
Morten Brandrup (mortebr@ruc.dk)

Steffen Thorlund (thorlund@ruc.dk)

Mads Hald Jørgensen (mhaldj@ruc.dk)

Master Thesis. 1. February - 31. August 2012.
Supervisors: Bjørn Christensen & John P. Gallagher
Secondary supervisor: Erik Kristiansen

An Immersive 3D Game On a 360° Panoramic Display

1

Acknowledgements

We would like to thank some people involved in the process. First off we like to thank

our supervisors Bjørn Christensen, John Gallagher and Erik Kristiansen as well, as a secondary

supervisor, for tremendous presence and involvement when needed the most. Additionally we like

to thank all of the researchers and technical staff involved in creating the Experience Cylinder for the

possibility to work alongside of their development. Especially with a focus on Sisse Siggaard Jensen

for being the primary advocate for our suggestion to buy Unity3D, Nikolaj Møbius for aid in Max 6,

Nicolas Padfield and the technical staff at CBIT for solving hardware issues quickly, and not the least

Torben Kjærgaard for presenting our project on the Experience Cylinder website (RUC 2012).

2

Abstract

The starting point of this project was the interactive installation called the Experience

Cylinder. We wanted to go beyond its original intended applications in the area of interactive

storytelling and consider its potential for supporting immersive experiences. Games are archetypal

immersive applications that provide possibilities for exploiting the technologies available.

In this thesis, we will investigate how the Experience Cylinder can be used to support

immersive game experiences.

We explore the concept of immersion, with a particular focus on games and virtual

reality systems. Through the development of game prototypes we identify challenges in creating

immersive game experiences that utilise the capabilities of the Experience Cylinder.

We design and implement two prototypes of interactive games. Based on our

exploration of the concept of immersion we create a model with which to evaluate immersive game

experiences in the Experience Cylinder. Finally we apply our model to analyse our prototypes.

Through this we demonstrate the ability of the Experience Cylinder to support

immersive game experiences.

3

Short Table of Contents

1 Introduction ... 7

2 Method .. 11

3 Conditions .. 12

4 Proof of Concept .. 13

5 Investigation of Immersion ... 14

6 Building a Model of Immersion ... 31

7 The Experience Cylinder ... 36

8 Development Platform ... 42

9 Choosing a Case ... 46

10 The Development Challenges ... 49

11 Description of the Finished Prototypes ... 86

12 Analysing the prototypes through our model.. 88

13 Discussion .. 90

14 Recommendations ... 95

15 Literature ... 99

4

Long Table of Contents

1 Introduction ... 7

1.1 Problem Statement ... 10

2 Method .. 11

3 Conditions .. 12

4 Proof of Concept... 13

5 Investigation of Immersion ... 14

5.1 Central Concepts Related to Immersion .. 14

5.1.1 Flow ... 15

5.1.2 Presence... 16

5.1.3 Cognitive Absorption .. 17

5.2 Game Immersion ... 17

5.2.1 What is a Game? .. 18

5.2.2 What is a Video Game?... 20

5.2.3 Four Subtypes of Immersion ... 22

5.2.4 Overview Table... 26

5.3 Summary ... 27

5.4 Virtual Reality Immersion .. 27

5.4.1 What is Virtual Reality? .. 27

5.4.2 Immersion and Presence in Virtual Reality .. 30

6 Building a Model of Immersion ... 31

6.1 Construction ... 31

6.2 Explanation of the Model .. 34

6.3 Preliminary Conclusion .. 35

7 The Experience Cylinder ... 36

7.1 Introduction .. 36

7.2 Similar Installations ... 37

7.2.1 Disney Quest Example .. 37

7.2.2 Star Wars Example ... 38

7.2.3 Comparison .. 38

7.3 Construction and Technologies ... 39

7.3.1 Rigging ... 40

7.3.2 Display Surface ... 40

5

7.3.3 Projectors... 40

7.3.4 Kinect ... 40

7.3.5 Computer ... 40

7.3.6 Sound ... 40

8 Development Platform ... 42

8.1 Unity3D .. 43

8.2 OpenNI ... 43

8.3 SketchUp .. 44

8.4 Max 6.. 44

8.5 Audacity.. 45

9 Choosing a Case ... 46

9.1 Basic Case Concepts .. 47

9.1.1 Rail-Shooter ... 47

9.1.2 Base Defence ... 48

9.1.3 Virtual Sightseeing ... 48

9.2 Choice of Case... 48

10 The Development Challenges ... 49

10.1 Displaying a 3D world on a 360° display .. 50

10.1.1 Platform Issues ... 50

10.1.2 Display Surface Limitations ... 50

10.1.3 Projectors and Placement... 50

10.1.4 Virtual Camera in Unity3D .. 53

10.1.5 Background Summary .. 55

10.1.6 Platform ... 55

10.1.7 360° Camera .. 55

10.1.8 Virtual Optical Filter ... 60

10.1.9 Summary of Solutions .. 65

10.2 Control.. 66

10.2.1 The Microsoft Kinect .. 66

10.2.2 Kinect Driver Model ... 67

10.2.3 Background Summary .. 67

10.2.4 Tracking ... 67

10.2.5 Smoothing the Movement of Aiming Sight ... 68

10.2.6 Summary of Solutions .. 69

10.3 Directional Sound.. 69

6

10.3.1 Sound Setup ... 70

10.3.2 Sounds in Unity3D .. 71

10.3.3 Background Summary ... 71

10.3.4 Sound Setup ... 72

10.3.5 Directional Sound ... 73

10.3.6 VBAP .. 74

10.3.7 μ Max-Unity3D Interoperability Toolkit... 76

10.3.8 netsend & -receive ... 77

10.3.9 Main patch and Additional Sub Patches .. 77

10.3.10 Editing in Audacity .. 79

10.3.11 Summary of Solutions ... 79

10.4 Creating Game Elements ... 79

10.4.1 Physics ... 79

10.4.2 The Unity3D Physics System ... 80

10.4.3 Scoreboard and Lives .. 80

10.4.4 Background Summary ... 81

10.4.5 Trajectory Calculations ... 81

10.4.6 The Meteor Game Elements ... 84

10.4.7 The Cannon Tower ... 84

10.4.8 RUC3D .. 84

10.4.9 Implementing Scoreboard and Lives ... 85

11 Description of the Finished Prototypes ... 86

11.1 Meteor Defence .. 86

11.2 A Stroll on RUC prototype ... 87

12 Analysing the prototypes through our model .. 88

13 Discussion... 90

13.1 Conclusion .. 93

14 Recommendations .. 95

14.1 Display Surface .. 95

14.2 Projector Position .. 95

14.3 Stereoscopic 3D .. 97

14.4 Kinect Position .. 98

14.5 Speaker Positions .. 98

15 Literature ... 99

7

1 Introduction

The starting point of this project was the interactive installation called the Experience

Cylinder. This was originally a product of interdisciplinary project collaboration between Roskilde

Viking Ship Museum and researchers at Roskilde University. The goal was to provide an interactive

platform for telling the story of the voyage of the Viking ship The Sea Stallion from Roskilde to

Dublin and back.

The design of the Experience Cylinder was based on a circular space approximately six

meters in diameter and three meters high functioning as a metaphor for this round trip, which is

why its main feature – the display formed by the inside wall of the circular space – was cylindrically

shaped. Images can be projected on the inside of the cylinder by six ceiling mounted projectors, and

speakers are placed outside the cylinder to support directional sound. An infrared, depth measuring

camera is mounted in the ceiling in the centre of the cylinder and can be used to track user

movement within the cylinder. All these technologies are connected to a stationary computer, so

other means of control, such as mouse and keyboard, are also available.

The media displayed in the cylinder respond to tracked movements of a person walking

around inside the space. Using this platform the designers of the installation aimed to create an

implicit narrative of the voyage which was unfolded by the user as he/she walked around inside the

cylinder. A full description of the project can be found in (Andreasen, et al. 2011).

Illustration 1-1: This illustration shows a simplified 3D model of the basic hardware setup that comprises

the Experience Cylinder.

8

The composition of technologies in the Experience Cylinder suggests that it can be

categorised as an example of a larger class of systems intended for creating immersive, interactive

experiences. Other well known examples are virtual reality systems and a class of system known as

a CAVE. CAVE is an acronym for Cave Automatic Virtual Environment where projectors display a

computer-generated 3D environment on the sides of a room-sized box. This enclosure shields out

stimuli from the real world. The Experience Cylinder has a number of similarities to that of a CAVE,

but differs from the original CAVE design in primarily two senses: first, the screen is cylindrical as

opposed to the box shape of a CAVE secondly; the Experience Cylinder was originally made for

presenting and navigating images and video rather than a virtual 3D environment.

The resemblance of the Experience Cylinder to CAVEs led us to go beyond its original

intended applications in the area of interactive storytelling and consider its potential for supporting

immersive experiences. Thus, in this project we wish to take a step back and reconsider the

potential of the platform, initially from a technological point of view. While investigating anew the

capabilities of the Experience Cylinder we would like to make an exploration of the concept of

immersion, using the Experience Cylinder as a vehicle for this theoretical investigation. The findings

from this investigation will be used to evaluate the Experience Cylinder’s technical capabilities.

In popular culture there seems to be no agreed upon definition of the concept of

immersion, and it seems to be used to describe a vague ideal rather than a concrete phenomenon.

In the context of popular culture it seems to be that immersion somehow relates to experiences

being more realistic, convincing or more desirable as claimed in a blog about the five most

immersive games:

Immersion requires something more than simple tricks: the player has to be

made to ignore all outside stimuli. The monitor/TV has to melt away, the

controller has to disappear, the headphones have to turn weightless, and

perception of “real” time has to be skewed. Basically, the player has to forget

they’re playing a game, and instead be convinced they’ve been put in whatever

situation the game takes place. (Little Players 2011)

Or as in this blog site review of the ten most immersive worlds in games:

Every seasoned gamer has an epiphany at some crucial interval during a session

whether they’re conscious of it or not. Usually, this phenomenon occurs when

the entire game design is firing on all cylinders and your inner-self whispers,

“Ok, I’m all in,” and suddenly the hours just melt away. (Hill 2012)

In the scientific literature, various games and certain technologies are labelled as

immersive. The concept is used in a number of different situations and with different meanings.

Both in literature on virtual reality and literature on video games, attempts have been made to

define immersion but the results seem ambiguous. Although we find the clarity of the concept

questionable, it is nonetheless interesting in the sense that it entangles many aspects of our work:

9

the platform, the content, and how people react to it. Therefore we want to get a deeper

understanding of what the concept of immersion actually means in our context. In summary, what

we aim for is a simple model that places immersion alongside some of the important related

concepts in our context and links them together.

We also recognize the ability of Experience Cylinder to surround the user and present

an unusual screen format. The large cylindrically shaped display in combination with the infrared

camera and the positional sound system makes it, in our minds, suitable for displaying virtual worlds

that are interactive through physical movement. Games provide a good application area, providing

possibilities for exploiting the technologies available, and being an archetypal immersive application.

Games have the ability to make use of all the available technologies in a way that make them play

together without the same attachment between media type and platform we see in The Sea Stallion.

Thus in this project we focus on investigating the design and prototype implementation of an

interactive game in a virtual world; in doing so we construct a model of the concept of immersion

and relate our game prototype to that model.

10

1.1 Problem Statement

To recapitulate the previous discussion, the Experience Cylinder is a unique platform for

interactive media, but its initial areas of use were limited to interactive presentation of media

objects such as videos, pictures and sound. We see the potential of the cylinder to function as a

platform for a wider class of interactive installations that are typically labelled as immersive,

including games. However, there is no existing documentation of how to create content for the

platform, let alone game-like content, and furthermore the meaning of the concept immersion is far

from clear. This leads us to formulate the following problem statement in three parts:

How can the Experience Cylinder be used to support immersive game experiences?

● What are the challenges of developing a game prototype for the Experience Cylinder, and
what are the applicable solutions?

● How can the game prototype be evaluated with respect to the concept of immersion?

Our approach to these questions is to develop a game prototype as a vehicle for

identifying and dealing with the challenges that arise. In parallel we investigate the concept of

immersion and its related terminology from which we make a conceptual model. After development

we can use our model of immersion in gaming experiences to analytically evaluate our game

prototypes to discuss whether the Experience Cylinder is suitable for supporting immersive games.

On the basis of a discussion on the different challenges we will sum up the most important findings

from our development.

From the general reader’s point of view, the dissertation makes the following contributions:

 A critical discussion of the immersion concept that is intertwined with the practical

part of this thesis. This is summarised in our model of immersion in gaming

experiences.

 An explanation of how to develop game-like content for the Experience Cylinder.

11

2 Method

From the very beginning it was our intention to investigate the Experience Cylinder,

with a special focus on its ability to display a 3D environment and create an immersive game

experience. We have not looked for specific user needs or potential commercial applications, as this

was not part of our focus.

In this perspective we would like to relate our approach to theory of evolutionary

economics related to innovation. The source of innovation is said to come from either one of two

driving forces: technology push or demand pull (van den Ende and Dolfsma 2005). Technology push

is the situation where scientific advancement drives the development of new kinds of technology

and demand pull is technological development aimed at fulfilling customer desire. Whether an

innovation breaks through is a question of three factors: market opportunities that allow the

innovation to spread; push, meaning the technology as fundament for the innovation; or pull,

meaning the demands for the innovation.

In our situation the driving force for innovation is the technology push factor. There are

no specific external demands for what we develop and therefore the project does not involve user-

driven development either. In spite of this, one could argue that there is latent demand in that users

are always looking for new, more exciting or novel game-playing experiences. We do not claim to lay

the ground for a new technology paradigm, but simply point to the direction of the driving force for

investigating the Experience Cylinder. This notion puts the technology into focus rather than specific

user demands, and is reflected in our approach to the investigation.

As the cylinder has not been used for the purpose of displaying a 3D environment

before, we found it necessary to first prove that the concept was feasible. We searched for

literature on installations that had similarities to the Experience Cylinder, and through this research

found software that allowed us to test the concept.

Based on the results of this proof of concept and the literature we had found, our work

divided into two parts. Our work in creating a game prototype was one part. This involved solving

emergent issues relating to utilizing hardware and software in the Experience Cylinder as well as

creating a software prototype. The other part was the methodological issue of how to evaluate the

prototype. Evaluating immersion through user tests was discussed, but ultimately deemed

impractical. Evaluation based on user tests would require a testable product far ahead of the project

deadline. We decided on the more feasible approach of creating a conceptual model, based on

immersion literature, through which we could evaluate our prototype.

12

3 Conditions

This project has taken place during the spring 2012 in the basement of building 40 at

RUC. The Experience Cylinder is an ongoing project with several actors both researchers and

technical staff. During the development period we have held several presentations for externals and

meetings with the project steering group about the development of the Experience Cylinder as an

integrated research and education platform. The majority of the time the Experience Cylinder has

been a stable construct, but the discussions with researchers and staffs has been focused on the

changes to the different technologies.

13

4 Proof of Concept

To determine, if it was possible or relevant to construct a 3D game prototype in the

Experience Cylinder, we first had to examine what a 3D game would look like in the Cylinder. In

order to do this we had to find existing software, which would allow us to show some kind of 3D

environment across multiple screens and could be configured to our specific needs. We decided to

start on the basis of existing 3D games, and to investigate whether anyone had modified such a 3D

game to allow for multiple screens.

We found a paper by Jeffrey Jacobsen, who had configured the 3D game Unreal

Tournament to work in a CAVE (Jacobsen 2005a). The modification is called CaveUT, based on the

abbreviation of the game they used. Their modification was freely available on the internet

(Jacobson 2005b). Using this software and a number of Unreal Tournament game copies on an

equivalent number of networked computers, we created two test setups. We started with a small

setup consisting of four computers with normal monitors; with the purpose of testing to what

extent the software could be configured to our setup. The software proved to be highly flexible, and

could be configured to more than the four displays typically used for the sides of a CAVE.

Additionally the positions of the monitors were configurable as well to allow a setup based on - for

example - six displays in a circle rather than four projectors in a square. This showed us that it was

possible to utilise the software for the specific projector setup in the Experience Cylinder. However

it also showed us, that the game design was limited to primarily using one primary screen, with the

additional screens only providing peripheral vision.

For the next test we acquired enough computers to test the software in the Experience

Cylinder, and consequently configured the software for that specific setup. The test was a success,

as it showed us that it was indeed possible to show a 3D environment in the Experience Cylinder.

Subsequently, we contacted the creator of the CaveUT modification to inquire about any further

development on the modification. He informed us that the team behind CaveUT had switched to

another software solution, a game development environment called Unity3D.

To sum up our proof of concept work, it had shown us the feasibility of displaying 3D

games in the Experience Cylinder, and our contact with the CaveUT author had given us a lead on a

potential game development platform.

14

5 Investigation of Immersion

This chapter deals with the investigation of the concept of immersion. In the

introduction we noted that the concept is used with different meanings and in different contexts

but there also seems to be some kind of common denominator. Games and virtual reality make use

of the concept but since we have a combination - a game in a virtual reality setting - we need to

investigate immersion in both areas on a conceptual level. We do this to determine to what extent it

can be utilised in an evaluation of experiences in the Experience Cylinder.

In the investigation of the concept immersion a number of related concepts emerged.

In order to follow the unravelling of immersion in the context of games and the context of virtual

reality we will first present these concepts separately. After this we give an introduction and

definition to what a video game is, based on the definition of the even broader concept game.

With these sections as a foundation we can begin to introduce the meaning of the

concept immersion in context of games. We do that by comparing four articles that specifically try

to do the same - namely to make a model of immersion in games. We extract the parts we find that

the models have in common. After this review we introduce the concept of virtual reality, before we

explain what the concept of immersion signifies in the context of virtual reality.

Finally we close the section by summarising the most important differences between

the two areas.

5.1 Central Concepts Related to Immersion

The central concepts that we refer to are Flow, Presence and Cognitive Absorption. We

describe the concept of flow since much of the literature on immersion in games refers to this

concept. Presence is a concept we find in the literature on virtual reality; however it is more specific

than the descriptions of immersion in general. One could argue that this concept requires as much

attention and work to get around as immersion does, but the difference between the concepts is

that immersion is much more widely but differently used in both the game literature as well as in

virtual reality literature. The concept of presence is primarily used within literature on virtual reality.

As in literature on the concept of immersion in games, presence is divided into different subtypes.

These subtypes of presence seem more consistently described as opposed to the subtypes within

the literature on the concept of immersion. Cognitive Absorption is a concept that is developed in a

different application context than games but describes some of the same effects that we find in

descriptions of immersion.

15

5.1.1 Flow

This concept was introduced by the Hungarian psychologist Mihály Csíkszentmihályi

and defined as “the mental state of operation in which a person in an activity is fully immersed in a

feeling of energized focus, full involvement, and success in the process of the activity”

(Csíkszentmihályi and Csíkszentmihályi 1998).

