�P Potential evaporation as flux (W m22) according to Penman
kE�PM Potential evaporation as flux (W m22) according to Penman-Monteith
kE�PT Potential evaporation as flux (W m22) according to Priestley-Taylor
E* Potential evaporation as depth of water (mm)
E�P Potential evaporation as depth of water (mm) according to Penman
E�PM Potential evaporation as depth of water (mm) according to Penman-Monteith
E�PT Potential evaporation as depth of water (mm) according to Priestley-Taylor
EW Wet environment evaporation as depth of water (mm)
gB Boundary layer conductance (m s21)
gS Stomatal/surface conductance (m s21)
gSmax Maximum stomatal/surface conductance (m s21) (5 gS/M)
M Surface moisture availability (0–1)
TA Air temperature (8C)
TD Dewpoint temperature (8C)
TR Radiometric surface temperature (8C)
TSD Surface dewpoint temperature (8C)
T0 Aerodynamic surface temperature (8C)
RH Relative humidity (%)
eA Atmospheric vapor pressure (hPa) at the level of TA measurement
e0 Atmospheric vapor pressure (hPa) at the source-sink height
DA Atmospheric vapor pressure deficit (hPa) at the level of TA measurement
eS ‘‘Effective’’ vapor pressure of evaporating front near the surface (hPa)
e�S Saturation vapor pressure of surface (hPa)
e�0 Saturation vapor pressure (hPa) at the source-sink height
S Slope of saturation vapor pressure versus temperature curve (hPa K21) (estimated at TA)
s1 Slope of the saturation vapor pressure and temperature between (TSD 2 TD) versus (eS 2 eA) (approximated at TD) (hPa K21)
s2 Slope of the saturation vapor pressure and temperature between (TR 2 TD) versus (e�S 2 eA) (hPa K21)
s3 Slope of the saturation vapor pressure and temperature between (TR 2 TSD) versus (e�S 2 eS) (approximated at TR) (hPa K21)
s4 Slope of the saturation vapor pressure and temperature between (TA 2 TD) versus (e�A 2 eA) (hPa K21)
WS Wind speed (m s21)
EA Drying power of air
zR Reference height (m)
zM Effective source-sink height of momentum (m)
z0 Roughness length (m)
d Displacement height (m)
c Psychrometric constant (hPa K21)
q Density of air (kg m23)
cp Specific heat of dry air (MJ kg21 K21)
K Evaporative fraction
b Bowen ratio
a Priestley-Taylor parameter
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This expression for T0 introduces another new variable (K); therefore, one more equation that describes the
dependence of K on the conductances (gB and gS) is needed to close the system of equations. Section 2.2
describes the derivation of K expression while section 2.3 describes the derivation of e0.

2.2. Derivation of K
In order to express K in terms of gB and gS, we had adopted the advection-aridity hypothesis [Brutsaert and
Stricker, 1979] and introduced a modification. Although the advection-aridity hypothesis leads to an
assumed link between gB and TR, the effects of surface moisture was not explicit in the advection-aridity
equation. Present study has implemented a moisture constraint in the original advection-aridity hypothesis
for deriving an expression of K. Deriving the expression for K is one of the key novelties of the STIC frame-
work and the novel part of the derivation is described below. The logic of using the advection-aridity
hypothesis for finding an expression of K is briefly described in Appendix A (for details see Mallick et al.
[2014)]).

A modified form of the original advection-aridity hypothesis (equation (A2) in Appendix A) is written as
follows:

E�PM52E�PT 2E (8)

Here E�PM is the potential evapotranspiration according to Penman-Monteith [Monteith, 1965] for any sur-
face, and E�PT is the potential evapotranspiration according to Priestley-Taylor [Priestley and Taylor, 1972].
Dividing both sides by E we get,

E
E�PM

5
E

2E�PT 2E
(9)

and dividing the numerator and denominator of the right-hand side of equation (9) by E�PT we get,

E
E�PM

5

E
E�PT

22 E
E�PT

(10)

Again assuming the Priestley-Taylor equation for any surface is a variant of the PM potential evapotranspira-
tion equation, we will derive an expression of E�PT for any surface.

E�PM 5
s/ 1 qcPgBDA

s 1 c 11
gB

gSmax

� � (11)

5
s/

s1 c 1 1
gB

gSmax

� � 1 1
qcPgBDA

sU

� �

5
as/

s1 c 1 1
gB

gSmax

� �

5 E�PT

(12)

Here a is the Priestley-Taylor parameter [a 51.26 under nonlimiting moisture conditions, a 5 1.7 under
water-limited condition, Pereira, 2004]. gSmax is defined as the maximum possible gS under the prevailing
atmospheric conditions whereas gS is limited due to the moisture availability (M) and hence gSmax 5 gS/M
[Monteith, 1995]. This approximation is very similar to the gS equation of Jarvis [1976] and Baldocchi et al.
[1991], who introduced multiple environmental drivers to constrain gSmax. However, the main weakness of
Jarvis [1976] expression is the assumption that the environmental variables operate independently [Mon-
teith, 1995]. We assume that M is a significant controlling factor for the ratio of actual and potential evapo-
transpiration (or transpiration for a dry canopy), and the interactions between the land and environmental
factors are substantially reflected in M. Since, Penman [1948] derived his equation over the open water sur-
face and gSmax over the water surface is very high [Monteith, 1965, 1981], gB/gSmax was assumed to be negli-
gible. Introduction of leaf area index (Lai) is not necessary in this case because Lai plays role to scale up the
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conductances from leaf to lumped canopy values, and we are already treating gS as a lumped surface
conductance.

Expressing / as / 5 E/K and expressing E�PT according to equation (12) gives the following expression of E/
E�PT .

E
E�PT

5
K s1 c 11

gB
gSmax

� �h i
as

(13)

Now substituting E/E�PT from equation (13) into equation (10) and after some algebra we obtain the follow-
ing expression:

E
E�PM

5
K s1 c 11

gB
gSmax

� �h i

2as 2 K s1 c 11
gB

gSmax

� �h i (14)

According to the PM equation [Monteith, 1965] of actual and potential evapotranspiration,

E
E�PM

5

s/1 qcp gB DA

s1 c 11
gB
gS

� �

s1 c 11
gB

gSmax

� �
s/1 qcp gB DA

(15)

Combining equations (14) and (15) gives an expression for K in terms of the conductances:

s1 c 11
MgB

gS

� �

s1 c 11
gB
gS

� � 5
K s1 c 11

MgB
gS

� �h i

2as2 K s1 c 11
MgB

gS

� �h i (16)

After some algebra the final expression of K is as follows:

K5
2as

2s 1 2c 1 c gB
gS

11Mð Þ (17)

2.3. Significance of Moisture Availability (M) and e0 in STIC
Expression for e0 requires the determination of near surface moisture availability (M). M is a unitless quantity
which describes the relative dryness or wetness of the surface and controls the transition from potential to
actual evaporation rate. Considering the general case of evaporation from any nonsaturated surface at a
rate less than the potential, M is the ratio of the actual evaporation rate to the potential evaporation rate.
Here M is assumed to be homogeneous between the surface and the evaporation front and its contribution
to the surface vapor pressure (eS) is given as follows [Segal et al., 1990; Lee and Pielke, 1992]:

es5eA 12Mð Þ1Me�s (18)

e�s is the surface saturated vapor pressure expressed in TR. For the extreme case where M equals zero, the
surface is absolutely dry, eS equals eA, and no water vapor is transported from the surface to the atmos-
phere (kE 5 0). When M equals unity, it reflects a saturated evaporating surface (e.g., after a heavy rainfall
event or irrigation). Given TR serves as a direct metric for the surface moisture status [Kustas and Ander-
son, 2009], we used TR in conjunction with TA and relative humidity (RH) to derive M within a physical
estimation framework. The retrieval of M is already described in Mallick et al. [2014] (details in Appendix
A), but a novel part is introduced here to account for any kE 2 DA 2 TR hysteresis [Zhang et al., 2014;
Zheng et al., 2014].