The experience of flow is characterised by a continuous match between a person’s level

of skill and the challenge at hand. That the experience is continuous means that as the task at hand

gets harder, the level of skill supposedly increases, and therefore the level of challenge should rise

accordingly in order to maintain the state of flow. If this match is not made, the person will either

experience boredom in the case where the challenge is too easy because of high skills or anxiety

because the level of challenge exceeds the level of skills.

The effect of the state of flow can be recognized by the sense of feeling in control, that

it removes the awareness of everyday life from consciousness, and the sense of duration of time is

altered. Flow is often depicted as in this illustration:

Illustration 5-1: Flow can happen in the situation of learning some new skill - say building LEGO. First you

have to figure out how bricks are attached together and then you can begin to construct more and more

advanced combinations of bricks. If the learning curve is right the incremental process of learning that skill

is what flow is all about. (Hills and Hills n.d.)

http://en.wiktionary.org/wiki/mental_state
http://en.wiktionary.org/wiki/mental_state
http://en.wiktionary.org/wiki/mental_state

16

5.1.2 Presence

As we approach the literature on virtual reality and the attempts to describe the effects

of the technologies we again encounter the concept immersion. However another concept that

seems to be related is presence. Before we begin to examine the concept of immersion in virtual

reality literature, we here give a short introduction to the concept of presence.

Presence is described popularly as the feeling or sense of being there (Sheridan n.d.)

and the sense of feeling present. Academically presence is characterised as “the extent to which

media represent the world”, (Heim 1993). When the media are convincing and you cannot

distinguish representation from the real world it is total presence. We simply give a brief overview

of some of the different definitions to the concept of presence and point towards a definition that

we can use in the making of a model.

Originally the term presence seems to be derived from the research on remote

operations. Presence in this context concerns how to control a machine remotely and out of sight,

but experiencing a sense of being at the same place as the machine in spite of the distance

(Sheridan n.d.). It is postulated that this sense is made by a mental representation in the mind of the

operator. The preconditions to experience such a sensation are that there is no lag between input

and feedback, and that the remote manipulator - the terminal - displays the remote site in a way

that matches the real sites. To explain the broader lines in presence we find the division in personal,

social, and environmental presence as a good way of presenting the different related aspects to the

overall term presence.

Personal Presence concerns the user's psychological mental state explained as the

suspension of disbelief or the sense of being there (Sheridan n.d.). If a

person experiences presence it signifies that the virtual environment is

perceived as real as the counterpart environment it represents. This

understanding of presence is slightly different from the concept it is

derived from - telepresence - in the sense that presence in virtual reality

context can be about environments that do not have a real world

counterpart.

Social Presence emphasizes social interaction and communication within a virtual

environment setting. If users meet other people in a virtual environment

and can communicate with them it “will help add meaning to the world

and further increase the sense that the virtual environment is more than

simple images and thus make it more real” (Nunez 2003). In other words

social communication and interaction is familiar to most people. If you

can communicate with other people through the virtual environment in a

way you are used to, it will be easier to accept that the medium is not

real but computer generated.

17

Environmental Presence .. concerns perception of virtual objects in the virtual environment where

perception is about relating information about the objects represented

and how they can be interacted with. If we imagine interaction as a way

of communicating with things, the understanding of environmental

presence is similar to that of social presence. If a person finds the way of

interaction with virtual objects intuitive, in the sense that they are similar

to how they can be interacted with in the real world, it is easier for the

person to accept that the medium is not real. Experiencing environmental

presence signifies the recognition of virtual objects and their nature as

similar to real world objects.

5.1.3 Cognitive Absorption

A third relevant concept to introduce is the concept of Cognitive Absorption. It belongs

to research on use and adoption of information systems and is grounded in the research on

technology acceptance. Cognitive Absorption is originally defined as “a state of deep involvement

with software” (Agarwal and Karahanna 2000). The research is primarily focused on utilitarian

information systems, but it is also relevant to consider Cognitive Absorption in a hedonic (pleasure-

oriented) context. The field of hedonic information systems is covering, among other application

forms, video and computer games in the sense of home and leisure activities (Weniger and

Loebbecke 2010).

 Cognitive Absorption is based on five concepts: temporal dissociation which is the

sensation of losing track of time, focused immersion as the “total engagement where other demands

are ignored”, heightened enjoyment accounting for the pleasurable part of an interaction, control as

the sensation of being in charge, and lastly curiosity as the degree of “an individual’s sensory and

cognitive curiosity” (Agarwal and Karahanna 2000). The interesting aspect of the conceptualization

of cognitive absorption is that it describes the user’s sensation about an experience.

Absorption connotes that a person unwillingly can be engaged in an activity. We find

the word involvement more appropriate in the sense that is signifies that a person must be

internally motivated before s/he can be absorbed. This is opposite to presence where motivation is

not a factor.

5.2 Game Immersion

Having explained the concepts flow, presence, and cognitive absorption, we want to

apply the concept in a certain situation. We introduce and explain relevant parts of the domains of

games, before we investigate the concept of immersion in this context.

We begin by introducing the concept of games as well as video games because this is

the application type area we investigate. We can use concepts describing central aspects of games

to make connections between central game features and their effects on the person that plays them.

These connections become clearer as we treat the just mentioned concepts in combination with the

following investigation of immersion.

18

5.2.1 What is a Game?

In the paper The Game, the Player, the World – Looking for The Heart of Gameness,

Jesper Juul attempts to come up with a definition of what a game is (Juul 2003). His initial

assumption is that a good game definition should contain three elements:

The game as “a kind of systems set up by the rules of the game.”

The player as “the relation between the game and the player of the game.”

The world as “the relation between the playing of the game and the rest of the world.”

These elements are connected to present a single definition for a game as:

A rule-based formal system with variable and quantifiable outcome, where

different outcomes are assigned different values, the player exerts effort in

order to influence the outcome, the player feels attached to the outcome, and

the consequences of the activity are optional and negotiable.

Juul’s definition describes six features a game must exhibit in order to be a game and anything that

has these features is a game. They are:

 Fixed rules

 Variable and quantifiable outcome

 Valorization of outcome

 Player effort

 Attachment of the player to the outcome

 Negotiable consequences

In the following we explain each of these features with the classic board game Ludo as an example:

19

Fixed Rules .. Fixed rules are fundamental to any game and they have to

be unambiguous. Rules are what govern the change in the

game and player actions change it from state to state

according to these rules. In Ludo a player has to make

decisions about which tokens to move based on the dice

roll. The rules dictate the possible moves.

Variable and Quantifiable Outcome Variable and quantifiable outcome means that as an effect

of the rules the game must be able to provide different

outcomes in terms of winning and losing conditions. In

Ludo the variable outcome is determined by the players

finishing place. The winner is the one who gets all his

tokens to the finishing square. As the game is turn-based

there cannot be two players to achieve this condition

simultaneously and the outcome is therefore unambiguous

and quantifiable.

Valorization of Outcome In addition games must afford valorisation of outcome

which means that in Ludo players should automatically

strive for certain outcomes - the winning conditions!

Effort .. Players should also put effort into achieving this condition

through invested time and energy.

Attachment to the Outcome As a natural cause of effort, players should feel attachment

to the outcome meaning that if a player wins a game of

Ludo it must somehow be a result of this effort as well as

skills.

Negotiable Consequences The last game feature is negotiable consequences which is

the option for any game to be applied real-life

consequences i.e. betting money on the outcome of a

game. In any event the question of honour is at stake. A

final remark to this game model is the question about

borderline cases such as rules governing the stock market

or democratic elections. They could also be considered

games within this model, but is not included because the

real-life consequences are non-negotiable.

20

5.2.2 What is a Video Game?

We could have made a straightforward extension of the definition of games to video

games but we would like to present another definition specifically of video games. Nicolas Esposito,

researcher in video games at University of Technology Compiégne suggests:

A videogame is a game which we play thanks to an audiovisual apparatus and

which can be based on a story. (Esposito 2005)

It adds to the definition of what a video game is but we suggest a slightly modified

definition where apparatus is exchanged with computing device: a video game is a game which we

play thanks to an audiovisual computing device and which can be based on a story.

The addition of video to game is simple to define as something that falls into the above

description and is implemented on a computer. The definition of video games adds extra dimensions

compared to the understanding of games which we now explain. We consider the visual part of

audiovisual trivial as all video game devices contain a display of some sort.

Sound in video games can roughly be divided into two kinds: one is effects that are

coupled to actions in the game and the other is theatrical sounds or music. Sound effects are used to

direct attention and accentuate the meaning of a given action and music is very useful for creating

atmosphere.

Audiovisual computing device can be divided into four different groups of devices:

desktop computers, game consoles, handheld consoles including smart phones, and LBE-machines

(Location-Based Entertainment). This division is blurred by the fact that desktop computers slowly

are replaced by laptops and tablets that can be considered handheld, and the latest generations of

game consoles can be considered multi-media devices since they support internet browsing and

media center capabilities.

The video game definition leaves the narrative part optional. Within our previous

mentioned board game example Ludo it makes sense, but video games without at least an

introductory story is rare. A story is an important factor of any modern video game but in the game

genres simulations and sports it is often left out. To finish this explanation of the definition of a

video game, we would like to quickly introduce some of the main genres of video games (Wikipedia

2012).

21

Action Games are characterized by their focus on tempo and skills such as: quick

reflexes, accuracy, and timing. These skills are required by the player in

order to overcome obstacles.

Adventure Games focus mostly on puzzle-solving, appealing to a player’s problem solving

and logical skills. Adventure games often focus on the specific game

world and the best known examples are the Myst game series.

Role-Playing Games.......... build on the heritage of the pen-and-paper based Dungeons & Dragons

games. Most famous are the Diablo games made by the company Blizzard.

The player chooses a character with special abilities that leads to

different ways of playing the same game. The objective is to use these

abilities wisely and improve on them during the game in order to achieve

the main goal.

Strategy Games are a genre in which a player, on the basis of collecting a resource, builds

an army consisting of a number of units with certain capabilities. The

challenge is to balance resource management and composing an army of

suitable types of units and attack the opponent(s) before the opposite

happens.

Simulation Games can be considered a borderline case, since the simulation can be so

realistic that the application is no longer considered a game. A game

typically has a focus on the interesting parts of the real world and leave

out the boring parts. The simulator on the other hand focuses on realism

to the extent that repetitive or trivial parts from real life are not avoided.

As an example a flight game could possibly consist of immediate action of

dog-fighting. Oppositely the flight simulator could consist of: a full

training program before any mission, realistic waiting time, briefing, and

debriefing. Additionally, rules and outcomes are not always defined as

clearly as with the other genres. In a flight simulator for domestic use on

a computer, the purpose might be obvious in terms of successful take-

offs and landings, but it is up to the player to define the main goal of the

entire game, as simulation games are open-ended.

Having described what a video game is, and given examples of different genres, we

continue with the investigation of the concept of immersion in the context of games.

22

5.2.3 Four Subtypes of Immersion

This section deals with the subdivision of the term immersion as we have seen it

described in literature about games. We have chosen four different articles that share the same goal

- to divide the concept of immersion into subtypes, resulting in four different models for immersion.

It is these models that we compare. The articles are:

 Immersion, Engagement, and Presence (McMahan 2003).

Alison McMahan has a PhD in film studies and is co-author to the book In the video

game in which the article appears.

 Fundamental Components of the Gameplay Experience: analysing Immersion (Ermi

and Mäyrä 2005).

Frans Mäyrä is a professor of information studies interactive media at the University

of Tampere.

 Immersion Revisited: on the Value of a Contested Concept (Thon 2008).

Jan-Noël Thon has a PhD in transmedial narratology and is a research associate at

the University of Hamburg, Department of Media Studies.

 Postmodernism and the Three Types of Immersion (Adams 2004).

Ernest Adams is a game design consultant. His article appears in the game magazine

Gamasutra.

We have found that immersion in game context can be divided into four subtypes,

namely one concerning the spatiality of the game world, the gameplay, the narrative, and social

aspects. The following section is structured with a subsection of each of the four types. Each

subsection treats each of the articles that mention the related type of immersion.

o Spatial immersion

We find similar recognitions of what we call spatial immersion in three of the studied

articles. First McMahan points it out as realism and perceptual immersion. Realism is defined as:

“how accurately does the virtual environment represent objects, events and people”. In this sense

realism is a combination of social and perceptual realism. It depends on whether the game depicts

the real world both regarding interaction forms that imitate the real world as well as photo-realistic

depiction where the game objects look realistic. The perceptual realism is very close to what we

within game immersion label spatial immersion. Perceptual immersion is “blocking as many of the

senses as possible” but should rather be understood as saturation of the senses since the virtual

environment is stimulating the sensory apparatus in order to shut the external, non-mediated world

out.

23

In (Ermi and Mäyrä 2005), this dimension of immersion is referred to as the audiovisual

quality and style, exemplified as “good looking graphics, well-functioning camera angles”. However

aesthetics are perceived individually from player to player. The dimension is named: sensory

immersion and is described as “…impressive, three-dimensional and stereophonic worlds…”

In (Thon 2008), spatial immersion is described with the focus on the virtual game world,

i.e. the game space in which the player moves around his/her virtual character, called an avatar.

Spatial immersion is concerned with the game space that is manoeuvrable by the avatar. That leaves

out both the real world of course and the part of the game world that cannot be reached by the

avatar. Further spatial immersion considers the part of the game space that is relevant for

interaction. With our own words spatial immersion signifies both a player’s attention towards the

virtual game world and how convincing it seems.

Recapitulating on the different descriptions of spatial immersion we can say that they

are somehow connected to the game space, the visual effects and the sense of realism. The

descriptions are not totally overlapping but treat the same aspects of games. Spatial immersion

could be interpreted as the immediate ability to impress the player with a credible game world and

saturate the player’s sensory apparatus in order to shut out real world stimuli.

A games audiovisual quality and style are the structural parts of a game that are related

to the effect a player is experiencing referred to as spatial immersion. We find that the concept of

environmental presence is related to spatial immersion.

o Immersion in gameplay

If one considers a game that is stripped of fancy graphics, a narrative to link different

game events together and any social relation to other players, all that is left are the challenges of

the game. It could be the challenge to gain as many points to beat a high score before the game is

over. We call this concept gameplay which signifies what a given game is essentially about.

McMahan is quite brief about this important foundation of games. We recognize it in the definition

of psychological immersion where it is shortly described as ”the user’s mental absorption”, but that

fits the overall vague term immersion related to games in general.

In (Ermi and Mäyrä 2005), it is described as the level of challenge and has to do with

balance and the way of advancing and succeeding in the game. However this falls further into two

categories: sensor-motor abilities that require fast actions and cognitive challenges that require

thinking. The dimension is named challenge-based immersion and is defined as the “...satisfying

balance of challenges and abilities” and accounts for low-level sensory-motoric skills as well as high-

level strategic and logic problem solving skills.

Also in (Thon 2008), we find a similar concept namely ludic immersion. It is the focus on

the interactive part and is about the possibilities of interaction. It is about “…the player’s actions

that result in actions of the avatar and/or a change of state of the various objects…”.

24

Only Adams delves deeper into the two kinds of game-play that Mäyrä distinguishes

but treats similarly. He calls it tactical and strategic immersion. Tactical immersion is popularly

described by statements as being in the zone, being in the groove and as a meditation-like state. The

focus is on short path challenges that need immediate and quick action from the player but are also

easily solved individually. This stands opposite to strategic immersion, which is described as an

activity of observing, calculating, deducing and exemplified by playing chess which requires problem

solving on an abstract level. It is also stated that the challenges must be enjoyable without

depending on chance. This in combination with the tactical immersion is very close to what we have

previously described as flow.

All four articles elaborate on this central aspect of games without labelling it gameplay.

This seems fair in the sense that gameplay in our understanding is a structural part of a game itself,

and the mental state a player is experiencing is similar to the state of flow. We think of gameplay as

an objective structure of a game. It is the foundation for a player’s involvement and chance of

entering the mental state of flow.

o Immersion in Narrative

Apart from McMahan all of the mentioned articles recognise the narrative as

something a player can get immersed in. In (Ermi and Mäyrä 2005), it is all aspects of player

imagination related to the game. In the description it could seem to overlap with some of the

descriptions of spatial immersion, as well as some of the social aspects that the other models

include. Imaginative immersion is about the virtual world of the game, the characters and storyline,

and somehow the ability to do things not possible - or acceptable - in the real world. It is described

as the way in “...which one becomes absorbed with the stories and the world, or begins to feel for or

identify with a game character”.

The narrative dimension is described in (Thon 2008) as the unfolding of the story in a

game. A distinction between narrative events and ludic events is made to underline the difference

between the kinds of immersion related to such events: “Narrative events are determined before the

game is played and are presented using the various techniques [cut-scenes and predetermined

sequences]”.

This is opposed to ludic events that are determined as they are played out. Narrative

immersion in this case is considered to be about the whole game world – meaning also the places

the avatar cannot reach. Further the description of narrative immersion contains two subtypes of

immersion referring to temporal and emotional immersion. Temporal immersion is described as the

desire to know what happens with the story plot whereas emotional immersion is concerned with

the experience of empathy related to the character’s fate.

A similar categorisation is found in (Adams 2004), where narrative immersion is put

plainly as the player’s “care about the characters” and the urge “to know how the story is going to

25

end”. Despite similar word usage the concern for immersion in narrative spans from the player’s

attention to the story in a game to include emotional attachment to characters in the game story.

We find that the concept of involvement is related to narrative immersion understood as

descriptions of emotional connections to in-game, non-human characters as well as the game-story.

o Social Immersion

The last dimension may also be the broadest one and the one that is hardest to

embrace in a coherent description because the different sources define it so differently. We begin

with three different concepts from (McMahan 2003), which all relate to what we label social

immersion. First we have social interaction described as the player’s sense of togetherness or being

with someone even though it is only in a game. This is achieved if “…alterations of the environment

caused by the actions of one participant are clearly perceived by the other participants…”.

Notice how close the formulation is to the meaning of social presence. We will not go

deeper into the formulation but remain satisfied with the focus on social interaction with other

players. Further the social dimension includes the relation to a player’s avatar as well as non-

playable characters. This overlaps with empathy in narrative immersion. Thirdly immersion in an

intelligent environment can presumably cause a sense of presence: “a sense of presence can result

from users responding to the computer itself as an intelligent, social agent”.

The social dimension is also found in (Ermi and Mäyrä 2005) as the social context in

which the game is played, and in (Thon 2008) the dimension is described against the backdrop of

narrative immersion. With this type of immersion we are talking about inter-contextual immersion

understood as “communication and social interaction of the players with each other”. This is closely

related to narrative immersion as this mentioned communication “may additionally intensify players’

experience of narrative immersion”.

Immersion in social context is fairly clear as long as it only concerns relationship

between human players experienced through the game. As mentioned the concept is blurred as

social context also accounts for a player’s relationship to in-game characters as this overlaps with

immersion into narrative. We find that immersion in social context is related to the concept of

social presence.

26

5.2.4 Overview Table

In the Illustration 5-2 below we have placed the four types of immersion. The horizontal

axis is divided into two parts: aspects of immersion within the game and aspects of immersion

external to a game. It is not to be taken too literally but is simply a way of separating the concepts.

On the vertical axis we have placed the four different articles and their respective way of naming the

different kinds of immersion. The top-most line is our subdivision and under that is (Ermi and Mäyrä

2005), and so forth. The overview is to give an indication of how the different divisions fall within

the same categories without us having done anything to quantify each of the immersion types.

Each of our four subtypes of immersion have been identified in at least three out of

four models. Although the individual subtypes are not called the same across the articles we have

presented arguments for their similarity. We find that immersion can be divided into four different

types within game context.

Illustration 5-2: The horizontal axis is divided into two parts: aspects within the game and aspects external

to a game. It is not to be taken too literally but is simply a way of separating the concepts. On the vertical

axis we have placed the four different articles and their respective way of naming the different kinds of

immersion.

27

5.3 Summary

We summarize from our investigation that spatial immersion is related to the concept

of environmental presence; that immersion into gameplay is related to a player’s involvement and

chance of entering the mental state of flow; that immersion into narrative, understood as

descriptions of emotional connections to in-game characters as well as game-story, is also related to

a player’s involvement; and that social immersion, understood as relations to other human players,

is related to the concept of social presence.

This also means that each type of immersion is related to a corresponding inherent

game structure that is the foundation to cause immersion.

5.4 Virtual Reality Immersion

The Experience Cylinder can be considered to belong to a class of system known as a

CAVE which is a virtual reality technology. In the following section we provide a brief introduction to

the development of central virtual reality technologies to show how the connection between the

Experience Cylinder and virtual reality emerges. The section is followed by a review of the term

immersion in virtual reality context.

5.4.1 What is Virtual Reality?

Coined in 1987 by Jaron Lanier, virtual reality is a quite broad concept that is originally

coined as a self-contradiction on purpose. How can anything be both virtual and real at the same

time? a rather abstract definition of the concept describes virtual reality as “an event or entity that

is real in effect but not in fact” (Heim 1993). Often though, virtual reality is defined exclusively in the

combination with a specific technology.

Morton Heilig conceptualized the Sensorama in 1952 - a contraption that consists of: a

stereoscopic 3D display, fans, odour emitters, stereo speakers, and a moving chair (Heilig 1962). In

the Sensorama the participant could experience a bicycle ride through Brooklyn. The invention is in

retrospective considered the first virtual reality technology.

28

The inventor of the head-mounted display, Ivan Sutherland, bases virtual reality on

three features: being indiscernible from the real world, based on a computer that generates the

world in real time, and the ability for the user to interact and manipulate with virtual objects in an

intuitive way. The head-mounted display which was invented in 1968, see Illustration 5-4 below,

shuts out the normal view and displays a computer generated one for the viewer.

Illustration 5-4: Head Mounted Display invented by Ivan

Sutherland, provides small monitors to be positioned in front of

the eyes.

Illustration 5-3: Morton Heilig conceptualized the Sensorama in 1952 - a contraption that consists of: a

stereoscopic 3D display, fans, odour emitters, stereo speakers, and a moving chair. In the Sensorama the

participant could experience a bicycle ride through Brooklyn. The invention is in retrospective considered

the first virtual reality technology.

29

This technology was later combined with a digital glove or hand-held device used to

manipulate virtual objects and provide sensory feedback to imitate the feeling of touching these

virtual objects. This accounts for the third part of the virtual reality definition.

In 1985 Myron Krueger built an interactive environment called VIDEOPLACE (Krueger,

Gionfriddo and Hinrichsen 1985). A digital representation of the participant’s silhouette is projected

on the screen. Through this the participant experiences the ability to interact with virtual objects.

This could be considered the first instance of what is later called a CAVE. CAVE is

originally a recursive acronym for cave automatic virtual environment where projectors display a

computer generated 3D environment on the inside of a box-shaped room. The point is to surround

the viewer with visual input and thereby also block out external visual stimuli. Stereoscopic 3D is

utilised in order to enhance the sense of depth in the picture and motion tracking of head-

movement is used to adjust perspective according to the viewer’s point of view. The goal is the

same as with the head-mounted display and gloves but the equipment is less obtrusive.

Illustration 5-5: In VIDEOPLACE by Myron Krueger a person’s shadow is computer generated and

projected onto a screen. Virtual objects are manipulable through the virtual representation of the person.

“The circle can be pushed”.

30

5.4.2 Immersion and Presence in Virtual Reality

In the context of virtual reality, we once more encounter the use of the word

immersion. In (Bowman and McMahan 2007) it is stated that: “Immersion refers to the objective

level of sensory fidelity a virtual reality system provides.”. Furthermore they elaborate that

immersion “...is objective and measurable—one system can have a higher level of immersion than

another.”.

The level of immersion is described as “...how close the system’s visual output is to real-

world visual stimuli.” and a factor of many components such as for example the field of view, size,

and resolution of a display. (Bowman and McMahan 2007).

A checklist of what we could call immersive components defines the level of immersion

for the technology in question. Since we do not attempt to measure immersion in our context we

will not delve deeper into the understanding of the objective and measurable attributes of

immersion. Just notice that we did not find any such checklist that ranks technologies on a scale.

When it comes to defining presence within virtual reality context it is clear that the

concept has been developed within virtual reality research. The definition and meaning of the

concept seem clear:

Presence is “…an individual and context-dependent user response, related to the

experience of “being there”.” (Bowman and McMahan 2007). And the goal is to, in the user’s mind

“let the user experience a computer-generated world as if it were real - producing a sense of

presence, or “being there” (Bowman and McMahan 2007). Hence the concept of presence can be

understood as: “a user’s subjective psychological response to a VR system.” (Bowman and McMahan

2007). Different users can experience different levels of presence with the same virtual reality

system, and a single user might experience different levels of presence with the same system at

different times, depending on state of mind, recent history, and other factors. This is very

identifiable as the kind of presence we have previously described.

31

6 Building a Model of Immersion

The conflicting understandings of the concept of immersion in game literature and

literature on virtual reality are problematic to combine in a coherent manner. In order to combine

the two areas we need one that takes into account both games and technology used to play the

game.

In this section we describe the motivation for creating a model of immersion that

attempts to unify immersion theory. The gradual construction process is described to show the

change in our understanding of immersion as we attempted to construct our model.

To bridge the gap between the platform - the Experience Cylinder - and the content

type of games, we propose this model as a means to get an overview of immersion in this context,

as well as a proposed tool with which to evaluate experiences in the Experience Cylinder. We by no

means believe this to be an exhaustive model covering the present range of topics.

6.1 Construction

The starting point of our modelling efforts was game immersion literature. We started

by identifying the different definitions of the concept of immersion, and more specifically how the

concept was subdivided in the individual texts. The purpose was to find common ground between

the different articles. Everyone seemed to know just what immersion was about, but there seemed

to be no generally agreed upon definition. This became especially noticeable when attempts were

made to divide immersion into subcategories.

We decided to approach this systematically, by creating a table of the different articles

that identified different types of game immersion, Illustration 5-2 on page 26. After this we tried to

meaningfully categorize how the different types of immersion were subdivided and how they were

ordered among themselves. We tried placing them on a scale ranging from instinctive at one end of

the scale to cognitive at the other end. The focus of this division was mainly on the experience of the

user. Instinctive, relating to the sense of a type of immersion that was mostly related to immediate

responses and sensations (action), and cognitive in the sense of a focus on deliberation and higher

cognitive functions (puzzle, problem-solving, complex narrative).

To some extent, this categorization was possible see

Illustration 6-1 below, but ultimately proved too simplistic by trying to list immersion

types in a specific order. Some immersion types clearly belonged on a certain part of the scale, while

others seemed to belong in several places. Additionally, not all articles that dealt with immersion

incorporated a social aspect in their considerations and the social aspect was difficult for us to place

in this form. So the original idea of division was modified slightly, to include a range for each type of

immersion, see Illustration 6-2 below.

This model seemed to better explain the multi-faceted aspects of some types of

immersion, but we had no scientifically sound way to quantify and decide the length or placement

of the different bars, other than a vague feeling of how we felt the bars should overlap. Additionally,

32

we still did not have a way to properly place any social aspects of immersion, as the instinctive /

cognitive scale seemed more focused on an individual's experience without regard for other people.

Being dissatisfied with our models we began looking for more fully explained definitions

of immersion, presence, flow, cognitive absorption, and involvement. The hope was that a more

thorough explanation of the terms would aid us in creating a unified model. We came across a five-

Illustration 6-2: An example of another way of placing the different types of immersion on the instinctive

cognitive scale in an attempt to visualize that different types of immersion can span across a range of the

instinctive-cognitive scale.

Illustration 6-1: This illustration shows a division of immersion into instinctive and cognitive. Instinctive,

relating to a sense of immersion mostly related to immediate responses and sensations, and cognitive in

the sense of a focus on deliberation and higher cognitive functions.

33

page publication by Mel Slater, a professor specialised in virtual environments, in which he discusses

the general confusion of the terms he experienced at a conference he had just attended (Slater

2004). He subsequently gives his definitions and understanding of the different terms, and how they

relate to each other, to the experience and to the user. Mel Slater’s distinction between the form of

an experience and the content in the experience helped us understand some of the disparity

between immersion theories from the game design field and presence theories from the virtual

reality field.

From our cursory overview of the literature, immersion theory from the game design

field focuses largely on the content of a given experience and rarely includes considerations about

the platforms effect on overall game experience, while presence theory from the virtual reality field

largely focuses on the form of the experience and avoids making generalizations about the content.

On the basis of the form and content division, we created a new model which we

gradually refined.

Illustration 6-3: This illustration shows our proposed model of a virtual environment experience. It links

user to form and content through a certain context and points out the two different ways one can be

engaged in the experience as a combination of the sense of presence and involvement. Immersion and

game structures refers to concrete properties of form and content respectively.

34

6.2 Explanation of the Model

In order to concatenate the two different branches on immersion, we built the virtual

environment experience model, see Illustration 6-3 above. It links user to form and content through

a certain context and points out the two different ways one can be engaged in the experience as a

combination of the sense of presence and involvement. Involvement being considered similar to the

concept of immersion within game literature and presence as defined in virtual reality literature.

Immersion and game structures refers to concrete properties of form and content respectively.

At the top of the model, we have the system. This is a combination of all hardware,

software and other artefacts that are used to convey a game experience in a virtual reality setting to

a user. The parts of the system that are visible to the user can be roughly divided into two categories:

form and content. The form has to do with the direct appearance of the system to the user. This

covers screen size and shape, sound system, and controls. But that is not simply to say that form has

to do with hardware. The graphics engine used also concerns form, as this decides how things are

presented on the screen. But the graphics engine makes little sense by itself, as does the rest of the

form, without suitable content. Content has to do with what is presented to the user. It is hard to

define what exactly makes up the content of an experience, so it is easier to explain through

examples.

Let us take a very simple experience: reading a book. The physical book itself, and partly

also the letters themselves are part of them form. The story which is presented through the book is

the content. Books also fall into genres. Different genres have different ways of plot construction

and different means to attract the reader's attention. Games also fall into genres and have the same

ability to attract attention. We refer to these aspects of games as inherent structural elements.

These elements are what are common to different games within the same genre both in terms of

game world, gameplay and narrative. If we again consider the book analogy, the inherent structural

elements of narrative in a classic fairy-tale is the invariable plot development. The main character

must defeat evil in order to achieve greater good. To sustain the reader’s attention the fairytale uses

descriptions of the supernatural.

 By the classic understanding of immersion we have adopted that a book cannot be

considered immersive. This is because a book does not have the ability to saturate the sensory

apparatus and therefore neither the ability to afford the sense of presence. Recall that immersion is

“what the technology delivers from an objective point of view” (Bowman and McMahan 2007). The

words in the book have to be interpreted by a reader before we can say that an experience has

occurred. Since the reader is involved in this context we cannot say that books deliver experiences

from an objective point of view. As a consequence of this notion the effect - presence - the sense of

being there, cannot be considered a derivative of books even though some people might claim that

they have felt so engaged with a book and its characters that they felt they were part of the story.

This attachment and emotional relationship is however accounted for by involvement.

Inspired by the concepts of cognitive absorption and flow we draw a relation between

the inherent structural elements of games and their possible effects. When a player is either

engaged in the gameplay by dealing with the challenges, or emotionally attached to the

35

development of a plot in a story and sympathises with characters, we have involvement.

Involvement is as opposed to presence admittedly determined by the individual that engages in the

experience. This leads us to talk about the last part of the model - the user and the context seen in

the bottom of the model. The chance of achieving involvement depends on the individual’s

personality traits, tendency to become engaged and internal motivation to become involved.

Between experience and user we have placed context. The curved lines indicate that

context is a distorting factor meaning that it will create unique experiences for every game session

to individual users. It depends on the motivation to participate, the participant’s mood, other

participants, and the participant’s experience with the given platform and content.

6.3 Preliminary Conclusion

We could distinguish between the two states - presence and involvement - and

concentrate on separating them. What we found in the popular descriptions of immersion was

covering both aspects. You can feel presence without involvement, in the case of listening to a

concert from an impressive sound system without engaging in the genre of music that you hear. By

contrast you can feel involvement in the story of a book without the feeling of presence.

We prefer and use the distinction between immersion, inherent structural elements,

presence, and involvement in our situation. This definition has some clear advantages compared to

other definitions:

 It clearly distinguishes presence from involvement, which is important and not

made clear within game immersion research!

 It separates different aspects of an experience, and unlike game immersion it takes

the whole system into account by making a distinction between form and content.

36

7 The Experience Cylinder

In this section, we will explain the Experience Cylinder in greater detail. We will present

the origin of the cylinder and draw comparisons to similar installations. After this we will describe

the physical structure of the cylinder to be able to highlight problems in the structure that have

affected our work. Following this we present our development platform and the most significant

tools and applications we will use to develop our game prototypes.

7.1 Introduction

The Experience Cylinder is the technology that drives the practical development

involved in this project. The cylinder is, as formerly mentioned, used by Roskilde University to

research new experience forms. In collaboration with the Viking Ship Museum a 2D experience was

made for the cylinder. The experience involves pictures and video of the reconstructed Viking ship

The Sea Stallion and its trip from Roskilde to Dublin and back.

The development described in this report however is driven by the possibility of turning

the Experience Cylinder into a virtual reality display and use it for 3D virtual environments. This way

one could potentially get a feeling of standing inside a computer generated world as the Experience

Cylinder resembles a class of system known as a CAVE.

The Experience Cylinder consists of a cylinder shaped canvas hanging from the ceiling.

Six projectors are mounted inside as precise as presently possible, shooting on to the opposite side

of the canvas, so that it becomes a large 360° display. As mentioned previously, an infrared depth

measuring camera - the Microsoft Kinect - is mounted in the ceiling above the centre of the cylinder

in order to track the user(s). It is mounted pointing directly into the floor. Outside of the canvas are

six loudspeakers, each one positioned behind the centre of a projector image. A four array

subwoofer setup is placed outside as well.

As the Experience Cylinder is the physical foundation for our project, we will in this

section analyse the different elements of the Experience Cylinder regarding identifying and dealing

with the challenges of developing an immersive game prototype.

37

7.2 Similar Installations

Before we turn to the detailed description of the construction of the Experience

Cylinder we here give two examples of similar installations that apply gaming in a virtual reality

setting. From these examples we point out a number of similarities and differences.

The game industry is one of the major driving forces for developing virtual reality

platforms for entertainment-based applications (Badiqué, et al. 2002).

Due to the cost of large virtual reality installations these kinds of location-based

entertainment installations are mostly encountered in theme parks or video arcades and not in

private homes.

7.2.1 Disney Quest Example

An example of an interactive virtual reality attraction is the Disney World Battle for the

Buccaneer Gold (Shochet and Schell 2001). This is a nice example of game development in virtual

reality context where platform and game content is thoroughly merged.

Disney’s Battle for Buccaneer Gold is mentioned as an interactive theme park ride. One

guest steers and three other guests’ man cannons used to defeat virtual enemy pirate ships. The

installation uses a so called wrap-around screen with stereoscopic 3D and directional surround

sound as well as a motion platform for moving the physical space – a pirate ship.

The description does not make explicit whether the display completely surrounds

guests but as the illustration indicates it spans from the floor to the ceiling of the room.

Illustration 7-1: On the left the layout of the LBE-installation and on the right is a photo of the game in

action. Rightmost a player is at the rudder and the other players man the cannons. The ships in the

background and the water are computer generated imagery.

38

7.2.2 Star Wars Example

Students from Medialogy at AAU - Copenhagen have investigated game development

for a traditional CAVE design (Livatino, et al. 2006). They use the Star Wars universe as the narrative

foundation for creating a game specifically for a CAVE-like installation. The game idea is taken from

the original movies in which the main character must practice his lightsaber skills. The idea is to let

the player experience the same kind of practice. As seen in the Illustration 7-2 it appears as though

the player holds a lightsaber. The challenge in the game is to deflect laser beams emitted from what

is referred to as the training remote, see the upper left corner on the screen in the Illustration 7-2.

Points are gained when laser beams are deflected and the level of difficulty is increased as more

points are gained. The player is wearing 3D glasses and both the glasses and the physical lightsaber

hilt are tracked to adjust viewing perspective and the virtual part of the lightsaber according to the

player’s movement.

7.2.3 Comparison

What these two examples have in common which is different from our prototype is that

they build upon a familiar game world. The Disney example use the mythical version of the pirate

world and the other example builds upon the Star Wars universe. This enables players familiar with

these worlds to easily put the specific game in a narrative context.

Illustration 7-2: On the display is the game world. The ball in the upper left is the enemy and the light blue

line is the virtual part of the lightsaber. The player is holding a physical hilt for the lightsaber and the

illusion of holding a lightsaber is created by tracking the movement of the head and the hilt. The player is

wearing 3D glasses to allow the illusion that the lightsaber appears in front of the display.

39

Another commonality between the examples is the use of stereoscopic 3D technology.

This technology, as opposed to our platform, gives the opportunity to visualise game elements in

the physical space in front of the display.

What is different between the examples, is the control mechanism and the mapping

between physical interface and corresponding action in the virtual world. In the Disney example the

physical shape of the control mechanism gives an indication of how it is used as it builds on the

understanding of how a real cannon works. In the Star Wars example the player is also equipped

with a physical controller that is virtually extended into the game world. The 3D effects give the

illusion that the blade of the lightsaber begins at the physical controller - the hilt - and ends in the

virtual world. This diversity between the examples is distinct but we dare to say that both examples

can be classified as a CAVE.

The Experience Cylinder is quite similar to the understanding of what a CAVE is, but is of

course different in the way that it is built because of the original intended application for The Sea

Stallion. It is not shaped like a box but like a cylinder. It has no stereoscopic 3D display technology. It

is larger and built for more than one person and is also fairly cheap compared to other facilities, see

(Andreasen, et al. 2011), (Juarez, Schonenberg and Bartneck 2010), and (Livatino, et al. 2006).