Following Venturini et al. [2008], Mallick et al. [2014] adopted the retrieval of M (equation (A4)) with some
modifications (see Appendix A for details). However, using equation (A4) for determining M was found
to produce overestimation of kE under the conditions when hysteresis occurs between TR, DA, and kE,
which is normally observed in many regions of the world [Zhang et al., 2014; Zheng et al., 2014; Boegh
et al., 1999]. Hysteresis is found because the capacity of the soil and vegetation to supply moisture to
the atmosphere is larger in the morning than in the afternoon [Boegh et al., 1999]. Hysteresis occurs due
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to the phase difference between the diurnal cycle of RN, TR, and DA (Figures 2a and 2b), which triggers
the asymmetric relationship between stomatal conductance and transpiration from morning to evening
[Boegh et al., 1999], thus causes a rate-dependent hysteresis in the kE 2 DA 2 TR relation [Zhang et al.,
2014; also see Mallick et al., 2013]. Hysteresis could also occur due to stomatal closure under very high
DA and low soil moisture (i.e., high TR), which is commonly found in arid, semiarid, and hyper-arid regions
[Boegh et al., 1999]. Such hysteresis is associated with a clockwise looping pattern when diurnal kE is
plotted against diurnal DA and TR (Figures 2a and 2b) [Zhang et al., 2014]. When RN and kE are perfectly
in phase (for an uncoupled canopy), kE is more energy controlled (75% energy control) and both TR as
well as DA tend to lose its control on kE. However, for a fully coupled canopy, particularly during the
afternoon hours, RN and kE are not perfectly in phase (Figure 2c) and a strong hysteresis is also observed
between RN, DA, and TR (Figure 2d). As shown in Figure 2d, the rate of decrease of TR is relatively low as
compared to RN whereas DA decreases even at a very slow rate. During this time the ecophysiology typi-
cally controls interactions between the surface to atmospheric moisture demand versus the surface
moisture availability and supply. If the atmospheric moisture demand is very high (high DA) and surface
moisture is very low (high TR), the loss of water to the atmosphere is dominated through the stored root-
zone moisture, which causes a partial shutdown of the stomatal aperture [Boegh et al., 1999]. As shown

Figure 2. Measured patterns of (a) kE versus DA, (b) kE versus TR, (c) kE versus RN, and (d) RN versus TR and DA time series for a single repre-
sentative summer day that illustrates the onset of hysteresis. The arrows indicate the energy and water limitation phases with the progres-
sion of diurnal cycle. The area covered by kE trajectories is a measure of the strength of the hysteresis [Zhang et al., 2014; Zheng et al.,
2014]. In the arid and semiarid regions, there is both energy control and stomatal control of transpiration in the absence of water stress in
the morning around 10–11 h. In the afternoon, the stomatal control of transpiration is also confounded by the water stress as described in
Boegh et al. [1999].
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in Figures 2a and 2b, the onset of hysteresis happens when the control of kE shifts from energy limita-
tion to water limitation and the role of root-zone soil moisture becomes dominant. The hysteresis loop
in the kE 2 TR 2 DA relationship occurs due to the combined effects of soil moisture changes and time
lags in the environmental (e.g., RN, TA, DA) and land surface drivers (TR) that influence kE [Zhang et al.,
2014; Zheng et al., 2014]. Therefore, despite DA rises, a recession in kE is found because plants spend
their stored root-zone moisture in a conservative way (Figure 2). The M retrieval method of Venturini
et al. [2008] does not explicitly consider the complex interactions between kE 2 TR 2 DA and soil water
potential-soil moisture retention phenomena during the soil moisture dry-down stages. While postulat-
ing the theory of evaporation from nonsaturated dry surfaces, Granger and Gray [1989] derived an
expression of M that has a strong dependence on TR, DA, and / (for the detailed derivation see Granger
and Grey [1989]):

M5
ckE

ðs/1cEA2skEÞ (19)

According to the aerodynamic transfer equation, kE can also be expressed as kE 5 f(u)(eS 2 eA), where f(u) is
the wind function that is related to gB. EA is generally referred to as the ‘‘drying power’’ of the air [Monteith,
1965; Granger and Gray, 1989] and is a product of the wind function f(u) and DA:

M5
cf ðuÞðeS2 eAÞ

s/1cf ðuÞ e�A2 eA
� �

2sf ðuÞðeS2 eAÞ
(20)

e�A is the saturation vapor pressure of air expressed in TA. Assuming / ffi E* ffi f(u)(e�S 2 eA) and cancelling f(u)
from both the denominator and numerator, M can be expressed as follows:

M5
cðeS2 eAÞ

s e�S2 eA
� �

1c e�A2 eA
� �

2sðeS2 eAÞ

5
ðeS2 eAÞc

e�S2 eS
� �

s1 e�A2 eA
� �

c

(21)

According to the equation (21), for a dry surface, eS is close to eA and M approaches zero, whereas for a
saturated surface eS ! e�S and e�S ffi e�A (because surface temperature becomes very close to the ambient
air temperature) and M approaches unity. At the same time under the hysteretic kE 2 DA soil water
retention conditions, equation (21) will always have an additional DA feedback on the surface moisture
availability. Expressing M in terms of the component temperatures will result in the following
expression:

M5
cs1ðTSD2 TDÞ

s3 TR2 TSDð Þs1cs4 TA2 TDð Þ (22)

Here s1, s3, and s4 are the slopes of the saturation vapor pressure and temperature between (TSD 2 TD)
versus (eS 2 eA), (TR 2 TSD) versus (e�S 2 eS), and (TA 2 TD) versus (e�A 2 eA) relationship. TSD and TD are the
surface dewpoint temperature and air dewpoint temperature, respectively. Since TSD is unknown, s1

and s3 are approximated at TD and TR. The rationale behind this approximation is described in Appen-
dix A.

In the present study, we use the two equations (equations (A4) and (22)) for M depending on the occur-
rence of hysteresis. We assume equation (A4) to be the indicator of surface wetness that controls the evapo-
transpiration from the upper few centimetres of the surface, whereas equation (22) is assumed to be the
indicator of the root-zone wetness that controls the evapotranspiration under strong hysteretic conditions
between kE, RN, TR, and DA. When kE is limited due to low surface wetness and high DA, maximum kE occurs
around 1–2 h before noon, after which the stomatal conductance drops down as a response to increasing
DA and water stress [Boegh et al., 1999]. Hysteresis was detected from the rising and falling limb of RN, TR,
and DA [Zhang et al., 2014; Zheng et al., 2014; Boegh et al., 1999] according to the two criteria, (a) if for a clear
day, the RN limb is falling after the peak RN is reached and at the same time both the TR and DA limbs con-
tinue rising, those events were identified as hysteresis; (b) if both the RN and TR limbs are falling after the
peak RN is reached and at the same time if the DA limb continues rising, those events were also identified as
hysteresis.
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The surface moisture availability is assumed
to impact both es and e0. As for the es expres-
sion (equation (18)), M is used to estimate e0

as follows:

e05eA 12Mð Þ1 Me�0 (23)

Although equation (23) is empirical, it is based
on our expectation of how in-canopy vapor
pressure behaves between extreme wet-dry
surface conditions. However, in-canopy aerody-
namic conductance (between soil and source/
sink height and between leaves and source/
sink height) is extremely difficult to model (not
well developed) and empirical methods may
be much better (as suggested here).

From equations (5), (6), (7), and (17), there
are four unknowns (gB, gS, T0, K), which can
be solved analytically. The closure equations
of STIC and estimation of the Priestley-Taylor
parameter (a) are described below.

2.4. STIC Closure Equations and Estimation of a

Equation (5) (gB), (6) (gS), (7) (T0), and (17) (K) form the four closure equations of STIC which are solved to
retrieve the analytical expressions of these four unobserved variables. In the analytical expressions, the
radiative (RN, G), meteorological (TA, RH or eA or TD), land surface (TR, M), and ecophysiological (a) varia-
bles provide the constraints to the conductances, T0, and K. However, since a is still unknown, this vari-
able is iteratively estimated. Following the equation of Penman [1948], the present work reports an
analytical expression of the Priestley-Taylor coefficient (a) under limiting surface and environmental con-
ditions within the framework of the PM equation [Monteith, 1965, 1981]. Here equation (1) is decom-
posed as follows to obtain a physical expression of a under limited environmental and ecohydrological
conditions.

kE5
s/

s1c
s1 c

s1c 11
gB
gS

� �1
qcPgBDAðs1 cÞ

s/ s1c 11
gB
gS

� �n oi
2
4 (24)

Therefore; a5
s1 c

s1c 11
gB
gS

� �1
qcPgBDAðs1 cÞ

s/ s1c 11
gB
gS

� �n o (25)

After retrieving M, e�s (from TR) and e0 (from equation (23)); an initial estimate of gB, gS, K, and T0 is obtained
from the closure equations with an initial value of a (5 1.26). The process is then iterated by updating a in
subsequent iterations with the previous estimates of gB and gS by the above mentioned physical expression
(equation (25)) until a stable value of a is achieved. Repeating this process produces stable value of a within
10–12 iterations. The final a value is used in the closure equations for obtaining the final estimates of gB, gS,
K, and T0. An example of the convergence of a is shown in Figure 3. The computational sequence diagram
is given in Figure 4.

3. Data Sets

Estimation of kE and H through STIC requires measurements of TR, RN, G, TA, RH, or eA, and the dewpoint
temperature of air (TD). These radiative and meteorological variables were measured during the four differ-
ent field experiments. Simultaneous micrometeorological measurements of kE and H by EC method were
used to evaluate the performance of STIC. TD was calculated from TA and RH according to Buck’s [1981]
equation. Detailed descriptions of the different data sets are given below and a list of the sites is given in
Table 2.