The following sections describe the setup as it was when this project was initialized.

7.3 Construction and Technologies

We consider the physical construction of the Experience Cylinder. Built from

inexpensive materials, it makes a good start or prototype for investigating content on large displays.

Illustration 7-3: A full view of the Experience Cylinder showing the general construction. Notice the black

projectors, the rig of steel tubing, the attachment to the ceiling by the three orange pulleys, and the white

canvas and its shape.

40

7.3.1 Rigging

The rig for the canvas and projectors is a regular hexagon with sides of approximately

300 cm, created by ⌀ 6 cm steel tubing. It is mounted to the ceiling in a 3-point lift system. The three

points are placed evenly each in the centre of three of the sides in the hexagon.

7.3.2 Display Surface

The display surface is a large piece of canvas attached to ⌀ 1 cm plastic tubing in a circle

of approximately 600 cm in diameter. The plastic tubing and canvas is mounted via strings to the

hexagon. Notice on Illustration 7-3 how most of the strings hang at an angle.

7.3.3 Projectors

The six projectors are mounted so that each is mounted on each side of the hexagon

support on the opposite side of where they project to. But because the aforementioned 3-point lift

system was attached to the centre of the hexagon sides, it was decided to mount all the projectors

displaced from the centre on the hexagon sides while using the projectors’ lens shifting to correct

for the displacement.

7.3.4 Kinect

A Kinect, which can be used for motion sensing, is mounted on the ceiling in the centre

of the Experience Cylinder. This is used for the control for The Sea Stallion cylinder software. A

traditional mouse and keyboard can also be used for input to the computer of the Experience

Cylinder.

7.3.5 Computer

The computer was a Macintosh server with the operating system Mac OS X. It

contained two Intel Xeon processors, each with four processor cores. Two ATI Radeon HD 5700-

series graphics cards were mounted. Furthermore the computer had 8 Gb of RAM. In order to

connect with all six projectors each graphics card had a Matrox TripleHead2Go Analog Edition

mounted that connected three projectors to one output.

7.3.6 Sound

An M-Audio ProFire 610 external sound card is attached to the computer. This sound

card is different from a more typical sound card in that it delivers up to ten channels that is fully

controllable from within the software. The six satellite speakers are connected to this in six of the

ten channels in addition to four 10” subwoofers connected to only one channel. All of them are

active meaning that they have their own built-in amplifiers. This is considered a 6.1 surround sound

41

setup. This notation is used to indicate the number of channels. The number before the period

indicate the number of full-range channels, meaning channels that plays the full spectrum of sound,

and the number after the period indicates the number of low range channels.

42

8 Development Platform

In the previous section we explained the different parts of the Experience Cylinder and

what technical opportunities we had to work with at the start of the project. In this section we

explain different aspects of making video game content based on the integrated game development

framework Unity3D. We do that by explaining on a practical tool based level what is needed for

developing games with the Experience Cylinder technologies in mind.

First off we based our decision to use Unity3D on the CaveUT developer’s decision to

do the same. We knew by their decision that it were possible to render a scene with a similar result

to what our proof of concept test of CaveUT had. Since both solutions had that specific capability

and it seemed easier to implement new game ideas in an editor rather than to modify an existing

game, the choice was easy. Most of the other software solutions were selected for their

compatibility with Unity3D. Additional details will be explained later though.

Following is Illustration 8-1 showing the connections between the applications we use

and how they are connected to the Experience Cylinder. The majority of them concern software or

file types and standards used within the computer, but additionally also the connection between the

software solutions and the previously mentioned setup of hardware. The software is shown by their

respective logos, and the specific hardware is shown to the right in addition to the 3D model of the

Experience Cylinder where applicable. In between, arrows show the direction of workflow that

either we ourselves or the software execute. Following the illustration we will explain the parts and

how they are used.

Illustration 8-1: This illustration shows a graphical layout of our development platform. The platform

consists of different software solutions. These are illustrated with their individual interdependencies as

well as between file types and the Experience Cylinder hardware.

43

8.1 Unity3D

Unity3D is a game development platform. It runs on Windows and MAC OS X as well as

compiling to a wide variety of platforms – PC and Mac but also Xbox, PS3, Nintendo Wii, iPhone and

Android. The main parts of Unity3D are the editor and the game engine. The editor is the part used

under development and the game engine is the interpreter that generates the graphics based on the

graphics API that corresponds to the platform of choice.

The editor organizes the game development into three: assets, scenes and projects. Any

single game is organized as a project. Scenes are associated to a specific project and can often be

seen as the different game levels in a game. Assets are even smaller bits that make up the game.

Models, shaders, scripts, lights and sounds are all assets.

The editor interface is divided into a number of panels. For example a panel with a file

system hierarchy containing all assets, a game view panel that shows a pre-rendering of the game, a

scene view panel that graphically displays the whole 3D world and visible game objects in the scene.

Here every game object can be manipulated by using the mouse. In the right side inspector panel we

see the settings for a given game object, in a way that makes it easy to configure the individual

game element.

Unity3D comes with a built in physics engine, able to handle gravity, movement,

collisions etc. It also contains a number of built in presets that allow for easy creation of game

objects and functionality that would be very advanced to make from scratch. For example springs,

hinges and joints all of which can be configured in a number of ways, for example to break when

subjected to more force than they are configured to withstand. These are just a few of the options

available in the physics engine.

The scripting engine in Unity3D allows game creators and programmers to create

complex behaviours in the game. This is done by writing scripts that create the intended behaviours

and then attaching the script to relevant game objects to use the behaviour in the relevant scenes.

Three scripting languages are available in Unity3D, C#, UnityScript and Boo. UnityScript is derived

from JavaScript. We chose to use C# as it more closely resembled programming languages we have

used in earlier projects, and since none of us had any experience with JavaScript or Boo or C# for

that matter.

Unity3D also supports shaders, which are programs running on the graphical processing

unit. Shaders are used to calculate rendering effects and can in Unity3D be programmed in the

multi-platform language CG, short for C for Graphics.

8.2 OpenNI

OpenNI is a framework, which has been developed with the intention of creating a

common way to interface between programs that require 3D sensor data, algorithms that process

these data, and the sensors that produce the actual data. Program developers can make programs

that use 3D sensor data without limiting themselves to specific sensors, hardware producers can

44

make new sensors that still work with existing programs, and new algorithms can be written to

process sensor data without affecting program functionality or being dependent on specific sensors

(PrimeSense, et al. 2010).

OpenNI also includes several middleware modules, which can process the raw data

from the Kinect. These middleware modules include ways to display the depth camera view

graphically, modules which can keep track of several different users in the camera field of view and

modules to generate a sort of radar view to visualize where different users are located in relation to

the Kinect and each other. Perhaps more importantly, there are also modules to provide a skeletal

tracking feature for a user, which is needed for more advanced gesture control and movement

tracking.

OpenNI is coded in C, but we can write scripts in C# because the package connecting

the OpenNI framework to Unity is configured to handle all connections to OpenNI, which allows us

to write all our Unity code in C#, one of the supported scripting languages in Unity.

We chose OpenNI because other people had already developed a package that

connected Unity and OpenNI, and because OpenNI appeared to be frequently updated and well

documented.

8.3 SketchUp

In order to generate any visible objects for a 3D virtual environment one has to draw

them in a 3D modelling program. Unity3D supports simple modelling but it is not versatile enough.

SketchUp is a modelling tool and comes in a free edition (Trimble n.d.). It has the advantages of

being very easy to use in order to get started. Most of the modelling we use in our game prototypes

is performed with SketchUp. Additionally the 3D models used within this report were created in

SketchUp as well.

In order to use the models from SketchUp within Unity3D we had to export the data to

a file format that Unity3D can import. The new free edition of version 8 was able to export in the

XML based 3D file format called Collada. The extension of these files is *.dae. We imported these

files without trouble as long as we remembered to import the textures first. The textures are the

images on the surfaces of the model.

8.4 Max 6

Max is a highly modular, visual programming language for music and multimedia with

an API that allows for the development of new 3rd party routines. Originally Max is designed to

handle synthesizers and samplers for making electronic music, but a set of audio extensions called

Max Signal Processing (MSP) now allows for the manipulation of real-time digital audio. That is why

the language is also known as Max/MSP. Max programs are called patches and made by connecting

building blocks of objects. These objects are themselves programs that either receive or transmit

input/output to other objects via inlets and outlets.

45

8.5 Audacity

Audacity is an audio editor software application that we can use to manipulate pieces

of sound. It features audio recording, post processing, and mixing of audio. It is able to edit different

audio file types. We chose to use the wave file type as Illustration 8-1 shows. On the website where

we got the original sound files both the mp3 and wave file formats were available (Soundbible 2012).

We chose the latter because of its ability to deliver higher quality sound than mp3.

46

9 Choosing a Case

Our specific case was not chosen until after a preliminary literature study and some

initial work with different software tools to familiarize ourselves with the Experience Cylinder and

the kinds of software we needed to display a virtual 3D environment in the cylinder. We knew from

the start that we wanted to create a video game for the cylinder, but the specific genre of our video

game prototype had not been decided yet. Thus, part of our initial investigations included coming

up with game ideas that utilised the different technological elements in the Experience Cylinder as

much as possible without sacrificing the overall game experience.

Display Among the technological aspects of the experience cylinder, we considered the

360° panoramic display the most important aspect and chose it as our main focus

area. An experience with CaveUT was that even though the player’s were able to

see 360° of the virtual environment, the player primarily utilised the main display

while playing. On contrary we wanted to design our game prototype to utilise the

entire screen area in a meaningful way.

Controller Since the Kinect were mounted already, we wanted to use this as the means to

be able to control our game. We wanted the player to be able to aim and point in

the game only through his own body movement, rather than using a

conventional controller like a computer mouse. If it was at all possible we also

wanted a way for the player to move around in the virtual environment, only

through the use of body movement within the cylinder.

Movement Movement needs to be considered in combination with the use of the display.

The primary reason for the previously mentioned issue of only using the main

display in CaveUT is the game design of Unreal Tournament. In order to get the

full potential of CAVE-like systems you need to design the game to come as close

to real world aspects as possible. One central aspect of the real world is that the

environment around you is fixated while you move or look around. The opposite

happens in CaveUT where the virtual environment moves around while the

player is fixated. We did not expect to solve this within navigation which would

require additional hardware, but we aimed for a fixation of the virtual

environment rotation wise. Since the display is all around you can just turn your

head or body like in the real world.

Sound system We wanted to utilise the cylinder’s sound system, as a way of cueing the player in

on aspects of the game that were potentially out of his field of view. This also is a

way of creating sudden shock in the player to indicate immediate danger or

failure. Sound is also very important in consideration to providing a sense of

space in addition to the display and the 3D virtual environment.

47

Besides the technological aspects of the Experience Cylinder, we also had to make

decisions regarding the relation between the individual game ideas and different aspects of games.

Rather than just coming up with game ideas, we decided to look at the individual aspects and judge

their relevance to our project. Both in relation to what we felt we wanted to investigate in our game

experience, but also what we deemed achievable within the time limit of our project.

Narrative Writing a story to support a narrative was quickly excluded, solely on the basis of

the scope of our project. it was unrealistic for us to come up with a narrative

element because none of us had any experience in creating a narrative.

Gameplay A focus on the player’s reaction time and coordination seemed more immediate

and appropriate for the Experience Cylinder. Our game prototype could be based

on the player’s reaction time by presenting objects on many different parts of the

display and simulate sounds coming from many different directions. If we

simultaneously utilised the Kinect as the controller for the game, the game could

challenge the coordination and reaction time of the player through his or her

physical movement. On the other hand designing complex puzzles and challenges

requiring logical thinking skills would require extensive work from our part and

we deemed unfeasible to implement within the scope of the project.

After considering these aspects of games, we had some considerations about how the

immersive properties of the Experience Cylinder could augment our choice of gameplay. This

included that the game should: utilise the entire screen area of the Experience Cylinder, utilise the

physics system in Unity3D to more closely imitate aspects of the real world, and utilise proper

directional sound to enhance the user’s awareness of the virtual environment.

9.1 Basic Case Concepts

This section provides basic information about plausible game concepts we considered

while developing the needed case(s) in regard to the Experience Cylinder.

9.1.1 Rail-Shooter

The concept of a Rail-shooter is that the player’s movement around the game

environment is partly controlled by the game itself. Most often, the player will be able to aim his

gun around freely, but character movement between different parts of the environment is

controlled by the computer. One example of this is where the player is moved from room to room.

As a player’s character enters a room, he has to kill a number of computer generated enemies

before he is taken to the next room. The games Time Crisis and Virtua Cop are examples of this

game type. Also an actual rail could exist in the game. This could then be compared to the classic

48

ride at the amusement park where you sit in a carriage with a gun mounted and travel along the rail

from start to finish, while you shoot at moving targets.

A game prototype in this genre could utilise the entire screen area by designing each

scene, so that enemies appear all around the player and the player has to be aware of many parts of

the screen. The directional sound system could be used to indicate enemy locations and to attempt

to distract the player.

9.1.2 Base Defence

In a base defence game the player controls one or more defensive towers and has to

defend himself or points of interest in the game from approaching enemies. The idea is based on the

game Missile Command, in which the player has control of a few defensive towers with which to

defend bases from incoming enemies. In games of this type, the defensive towers are usually viewed

from outside the tower, to give a sense of control and overview.

The Experience Cylinder presented a unique opportunity to put the player into the

defensive tower itself, letting him experience the game from a first person point of view, to give a

more intense game experience. The sound system could be used to indicate incoming enemies or

used to create attack sounds of varying intensity depending on the distance of the sound origin or

the severity to the player.

9.1.3 Virtual Sightseeing

This could be considered a concept closer to the simulation genre. It does not have to

be a game with any other goal than travelling around seeing the virtual environment in question.

This concept could opposed to the other concepts involve free movement in the virtual environment

as the central game structure. Additionally in combination with the Experience Cylinder, this

concept could apply the possibility of realizing a fixed world - turning player relation.

In a virtual sightseeing prototype the display could show the surrounding environment

and the sound system could provide ambient sounds to create atmosphere.

9.2 Choice of Case

The Base Defence concept was the most simple to start our investigations by. A finished

Base Defence game could be reused by adding the Rail-Shooter features of transport to varying

locations in order to investigate movement in virtual environment. So the Base Defence concept was

the choice of the first two.

During the project we realized that converting the Base Defence game prototype to a

rail-shooter was unfeasible within the scope of the project. So we decided to investigate a separate

solution which led to the virtual sightseeing concept.

49

10 The Development Challenges

This section provides an overview of how we have developed the game prototypes. On

the basis of our proof-of-concept study with CaveUT and during the practical development of the

prototypes, we identified three of four main challenges: display, control, and sound. The fourth

challenge relates to the challenge of developing game content. Each of these challenges is

presented with a background section and a section that describes our solution.

Displaying a 3D World on a 360 Display ... In CaveUT, the player’s focus is primarily in the same

direction. We wished to better utilise the display by

encouraging the player himself to turn and look in all

directions. The challenge we face here, is to represent the

3D world in a meaningful and realistic way on the 360°

display, while the game design is based on utilizing the

entire screen area.

Control .. Traditional control with mouse and keyboard restricts

player movement. We want the player to be able to move

around freely. The Experience Cylinder is equipped with an

infrared camera and we want to utilise it as the controller

for the game. The challenge is to make proper use of the

features of the Kinect.

Directional Sound We did not get any experience with audio from our proof-

of-concept study, and the hardware for sound capabilities

in the Experience Cylinder is previously only used with a

specific technology. We face a challenge in playing sound

from one sound interface into our game development

environment.

Game Elements The last challenge deals with the making of content for our

game. Unlike the proof-of-concept study, we ourselves had

to create and invent the game elements central to the

game concept. We needed relevant game elements to

move and behave in a realistic and predictable manner as

well as portray a visual expression reflecting their expected

purpose or behaviour.

50

10.1 Displaying a 3D world on a 360° display

This section is concerned with the problems and solutions about how to show a 3D

virtual world on the inside of a 360° panoramic surface in order to create the experience of standing

inside a virtual world looking towards the horizon in all directions. The pre study involving CaveUT

showed us the proof of concept and in the following we show how we solved similar issues on our

platform.

10.1.1 Platform Issues

First off the Mac OS had no support for AMD CrossFireX or AMD Eyefinity. AMD

CrossFireX creates a data bridge between the two GPUs in order to combine their computing power.

AMD Eyefinity combines multiple displays in a way that makes the OS see them as one. The lack of

support for AMD Eyefinity meant that in Mac OS we had two displays containing each of three

projectors with no ability to make the OS see all the screens as one. Each projector was fed with a

resolution of 1024 x 768 which means that each of the two displays in the OS had a total resolution

of 3072 x 768. On top of that we found that Unity is only able to show a full screen rendering on one

monitor. So we were only able to get fullscreen on the one 3072 x 768 display which corresponded

to only 180° of the Experience Cylinder.

10.1.2 Display Surface Limitations

As formerly mentioned, attaching the plastic tubing ring to the hexagonal shape directly

with strings cause problems. Because of that and the fact that the plastic tubing is not rigid enough

to keep its cylindrical shape, the supposedly cylindrical display is distorted towards the more rigid

hexagonal shape of the support, see Illustration 7-3 on page 39. This means that instead of a perfect

circle we really have an at least much softened hexagonal shape as the display. Additionally, the

canvas has a tendency to hang unevenly which creates arbitrary folds and curves. These conditions

distort the image that is displayed on the canvas.

10.1.3 Projectors and Placement

The projectors presently mounted in the Experience Cylinder are not capable of curved-

surface projection correction and therefore are not able to correct for the fact that they are used to

project on the curved surface of the cylinder, rather than a plane surface. The following Illustration

10-1 shows two images: the left image shows only the cylinder and a red, transparent, and fictive

plane where one of the projectors is supposed to project to; the right image show the fictive plane

again but this time combined with a projection outline of where the projection will hit the plane and

the canvas.

51

This has the effect of the image becoming distorted. What happens is that from beyond

the fictive projection plane the projection light continues its travel in the originating direction and

therefore places the pixels in spots where they were not intended. The following Illustration 10-2

shows the fictive projection plane directly from the centre front, together with the projection

outline as the right image in Illustration 10-1. It is clear that the distortion result, in case of a perfect

circular surface is a curve as well. It also shows that the distortion grows larger from top to bottom

and that it curves downwards. This is a result of the high projector position above the display. For

comparison, a projector projecting directly from the vertical centre of the display, would result in

curves that at the top would curve upwards and at the bottom would curve downwards. We define

this distortion as a vertical pixel displacement.

Illustration 10-1: The image to the right in this illustration shows an outline of the light from one

projector. The light from this projector is supposed to hit a plane surface which is shown as well. The

fictive plane surface is shown in red isolated in the image to the left. Since the Experience Cylinder is

circular the light continues its travel of direction from the fictive plane to the actual surface. This results in

distortion of the image.