Figure 3. Convergence of the iteration method for retrieving the
Priestley-Taylor coefficient (a) using equation (25). The initial values of gB

and gS were determined with a 5 1.26. The process is then iterated by
updating a in subsequent iterations with the previous estimates
of gB and gS.
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3.1. SMEX02 and SMACEX Data Set
The Soil Moisture Experiment—2002 (SMEX02) was conducted in conjugation with the Soil Moisture Atmos-
phere Coupling Experiment (SMACEX) [Kustas et al., 2005] during June and July 2002 in and around the Wal-
nut Creek Watershed (WCW) near Ames, Iowa (418580N, 938400W). The main objectives of the experiment
were to study the land-atmosphere interactions and to test and validate the thermal remote sensing based
E algorithms over a wide spectrum of hydrothermal and vegetation conditions. The landscape was an agro-
ecosystem with an intensive corn and soybean production region that consisted of a network of 12 meteor-
ological and EC flux (METFLUX) towers (six soybean and six corn) (Table 2). Surface fluxes (H, kE, and G) as

Figure 4. Computational sequence for estimating kE and H through the integration of radiometric surface temperature (TR) into the Penman-Monteith model in the framework of STIC.

Table 2. List of Sites Along With Their Characteristics Used For Testing and Verifying STIC

Experiment-
Data Source Time Period Spatial Resolution

Temporal
Resolution Biome Type Climate Type Latitude Longitude

SMEX02 2002 (DOY 171–189) Eddy covariance
footprint

30 min Agroecosystem (corn
and soybean)

Humid
continental

418580N 938400W

BEAREX08 2008 (DOY 185–220) Eddy covariance
footprint

60 min Agroecosystem (cotton) Dry semiarid 358110N 1028060W

FIFE 1987 (DOY 152–285) Automated
meteorological station

30 min Grassland Temperate
continental

398N 968880W
1988 (DOY 132–250)

SAFARI2000 2000 (DOY 59–75) Eddy covariance
footprint

30 min Woody savanna
and shrubland

Dry semiarid 208S 228 W
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well as TR, RN, TA, and RH were measured at all towers and averaged for 30 min intervals. Tower heights were
maintained at approximately twice the canopy height. The intensive observation period covered a span of
18 consecutive days from day of year (DOY) 171 to 189.

3.2. BEAREX08 Data Set
The 2008 Bushland Evapotranspiration and Agricultural Remote sensing EXperiment (BEAREX08) was a mul-
tiagency field campaign near Bushland, Texas (358110N, 1028060W, 1170 m elevation above MSL) to investi-
gate and compare different field and remote sensing based approaches for measuring surface energy
fluxes [Evett et al., 2012]. More specifically, the primary goal of BEAREX08 was to investigate the impact of
meso and microscale advective processes on kE measurements from dryland and irrigated agricultural
fields, and how well these impacts are captured by remote sensing and predictive modeling systems. The
study area consisted of four adjacent fields (each 4.7 ha) containing irrigated and dryland cotton along with
nearby bare soil, wheat stubbles, and rangeland fields using nine EC stations, three large aperture scintill-
ometers, and three Bowen ratio systems. The data used in this study were collected in the irrigated cotton
fields. Surface fluxes (H, kE, and G), TR, RN, TA, and RH were measured at 60 min intervals at all of the towers.
The detailed description of the BEAREX08 field campaign can be found in Evett et al. [2012] while a com-
plete discussion of the data from the four EC stations can be found in Alfieri et al. [2011, 2012].

3.3. FIFE Data Set
The First ISLSCP (International Satellite Land Surface Climatology Project) Field Experiment (FIFE) was a land
surface atmosphere exchange experiment conducted in and around the 15 km 3 15 km Konza Prairie Long
Term Ecological Research (LTER) site centered at 398N, 968880W near Manhattan, Kansas [Sellers et al., 1992].
The land cover was predominantly a grassland ecosystem. Surface data from 10 Portable Automatic Meteor-
ological (PAM) stations were collected during three consecutive summers from 1 May 1987 to 10 November
1989. Meteorological and surface flux measurements were also conducted at multiple sites (22 sites in 1987,
10 in 1988, and 14 in 1989) [Kanemasu et al., 1992]. Surface flux and meteorological data collected at all the
sites were averaged for each year from 1987 to 1989 (for details on averaging, data processing, and quality
control methods see Betts and Ball [1998]). Although significant heterogeneity was found between sites
[Betts and Ball, 1998], no attempts were made to account for land cover when averaging the data for the
sites. The data are available at www.alanbetts.com/research/. Given the limited data availability for 1989, we
have used the data of 1987 and 1988 in the present analysis.

3.4. SAFARI2000 Data Set
SAFARI2000 was an international science initiative in Southern Africa to investigate biosphere-atmosphere
exchange processes [Scholes et al., 2002]. Campaign-based EC measurements of carbon dioxide, water, and
energy fluxes (30 min averages) were made at four locations along a mean annual precipitation gradient in
southern Africa during the SAFARI 2000 wet (growing) season campaign in the year 2000. Measurements
were conducted along the Kalahari Transect and cover a gradient of average annual precipitation from
879 mm in Mongu to 365 mm in Tshane. This climate gradient is reflected by vegetation type and structure
covering broadleaf evergreen forest in the north to open savanna in the south. EC instruments were
installed on a permanent tower in Mongu, Zambia (879 mm of rainfall per year), as well as on a portable
tower in Maun (460 mm/yr), Okwa River Crossing in Ghanzi (407 mm/yr), and Tshane (365 mm/yr), Botswana
for several days at each site. As kE data of Mongu and Tshane were very noisy, we omitted these data in the
present analysis. The data are available at ftp://daac.ornl.gov/data/safari2k/.

The main reasons for selecting these four experimental data sets were (a) they cover a wide range of surface
and atmospheric dryness-wetness conditions, (b) data are substantially quality controlled, and (c) they were
used earlier to test and validate some sophisticated thermal remote sensing based kE algorithms [Norman
et al., 1995; Anderson et al., 1997, 2007, 2012; Su, 2002]. Another important advantage of using these data
sets was the availability of high-frequency TR measurements within the EC footprint, along with the micro-
meteorological and meteorological measurements. The surface energy balance data were already closed in
the FIFE data sets. For the rest of the experimental data sets, the surface energy balance was closed by
applying the Bowen ratio [Bowen, 1926] closure as described in Chavez et al. [2005] and later adopted by
Anderson et al. [2007] and Mallick et al. [2014]. It is important to mention, for SMEX02, data from six individ-
ual corn and six individual soybean sites were combined (or concatenated) and crop wise analysis was con-
ducted. Similarly, data from four BEAREX08 sites and data from two SAFARI2000 sites were individually
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combined (or concatenated). The surface energy balance of individual EC stations was closed at first before
concatenating the data. For every individual experiment, similar kind of meteorological, radiation, and sur-
face flux measurement sensors were used in the multiple EC stations, and the sensor precision as well as
accuracy was the same within the experiments.

4. Results

4.1. Sensitivity of Conductances and Surface Fluxes to TR

The accuracy of the conductance and surface flux retrieval through STIC depends on the quality of TR.
Therefore, a sensitivity analysis of STIC was first carried out to quantify the impacts of uncertainty in TR

on gB, gS, kE, and H. The sensitivity analysis will indicate the accuracy that is necessary in TR measure-
ments to retrieve reliable surface energy fluxes. Sensitivity analyses were conducted by increasing and
decreasing TR randomly from its original value while keeping the other variables and parameters con-
stant. This procedure was selected because the fluxes and conductances reflect an integrated effect of
TR and it shows substantial variability throughout the year. First, the base conductances and fluxes were
computed using the base TR data. Then TR was varied randomly and a new set of conductances and
fluxes were computed. The nature of the sensitivity analysis used here is similar to that of Anderson et al.
[1997]: the absolute sensitivity (SV) of any of the output variable (V) to 6X uncertainty in TR was assigned
as SV 5 j (VX1 2 VX2)/VXr j. SV of 0.1 signifies 10% and 1 signifies 100%. Here VX1 and VX2 are the esti-
mated variables when the value of TR is increased or decreased by X and VXr is the value of the estimated
variable at ‘‘true’’ TR. The averaged random uncertainties of TR were 0.78, 0.77, 0.82, and 0.80 K for
SMEX02, BEAREX08, FIFE, and SAFARI2000, respectively (Figure 5). Both the fluxes and conductances
were found to be significantly sensitive to the TR uncertainties. However, the sensitivity of H among the
two fluxes was higher, while the sensitivity of gS was higher among the two conductances (Figure 5).
The magnitude of average SV varied from 14% to 30% for gB, 19% to 36% for gS, 8% to 18% for kE, and
17% to 37% for H, respectively (Figure 5).

4.2. Evaluation of Half-Hourly and Hourly kE and H
The performance of STIC was evaluated using the measures suggested by Willmott [1982]. These include
the statistical analysis of root-mean-square deviation (RMSD) (both systematic, RMSDS and unsystematic or
random, RMSDU) (see Table 3 for the definition), mean absolute percent deviation (MAPD) and correlations
coefficient (r). According to Willmott [1982], systematic error (RMSDS) should be less than the random error
(RMSDU). The proportion of the total RMSD arising from systematic biases is reflected in the quantity
RMSDs2/RMSD2 [Willmott, 1982].