52

Furthermore Illustration 10-2 above shows an additional pixel displacement. The curved

distortion combined with a projector that is not centred, makes the pixel distortion problem worse.

The illustration shows three dashed lines that originates from the centre and ends at the bottom

curve. The middle dashed line represents a pixel that is intended to be displayed in the exact centre

in the bottom of the display. With a centred projector this pixel would hit in the exact spot of the

turning point of the curve, but as the illustration shows, it does not. It is shifted slightly to the left

where the dashed line disappears through the cylindrical surface.

A centred projector would still result in those shifts in the right and left of the three

dashed lines, but they would be equally distributed in left and right direction and not at different

angles as the current projector setup. We define this distortion as a horizontal pixel displacement.

This distortion is not as distinct as the vertical distortion. Actually we did not notice this

displacement with the current projector position until quite late in the course of the project.

Also, by deciding to position the projectors on the opposite side of the projection

surface, a problem occurs: a person of normal height inside the cylinder obstructs the projector light

and either creates a shadow on the display or in some positions gets blinded by light. To overcome

this, short throw projectors have already been bought and have been considered in both a rear

projection and a front projection setup. A quick test showed that rear projection was not possible

with the current canvas because too much light passes through and therefore blinds the user.

Illustration 10-2: This illustration shows the distortion of the present short throw projectors. The image is

an orthogonal view of our 3D model of the Experience Cylinder. It is viewed directly from the centre of the

surface where one of the six projectors displays.

53

The short throw, front projection setup will have other issues. The following Illustration

10-3 shows the 3D view and the result of the curved distortion from such a projector mounting. As

the illustration shows, the curved distortion is greater, especially at the bottom.

10.1.4 Virtual Camera in Unity3D

The virtual camera is really a virtual representation of what you would consider a

camera that films the world while sending the filmed material to a display. But of course it is a

programmed virtual representation of it. Typically games only use one virtual camera for the view

and maybe another for a game map. In Unity the virtual camera is utilised by inserting a camera

game object into the scene of your application. There is no limit to the number of cameras one can

use in a scene.

The camera translates the virtual environment to the user’s screen (Unity3D 2011).

Behind the scenes, this is where the mathematical translation of the vertices in the 3D virtual

environment into the 2D coordinate set of the user’s screen is introduced.

The virtual camera’s visible area is comprised by the view frustum which is the

container of the space that could be visible from the camera's point of view, but within the clipping

planes; near view plane and far view plane. The two planes cut away the potentially visible parts of

the scene which are in front of the near view plane and behind the far view plane.

Illustration 10-3: This illustration shows the distortion of a short throw projector mounted in the

Experience Cylinder. The distortion gets worse at shorter distances from projector to the display surface.

54

The camera object consists of a series of settings to affect the end result. These settings

include, among many others, the ability to set how much of the scene it will render, a setting which

is called Field Of View, and the rectangular area of the user’s screen where the specific camera will

render, a setting called Normalized View Port Rect (Unity3D 2011).

The two mentioned settings are the ones we later utilise to create the camera setup we

need for The Experience Cylinder.

Illustration 10-5: This is a screenshot of some of the camera settings within Unity3D.

Illustration 10-4: This is a model of a view frustum. It illustrates what is “seen” from a virtual camera,

which is everything within the coloured section. The near view plane indicates that everything between

the camera and the plane is not rendered. The far view plane indicates that everything beyond is not

rendered.

55

o Field Of View

This is the setting that if changed adjusts the angle of the field of view. If the angle is set

to a bigger number the view frustum gets wider both horizontally and vertically. The angle set is the

one in vertical direction, but the horizontal angle changes as well in order to keep the aspect ratio

between width and height set in the Normalized View Port Rect.

o Normalized View Port Rect

This setting is adjusted by four values which are the X and Y coordinate of the camera’s

render position originated at the top, left corner and W (width) and H (height) of the camera’s

rectangular render area. This feature could be used to create a two player split screen game if both

cameras were set to 0.5 in width and the one of the cameras were set to render at the position of

0.5 in X. Then these two cameras would be rendered side by side on the connected display, no

matter where the cameras are moved around in the virtual environment.

10.1.5 Background Summary

The issue we have to focus on when creating the ability to view all 360° of the virtual

environment is how to properly utilise the virtual camera features of Unity3D. Additionally the

issues of the whole experience cylinder construction are a matter that could, if solved, result in

benefits to our created experience. The following sections will show the solutions we created and

implemented to solve the discussed problems according to the mentioned background knowledge.

10.1.6 Platform

In order to utilise the full 360° of the Experience Cylinder we needed to get outputs to

both of the Matrox TripleHead2Go units from only one GPU, preferably coupled with the other by

AMD CrossFireX. So to fix the issues of not being able to use AMD CrossFireX we had Windows

installed on the machine as well, while possible to start both Mac OS X and Windows. In Windows,

we gained the ability to use the CrossFireX as well as Eyefinity and now had one big display. The

downsides were that the specific graphics cards we had only had one DVI output and one Mini

DisplayPort. The result was that each projector could only be fed with an 800 x 600 resolution, a

total resolution of 4800 x 600.

10.1.7 360° Camera

Since The Experience Cylinder is 360° circular there is a need for 360° rendering of the

3D environment to be displayed in the Experience Cylinder. This can be achieved in Unity by setting

up a number of cameras circularly with origin at the same coordinate. These cameras are each

supposed to show an equally distributed section of the 3D environment each in a different heading

of the 360° as in the following Illustration 10-6 of six view frustums.

56

Of course this will result in a regular convex polygon of cameras with as many sides as

cameras and not a circle. What happens is that if the 360° camera consists of few cameras, straight

lines in the scene will show as if they have bends, where the cameras are convergent. That and the

aforementioned curved distortion of the display per projector create clear visualization problems.

The preliminary solution to the first problem is that the more cameras we use, the closer we get to a

circular shape of the 360° camera, and also a potentially circular view of the rendered scene on the

cylindrical display.

The downside is that more cameras in the scene will lower the frame rate of the

application. This could in the worst case scenario result in visible lagging. Our small game prototypes

were not influenced much, but more comprehensive downloadable Unity test games fitted with our

360° camera were. Our prototypes got great results from a setup with 32 cameras.

To sum up we had two solutions based on the number of cameras used, both with

somewhat serious visual and performance issues. To reduce the problem and make it easier to

choose between the two solutions we ended up creating a shader program. Thereby we moved

some of the work to the GPU. In the shader we introduced a parabolic function that made an

approximate fix of the problems by a solution with only six cameras, see section 10.1.80 on page 60.

Illustration 10-6: Six cameras added in the same spot, but in six different directions in order to realize a

360° view.

57

o Building the 360° camera

To create the 360° camera some values in Unity needed to be adjusted correctly, which

demanded some calculations Unity is not able to supply itself. The first thing to consider is the final

resolution, because the cameras will be scaled up or down accordingly. As a case for the calculations,

the Experience Cylinder has six projectors, each with a resolution of 800 x 600 pixels making a

combined screen of 4800 x 600 pixels. The final resolution is set in player settings reached at the

build settings dialog.

The number of cameras in a 360° view is independent of that, but in the end we chose

the same number as projectors for reasons explained later and will therefore show the calculations

needed for six cameras.

As mentioned before in order to get the cameras aligned side by side on the display

when rendered, the Normalized View Port Rect needs to be set correctly. The height of each camera

is supposed to be 1, which is 100%. The width is calculated by dividing 1 by the number of cameras.

If by the six cameras in question the result would be 0.166667. By having each camera adjusted to

the values 0.166667 in width and 1 in height they each render to the total 100% height by 600 pixels

and 16.6667% of the total width of 4800 pixels, which are 800 pixels. In this calculation example

each camera happens to represent the exact same resolution as each projector of 800 x 600. But

that would not be the case if the number of cameras was not the same as the number of projectors.

While all cameras need to have the same values in W and H in the Normalized View

Port Rect the X value of the position coordinate needs to change by each camera. The first camera

needs to be positioned in the coordinate (0,0) and the next two in (0,0.166667) and (0,0.333334),

and so on. The cameras will then be displayed in equal sizes side by side on the long rectangular

screen of the 4800 x 600 pixels as in the following model of the result.

Illustration 10-8: A model of how the six screens of our 360° camera is displayed by Unity3D. The model

includes the values needed within the applicable settings.

Illustration 10-7: A screenshot of the resolution settings within Unity3D.

58

The next value to consider, for all cameras, is the Field Of View. In Unity it is the vertical

angle of the cameras viewing angle. In Illustration 10-9 it is called Av. When Field Of View is changed,

the horizontal angle Ah as mentioned changes as well in order to keep the aspect ratio. This is why

we need to calculate the two angles based on a plane in the view frustum. A plane available to us is

the one defined by the final screen resolution which is 4800 x 600 pixels. As mentioned earlier the

height of each camera is 600 pixels. The width can be calculated as 4800 divided by the number of

cameras to which the result is 800 pixels. The x and y values are then 800 x 600 pixels.

The horizontal angle Ah is also easy to calculate, again by dividing the 360° by the

number of cameras. The result is 60°. So now we have some of the values shown in Illustration 10-9

and need only to calculate Av, the Field Of View. In the green right angled triangle the angle A2 is Ah

divided by two and the side a2 is the width of the plane divided by two. The value b2 is not available,

but we know it is equal to b1 in the blue triangle. In the blue triangle we only know a1 which is the

height of the plane divided by two. These values are enough to isolate Field Of View by first isolating

b in the two triangles and then equating the two expressions shown in the following example.

Illustration 10-9: This is a model of a view frustum that contains two triangles necessary for calculation of

the Field of View angle. This value is needed in order to create the 360° camera.

59

This formula for Av can then be utilised to calculate the field of view for the Unity3D

cameras. Our example as mentioned has six cameras of 60° with a view plane of 800 x 600 pixels. As

a basis according to the Illustration 10-9 by dividing the sides of the view plane by 2, the formula can

be used like this:

Mathematically though the important relationship in this formula is the factor between

a1 and a2. This means that using the original values of 800x600 and not 400x300 would lead to the

same result.

The Field Of View for each of the six cameras should then be set to 46.82645° and each

camera needs to be turned towards the correct heading. Since the cameras are 60° in the horizontal

angle, there should be 60° between them. In order to have the centre of the cameras towards the

centre of the display it is useful to start at -150°, then the next camera rotated -90°, and so on until

we reach +150° for the last camera. In Unity3D, the result is a camera setup that can be

implemented in any common 3D world in Unity3D, when attached to the main camera.

60

10.1.8 Virtual Optical Filter

In order to fix all of the distortions created by the physical setup as described we took

the first small steps to an advanced shader solution based on a downloadable Unity3D shader,

which initially was created for a different purpose. The ability of the shader that we managed to

achieve within the project scope was to create an approximate fix of the most distinct distortion.

That is the curved vertical distortion that rises from the combination of projector placement and the

curved display surface as described earlier. The following Illustration 10-10 below shows the actual

distortion marked with red lines. This distortion can be dimmed by introducing a congruent curved

shifting of the pixels in the final image. This will as marked in the illustration lift the pixels from the

positions of the red lines up to the horizontal lines that define the rectangular screen surface and

the centre.

In the shader we inserted the formula for an approximated congruent parabolic

function. At first we used one approximated average coefficient that corresponds to the red

parabola in the middle. The result was improved overall but was over-adjusting in the top and

under-adjusting in the bottom and only somewhat accurate in the middle. Applying a change in the

coefficient based on the value of y made the parabolic curve change according to Illustration 10-10

above.

Illustration 10-10: This is a repetition of Illustration 10-2, but this time with additional red curves and

arrows that shows the needed shift up of the pixels in order to solve the distortion.

61

A more precise solution as created in our 3D model would look like the one shown in

the following Illustration 10-11. Notice there is an opposite displacement in the light from the

projector and therefore no distortion on the projection surface in the final result, as seen in the

third image.

To realize an even more precise solution we need to be able to shift each pixel upwards

the amount we are able to measure in the 3D model. In order to do that in a more advanced shader

a formula for the calculation of that exact value is key and not just an approximated parabolic

function. By a number of simple trigonometric operations we found this to be possible. The

following Illustration 10-12 shows the shapes and variables needed. The shapes include three right

triangles of the colours turquoise, blue, green, one purple oblique triangle, the circle that defines

the 360° canvas and the red display surface where the projector is supposed to shoot. What the

shader needs to be able to do is calculate the Vertical Pixel Shift as defined in Illustration 10-12.

Illustration 10-11: This model shows what would happen if the light from the projector were altered by

the correct curves. Notice, that the fictive red plane is visible in the first image, that the upwards curve is

distinct in the second image, and that the orthogonal view from inside the cylinder now is without

distortion.

62

Illustration 10-12: These models show the values and trigonometric shapes needed in order to calculate

the pixel shifts needed to resolve the distortion issue. These calculations could be used in a more precise

shader program.

63

The values we know is the projector’s position, which is the distance from the canvas ,

Distancet and the distance from the bottom of the projector surface, Projector Position Height, The

resolution and number of the projectors, and finally the radius of the cylinder.

These numbers, apart from the resolution which is in pixels, are measured in length

units. In order for a possible fragment shader to do the calculations based on a pixel/fragment at

hand, all the mentioned variables in Illustration 10-12 needs to be converted to pixels as a unit of

measurement. This is the first task of a possible shader program. It is done by calculating the length

of the sides of the n-polygon defined by the number of projectors and radius of the circle. A polygon

side equals the resolution width of the projector surface and a factor between them can be found

which can be used for the following conversions. The calculation of the sides and factor is done as

follows:

Furthermore a set of constants can be calculated so the potential shader only needs to

do it once. The formulas that follow show some of these calculations. The Display Top value is

needed for the Vertical Reference Value, this way the calculations will work even though the

projector would be placed below the height of the Display Top.

The Sagitta in this case is the distance from the centre of and perpendicular to the

chord that defines the Projector Surface Width. In geometry, sagitta is defined as the depth of an

arch. This is calculated by the following formula and used to calculate distance 1. Distance 2 is

calculated by the radius.

The rest of the calculations need to be done for each pixel and this is what our shader

does in parallel. First off it needs to calculate what we call the Horizontal- and Vertical Reference

Values. They both represent an adjusted value based on the coordinate of the pixel at hand. The

Horizontal Reference Value goes from half the resolution to zero and back plus one, along all of the x

values. We need to add one in order to avoid a division by zero error when calculating pixels in the

horizontal middle of the screen. The vertical pixel shift needed in our case is symmetric around the

centre of the display. The Vertical Reference Value is adjusted accordingly to the display top.

64

The following formulas contain all the steps needed to calculate the final Vertical Pixel

Shift. At first we find all of the angles in the purple oblique triangle, and then we calculate |c| in

order to calculate |t| by the turquoise right triangle. Then |t| is used to calculate the Vertical Pixel

Shift.

We entered these calculations in a spreadsheet. The following Illustration 10-13 shows

the variables with a white background and all of the calculations done to get the Vertical Pixel Shift

value for 11 x 11 examples of the 800 x 600 resolution projectors of the present setup in the

Experience Cylinder.

65

10.1.9 Summary of Solutions

In this section we showed how to utilise the features of Unity3D to realize the

possibility of presenting a 3D virtual world inside the Experience Cylinder. Several additional issues

appeared along the way that were either dealt with or will eventually need to be dealt with, to

create an even better experience in the cylinder. These issues primarily had to do with the

construction of the Experience Cylinder. These in return triggered multiple types of distortions to

the individual displays from the projectors and consequently also the whole panoramic composition.

We found two solutions for the vertical pixel displacement: one approximated but implemented as a

shader and another merely mathematical but potentially more precise if implemented as a shader.

For the horizontal pixel displacement and as an addition to the vertical as well the simplest solution

is to place the projectors in a better position.

Illustration 10-13: An example of calculations made with the formerly introduced trigonometry. The six

cells with a white background are the values that the calculator needs. All of the values below the

headline “Vertical Pixel Shift Examples” are representations of how many pixels the pixel in question has

to be shifted upwards. A graphical result is shown at the bottom.

66

10.2 Control

In this section we turn our focus to the second technological challenge: to get

rudimentary motion control working with the Kinect mounted in a top-down position. We will start

this section with background information and issues we had developing towards motion control.

10.2.1 The Microsoft Kinect

The depth sensor installed in the Experience Cylinder is a Microsoft Kinect, originally

released by Microsoft for use with their Xbox 360 console. The Kinect itself is based on a reference

design by another company called PrimeSense (PrimeSense 2012).

The Kinect has two cameras, a standard colour camera and an infrared depth sensing

camera. Both cameras have a maximum resolution of 640x480 pixels at 30 frames per second. The

depth camera works because of the built in infrared projector of the Kinect, which projects a map of

infrared dots onto nearby surfaces. The depth camera can sense these dots to detect distance to

these surfaces. The depth camera does have some limitations though, as black surfaces can be very

hard to detect.

From its inception, the Kinect and its associated algorithms and drivers were developed

with body tracking in mind, and rely on a randomised decision forest classifier in order to recognize

body elements (Shotton, et al. 2011). The Kinect was trained with millions of test images in order to

get its current methods and algorithms for recognizing the human body. This technique has proven

very efficient [Kinect], but seems hard to transfer to our case, since the training of the Kinect is

based on people facing the Kinect, and the Kinect being mounted almost directly in front of people,

facing them. To get the same kind of tracking efficiency in the Experience Cylinder, we would have

to train the Kinect in a similar fashion for our specific top-mounted setup and purpose, which is far

beyond the scope of this project, and would likely, warrant a project on its own.

The OpenNI framework on which the tracking software was implemented includes

Skeleton tracking modules and algorithms, but these are based on the same premises as the training

of the Kinect was originally based on. As such, these modules were not an option either.

67

10.2.2 Kinect Driver Model

As the Kinect was not originally intended to be used with anything other than an Xbox

360, Microsoft did not supply official PC drivers on its release. The first drivers to enable use of the

Kinect on a PC were unofficial hacked drivers, which private enthusiasts developed. Only much later,

when Microsoft realized the popularity and potential of the Kinect for purposes other than console

gaming, the official drivers and development kit was released.

All this puts us in a position to choose between a wealth of different drivers,

frameworks and development solutions. As we had already decided on using Unity3D to develop our

game prototype, we looked for existing solutions that would let us connect the Kinect with Unity3D.

The most widely used solution for this was the framework OpenNI, which included a package to

connect OpenNI to Unity3D.

10.2.3 Background Summary

We needed ability to control our game prototype, which could be based on the Kinect.

But we had the Kinect mounted in the Experience Cylinder in a top down position. The fact that that

the software for the Kinect is constructed for a front mounted position made us realise that a direct

use of the conventional software was not possible. Using the Kinect would be on a premise of

working with the raw data that the depth camera of the Kinect provides.