Estimates of kE and H from STIC at half-hourly (hourly for BEAREX08) temporal resolution are compared to
the measurements (Figure 6) for all the four experiments. In all four experiments, both the predicted kE and

Figure 5. Sensitivity of the STIC derived fluxes (kE and H) and conductances (gB and gS) to random uncertainties in radiometer measured
TR (rTR). One representative site from every experiment is chosen. The numbers of data points were 919 for SMEX02, 1488 for BEAREX08,
6624 for FIFE, and 135 for SAFARI2000. Average sensitivity of all data points is reported.
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H are generally in good agreement with the observations, with reasonable correlation (r) (r range between
0.82 and 0.98) between observed and STIC fluxes. Regression statistics varied between 0.85 and 1.01 for the
slope and 24 to 53 for the offset for kE (Table 3), whereas for H, these were 0.7–1 for the slope and 212 to
21 for the offset (Table 3), respectively. The scatter between the observed and predicted kE was reasonably
small (Figure 6) while the comparison of H shows relatively larger scatter between the modeled and meas-
ured values. This was in particular the case for BEAREX08 and FIFE (inset of Figure 6), thus resulting in higher
RMSD and MAPD for H.

Quantitative measures (error statistics) of the STIC performance at half-hourly (hourly for BEAREX08) tempo-
ral resolution are shown in Table 3. For SMEX02, kE and H derived by STIC were generally in good agree-
ment with the observations. The difference between mean observed and predicted values of both kE and
H is fairly small (2–7 W m22 and 22 to 23 W m22). The relative sizes of RMSDs to RMSD for both fluxes indi-
cate a small systematic difference. For kE the RMSDs2/RMSD2 proportion varied from 0.03% to 16% whereas
for H this proportion was 16% to 33%. However, the percent errors (MAPD) in H are relatively large because
the magnitude of the observed H is small. For BEAREX08, the magnitude of bias was 26 to 217 W m22 for
kE and 2–19 W m22 for H. Both fluxes had reasonably small RMSDs values, which again indicate a small sys-
tematic difference between the observed and predicted fluxes. The ratio of RMSDs2/RMSD2 was 1–22% for
kE and 2–17% for H, respectively (Table 3). For the FIFE data, the ratio of RMSDs2/RMSD2 varied between
13% and 25% for kE, whereas this ratio was 15–39% for H (Table 3). The MAPD in H was high for both
BEAREX08 (45% to 77%) and FIFE (30–31%) sites. For the SAFARI2000, the MAPD of both fluxes varied from
10% to 15% and 20% to 21%, respectively (Table 3). The proportion of the systematic difference was also
low for both kE (13–21%) and H (3–8%).

4.3. Evaluation of Daily and Seasonal kE and H
Hourly fluxes were aggregated into daytime totals and compared with the measured fluxes as shown in Fig-
ure 7, with associated error statistics given in Table 4. For SMEX02, STIC performed efficiently in capturing
the daily kE and H patterns of both corn and soybean (Figures 7a and 7c), although there was slight under-
estimation of kE over corn (Figure 7b). This was also evidenced by the negative intercept of the least square
regression between the observed and STIC kE (Table 4). For the BEAREX08 experiment, STIC was unable to

Table 3. Quantitative Measures (Error Statistics) of the Performance of STIC for Hourly kE and H Estimatesa

Flux Experiment
Crop/Tower

ID/yr N

�O
(W m22)

P�
(W m22) Slope Intercept

MAPD
(%)

RMSD
(W m22)

RMSDS

(W m22)
RMSDU

(W m22) r

kE SMEX02 Corn 4585 332 329 0.94 16 6 25 10 23 0.98
Soybean 5178 233 234 1.01 21 10 33 2 33 0.97

BEAREX08 EC1 1488 226 223 0.94 12 14 43 12 41 0.97
EC2 1488 212 206 0.85 26 19 56 26 50 0.95
EC8 1488 287 268 0.94 21 12 47 23 42 0.98
EC9 1488 277 282 1 24 12 47 5 47 0.98

FIFE 1987 6624 216 236 0.90 40 16 44 22 38 0.94
1988 6288 217 223 0.87 34 15 44 16 41 0.93

SAFARI2000 Ghanzi 135 78 94 0.80 35 15 38 14 35 0.84
Maun 235 114 116 0.85 53 10 39 18 25 0.92

H SMEX02 Corn 4585 63 66 0.75 19 30 25 10 22 0.79
Soybean 5178 65 63 0.72 16 36 33 19 27 0.88

BEAREX08 EC1 1488 68 70 0.83 14 45 43 17 39 0.90
EC2 1488 76 82 0.80 21 53 56 23 51 0.87
EC8 1488 84 89 0.98 20 74 48 19 44 0.90
EC9 1488 78 73 0.92 8 77 48 7 47 0.87

FIFE 1987 6624 96 83 0.70 16 31 40 25 30 0.86
1988 6288 106 99 0.79 16 30 44 17 40 0.82

SAFARI 2000 Ghanzi 135 55 70 1.08 211 20 38 7 37 0.92
Maun 235 43 44 1 212 21 39 11 39 0.90

aN 5 number of observations; �O 5 mean observed flux; P�5 mean predicted flux; MAPD is the percent error defined as the mean-
absolute-deviation between observed (O) and predicted (P) flux divided by mean observed flux; RMSD 5 root-mean-square

deviation 5 1
N

XN

i50
ðPi2OiÞ2

h i2
; RMSD

S
5 systematic RMSD 5 1

N

XN

i50
ðP�i2OiÞ2

h i2
; RMSD

u
5 unsystematic RMSD 5 1

N

XN

i50
ðPi2P�iÞ

2
h i2

;

P�
i
5 c 1 mO

i
; m and c are the slope and intercept of linear regression of P on O.
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effectively capture the advective enhancement in kE that occurred during day of year (DOY) 215–217 DOY,
as evidenced in Figure 7f. However, the daily kE dynamics on some of the days with minor advection from
DOY 177 to 203 was fairly well captured by STIC. For the FIFE data, the scatter between observed and

Figure 6. Comparison of measured versus STIC estimates of kE and H (inset) using hourly data of SMEX02, BEAREX08, FIFE, and SAFARI2000 experiments.
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estimated kE and H was relatively large as compared to the other experiments (Figure 7g). Errors in the daily
step are smaller (Table 4) than for hourly fluxes due to cancellation of random errors through the course of
the day. Generally, the difference between mean predicted and observed values of both kE and H varied

Figure 7. (a, c, e, and f) Comparison of STIC predicted daily kE (black dots) and H (gray dots) with measured flux components over the indi-
vidual land cover types, integrated to daytime totals (MJ m22 d21). (b, d, f, and h) Time series of daily kE observed over different crops
compared with predicted kE from STIC.
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between 0.01 to 20.65 MJ m22 and 20.40 to 0.50 MJ m22 (Table 4). MAPD of the daytime kE and H values
varied from 5% to 13% and from 9% to 35%, respectively (Table 4). For kE, the proportion of RMSDs2/RMSD2

varied from 11% to 53% whereas for H this proportion ranged from 4% to 55% (Table 4). The magnitude
RMSD in daytime total kE varied from 0.47 to 1.65 MJ m22, which was 5% to 16% of the observed kE (Table
4). For H, the RMSD was 0.47 to 1.81 MJ m22, which was 10 to 44% of the observed daytime H (Table 4).

The average seasonal cumulative values of kE (E, mm) for different experiments are shown in Figure 8.
Since, time series observations of the individual flux sites in SMEX02 and BEAREX08 were incomplete, data
from all the corn and soybean in SMEX02 and all cotton sites in BEAREX08 are averaged to produce cumula-
tive corn E, soybean E, and cotton E, respectively. For corn there was a consistent underestimation of cumu-
lative E to the order of 5–8% (Figure 8a) whereas for soybean there was a consistent overestimation (2–7%)

Table 4. Quantitative Measures (Error Statistics) of the Performance of STIC for Daily kE and H Estimates

Flux Experiment Land Use N

�O
(MJ m22 d21)

P�
(MJ m22 d21) Slope Intercept

MAPD
(%)

RMSD
(MJ m22 d21)

RMSDS

(MJ m22 d21)
RMSDU

(MJ m22 d21) r

kE SMEX02 Corn 72 13.28 12.68 0.97 20.14 5 0.82 0.60 0.55 0.95
Soybean 108 8.03 8.04 0.80 1.59 9 0.98 0.33 0.90 0.83

BEAREX08 Cotton 248 13.21 12.56 0.83 1.61 11 1.65 0.93 1.36 0.95
FIFE Grassland 269 8.41 8.31 0.75 2.02 13 1.34 0.76 1.10 0.90
SAFARI2000 Woodland and

shrubland
6 9.16 9.17 0.93 0.66 4 0.47 0.20 0.42 0.99

H SMEX02 Corn 72 2.50 2.90 0.63 1.32 19 0.62 0.46 0.42 0.74
Soybean 108 3.43 3.44 0.48 1.78 25 1.11 0.79 0.77 0.68

BEAREX08 Cotton 248 4.08 4.58 0.67 1.85 35 1.81 1.12 1.42 0.82
FIFE Grassland 269 4.38 3.97 0.58 1.43 27 1.49 0.92 1.17 0.69
SAFARI2000 Woodland and

shrubland
6 4.79 4.74 1.05 20.29 9 0.47 0.10 0.46 0.97

Figure 8. Cumulative modeled and measured E averaged over all the land cover types. For SMEX02 and BEAREX08, this averaging is done by combining the data of all the corn, soybean
and cotton sites, respectively. For the FIFE, this averaging is done by combining the data of 1987 and 1988.
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after DOY 180 (Figure 8b). For cotton, although there was a consistent overestimation (15–50%) of cumu-
lative E in the initial stage (from DOY 164 to 174), but the error was reduced after DOY 174 (24% to 10%)
(Figure 8c). For the grassland of FIFE, the error in cumulative modeled E was within 218% to 1% (Figure
8d). Overall, the errors in cumulative E computed from STIC were within 2–6% of the cumulative
observed E.

4.4. Impact of Moisture Availability Representation on Modeled Fluxes
An intercomparison of half-hourly (hourly for BEAREX08) kE and H estimates against different M retrieval
methodologies is also conducted by comparing the statistics (RMSD and r) using two different M
retrieval approaches. In those cases, M was estimated (a) without assuming any hysteresis by employing
equation (A4) only and (b) by employing the air relative humidity and vapor pressure deficit (a modified
PMBL method of Mallick et al. [2013]) (see Appendix B for modified PMBL), respectively. The results (Fig-
ure 9) indicate significant improvements in kE (RMSD improved by 19–46%; r improved by 3–23%) (Fig-
ures 9a and 9b) and H estimates (RMSD improved by 25–48%; r improved by 15–47%) (Figures 9c and
9d) for all the experiments (with the exception of SMEX02 where the RMSD improvement was not sub-
stantial) when TR was used for constraining M in the STIC framework as compared to RH 2 DA based M
estimates. However, very low (for SAFARI2000) to moderate improvements (SMEX02, BEAREX08, and
FIFE) were found between the TR-based hysteretic and nonhysteretic kE (RMSD improved by 3–17% and

Figure 9. Impact of three different surface moisture availability (M) representations on the error statistics (RMSD and r) of (a and b) kE and (c and d) H. This shows TR to be a stronger vari-
able to constrain M and the surface fluxes as compared to the relative humidity (RH). RH-based method yielded higher RMSD and lower r as compared to TR in all the experiments other
than the SMEX02.
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r improved by 0–3%) (Figures 9a and 9b) and H estimates (RMSD improved by 3–7%; r improved by 0–
4%) (Figures 9c and 9d).

4.5. Error Analysis of kE and H Estimates
A residual error (e) (5 predicted flux 2 observed flux) analysis was conducted to quantify the impacts of bio-
physical, radiation, and meteorological variables on the error propagation in both kE and H estimates.
BEAREX08 data were chosen for this analysis because this experiment was conducted for a relatively longer
time period and covers a wide range of atmospheric turbulence, meteorological, and surface wetness con-
ditions. The distributions of e against different limits of biophysical, radiation, and meteorological variables
are shown in box and whisker plots (Figures 10a, 10c, 10e, 10g, and 10i). The boxplots show the median
and interquartile range of the e distribution and illustrate whether the distribution of e is symmetric or
skewed for the observed ranges of different input variables that control the modeled kE. The direction of e
in H was opposite to kE (therefore the figures of residual error of H are not shown). In general, the residual
kE and H errors (ekE and eH) were very weakly correlated (r 5 60.04) with the observed difference between
TR and TA (dTR-A) for the entire range of dTR-A. From Figure 10a, it is evident that there was a negligible over-
all positive mean ekE when dTR-A increases beyond 108C and ekE was only 0.3%. Figure 10b confirms that this
error is systematic since the ratio of RMSDs2/RMSD2 for both H and kE is close to unity (100%). Both ekE and
eH were weakly correlated (r 5 60.22) with wind speed (WS) (Figure 10c) and an error of 4.5% was intro-
duced into the flux estimates by neglecting the WS information into the STIC framework. The systematic
RMSD was higher for H than for kE for high values of WS (Figure 10d). Overall correlation between ekE and
DA was also weak, to the order of 0.11. However, when DA exceeds 40 hPa, ekE was positively skewed (Fig-
ures 10d and 10e) and r increased up to 0.17. The strongest relationship between ekE and DA was found
when DA exceeded 40 hPa and WS exceeded 8 m s21 when approximately 72% error was introduced into
the estimates of kE (results not shown). However, such conditions are rarely found and only 0.2% of the
total data exhibited this atypical combination of DA and WS. It is also evident from Figure 10f that the ratio
of RMSDs2/RMSD2 for kE was greatest when DA exceeds 40 hPa. The correlation between ekE and TR was
weak (r 5 0.25) (i.e., 6% error) and ekE distribution was positively skewed when TR> 458C (Figure 10g). As
shown in Figure 10h, the proportion of systematic error was higher in kE (RMSDs2/RMSD2 5 0.70) compared
to H (RMSDs2/RMSD2 5 0.35). Both the residual errors were weakly correlated with / (r 5 60.18) (i.e., 3%
error) as also evidenced in Figure 10i. Figure10j also brings out the fact that although the systematic errors
in both H and kE were larger for the smaller values of / but the magnitude of RMSDs2/RMSD2 are reduced
at high values of / (Figure 10j).

To probe the errors of the surface fluxes, we further investigated the kE RMSD in relation to the retrieved M
for the BEAREX08 and FIFE experiments (Figure 11) (because of the longer durations of these two experi-
ments as compared to the others). The analysis revealed that the majority of the RMSD in kE is originated
under substantial surface dryness conditions when M was between 0 and 0.25, after which the RMSD is
reduced significantly. For the BEAREX08, the RMSD in kE is reduced by 32% to 89% (from 65 W m22 to 44,
25 and 5 W m22 with increasing M) and for FIFE the RMSD is reduced by 48% to 75% (from 68 W m22 to 35,
17 and 21 W m22 with increasing M) (Figure 11).

5. Discussion

The surface flux estimates from STIC are able to capture the observed high-temporal frequency dynamics of
the fluxes covering a wide range of surface and environmental conditions and provide reasonable estimates
of kE (and H). Among the two surface fluxes, H was relatively more sensitive to the errors in TR (Figure 5).
Since the difference between TR and TA is considered to be the primary driving force of H [van der Tol et al.,
2009] the modeled flux estimates responded as expected due to the uncertainties in TR. Among the two
conductances, the relatively greater sensitivity of gS toward TR uncertainty (Figure 5) is attributed due to the
high response of gS to moisture transport in the soil-plant-atmosphere system [Manzoni et al., 2013]. This
could also be associated with the intrinsic link between gS and TR through the surface energy balance
[Campbell and Norman, 1998]. Overall, the high sensitivity of the fluxes and conductances to TR stresses the
need for high-quality TR data in surface energy balance modeling. It is also important to mention that uncer-
tainties in TR will also amplify the uncertainties both in RN and G, but to a small extent (to the order of 2–6%
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Figure 10. (a, c, e, g, and i) Box plots of statistical results showing the distribution of residual errors in STIC derived kE (EkE) in relation to
the environmental and land surface variables. The red line in box is the median EkE, the lower part of the red line is the first quartile and
upper part of the red line represents third quartile of EkE. The residual error in H also follows the similar pattern but in opposite direction.
(b, d, f, h, and j) Impact of the environmental and land surface variables on the ratio of the squares of systematic RMSD to total RMSD. The
ratio is in fraction (ratio of 1 signifies 100%).
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per 6 1 K uncertainty in TR) [Mallick
et al., 2015], and, therefore addi-
tional uncertainties expected from
TR induced through / (5 RN 2 G)
would be of minor importance.

Analysis of the surface energy fluxes
obtained from STIC over a broad
range of surface and atmospheric
conditions showed that this
approach can estimate kE within
71–96% of EC observations at half-
hourly to hourly scale. Similarly the
estimated H was within 62–85% of

the EC observations (Figure 6). The origin of the discrepancies between modeled and measured H in
SMEX02 and SAFARI2000 is unclear (Figures 6a, 6b, and 6f). Surface flux data obtained from the FIFE cam-
paign were more vulnerable to errors because these fluxes are the average from 16 Bowen ratio flux sta-
tions and 6 EC towers [Betts and Ball, 1998]. In addition, the meteorological and radiation variables are the
averages from many Portable Automatic Meteorological (PAM) stations and no attempts were made to
account for land cover and terrain influence during the data averaging [Betts and Ball, 1998]. Therefore, the
discrepancies between modeled and measured H in FIFE may be due to a combination of individual errors
arising from data averaging of both the EC flux and AMS measurements. For BEAREX08, the larger errors in
H (and kE also) (Figures 6c, 7e, and 7f) might have originated from ignoring the advection effects in the for-
mulation of STIC or, more specifically due to excluding the role of wind speed in the scheme (which could
be significant under high DA). Large scale horizontal advection was dominant during BEAREX08 [Alfieri et al.,
2012; Prueger et al., 2012] where parcels of irrigated cropland were in juxtaposition with hot and dry con-
trasting surface. This caused entrainment of dry and warm air from adjacent unirrigated fields, which
increases the vapor pressure deficit (high evaporative demand) of the overlying air, resulting in large evapo-
rative fluxes in excess of the net available energy over the irrigated fields [Alfieri et al., 2012; Prueger et al.,
2012]. This led to very low values of H during midday, where heat was extracted from the dry air layer to
drive the evaporation process. Under these conditions the potential evaporation (kEP) is greater than the
available energy (/) and the advective energy is defined as DA 5 kEP 2 / [Prueger et al., 1996]. This advec-
tive energy is added to kE at the cost of reducing the sensible heat flux by the same amount [Prueger et al.,
1996]. Although the impact of advection was implicitly included in the final estimation of H, it was not suffi-
cient to account for such anomalous conditions. This clearly points toward a need to better understand sur-
face energy balance exchange for heterogeneous surfaces in arid and semiarid regions under conditions of
strong local and regional advection. However, since the eddy covariance measurements of surface fluxes
are not immune due to the effects of land surface heterogeneity [Alfieri et al., 2012], uncertainties associated
with the surface flux measurements will also impact the results to some extent.