The following sections describes the solutions we found based on the aforementioned

premise, in order to solve the previously discussed elements of this challenge.

10.2.4 Tracking

The development progression has been to implement recognition of certain points in

the cylinder and track them with satisfying response so it is usable for gaming. The rationale for

control by motion using only the depth feed is to track the players position by searching for the

closest point it can detect. Barring noise errors from the Kinect, the closest point to the Kinect will

be the top of the tallest element in the cylinder. In our case, this is the player.

This required us to work directly with the depth feed, looping through each frame of

the depth feed to search for the highest point in the frame. Conceptually, this is simple with the

Kinect mounted in a top-down position, as the point closest to the Kinect will be the highest point

inside the cylinder. The highest point inside the Experience Cylinder will most likely be the top of a

person’s head.

Each frame of the depth feed consisted of 307,200 integers, one for each pixel at a

resolution of 640x480. Looping through this amount of data at 30 frames per second was not an

issue for the computer, and our code gave us a continuous output of values for the current highest

point. We noticed, however, that this value could fluctuate drastically, both in terms of the actual

height value as well as the position of the highest point on the grid of pixels. These fluctuations

could be explained by the inherently noisy depth readings. This is a hardware related issue, so it was

not possible to directly get a more reliable depth feed.

68

On the basis of the highest point within the Experience cylinder a virtual line from that

point through the absolute centre of the Experience Cylinder could correspond to a location on the

display and then be used to aim by. If the absolute centre is considered a pivot point, also

represented in the virtual environment, and lifted slightly from floor height, aiming would be

possible both vertically and horizontally.

Our first attempts at creating a method for the player to aim resulted in a very jittery

aim that responded rapidly to all perceived changes, including those caused by noise. This form of

aim was unreliable and unusable for a game where aiming was required, and we had to reconsider

the way we handled the depth feed data.

10.2.5 Smoothing the Movement of Aiming Sight

Because the depth data was not directly usable in its raw form because of noise, we

had to devise some way to smooth out the readings to get a more stable method of aiming. Several

ideas on how to accomplish this were considered.

One idea was to make a script that smoothed out the entire depth feed before passing

data along to our aiming methods. We found evidence that this had been attempted already, and

even found code examples of how to accomplish such a smoothing in real time (Sanford 2012).

However, when we attempted to utilise the algorithms from the code, we ran into a problem. The

code was written for C# 4.0, which had introduced a number of functions that could ease the use of

parallel processing. It utilised a parallelized version of a standard for-loop, which allows parallel

execution of the code elements for each part of the for-loop. This is especially relevant in this case,

as it allows faster execution of nested for-loops. The problem in our case was that Unity3D only

supported C# 3.5, which does not include these parallelized functions. We attempted to recreate

the algorithm using standard for-loops, which resulted in a catastrophic slowdown of our program

that made it unplayable.

Since a smoothing of the entire depth feed was not viable within a reasonable time

period, we had to turn our attention to another solution. We decided on utilizing a form of running

average, so the values given to our movement script was an average of a fixed number of readings

of the highest point. The number of readings we averaged over would influence the response time

of the movement script, where a low amount of readings would give a fast response time but more

jittery movement, while a high amount of readings would slow the response time but create much

smoother movement.

This would counteract the problem of highest point readings fluctuating wildly in the

height reading, but not influence the fact that the position of the highest point could also change

drastically from frame to frame. But even this averaging was not enough, so we had to introduce a

smoothing effect on the actual movement of the relevant game objects in Unity3D itself. Our script

rotated the cannons towards a point in space, based on the height and position of the current

average of highest points. It was the rotation of these cannons that was also smoothed. Unity3D

included various functions to rotate objects towards a point in space, and these functions could also

69

include a smoothing factor, that would introduce a delay on the animation of the rotation itself. The

smoothing factors did allow the cannons to move fast in one direction, but sudden changes in

rotation or aiming direction would have a slight ramp-up time, making most movements very

smooth to the naked eye.

All this work with smoothing and moving averages did have an effect on the controls on

the game, as these are a lot less responsive now, but a lot more predictable. This is a trade-off, that

one has to assess for individual purposes, and in our case we valued predictability higher than

response time.

10.2.6 Summary of Solutions

We found that using the raw depth feed from the Kinect was an acceptable way of

realising control for games within the Experience Cylinder.

10.3 Directional Sound

In order to enhance the feeling of a virtual space beyond the experience cylinder

display surface we wished to utilise the surround sound system. Game objects that come towards a

player from different angles should also exhibit directional sound as to give the player an additional

indication of events happening outside the player’s field of view. This section contains information

about the challenges involved in using sounds in our game Meteor Defence. We will start the section

with additional background knowledge pertaining to the concrete sound setup and utilising sound in

Unity3D.

70

10.3.1 Sound Setup

At first we decided to test the ability of the surround sound setup by playing a movie

file containing 5.1 discrete channels. Through this test we concluded that possibly up to 7.1 discrete

channels of a surround sound movie will play in the following match between the channel row of

order and channel position.

Channel Row of Order Channel Position

1 Front Left

2 Front Right

3 Center

4 Sub

5 Middle Left

6 Middle Right

7 Back Left

8 Back Right

These associations, between channel row of order and channel positions, were not

changeable in any part of neither drivers Windows nor other software in the present setup. We

found that nor did the row of order match the output channel numbers chosen as connection for

the speakers, neither did it match the position of speakers for a movie surround sound setup. If the

speakers is named in coherence with the display number they are positioned behind, where the first

display is the one where the windows start menu is and the last where the clock is, then the

following list shows the connection to the M-audio ProFire 610 output channels. A coherent system

was not apparent to us. That connection system proved to make everything just a bit more

complicated.

71

Speaker/Display M-audio ProFire 610 output channel

1 8

2 1

3 5

4 2

5 6

6 7

Sub 3

10.3.2 Sounds in Unity3D

Unity3D has a built-in system to handle directional sound. Sounds can be attached to a

game object which is able to move and be positioned anywhere. A sound listener, typically attached

to the camera, can also move around. The distance between sound and sound listener can be

calculated so sound volume can be adjusted accordingly. Also the direction can be calculated and

used for mapping the sound to the correct speaker up to the quality and extent of a 7.1 DTS

surround sound system.

In the Experience Cylinder setup we had no success in using the sound system of

Unity3D. It seemed that Unity3D and the sound card drivers had compatibility issues. Other tests

performed on another but fully capable 6.1 DTS setup also proved unsuccessful. This setup consisted

of a Windows based PC with an onboard 8 channel AC’97 HD sound card attached to a 7.1 DTS HD

amplifier with speakers. Due to internal bandwidth limitations in this computer it delivers only up to

6.1 DTS even though all other hardware is capable of full 7.1 DTS HD. This was tested with 5.1, 6.1,

and 7.1 movie clips. But still all sound tests performed in Unity3D resulted in stereo only, but

directional stereo at the least. Thus we determined that using the built-in sound system was not

possible at this time, and another solution had to be found.

10.3.3 Background Summary

In order to get directional sound and make it easier to make changes in all software

involved in sound, we had to find other solutions. This involved changes to the sound setup and

finding alternatives to the Unity3D sound system. The next sections are about the solutions we

chose and how we solved the issues at hand.

72

10.3.4 Sound Setup

Although the following solution was a minor alteration in the setup, it simplified

consecutive modifications and adjustments to the software involved. The steering group approved

of an alteration to the setup, so both input and output channels were in the same order and thereby

numbered label. Then every channel number through the system matches, both by internal channel

numbering, order, and by different hardware labelling. Though in a 6.1 setup the two last channels

of a 7.1 source are typically merged into one channel. How the whole setup was matched to the six

displays, was a relatively minor decision. We decided that the center speaker should be placed

between display 3 and 4 but since the speakers are positioned in the centre of displays and not in

between them, we chose to just use speaker 3 behind display 3 as the center speaker. It could have

been any of them.

Channel Row of Order Channel Position Speaker Display M-audio ProFire 610 output channel

1 Front Left 1 2 1

2 Front Right 2 4 2

3 Center 3 3 3

4 Sub Sub n/a 4

5 Middle Left 5 1 5

6 Middle Right 6 5 6

7 Back Left 7 6 7

8 Back Right 7 6 8

As an example the following Illustration 10-14 shows the setting within the m-audio

driver interface. The pane of output channel 1 and 2 is selected. Here one should select which

internal software return-channels should pass through to output 1 and 2. Because of the new setup

the selection of software return corresponds in number value. Software return 1 is directed to

output channel 1 and likewise by 2 and every other channel in the additional panes according to the

list above.

73

10.3.5 Directional Sound

Since we had trouble getting real surround sound from Unity3D to the sound system we

had to come up with another solution. The technical staff used Max 5 for their directional sound

setup in Mac OSX. But after their decision to collaborate on using Windows we jointly decided to

use the same output setup. Their usage of Max was specific to The Sea Stallion and at this time they

were focused on porting the main functionality to Windows. They were still helpful enough to advise

us about a third party function for Max that was able to calculate sound distribution to individual

speakers in a 3D sound setup (Pulkki 2000). This third party object was created by Ville Pulkki. We

had to figure out how to use that in Max and how to connect Max and Unity3D.

Illustration 10-14: Screenshot of the driver software for the M-Audio 610 ProFire Soundcard. The pane of

analog output channel 1 and 2 is selected and here input channel 1 and 2 is selected as the actual output.

74

10.3.6 VBAP

The following Illustration 10-15 shows the theory behind Vector Based Amplitude

Panning (VBAP) created by Ville Pulkki. He utilises what he calls the triplet-wise panning paradigm

which states that a sound source panned equally out to three speakers places the sound source

virtually in the listening direction at the centre between them.

With this theory it is possible to place and define positions of multiple speakers to

create a network of possible directions a sound can have. An example of this is shown in the

following Illustration 10-16 where multiple sounds is passed through the VBAP and played to the

listeners from the calculated directional origin even though no speaker is positioned exactly there.

Illustration 10-15: The triplet-wise panning paradigm states that a sound source panned

equally out to three speakers places the sound source virtually in the listening direction

at the centre between them.

75

In Max the original patch looks similar to the following Illustration 10-17. We defined it

as a subpatch for our Max 6 solution and added the three inputs shown at the top, and the one

output at the bottom. Inputs 1 and 3 receive data about azimuth and spreading respectively and

input 2 makes it possible to activate the speaker definition from outside the subpatch. The VBAP

object needs the speaker definition set every time the program is started. Being able to do it

without entering the subpatch makes it more accessible. The number sequences that starts with 2 is

ours as well and defines that 2 dimensional speaker definition which is the direction/position of our

six speakers. Additionally the prepend object were added to make the sound source in question

target a specific output. The prepend object simply adds the number defined to the beginning of the

output. In this case it is 3. In other cases it could be something else. It is used to make following

objects able to distinguish between origins. The specific use is explained in detail later.

Illustration 10-16: Multiple sounds is passed through the VBAP and played to the listeners

from the calculated directional origin even though no speaker is positioned exactly there.

(TKK Acoustics Laboratory 2006)

76

10.3.7 μ Max-Unity3D Interoperability Toolkit

In order to get data from Unity3D into the VBAP patch in Max we needed some kind of

connection between them. We found μ to be the solution we needed (Bukvic and Kim 2009). On the

Unity3D side, μ is a set of files that makes it possible to define: the objects in Unity3D that transfer

data and the data they transmit, along with files containing the code that performs the actual

transfers. On the Max side it receives the data and routes it to the correct place according to names

of game objects and data type from Unity3D. This is visualized in Max as in Illustration 10-19 of our

main patch. The main patch contains more than what comes from μ. In the main patch μ amount to

the content from the netreceive object at the top to green objects as seen in the illustration. There

are two routes from the netreceive object because we have two sound sources.

Illustration 10-17: This is the VBAP object created for and shown in a Max patch. This patch has three

inputs and one output. Input 1 is the value of the sounds position by azimuth. Input 2 makes it possible to

activate the define loudspeaker object from the parent patch. Input 3 is the value needed for adjusting the

spreading of the sound, meaning how wide a direction the sound would seem to origin from. In the end

the output delivers the directional data with the value of three in front. This is done by the prepend

object.

77

10.3.8 netsend & -receive

On the Max side, μ makes use of two third party objects called netsend and netreceive

(Matthes 2005). These are the objects that make it possible for Max to either send data to or receive

data from other software solutions over the TCP or UDP network protocols. We needed only the

netreceive object though in order to read data from Unity3D in Max. The following Illustration 10-19

shows the netreceive object at the top.

10.3.9 Main patch and Additional Sub Patches

The two sounds we decided to implement in our game were: a sound when a meteor

explodes and the sound of the two machine cannons. The explosion had to sound louder the closer

to the centre. If it reached the actual centre the spreading should be maximized, which means that

all speakers in all directions would play the explosion. This way it could possibly feel more like you

were hit by it. The objects in Illustration 10-19 after the three green value objects to the left are

calculations that translate the coordinate of the explosion to a direction and a distance as well as

functions that translate the distance data to the values needed for volume and spreading. To the left

where the data for the cannons orientation comes in, there is only a need for adjusting the rotation.

In the top is an object called loadbang. It has the ability to activate all its connections when the

patch is loaded. This means that it can start all the settings we need done right away. This includes

loading sound files, adjusting volume and spreading, and applying the definition of the speakers

inside the VBAP objects.

The two objects in the top called patcher, which are sub patches, contains the loading

of the sound files. The following Illustration 10-18 shows the patches. Notice how the explosion is

not looped, but the machine cannon sound is. This is marked by loop 0 or 1 for no looping and

looping respectively. These patches were based on an internal Max 6 example.

Illustration 10-18: Two different patches that loads the sound files for use in Meteor Defence. The one

that loads the loopedCannonShot.wav file has a loop value of 1 and will therefore play in a loop. The

explosion patch has a loop value of zero.

78

 The matrix~ object mixes multiple sounds and this is where the previously mentioned

prepend object of the VBAP sub patches comes in. The two bottom patcher objects contain each of

the VBAPs. They send their data to the same input but with a different prepend. The sounds also

enter different channels on the matrix. But the channel number matches the prepend number. So

the explosion sound enters channel 2 and the VBAP of the explosion has a prepend value of 2 and

this is how the matrix knows what to mix. The solution to use two VBAP objects was quick and dirty

because according to the VBAP theory it should be possible to control multiple instances with only

one.

With the aid of Nikolaj Møbius from the technical staff, a sub patch was additionally

created, which contained a crossover filter in order to only send low frequencies to the subwoofers

and higher frequencies to the satellites.

Illustration 10-19: This is the main patch of our solution. To the right and left are two similar setups. These

are the Max part of μ. They receive data from the μ part of Unity3D. Two objects in Unity3D send position

data. This data is send to the VBAP patches in order to calculate the position. That position is transferred

to the matrix~ object, which mixes the sounds together.

79

10.3.10 Editing in Audacity

As formerly mentioned we found the sound files on the royalty free sound website

Soundbible. The explosion sound required no alterations, but the cannon sound did. First we did not

find a loopable sound, and secondly our cannons in the game ended up as being a mix of visually a

long range, high caliber cannon and functionally a small, fast machine gun. So all the machine gun

sounds were a little too light and we tried to make it sound a little heavier although still machine

shooting. To create the looping we cut down the sound to a point where it sounded somewhat even

from start to finish and mixed the end of it on top of the start to create a more seamless loop.

10.3.11 Summary of Solutions

Although a bit more cumbersome than just using the internal sound system in Unity3D,

we managed to find an alternative solution to directional sound. This solution involved software

from three different developers and a lot of work trying to figure out how to use it.

10.4 Creating Game Elements

In order for a game to be realized it needs to contain game elements. Firstly we would

like to present the background information we needed in order to create the different objects and

elements we added to our game prototypes.

10.4.1 Physics

As we progressed with learning the basic functionality in Unity3D, we started to

examine, how to create movement of objects in the virtual environment. There seemed to be two

different ways to handle movement in the game: either by animation through the use of scripting,

or with the included physics system augmented by scripting. We began working with both

possibilities in parallel, and while pure scripting was very easy to get started on, it was not easy to

get the expected results. Additionally, this method did not include a way to handle gravity or even

collision between objects, so it was quickly abandoned. The physics system had both of these

possibilities, but it was frustrating to get started on, as different tests did not go exactly as planned.

It was easy to generate some movement, objects were affected by gravity and collision was handled

very smoothly. But the accuracy of movement was wrong, and as we desired the possibility for

accurate movement, we had to learn more about the physics system and refresh our knowledge on

classical mechanics.

80

10.4.2 The Unity3D Physics System

The physics system in Unity3D is based on the NVIDIA PhysX engine (Nvidia 2012). So

movement and collision in Unity3D can be handled in a way similar to the way movement and

collisions work in the real world: applying force to objects. The force can be continuous, like gravity

or the jet engine on a rocket, or instantaneous, like firing a bullet from a gun, or kicking a ball. The

same concepts can be applied in Unity3D. In Unity3D you create a virtual environment that can use

these basic concepts, so movement can be created by applying force to objects in the virtual

environment. Not all objects in the virtual environment have to be affected by the physics system. It

is possible to create objects that ignore gravity or collisions with other objects.

After some initial attempts at scripted animation in Unity3D, we decided that it would

be simpler to handle movement of objects in the game with the physics system whenever possible.

Since our initial game idea was based on some pretty simple concepts, this was conceptually

straight-forward to do.

The physics system in Unity3D was a problem area in our initial work to understand the

Unity3D engine. We started out by getting re-acquainted with classical mechanics and physics. We

then started working in Unity3D, constructing simple examples and comparing observed behavior

with intended behavior. Almost immediately we ran into problems, as some functions and constants

in Unity3D did not have a listed measuring unit. A simple example with objects being launched

specific distances using only a vector (to indicate direction) and force, did not always give the

expected results. The official Unity3D documentation did not offer any explanation, but through

Unity3D message boards we learned that the length of the vector influenced the length of the

launched objects’ ballistic path. To get precise results from our calculations, the vector indicating

launch direction had to be exactly length 1.

Unity3D has a built in method to normalize any given vector, which reduces the total

length of the vector to 1, while preserving the direction of the original vector. We attempted to use

this normalize method, but ran into inconsistencies and rounding errors, and decided to calculate

the relevant unit vectors directly based on their angles.

10.4.3 Scoreboard and Lives

Since we did not manage to make our game ready for multiple players we had to create

other means of facilitating gameplay and quantifiable outcome - to make the prototype an actual

game. This was realised by creating a system for registering, keeping, and showing game progress.

In most games the player looks in one direction, the direction of the display. In our case

when the display is all around you it does not make sense to add the typical layer on top to show the

scoreboard. There is no predefined viewing direction of the player and thereby no specific position

for the scoreboard to be placed so another solution had to be found.

81

10.4.4 Background Summary

In order to create our meteors we needed to work out how to use the Unity3D physics

system to create realistic movement of said meteors. Additionally, we presented the problem of

displaying the state of the game, within the player’s field of view, on a 360° screen

Following are the solutions we developed in order to create our game elements.