The observed differences between the predicted fluxes by STIC and observations could partly be attrib-
uted to the different spatial representativeness of the TR observations and flux measurements, which
could not be accounted for by STIC. Since all the TR measurements were conducted at 2 m above the sur-
face, therefore the footprint size of TR was also 2 m, whereas the EC surface flux observations generally
has a footprint of 200–300 m upwind [Norman et al., 2000]. Consequently, besides the requirement of
simultaneous ground-based TR and EC flux observations, the TR measurements have to be calibrated
using data that are more representative of the flux footprint area in order to obtain better agreement
between predicted and observed surface fluxes [cf. Norman et al., 2000]. The errors in the surface emis-
sivity correction during the calibration of TIR instruments should also be reduced for improving the accu-
racy of the TR measurements.

Marginal improvements in TR based surface flux predictions over the SMEX02 (Figure 9) might be due to
low surface to atmospheric water demand (and low thermal stress) during the limited study period and RH

based predictive fluxes are comparable to the TR based surface fluxes. For the other experiments, although
the RH based method could reproduce the observed fluxes moderately well; however this method led to
consistent overestimation under strong advection (as found in BEAREX08) as well as under high surface to

Figure 11. Pattern of kE RMSD according to different levels of surface moisture avail-
ability (M). This illustrates that the majority of the RMSD in kE is originated under sub-
stantial surface dryness conditions when M varies between 0 and 0.25.
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atmospheric water demand conditions (as found in SAFARI 2000 and FIFE) (Figure 9). An atmosphere with
low DA and high RH indicates a moist humid atmosphere, but the underlying surface may be water stressed.
RH based M estimates will portray a wet surface condition for an otherwise dry surface, leading to kE being
overestimated (H being underestimated). Similarly an atmosphere with high DA and low RH will portray a
dry surface condition when actually it is wet, leading to kE being underestimated. Relatively low to moder-
ate improvements in the kE and H estimates between TR based hysteretic and nonhysteretic events (Figure
9) might be due to the occurrence of few hysteretic events during the experimental phase where kE was
controlled by the stomata in the presence of both high DA and water stress.

It is apparent that the residual errors at high WS values became greater under increasing atmospheric mois-
ture deficits, indicating that the effectiveness of wind increases with increasing DA (Figures 10c and 10e).
Increase in the residual errors at low to moderate values of WS with high atmospheric moisture deficits can
also be expected (as seen in BEAREX08) if wind is the only source of variation in the kE observations at high
DA. The data used in the present study do not cover the full growing season. There may be more frequent
conditions having high WS and high DA later in the season under maximum vegetation cover conditions
which may lead to additional kE (and H) errors. Relatively higher errors under high surface dryness (Figure
11) also highlighted the additional challenge in estimating kE using the PM model and its application to dry
surfaces where TR remains well above than that of the air temperature at the reference height. Under these
conditions, the proper application of the PM equation requires iterative solution of T0 via the energy bal-
ance so that the PM equation essentially decomposes back to its original energy and radiation balance
components [Allen, 2013]. Relatively high RMSD in kE for low surface moisture availability range might also
be attributed to expressing e�0 at TR, which suggests that the representation of e�0 in STIC should be further
developed. Estimating in-canopy vapor pressure deficit (or aerodynamic e0 and e�0) might have an important
effect for sparse vegetation or dry bare surfaces where both e0 and e�0 are influenced by a combination of
conductance, net available energy, and surface moisture.

Although the performance of STIC in comparison to other TIR remote sensing based E modeling approaches
cannot be directly assessed without independently evaluating STIC using remote sensing data, the error sta-
tistics obtained from the STIC approach can still be compared with other studies that earlier used in situ TR

measurements and tower meteorology for evaluating the surface energy fluxes in a single-source or two-
source framework. Using hourly measurements of TR, associated meteorological-micrometeorological varia-
bles and a two-source energy balance model (TSEB), Anderson et al. [2012] reported RMSD in daily kE and H
of 1.5–1.8 MJ m22 and 1.1–2.1 MJ m22, respectively, using the BEAREX08 data. Kustas et al. [2012] applied
two different thermal E models (TSEB, Two-source Surface Energy Balance and DTD, Dual Temperature Dif-
ference) to a different data set from the same experiment and reported mean bias in H and kE to the order
of 28 to 240 W m22 and 218 to 31 W m22, respectively. Using the TSEB model, Norman et al. [1995] earlier
reported MAPD in kE and H to the order of 17% and 32% using the FIFE experimental data. Using a single-
source surface energy balance model (SEBS), Su [2002] reported RMSD of 61.34–82.79 W m22 for kE and
28.61–36.19 W m22 for H over semiarid shrub and grasses. STIC produced a relatively lower hourly and daily
RMSD for both kE and H when applied to a variety of atmospheric turbulence conditions (from stable to
strongly advective) as well as different land use types (see Table 2 and Figures 6, 7). However, the above
studies used modeled RN and G whereas STIC utilized all the input variables from in situ measurements.
STIC has the advantage of being independent of any land surface parameterization to derive gB and gS that
are typically required to model kE and H. The use of TR and the temperature-saturation vapor pressure
slopes to estimate the near surface moisture and vapor pressure (Figure A2) provided the information on
lower boundary conditions for kE and H. The signal of surface roughness is also implicitly included in TR

(high roughness and dense vegetation will cause TR to approach TA), RN (through albedo and surface emis-
sivity), and G measurements that are direct inputs into STIC. Current results also indicate the efficiency of TR

information in capturing the temporal variability of surface fluxes within the PM framework in comparison
to the methods that use relative humidity and DA to constrain kE and H estimates [Mallick et al., 2013].

6. Conclusions

The analytical method presented in the framework of STIC demonstrated a physical integration of TR into
the PM equation to derive a ‘‘closure.’’ STIC has the potential for simultaneously estimating surface energy
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fluxes, conductances, and Priestley-Taylor parameter under limited surface-atmospheric conditions using
the measurements of TR, RN, G, TA, and RH. These measurements are robust, simple to conduct, less expen-
sive than EC or Bowen ratio measurements, and, therefore in many weather stations the inclusion of TR and
G sensors would be beneficial to obtain an estimate of the surface energy fluxes using the STIC
methodology.

One of the novel aspects of STIC is the dynamic update of the Priestley-Taylor a through numerical iteration
and determining a under limiting (or actual) environmental as well as surface ecohydrological conditions.
This also makes STIC fluxes independent of the uncertainties associated in assigning a as a single parameter
[Mallick et al., 2014].

Overall, the STIC is a self-contained approach, which does not require measured wind speed data and con-
ductance parameterizations. Besides featuring logistical advantages over the parameterization based ther-
mal surface energy balance models, the deviation from observations of kE and H are significantly lower. It
should also be noted that although the case study described here provides general insights into thermal
remote sensing of kE and H in the framework of the PM equation, these results may also to some extent be
specific to the particular set of observational and land surface data used in this study. In other semiarid,
arid, and hyper-arid landscapes, where moisture variability is more random and controlled by land-
atmosphere-moisture interaction (particularly by relationships between RN-TR-DA interaction and soil mois-
ture), different results may potentially be obtained.

The most realistic and accurate description of evaporation from terrestrial vegetation is obtained by the PM
equation, which is also considered as the ubiquitous equation for quantifying the response and feedback
between vegetation and water cycle. This equation incorporates the combined effects of environmental,
physical and ecophysiological variables on kE. While gB describes the physical controls on evaporation con-
taining information of atmospheric turbulence and vegetation roughness, gS describes the ecophysiological
controls of transpiration by the vegetation and is a compound of the leaf area index and the stomatal con-
ductance. Changes in the vegetation dynamics, for instance, due to land use change, plant water stress and
drought, are reflected in both the conductances because any change in the vegetation cover will alter the
surface roughness, wind fields, leaf area, radiative interception and local micrometeorology. This will auto-
matically lead to changes in the land-atmosphere interaction, evaporation-transpiration partitioning and
associated heat fluxes; which will further make alterations in the cloud formation and precipitation [Santa-
nello et al., 2013]. The accurate quantification of these changes requires surface energy flux estimation
methods which are not conditional on the land surface parameterization. The STIC framework exploits the
advection-aridity hypothesis and associated assumptions, but is independent of any exogenous semiempiri-
cal models for determination of complex turbulence and surface conductance and hence may be a valuable
tool to quantify vegetation-water cycle interactions. Under the full vegetation cover conditions, the STIC
framework can also be used to calculate the canopy conductance, thus creating a framework for comparing
different gS schemes within land surface models of varying complexity. However, under the partial vegeta-
tion cover conditions, kE derived through STIC needs to be partitioned into transpiration and evaporation
to determine the stomatal conductance. This assumption needs to be tested further.

It is worth mentioning that there is further scope for improving the STIC methodology by incorporating the
wind speed information and retrieving the aerodynamic vapor pressure (or within canopy vapor pressure
deficit) at the level where the aerodynamic temperature (T0) is retrieved. For the regional application of STIC
using thermal remote sensing, M can also be derived in the framework of TVDI [Sandholt et al., 2002] or
apparent thermal inertia (ATI) [Verstraeten et al., 2006] by exploiting the satellite derived TR in conjunction
with vegetation index and albedo, respectively. The ATI approach is already implemented to estimate M
with higher accuracy [Garcia et al., 2013], rather than estimating M based on the complementary hypothesis
of Bouchet [1963].

Exploring the feasibility of implementing STIC at larger spatial scale is an ongoing research topic. STIC needs
measurements of TA and RH and for regional applications the accuracy of these two meteorological variables
is very important. In addition, an uncertainty of 1 K in TR appears to cause high errors in the conductance
and surface fluxes, which implies that TR has to be measured with an accuracy of at least 0.5 K. This require-
ment makes the application of this model challenging with satellite data notably over those areas where TR

retrieval errors are generally high due to inaccurate surface emissivity correction. The availability of Earth
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observation data may provide an opportunity to extend the STIC methodology into the satellite platform by
integrating the radiative flux information from Clouds and the Earth’s Radiant Energy System (CERES) or Sur-
face Radiation Budget (SRB), TR and meteorological information from the Atmospheric Infrared Sounder
(AIRS), Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imager Radiometer Suite
(VIIRS) or future Sentinel-3 (dual view angle TR from SLSTR, Sea and Land Surface Temperature Radiometer
sensor), and soil moisture from the future Soil Moisture Active Passive (SMAP), thus allowing for more spa-
tially explicit surface energy balance modeling and ecohydrological process studies.

Appendix A

A1. Advection-Aridity Hypothesis and K
To close the system of equations (in section 2) we need an expression for the evaporative fraction, K, which
must include the dependence of K on the conductances. Therefore, we exploited two different representa-
tions of evaporation; the Penman (P) equation [Penman, 1948], and the Priestley-Taylor (PT) equation [Priest-
ley and Taylor, 1972]. These two expressions are related to each other through the complementary
relationship advection-aridity hypothesis [Brutsaert and Stricker, 1979] which is a modification of the original
complementary hypothesis [Bouchet, 1963]. According to the complementary hypothesis, for a large homo-
geneous area of 1–10 km and away from sharp environmental discontinuities there exists a complementary
feedback mechanism between potential evaporation (kE*), evaporation (kE), and sensible heat flux (H) of
the following form:

kE1 kE�52kEW (A1)

kE* is defined as the evaporation from a wet surface under the prevailing atmospheric condition, limited
only by the amount of available energy. If moisture at the surface is unlimited (i.e., when M 5 1), kE 5 kE*
and this condition is referred to as the wet-environment evaporation (kEW). Based on Bouchet’s work, Brut-
saert and Stricker [1979] proposed an advection-aridity hypothesis that allows the formulation of kE under
nonpotential conditions. According to Brutsaert and Stricker [1979], kEW was approximated as the potential
evaporation according to Priestley and Taylor [1972], kE�PT , which represents the potential evaporation under
the conditions of minimal advection and kE* was approximated as the potential evaporation according to
Penman [1948], kE�P , in order to capture the effects of large scale advection. Thus actual evapotranspiration
could be computed by means of equation (A1) assuming kE* 5 kE�P and kEW 5 kE�PT [Brutsaert and Stricker,
1979; Parlange and Katul, 1992; Ramirez et al., 2005; Huntington et al., 2011].

kE1 kE�P52kE�PT (A2)

This approach is independent of any submodel for representing the surface (or stomatal) conductance, soil
moisture, or any other land surface measures of aridity. Taking advantage of this advection-aridity hypothe-
sis we are able to express K in terms of the two conductances (gB and gS) and hence able to close the sys-
tem of equations in the present scheme as described in section 2 [see also Mallick et al., 2014].

Although some theoretical arguments suggest partial fulfilment of the hypothesis of 1:1 compensation
between kE and kE* [Lhomme, 1997; Sugita et al., 2001], more recently Ramirez et al. [2005] found observatio-
nal evidence for 1:1 compensation between kE and kE*. We have also explored the potential complementary
feedbacks between the atmosphere and the surrounding environment by relating high-temporal frequency k
E�P and kE as a function of the surface moisture availability (M) following Huntington et al. [2011]. Figure A1a
illustrates the complementary behavior between kE�P and kE; with quite scattered data points. However, an
ideal complementarity could only be obtained by a normalizing kE�P and kE by kEW [Huntington et al., 2011;
Kahler and Brutsaert, 2006] as shown in Figure A1b, where a complementary relationship between kE�P and kE
is clearly evident. However, during the winter months kEW can be less that kE�P , which might inflate the kE�P /
kEW ratio thus result in asymmetry in the complementary relationship [Huntington et al., 2011]

A2. Derivation of M
The retrieval of M is already described in Mallick et al. [2014] (as adopted from Venturini et al. [2008]). We
hypothesize that the moisture availability at the surface and at the evaporating front are uniform and, there-
fore, M is derived from the surface-atmosphere information. According to Noilhan and Planton [1989], Ye
and Pielke [1993], and Boegh et al. [2002], the transfer of kE from the surface can also be written as follows:

Water Resources Research 10.1002/2014WR016106

MALLICK ET AL THERMAL REMOTE SENSING OF PENMAN-MONTEITH EQUATION 6237



kE5
qcP

c
gB eS2eAð Þ5MkE�5

qcP

c
MgB e�S2eA

� �
(A3)

From equation (A3), a physical expression for M is given in terms of the temperature gradients.

M5
eS2eAð Þ
e�S2eA
� �5

s1 TSD2TDð Þ
s2 TR2TDð Þ (A4)

where s1 and s2 are the slopes of the saturation vapor pressure and temperature between (TSD 2 TD) versus
(eS 2 eA) and (TR 2 TD) versus (e�S - eA) relationship. Figures A2a and A2b show the relationships between eS,
e�S , and eA and their corresponding temperatures. By analogy to the dewpoint temperature, TD, if the surface
air is brought to saturation without affecting eS then eS 5 f{TSD}. Thus, TSD< TR for unsaturated surface and
TSD ! TR as the surface tends to saturation. For a dry surface TR � TSD, e�S � eS, (TR 2 TD)� (TSD 2 TD) and
M ! 0. For a wet surface e�S ffi eS, TR ffi TSD, (TR 2 TD) ffi (TSD 2 TD) and M ! 1. When condensation occurs,

Figure A1. The (a) nonnormalized and (b) normalized complementary relationship between evapotranspiration (kE) (black circle), potential
evaporation (kEP) (gray circle), and wet environment evaporation (kEw). The normalized kEP (as kEP1) (gray circle) was estimated as the
ratio between kEP and kEw; whereas the normalized kE (as kE1) (black circle) was estimated as the ratio between kE and kEw according to
Kahler and Brutsaert [2006].

Figure A2. (a) Conceptual diagram of the saturation vapor pressure curve and the relationship among TSD, TR, eS, and e�S in the context of
surface at temperature TR according to Venturini et al. [2008]. The air and dewpoint temperature of the overlying air is characterized by TA

and TD with the vapor pressure eA and e�A . Here TSD is the surface dewpoint temperature, TR is the radiometric surface temperature, eS is
the near surface vapor pressure, and e�S is the surface saturation vapor pressure. (b) Conceptual diagram of the linearized saturation vapor
pressure curve to demonstrate the relationship between (eS 2 eA) with s1(TSD 2 TD), (e�S 2 eS) with s3(TR 2 TSD) and (e�S 2 eA) with s2(TR – TD).
Here s1, s2, and s3 are the slope of the saturation vapor pressure and temperature curve linearized according to Monteith [1965].
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TR< TA and eS< eA, otherwise eS eA and eS ae�S . Hence, TSD falls somewhere between TR and TD (Figure A2a)
and can be computed by linearizing the saturation vapor pressure curve between the two levels (TD, TSD)
and (TSD, TR) [Monteith, 1965].