10.4.5 Trajectory Calculations

The starting point of our calculations is seen in Illustration 10-20. Using the

relationships between the sides and our know variables, we can calculate x, y and z, which are

needed to denote the unit vector in Unity3D.

In our case, the angles, v and w, are known along with the length of |AD|, which is 1.

From this we need to calculate the lengths of x, y and z. From the Pythagorean trigonometric

identity, given a right triangle, we have:

For the ACD triangle, we know the length of the hypotenuse, 1, and θ, which is w. The

length of y can thus be determined by isolating the opposite:

Illustration 10-20: Two right triangles indicating the projections of the unit vector |AD| onto the x, y and

z-axes. v is the angle along the horizontal plane, and w is the launch angle.

82

The length of |AC| can be determined by isolating the adjacent:

The length of |AC| can then be used to determine x and z, by using the length of |AC|

in the ABC triangle. The same trigonometric identities can again be used. To determine z:

To launch an object in a ballistic trajectory towards a specific point, we also needed to

calculate how fast the object needed to go in order to land in the correct spot. In Unity3D, this can

done either by applying impulse force to an object, meaning a single instantaneous application of

force, or by setting an instantaneous velocity change on the object. If force is applied, the mass of

the object is taken into consideration, meaning more force is required to move heavier objects,

while velocity change does not take object mass into account. Air resistance could also affect the

object, but we chose not to use air resistance in our game. Since we needed all objects to land in the

same spot, regardless of how heavy they were, velocity change was deemed the best fit for our

Illustration 10-21: This illustration shows the formulas needed to calculate the x, y and z-coordinates to to

create a unit vector with the direction indicated by the angles v and w.

83

needs. We found a formula to calculate horizontal distance travelled for an object in a ballistic

trajectory. For situations where starting point and target point is on the same level, this formula is:

Illustration 10-22 below depicts a meteor trajectory as created in our game by the

formula above. The meteor travels from a point on the circumference on the circle and hits the

target point in the centre.

For our purpose we wish to isolate the speed; v, as this is the only unknown variable for

our specific purpose, since we know how far we want the object to move and we decide what angle

it gets launched at.

Illustration 10-22: This is a model that visualizes two possible trajectories of the meteors from one origin.

Values for the vertical angle and distance is used to calculate how much power is needed to make the

meteor hit exactly in the centre.

84

These calculations were used to make objects fly towards the exact same point in the

virtual environment, regardless of where the objects were created. Another algorithm was used to

randomly generate the objects on a circle around a central point. We could in principle have

spawned the objects anywhere on the horizontal plane where the target destination was located.

The algorithm simply needs to know which horizontal and vertical angles to launch the object

towards and the total horizontal distance the object needs to travel before impacting the horizontal

plane it was launched from.

10.4.6 The Meteor Game Elements

The trajectory calculations just shown were used to send the meteor elements on their

correct path, but the meteors still seemed very dull.

The meteors were a simple gray colour, as no attention had been paid to their visual

appearance. We decided to add a rock texture to the meteors to make them a bit more realistic.

Additionally, we decided to add particle effects to the meteors, to make them appear to be engulfed

in flames. This helped create the illusion that they were moving at fast speeds, and helped highlight

the meteors to the players. After these purely visual alterations were performed, the meteor still

seemed dull.

It was clearly visible when looking at the meteors in the game that they did not rotate

around themselves in any way. It was decided, that the meteors needed to rotate around their own

axes at random speeds, to make them seem more different, even though they all had the same size,

textures and particle effects. Giving the meteor objects rotation helped make them appear more like

physical objects than just constructs in a virtual environment.

10.4.7 The Cannon Tower

This game element is composed of several individual parts. Most of these were

modelled by us in SketchUp. The following Illustration 10-23 shows the two cannons mounted to the

cannon turntable. Additionally the frame for positioning the scoreboard is attached. We found it

important to create all elements in one SketchUp file and then export them to individual Collada

files. This way it was easier to control the positioning of the individual elements in Unity3D.

Furthermore the cannons include two laser aiming sights attached in between the cannon tubes.

These are included to assist the player in aiming the cannons, as hitting the meteors without the

aiming sights which can be quite difficult.

85

10.4.8 RUC3D

These game elements consist of all the buildings and the terrain. The buildings were

created by (Thorlund, et al. 2009). SketchUp was also utilised to create these. The way SketchUp

handles textures added difficulty to creating the terrain, so a temperate black and green terrain was

created instead. In this project we found that Unity3D has the needed feature of being able to add

the terrain with a texture and then manipulate the contour afterwards while the texture stays in

place. We added a new terrain to RUC3D by using a picture from Google Maps as the texture. The

image resolution is low which results in an apparent visual difference between buildings and terrain.

10.4.9 Implementing Scoreboard and Lives

The idea we came up with was to add a scoreboard physically to the construction of the

cannon tower. Since the cannons rotated around, why not in addition to that add it to the rotational

parts in order for the scoreboard to always be in the present direction of view, see Illustration 10-23.

This however spawned the additional task to actually implement an output of internal variables

values in the virtual environment while being able to move them around. We fixed this by utilizing

the feature called camera to texture. This feature makes it possible to render any part of the scene

to a texture/surface on a polygon inside the scene. In an area not visible to the 360° camera, 3D

texts displaying the user data were placed. A camera set to render to texture was put in place to film

the 3D texts. The filmed data was then sent to the texture and applied to the scoreboard polygon

mounted to the cannon turntable.

Illustration 10-23: The cannon turret for our Meteor Defence game modelled in SketchUp.

86

11 Description of the Finished Prototypes

The primary game prototype that has been the vehicle for development we call Meteor

Defence. It can be compared to a stationary 3D version of the classic arcade game Missile Command

where the players have to defend a base from incoming missiles by shooting them down.

As a secondary prototype we have implemented a 3D model of RUC in which a player

can experience a stroll on RUC campus. We have named the prototype A Stroll on RUC.

11.1 Meteor Defence

The game prototype Meteor Defence has its setting in outer space. This is seen in

Illustration 11-1 below by the small dots in the background depicting a starry sky. The orange

objects are the approaching meteors. They emerge in different places on the horizon and travels

towards the cannon tower. The game objective for the player is to shoot the meteors before they

impact the cannons. For every destroyed meteor the player gains a point and for every missed

meteor the player loses a life. The player’s current total points gained and remaining lives are

displayed on the scoreboard. The cannons are controlled by the player’s movement around the

centre of the cylinder and aiming upwards is done by ducking. The cannons fire continuously, so the

player is only responsible for aiming. When meteors are destroyed an explosive sound is played. This

sound is louder the closer the meteors are to the cannon tower when they explode. Additionally the

explosion sound comes from the same direction as the meteor.

Illustration 11-1: A picture from inside the Experience Cylinder while a person is playing Meteor Defence.

87

11.2 A Stroll on RUC prototype

As a secondary prototype we have implemented a 3D model of RUC campus in which

the player can walk around and look at the different buildings from the outside, see Illustration 11-2.

It is not an actual game, but a supplement to the first prototype. With the A Stroll on RUC prototype

we can experience a virtual environment with a conventional 3D world model. The player can walk

around the campus by moving away from the centre of the cylinder and otherwise stand still in the

centre. A step to a given direction results in continuous movement in that direction. The experience

of moving with this kind of control can be compared to standing on a flying carpet as virtual as that

might be or a Segway.

Illustration 11-2: A picture from inside the Experience Cylinder while a person is trying a simulated walk in

a 3D model of Roskilde University campus (A Stroll on RUC).

88

12 Analysing the prototypes through our model

In this section we analyse our prototypes in the light of our model of immersion. This is

done by describing the prototypes with respect to each concept in the model. To explain the

different connections between a game session and a player’s reaction, we will also include a few

informal observations we have done. During the development we have had a small amount of

people of varying ages trying out the two prototypes.

We begin by looking at the system and the relation between form and content. In our

case the Meteor Defence prototype is carefully designed with the design of the Experience Cylinder

in mind. Still we differentiate between form as the physical platform combined with the underlying

software platform that makes it possible to run and play the game prototype. Content accounts for

the application type which in our case is a game as well as the specific design and configuration of

the game type which has resulted in the Meteor Defence game prototype.

Regarding immersion we can consider the different technologies and how we utilised

them in order to describe how we have utilised the Experience Cylinders technical capabilities to

support immersion.

The first thing to notice is how well the game prototype makes use of the display. The

player is attacked from all angles and has to keep focus at all times in order to keep track of which

meteor to hit next. This requires for the player to look at the display at all times. The sound system

and the way we utilise it to support the actions in the game is also a means for attracting attention

thereby leading to a degree of presence.

By utilizing the Kinect, players engage in a way they have not tried before. It is physical,

so they have to be aware of their whole body movement, and they have to be so continually, which

is again a way of keeping attention towards a central aspect of the game potentially leading to

involvement. On the downside it can also be too much to the player, and physical discomfort from

the new type of game control may lead to dissatisfaction and break the involvement.

 The inherent structural parts of the game prototype mainly concern the spatial

structures and the gameplay of the game in our case. In the Meteor Defence prototype we have

strived to present nice looking graphics for the most important part; the meteors. As the game

world is placed in space we have no traditional 3D environment as with the A stroll on RUC

prototype. This means that the player can put more focus into the gameplay as well as the physical

interaction. One thing is to learn how to control the game and another is to actually deal with the

game objective, which is to shoot as many meteors as possible before all game lives are lost. This

design mainly supports involvement concerned with the gameplay.

People not playing, but watching the game sitting on the floor in the periphery of the

physical space, tend to advise the playing person where to look for meteors. We can also see that a

single play session can be considered part of a bigger social context when more players take turns

playing. As with normal single player games it is possible to have spectators and eventually take

89

turns. From this a communal game arises as the players want to beat each other’s high scores.

Players in competition add meaning to the game. It is not just about shooting meteors and gaining

points. We suggest that this could be a precursor for social presence since the competition helps

adding meaning to the game.

 We recognize the ability of a game session to saturate the player’s sensory

apparatus possibly resulting in a physical alert condition and mental attention towards the task at

hand. The player’s detection of meteors that move in a recognisable way and the understanding

that the meteors actually moves toward the player supported by the sound effects would be a sign

of environmental presence. The concept of presence understood as an effect of immersion.

We have also noted that it matters to some players to shoot the meteors and that the

relation between the gameplay and this internal motivation can be a sign of involvement.

Involvement understood as a combinatorial effect of inherent game structures and the player’s

internal motivation to engage in these structures

One thing which is missing, to claim all aspects of involvement is emotional attachment.

We have seen that it matters to some players to shoot the meteors as soon as they begin a game

session but we cannot be sure of the reason why they do so. Different players have different

reasons to play determined by their personality and personal profile, and especially within our case,

their experience with games in general.

 Our game prototype might afford some degree of environmental and social presence,

and involvement concerning gameplay, but not involvement in the emotional sense.

90

13 Discussion

In this section we treat the dominant areas of discussion which concerns the creation of

the model, the audiovisual technological foundation for the game, and considerations about a

control interface for the game. We refer to the problem statement in section 1.1 to explain the

reverse order we discuss each of the statements, beginning with the model, then the challenges and

finally the connection between form and content.

Concerning the model, in chapter 6, Building a Model of Immersion, we presented a

model of the concept of immersion appropriate to the context of the Experience Cylinder. In the

model we drew on ideas from the literature in virtual reality and games. These areas provided

valuable insight to the understanding of creating immersive experiences, but seemed at odds with

each other regarding the concept and definition of immersion. Unifying the two areas into a model

for evaluating an immersive virtual reality game experience seemed unrealizable, until we decided

to use the concepts of form and content, as a starting point.

Game literature takes little or no consideration of the form of an experience, in the

sense of the way it is delivered to the user. Additionally, game literature largely ignores the fact that

a game experience can change drastically on different devices with different sound setups or

different monitor sizes. One could argue that game design literature should treat game

development for different platforms, but it does not.

Virtual reality literature does take the form into account, but can treat the content of

the experience in a rather shallow manner, as it appears to mostly deal with influencing users rather

than involving them. In virtual reality literature, there seems to be an implicit expectation, that the

user is interested in the content being delivered to them.

The novel aspect about our model is that it clearly distinguishes presence from

involvement, which is important and not made clear within the literature on the concept of

immersion within games. The model also separates different aspects of an experience, and unlike

the concept of immersion within games it takes the whole system into account by making a

distinction between form and content.

The limitation of the model, see Illustration 6-3, is the indication of a linear connection

between:

91

This is too simplistic. It would be more correct to note, that these connections are the

primary ones, but an argument can be made for secondary connections from immersion to

involvement and from game structures to presence. The mere quality and style of a virtual

environment could stimulate a player’s curiosity leading to further investigation of the virtual

environment which would be considered involvement. This involvement could also reflect back on a

player’s sense of presence (Slater 2004). Involving content can distract the player from finding flaws

in the experience, flaws that could lead to a loss of sense of presence.

So while the model is useful to get an overview and better understand the individual

elements that constitute an experience, it cannot be used to identify any synergetic effects between

a user’s experience of presence and involvement.

One needs to utilize the model to subdivide and analyse an experience in order to

determine if everything was combined in a meaningful manner and where improvements are

possible. “How can the gameplay elements best utilize the platform?” and “how does one avoid

being limited by the platform when delivering the content?” are two central questions to ask.

Alternate applications of the model are still something that needs to be tested. We

have utilized the model analytically but utilizing it as a design tool, to create an immersive game in a

virtual reality environment like the Experience Cylinder could be interesting to investigate.

The audiovisual technological foundation and particularly the challenge of displaying a

3D world on a 360 display, was presented in chapter 10, The Development Challenges, which lead to

a discussion about the applicability of the specific improvements we came up with.

The work we did to understand projection correction resulted in a visual improvement

to our game prototypes. However, in the end more precise solutions will offer no additional

improvement if they are created under false pretences. If a solution is created for a geometrically

cylindrical display, then the improvement is less significant if the display is even slightly differently

shaped. In our case, the hexagonal distortion of the display shape and the folds of the canvas

diminished the effect of our solution, but the improvement was still noticeable.

The general problem of projection correction highlights one of the main benefits of

using a box-shaped CAVE rather than the Experience Cylinder. The flat projection surfaces in a CAVE

require little to no display correction, and aligning the projectors is a one-time operation. However,

had the display surface of the Experience Cylinder also been a rigid material and been of an accurate

cylindrical shape, projector alignment here would also have been a one-time operation.

With a rigid display surface, the problem of folds on the display surface would also be

completely removed. The folds in the display surface had a very negative impact on the way moving

objects was displayed. More so than static objects, movement highlighted the folds of the canvas

resulting in a wavy distortion. This effect was most noticeable in the A Stroll on RUC prototype

where the walls of buildings were distorted as you moved past them.

A shader based on our trigonometric calculations would be applicable to a rigid and

cylindrical display but the shader applied in our game prototypes is effective for both the current

basic display shape and projectors. A change to short throw projectors would however require

modifications to the shader.

92

The 360° camera setup could prove to be unique to Unity3D; we did not examine how

to do the same in other game development tools. The shader on the other hand could be applicable

in other software solutions. primarily because of the multi platform shader programming language

CG. The use of the shader is predicated on the ability to apply the shader to an area corresponding

to each projector.

In chapter 10.2, Control, we described the challenge in utilising motion control. Recall

that the Kinect is mounted overhead and that the readings from it are noisy. Our implementation of

motion control fulfilled its overall purpose, albeit at a suboptimal performance level. This can be

largely blamed on the quality of sensor readings, but one cannot help wondering whether the

sensor readings from the Kinect are so noisy, that it would be better to utilize the existing

functionality of the Kinect in the cylinder, and largely avoid the problem of noisy readings.

The OpenNI package has built in body recognition and functionality to determine the

positions of individual players in a room, all of which function despite the noisy sensor readings.

However, this functionality is built for a forward-facing Kinect Sensor. It is conceptually harder to

determine the positions of players in the cylinder with a forward-facing Kinect sensor, but this is

mostly based on the premise of starting from scratch and creating this functionality from depth

readings. The possibility is there to utilize the work other people have made in optimizing tracking

for the Kinect, which could reduce the difficulty drastically. On the other hand, with the top-

mounted Kinect sensor, the calculations to track users are very simple. But is this simplicity actually

a benefit? As we found during our work with the Kinect, the problems regarding user tracking and

motion control were mostly related to the quality of the depth feed.

Our cursory look at improving on the depth feed readings showed, that the calculations

needed to smooth the depth feed were not possible in our development platform. By changing our

development platform we might had been able to smooth the depth readings, but this would still

put us behind existing functionality in OpenNI.

Ultimately, our motion control worked, but if we were to do any further development

on our work, we would move the Kinect to a different position to utilize OpenNI more effectively

and get more advanced motion control functionality.

We once more return to our model as presented in chapter 6, Building a Model of

Immersion, to discuss the relation between form and content. This is to answer how the Experience

Cylinder can be used to support immersive game experiences.

The display and sound technologies, as part of the form, are immersive technologies

that can amplify the persuasive aspects related to the content. This means that the technology

amplifies the quality of the content. Positively if the content is stimulating, and is delivered in a

sensorially convincing way, but the opposite could also be the case. If the content is stimulating this

could contribute degree of presence.

We have found that controlling a game through physical movement - with a focus on

reflexes and response time - is a good way of laying the foundation for gameplay, which in turn can

cause player involvement. Displaying the current state of the game and keeping it visible at all times

93

to the player is a good way of keeping the player aware of game progression: the challenge is to

implement it on a platform where the player changes looking direction often.

We did not investigate the foundation for letting the Experience Cylinder support

narrative but The Sea Stallion-installation and the entire design of the Experience Cylinder is built on

a metaphor. It is not clear to us how a game narrative could be augmented through the cylinder,

that is to say improved in a manner unique to the Experience Cylinder. Regarding our model,

narrative aspects account for the parts of involvement concerning emotional attachment, which we

excluded in our game prototype.

Using the physical space and integrating cooperative elements within a game has

unexplored potential. We did not implement any cooperative elements directly in our prototype,

but we discovered that spectators at a given play session would communicate with the player to

warn him/her about incoming meteors. This dimension is expressed in the model under context,

rather than inherent game structures that support social interaction through the game.

13.1 Conclusion

Each type of immersion in game literature is related to a corresponding inherent game

structure that is the foundation to cause immersion or what we have specified as either a type of

presence or involvement.

It separates different aspects of an experience, and unlike game immersion it takes

platform into account, by distinguishing between form, content, and user.

By using the development of a game prototype as a vehicle for the investigation, we

showed how to utilize the features of Unity3D to realize the possibility of presenting a 3D virtual

world inside the Experience Cylinder. Additionally we explained the math involved in implementing

a more advanced and precise shader, than the one we managed to implement within the scope of

this thesis.

We found that smoothing and moving averages did have an effect on the controls of

the game but it requires a decision between responsiveness and predictability, which one has to

assess for individual purposes.

But we have identified limitations or deficiencies, which suggest future improvements.

These limitations and deficiencies include, but are not limited to: projector distortion which causes a

repeated curve in the top and bottom of the display, folding canvas that negatively affects the

impression of objects in motion, and a top-mounted Kinect which excludes use of the existing body

tracking features.

We have identified challenges and presented possible solutions. The individual

solutions adequately dealt with these challenges, but the potential remains to create more general

solutions, as our solutions are specific for our situation and the limiting aspects of the Experience

Cylinder.

94

We have found that each type of immersion in game literature is related to a

corresponding inherent game structure that is the foundation to cause immersion, or what we have

specified as either a type of presence or involvement.

The findings from our analysis of these concepts were presented as a model, drawing

from and integrating relevant concepts from virtual reality and game literature.

Our model separates different aspects of an experience, and unlike game immersion it

takes platform into account, by distinguishing between form, content, and user. Through this

distinction the model helped us evaluate the prototypes we built.

The model itself, however, was over-simplistic in some aspects. The linear connections

between from form through immersion to presence, and from content through game structures to

involvement, are the primary connections, but not necessarily the only possible connections

between the concepts.

Through this we have demonstrated the ability of the Experience Cylinder to support

immersive game experiences.

95

14 Recommendations

Our work with the Experience Cylinder has had its fair share of challenges to overcome,

but not all of them were relevant to bring up in this thesis. Many issues had to do with simple

hardware or software-issues or had to do with the physical construction itself.

14.1 Display Surface

Our first recommendation for future improvements to the experience cylinder: make

the display surface rigid. The easiest solution would be to change the circular shape into a hexagonal

shape, one side for each projector. This would ease alignment of the projectors and remove the

necessity for curved projection correction but at the same time remove one of the unique aspects of

the cylinder. But even keeping the cylindrical shape and just making the canvas rigid would be a

great step in the right direction. That would make the more advanced shader we suggested usable.

14.2 Projector Position

We found that applying the shader had two unfortunate side effects. The ability of the

shader was to move what we call healthy pixels upwards in a curved shape. This has the result of

healthy pixels being moved out of visibility over the top and at the same time in the bottom move

what we call unhealthy pixels into visibility. These unhealthy pixels were copies of the lowest row of

pixels in the healthy part that got placed in vertical lines below their healthy counterpart. These

issues occur because the shader does not fix the horizontal edges. These are still as curved as the

previous images show. The shader only fixes the pixels within the distorted rectangle. The distorted

rectangle is still visible so the horizontal edges are still curved.

The issue in the bottom of the display should be fixed by creating shader code that

makes the unhealthy pixels turn black instead of being coloured in vertical lines. This would at the

same time make the bottom edge of the display seem as a straight horizontal line as if the canvas

was not curved. The top is possibly a bit more difficult. That would require making very specific

healthy pixels black in order to cut away the curved shape in the top edge. But we propose a very

simple solution to the problem, which is as simple as projector positioning. Hang the projectors so

the top of the image hits the canvas from a perpendicular direction like in the following Illustration

14-1. Notice there is no distortion in the top, and only everything below needs to be shifted

upwards. This way no healthy pixels gets shifted out of the image by the shader and no healthy

pixels needs to be black.

96

Additionally the Experience Cylinder would benefit from edge blending and that the

image expands from the floor level up to the above-mentioned projector position. The following

Illustration 14-2 proposes a projector position prepared for that. It shows two of the six projectors

with an overlap needed for edge blending. But a shader for this setup requires additional features.

For instance the vertical edges on the sides have to fade to black in order for the edges to merge.

Furthermore the merging requires two adjacent displays to be able to render a part of each other

where the overlap happens. This is possible to create in Unity3D by expanding the field of view. But

the downside of this projector position is that this solution only applies the features to the

applications created in Unity3D and other systems where it is possible to apply the shader and

change the rendering area for each display. So when the Windows desktop is visible there would be

annoying overlaps with no seamless blending. More expensive hardware solutions fix this though.

Illustration 14-1: This model shows a projector position that makes it easier to get a good result from a

shader program. Notice in the image to the right that there is no distortion in the top of the display.

97

Furthermore a projector positioned not only in front of the centre of each display but

also as close as possible to the actual centre of the experience cylinder, would result in benefits. If

we implemented a shader for the vertical pixel distortion, like we did for the horizontal pixel

distortion, we would fix the horizontal distortion from the centre point of view. Positioning the

projectors very close to the centre point of view would possibly make it look approximately the

same, possibly enough to not being able to see the horizontal pixel displacement problem after all.

14.3 Stereoscopic 3D

A short notice on stereoscopic 3D is taken additionally. Some of our examples of similar

installations, see section 7.2 Similar Installations, utilised stereoscopic 3D to create an enhanced

sense of depth by simulating objects appearing in front of the display surface. Without stereoscopic

3D, it is more difficult to create a feeling of depth.
This problem creates an additional issue of using the big Experience Cylinder and even

the smaller CAVE to display these 3D worlds without stereoscopic 3D. For instance it looks wrong if

you attempt to virtually represent small spaces in the experience cylinder. The reason is that the

virtual objects cannot be detached from the display surface, preventing a convincing display of

environments smaller than the physical size of the experience cylinder. The environment is

displayed on the display surface of the experience cylinder and therefore seems to be six meters

wide. A stereoscopic 3D solution would be able to create the perception that elements of the

Illustration 14-2: This model shows a projector position similar to that of Illustration 14-1, but further back

towards the centre of the Experience Cylinder. The position also results in an overlap with the adjacent

projector in order to realize edge blending.

98

environment are closer than the canvas, and thereby fix the problem of entering parts of any 3D

virtual environment that are narrower than the diameter of the Experience Cylinder, and should be

displayed as such.

Such stereoscopic 3D solution requires either active or non-active glasses. By non-active

glasses the amount of projectors needs to be doubled to twelve, but by active glasses we only need

capable graphics cards and 3D-ready projectors. According to specifications, the current graphics

cards and projectors of the experience cylinder already support stereoscopic 3D. The only thing we

need is a software upgrade and the glasses, preferably ones with a wireless connection to the

computer. We suggest RF as remote connection rather than IR controlled glasses in order to not

having to ad IR emitters at the sides of the cylinder. In Unity3D it should be possible to create the

additional virtual camera setup needed to create stereoscopic 3D in our game prototypes.

14.4 Kinect Position

The various issues with the Kinect could also warrant some changes. The top mounted

position of the Kinect makes it easier to work with tracking on the horizontal plane, but it seems

unneeded when frameworks like OpenNI includes functionality to estimate a person’s position in a

room, which is available when the Kinect is mounted in its intended position. A setup involving

several Kinects would also be a possible solution, combining them to give a view from all sides of the

cylinder and avoiding blind angles. Getting a setup with multiple Kinects to work would require

some customization of the software handling the Kinects, but could result in much more accurate

tracking inside the cylinder.

14.5 Speaker Positions

As previously mentioned we decided to change the channels of the speakers, but

without moving them, which means that the speakers still is positioned such that each display has a

speaker centered behind it. Since it is now connected in the order of a surround sound setup with

speaker 3 behind display 3 - see section 10.3.4 Sound Setup - it is a little bit off. Commercial

surround sound setups usually assume the existence of a center speaker, but as the center speaker

is behind display 3, it is not in the center. The center of the Experience Cylinder is between display 3

and 4. Therefore we additionally suggest rotating all satellite speakers 30° clockwise. Furthermore

the subwoofer array could be positioned better. The thing is that even though low frequencies are

difficult to place direction wise, it is still possible to register the origin of the subwoofer tower. In

order to fix this we suggest distributing the subwoofers evenly around the Experience Cylinder.

99

15 Literature

 Adams, Ernest. The Designer's Notebook: Postmodernism and the 3 Types of Immersion. July

2004. http://www.gamasutra.com/view/feature/2118/the_designers_notebook_.php

(accessed August 28th, 2012).

 Agarwal, Ritu, and Elena Karahanna. “Time Flies When You're Having Fun: Cognitive

Absorption and Beliefs about Information.” MIS Quarterly, December 2000: 665-694.

 Andreasen, Troels, John Patrick Gallagher , Nikolaj Møbius , and Nicholas Padfield. “The

Experience Cylinder, an immersive interactive platform : The Sea Stallion's voyage: a case

study .” AMBIENT - The First International Conference on Ambient Computing, Applications,

Services and Technologies ThinkMind, 2011.

 Badiqué, Eric, Marc Cavazza, Gudrun Klinker, Gordon Mair, and Tony Sweeney.

“Entertainment Applications of Virtual Environments.” In Handbook of Virtual Environments,

by Kay, M. Stanney, 1143 - 1166. Lawrence Erlbaum Associates, Inc, 2002.

 Bowman, Doug, A., and Ryan, P. McMahan. “Virtual Reality: How Much Immersion Is

Enough?” Computer, July 2007.

 Bukvic, Ivica Ico, and Ji-Sun Kim. “μ MAX-UNITY3D INTEROPERABILITY TOOLKIT.”

Proceedings of the International Computer Music Conference. Montreal, 2009.

 Csíkszentmihályi, Mihály, and Isabella Selega Csíkszentmihályi. Optimal Experience:

Psychological Studies of Flow in Consciousness. Cambridge University Press, 1998.

 Ermi, Laura, and Frans Mäyrä. “Fundamental Components of the Gameplay Experience:

Analysing Immersion.” Proceedings of DiGRA, Changing Views – Worlds in Play, 2005 .

 Esposito, Nicolas. “A Short and Simple Definition of What a Videogame Is.” Proceedings of

DiGRA Changing Views – Worlds in Play, 2005.

 Heilig, Morton, L. Sensorama Simulator. USA Patent 3,050,870. 28 August 1962.

 Heim, Michael. “The Essence of VR.” In The Metaphysics of Virtual Reality, by Michael Heim,

109-128. New York: Oxford University Press, 1993.

 Hill, Ian. Top 10 Most Immersive Worlds in Games. 13th April 2012.

http://www.gamingenthusiast.net/top-10-most-immersive-worlds-in-games/ (accessed

August 30th, 2012).

 Hills, Heather , and James Hills. Theory of Flow. http://www.flowsocialmedia.com/theory-of-

flow.html (accessed August 28th, 2012).

 Jacobsen, Jeffrey. “Game engine virtual reality with CaveUT.” Computer, April 2005a: 79 - 82.

 Jacobson, Jeffrey. CaveUT2004. 1st June 2005b. http://planetjeff.net/ut/CaveUT.html

(accessed August 28th, 2012).

100

 Juarez, Alex, Willem Schonenberg, and Christoph Bartneck. “Implementing a low-cost CAVE

system using the CryEngine2.” Entertainment Computing, 2010: 157 - 164.

 Juul, Jesper. “The Game, the Player, the World: Looking For A Heart of Gameness.” In Level

Up: Digital Games Research Conference Proceedings, by Marinka Copier and Joost Raessens,

30 - 45. Utrecht: Utrecht University Press, 2003.

 Krueger, Myron, Thomas Gionfriddo, and Katrin Hinrichsen. “VIDEOPLACE—an artificial

reality.” CHI '85 Proceedings of the SIGCHI conference on Human factors in computing

systems, 1985: 35 - 40.

 Little Players. Top 5 Most Immersive Games. 6th May 2011. http://www.little-

players.com/blog/2011/05/top-5-most-immersive-games/ (accessed August 30th, 2012).

 Livatino, S., V. Agerbech, , A. Johansen, and B. Johansen. “Designing a Virtual Reality Game

for the CAVE.” Eurographics, 2006.

 Matthes, Olaf. “netsend~ for Max/MSP and Pure Data.” Nullmedium. 2005.

http://www.nullmedium.de/dev/netsend~/ (accessed August 30th, 2012).

 McMahan, Alison. “Immersion, Engagement, and Presence - A Method for Analyzing 3-D

Video Games.” In The Video Game Theory Reader, by Warren Robinett, 67 - 86. Routledge,

2003.

 Nunez, David. “A Connectionists Explanation of Presence in Virtual Environments.” the

department of computer science, the Univserity of Cape Town, 2003.

 Nvidia. Technology. 2012.

http://www.geforce.com/hardware/technology/physx/technology (accessed August 30th,

2012).

 PrimeSense. PrimeSense - Natural Interaction. 2012. http://www.primesense.com (accessed

August 30, 2012).

 PrimeSense, Willow Garage, Side-Kick, ASUS, and AppSide. OpenNI > Home. November 2010.

http://openni.org/ (accessed 8 28, 2012).

 Pulkki, Ville. “Generic panning tools for MAX/MSP.” Proceedings of International Computer

Music Conference. 2000. 304 - 307.

 RUC. Experience Lab. 2012. http://experiencelab.ruc.dk (accessed August 30th, 2012).

 Sanford, Karl. Smoothing Kinect Depth Frames in Real-Time. 24th January 2012.

http://www.codeproject.com/Articles/317974/KinectDepthSmoothing (accessed August

30th, 2012).

 Sheridan, Thomas B. “Musings of telepresence and virtual presence.” Presence:

Teleoperators and Virtual Environments, 120-125.

101

 Shochet, Joe, and Jesse Schell. GDC 2001: Interactive Theme Park Rides. 3rd July 2001.

http://www.gamasutra.com/view/feature/3060/gdc_2001_interactive_theme_park_.php

(accessed August 28th, 2012).

 Shotton, Jamie, et al. “Real-Time Human Pose Recognition in Parts from Single Depth

Images.” IEEE Computer Vision and Patteren Recognition (CVPR). 2011.

 Slater, Mel. “A Note on Presence Terminology.” Presence Connect, 2004.

 Soundbible. Soundbible. 2012. http://soundbible.com (accessed August 30th, 2012).

 Thon, Jan-Noël. “Immersion Revisited: On the Value of a Contested Concept.” In Extending

Experiences Structure analysis and design and computer game player experience, by Hanna

Wirman, and Amyris Fernandez Olli Leino, 29 - 43. Lapland University Press, 2008.

 Thorlund, Steffen, Kasper Søfren, Martin Knudsholt, and Lasse Ronnenberg. “3D Modeling

and Pathfinding in Java.” RUDAR. 18th June 2009. http://rudar.ruc.dk/handle/1800/4307

(accessed August 30, 2012).

 TKK Acoustics Laboratory. “Vector base amplitude panning.” TKK Acoustics Laboratory. 18th

1 2006. http://www.acoustics.hut.fi/research/cat/vbap/ (accessed August 30th, 2012).

 Trimble. Trimble SketchUp. http://www.sketchup.com/intl/en/index.html (accessed August

28th, 2012).

 Unity3D. Camera. 10 11 2011. http://docs.unity3d.com/Documentation/Components/class-

Camera.html (accessed August 30, 2012).

 van den Ende, Jan, and Wilfred Dolfsma. “Technology push, demand pull and the shaping of

technological paradigms - Patterns in the development of computing technology.” JOURNAL

OF EVOLUTIONARY ECONOMICS, 2005: 83-99.

 Weniger, S., and C. Loebbecke. “Cognitive Absorption and the Use of Hedonic IS: Literature

Review and Suitability Assessment.” 9th SIG IS Cognitive Research Exchange (CoRE)

Workshop (pre-ICIS), December 2010.

 Wikipedia. Video Game Genres. 22th August 2012.

http://en.wikipedia.org/wiki/Video_game_genre (accessed August 28th, 2012).

	Acknowledgements
	Abstract
	Short Table of Contents
	Long Table of Contents
	1 Introduction
	1.1 Problem Statement

	2 Method
	3 Conditions
	4 Proof of Concept
	5 Investigation of Immersion
	5.1 Central Concepts Related to Immersion
	5.1.1 Flow
	5.1.2 Presence
	5.1.3 Cognitive Absorption

	5.2 Game Immersion
	5.2.1 What is a Game?
	5.2.2 What is a Video Game?
	5.2.3 Four Subtypes of Immersion
	5.2.4 Overview Table

	5.3 Summary
	5.4 Virtual Reality Immersion
	5.4.1 What is Virtual Reality?
	5.4.2 Immersion and Presence in Virtual Reality

	6 Building a Model of Immersion
	6.1 Construction
	6.2 Explanation of the Model
	6.3 Preliminary Conclusion

	7 The Experience Cylinder
	7.1 Introduction
	7.2 Similar Installations
	7.2.1 Disney Quest Example
	7.2.2 Star Wars Example
	7.2.3 Comparison

	7.3 Construction and Technologies
	7.3.1 Rigging
	7.3.2 Display Surface
	7.3.3 Projectors
	7.3.4 Kinect
	7.3.5 Computer
	7.3.6 Sound

	8 Development Platform
	8.1 Unity3D
	8.2 OpenNI
	8.3 SketchUp
	8.4 Max 6
	8.5 Audacity

	9 Choosing a Case
	9.1 Basic Case Concepts
	9.1.1 Rail-Shooter
	9.1.2 Base Defence
	9.1.3 Virtual Sightseeing

	9.2 Choice of Case

	10 The Development Challenges
	10.1 Displaying a 3D world on a 360 display
	10.1.1 Platform Issues
	10.1.2 Display Surface Limitations
	10.1.3 Projectors and Placement
	10.1.4 Virtual Camera in Unity3D
	10.1.5 Background Summary
	10.1.6 Platform
	10.1.7 360 Camera
	10.1.8 Virtual Optical Filter
	10.1.9 Summary of Solutions

	10.2 Control
	10.2.1 The Microsoft Kinect
	10.2.2 Kinect Driver Model
	10.2.3 Background Summary
	10.2.4 Tracking
	10.2.5 Smoothing the Movement of Aiming Sight
	10.2.6 Summary of Solutions

	10.3 Directional Sound
	10.3.1 Sound Setup
	10.3.2 Sounds in Unity3D
	10.3.3 Background Summary
	10.3.4 Sound Setup
	10.3.5 Directional Sound
	10.3.6 VBAP
	10.3.7 μ Max-Unity3D Interoperability Toolkit
	10.3.8 netsend & -receive
	10.3.9 Main patch and Additional Sub Patches
	10.3.10 Editing in Audacity
	10.3.11 Summary of Solutions

	10.4 Creating Game Elements
	10.4.1 Physics
	10.4.2 The Unity3D Physics System
	10.4.3 Scoreboard and Lives
	10.4.4 Background Summary
	10.4.5 Trajectory Calculations
	10.4.6 The Meteor Game Elements
	10.4.7 The Cannon Tower
	10.4.8 RUC3D
	10.4.9 Implementing Scoreboard and Lives

	11 Description of the Finished Prototypes
	11.1 Meteor Defence
	11.2 A Stroll on RUC prototype

	12 Analysing the prototypes through our model
	13 Discussion
	13.1 Conclusion

	14 Recommendations
	14.1 Display Surface
	14.2 Projector Position
	14.3 Stereoscopic 3D
	14.4 Kinect Position
	14.5 Speaker Positions

	15 Literature