Since TR and eA are available, s2 can be calculated directly. However, when the differences in TR and TA are
very large, the assumption of linearity of the saturation vapor pressure and temperature may produce errors
[Jackson et al., 1981]. Therefore, in the present study the linearity is assumed till the difference between TR

and TA is 58C [Jackson et al., 1981] after which s2 is approximated at TR.

According to Figure A2,

s15
eS2eAð Þ

TSD2TDð Þ (A5)

s35
e�S2eS
� �
TR2TSDð Þ (A6)

Combining equations (A5) and (A6), an expression of TSD can be obtained.

TSD5
e�S2eA
� �

2s3TR1 s1TD

s12s3ð Þ (A7)

Here we have one equation (A7) and two unknowns (s1 and s3), which is not uniquely solvable using the
assumptions and the iterative procedure described in Venturini et al. [2008] as adopted by Mallick et al.
[2014]. However, in a more recent follow up study, Venturini et al. [2012] proposed a simplified method of
TSD estimation. Following Venturini et al. [2012], we similarly revise some aspects of TSD estimation in the
present analysis, by directly assigning s3 as a function of TR and s1 as a function of TD, the general form of

which is s54098 6:108e
17:27T
ðT1237:3Þ

ðT1237:3Þ2

� 	
. According to Figure A2b, TR and TD are the two end member temperatures of

the saturation vapor pressure-temperature curve. Under extremely dry surface conditions TSD ! TD, while
under extremely wet conditions TSD ! TR. Therefore, TSD at any point of time is a blend of these two end
member temperatures (TR and TD) depending on the degree of surface dryness/wetness, atmospheric
humidity, and surface-atmospheric coupling. Considering different sets of surface-atmospheric dryness/wet-
ness conditions, the following situations may occur:

1. Surface and atmosphere both are extremely dry: This implies a strong surface-atmosphere coupling, typi-
cal conditions found in dry-tropical, arid, semiarid, hyper-arid, savanna, and Mediterranean climates.
Here TR is extremely high and TD is very low (because of low atmospheric humidity). Under such condi-
tions TSD will be very close to TD and the difference between TR and TSD will be very large. Assigning s1 in
TD and s3 in TR will reasonably constrain equation (A7) because s3 (actual) � s1 (actual) in such circum-
stances and s3 (TR) (virtual) will also be significantly higher than s1 (TD) (virtual) under such conditions.

2. Surface and atmosphere both are wet: This implies a weak surface-atmosphere coupling, typical condi-
tions found in wet tropical and wet temperate regions or during rainy seasons. Here TR is substantially
low, TD is reasonably high (because of high atmospheric humidity), leading to very low TR 2 TD. Under
such conditions TSD will be very close to TR because of high surface humidity and the difference between
TR and TSD will be very small. Therefore, assigning s1 in TD and s3 in TR will again reasonably constrain
equation (A7) because s3 (actual) will be close to s1 (actual) in such circumstances and s3 (TR) (virtual) will
also be close to s1 (TD) (virtual).

3. Surface is dry and atmosphere is moist: This implies moderate surface-atmosphere coupling, typical condi-
tions found in tropical monsoon climate before the onset of rainfall when water vapor in the atmosphere
increases but surface remains dry due to no rainfall. Arid and semiarid areas close to the sea (e.g., Mediter-
ranean) with high atmospheric water vapor and dry soil conditions also belong to this category. Here TR is
moderate to high, TD is high due to the high atmospheric water vapor and TR 2 TD is moderate to low.
Under such conditions the magnitude of TR 2 TSD will be high (because of high surface dryness). Therefore,
assigning s1 in TD and s3 in TR will also reasonably constrain equation (A7) because s3 (actual) will be bigger
than s1 (actual) in such circumstances and s3 (TR) (virtual) will also be larger than s1 (TD) (virtual).

In order to support the above assumptions, the following analysis has been carried out.
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A3. Evaluating M at Landscape and Feld Scale
Taking monthly MERRA (Modern Era Retrospective-analysis for Research and Applications) data, we have esti-
mated TSD and M following the same procedure as described in the manuscript and compared these esti-
mates against the simulated TSD and M as available in the MERRA database. Here we treat MERRA as a
synthetic data set and the 1:1 scatterplot between modeled versus synthetic TSD and M are shown in Figures
A3a and A3b for three different soil water availability classes (wet, intermediate, and dry). These classes repre-
sent 10 3 10 gridded data points over the Amazon Basin (wet), North-central Africa (dry), and North America
(intermediate). This shows relatively good correspondence between the modeled versus synthetic TSD and M.
The correlation between modeled and synthetic TSD was in the range of 0.46–0.97 (p< 0.05) (Table A1),

Table A1. Error Analysis of Modeled TSD and M Estimates in Comparison to Synthetic TSD and M From MERRA

Variable

Correlation Coefficient (r) in TSD and M in Variable Dry-Wet Spatial Domain

Dry (North-Central Africa) Intermediate (North America) Wet (Amazon Basin)

TSD 0.76 (p 5 0.00) 0.46 (p 5 0.01) 0.97 (p 5 0.00)
M 0.68 (p 5 0.00) 0.16 (p 5 0.02) 0.58 (p 5 0.00)

Figure A3. (a) Comparison between modeled and synthetic TSD over a broad range of surface wetness class. (b) Comparison between
modeled and synthetic M over a broad range of surface wetness class. (c) Two-dimensional scatter between synthetic M and TR 2 TSD

difference. This shows the TSD! TR with an increase in surface moisture and the difference between them become large with an
increase in surface dryness. (d) Comparison of STIC derived M with TVDI derived M over Indian agroecosystems. The round markers
indicate the data of wet landscapes, square markers indicates the data over intermediately wet-dry landscapes, and star markers indicate
the data over over dry landscapes.
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whereas for M the correlation varied from 0.16 to 0.68 (p< 0.05) for the three broad soil water availability sub-
classes (Table A1). Given TD is the lower most temperature limit and TSD will be very low under dry conditions
(TSD! TD), we expect the difference of (TR 2 TSD) to be bigger for the dry cases and the differences to be small
for the wet cases. Figure A3c also depicts the similar behavior and this further proves the robustness of the
assumptions made in the current M estimation method. From this comparison it appears that although the
simplified M retrieval method performed substantially good at capturing the general wetness patterns for the
two extreme climatic categories (wet, dry) along the 1:1 line, it is not capable of capturing the wetness varia-
tions within the intermediate dry-wet climatic region (Figure A3b). However, these results are based on the
synthetic data and any error in the MERRA data simulation of M, TR, TD, and TSD will affect this evaluation.

We have also compared the M estimation method by comparing the STIC based M estimates (M_STIC)
against TVDI (Temperature Vegetation Dryness Index) [Sandholt et al., 2002] derived M estimates (M_TVDI)
by using the data of Mallick et al. [2009] over different agroecosystems in India (Figure A3d). For more detail
about the data and agroecosystems, see Mallick et al. [2009]. This also shows reasonably good correspon-
dence where M_STIC could explain 64% variability of M_TVDI and the RMSD between the two wetness esti-
mates were 0.07. These two case studies seemingly depict the validity of the assumptions used for
estimating M in the current manuscript. However, a detailed study is further needed for assessing the
impact of different M retrieval methodologies on the error propagation in kE and H estimates. It is impor-
tant to mention that the saturation vapor pressure (SVP) concept assumes a free pure water surface, where
the forces holding the water molecules to the surface are the bonds between the nearest molecules. These
bonds are broken by the thermal energy to produce the evaporation [Venturini et al., 2008]. But for an
unsaturated surface, where multiple forces hold the water to the soil vegetation interface, more thermal
energy would be required to vaporize the soil-vegetation water molecules [Venturini et al., 2008]. Therefore,
vapor pressure (e0 and es) for an unsaturated surface would be smaller than that derived from a SVP curve.
This is the reason that e0 estimation was based on M and not on TSD.

Appendix B

B1. Modification of PMBL
A modification of the original PMBL [Mallick et al., 2013] is performed to make the structure of PMBL iden-
tical to STIC but having RH (and DA) as main variables for estimating M and constraining the conductan-
ces. In the modified method, an initial estimate of the conductances, T0, K, and kE are obtained by
assigning M 5 1 and e0 as saturation vapor pressure at TA. From the initial T0, initial e�0, s3, and TSD (accord-
ing to equation (A7)) were estimated. The process is then iterated by simultaneously updating M (from
the initial estimates of T0, s3, and TSD using equation (A4)), e0 (according to equation (23)), conductances,
T0, and K until a stable value of kE is achieved. Repeating this process produces stable value of kE within
10–12 iterations.
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Erratum

In the originally published article, the author name for the reference and citations ‘‘Collaizi et al, 2012’’ should have appeared as ‘‘Colaizzi
et al., 2012.’’ In Table 2, in the ‘‘Biome Type’’ column, row 2 should appear as ‘‘Agroecosystem (cotton)’’ instead of ‘‘Agroecosystem (corn
and soybean).’’ This article may be considered the authoritative version of record.
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