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Introduction 

Thymidine kinase (TK) is a key enzyme in the salvage pathway of nucleotide 

metabolism catalysing the transfer of the terminal phosphate group of ATP to the 

5’-hydroxyl group of thymidine. The product dTMP is subsequently phosphorylatad 

by nucleoside kinases to dTTP, which is used for the synthesis of DNA. 

In mammalian cells the total TK activity is expressed by two genetically 

distinguishable isoenzymes: TKI and TK2. TKI is only present in dividing cells and 

TK2 is present both in non-dividing and dividing cells but at a much lower level. Of 

the two isoenzymes TKI is the most studied and the one generally referred to when 

talking about TK activity. 

For several reasons, TKI has become increasingly important in molecular 

biology and medicine. TKI is cell cycle regulated, with the amount of TKI protein 

and activity increasing markedly with the onset of DNA synthesis (S phase) and 

then declining to a very low level in G, phase. As TKl is expressed concomitantly 

with other proteins and enzymes involved in DNA synthesis, it is assumed that TKI 

plays a role in the replication of DNA. The combination of being cell cycle regulated 

and involved in DNA synthesis make TKl useful as a model system for gene 

expression and particular for the cell-cycle specific events taking place at the G,/S 

transition. An investigation of TKl gene expression will not only provide insight into 

regulation mechanisms in normal cells but also into cancer cells. 

In a variety of cancer and virus-infected cells the expression of TKI differs 

from the expression in normal cells. Generally, the level of TK activity is increased. 

Cancer cells with a changed ratio of TKI and TK2, e.g. expression of TKl in 

quiescent malignant cells and/or expression of TK enzymes with biochemical 

properties different from the normal counterparts, TKI and TK2 have been 

observed. Biochemical differences of TK’s in cancer cells together with many DNA 

viruses encoding for their own TK, which have a broader substrate specificity than 

the human host TK, are extremely useful in the treatment of cancer and virus- 

infected cells with nucleoside analogs. Nucleoside analogs are modified nucleosides 
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that, when phosphorylated by nucleoside kinases inhibit further DNA synthesis 

either by incorporation into DNA or by inhibition of DNA polymerases. A very 

efficient treatment with nucleoside analogs is seen in the treatment of Herpes 

Simplex Virus type 1 infections. Herpes Simplex virus encodes for its own TK, 

which can phosphorylate the nucleoside analog acyclic guanidine, while the human 

host TK cannot. Only cells infected with Herpes simplex virus will be affected - and 

killed - from the treatment with acyclic guanidine. However, not all nucleosida 

analogs are so selective in their effect. In the treatment of Human immunedeficency 

virus (HIV) the nucleoside analog azidothymidine (AZT) is used. The triphosphate 

of AZT inhibits the virus transcriptase and thus blocks for further DNA synthesis. 

As AZT also is phosphorylated by the host TKI , HIV infected and non-infected cells 

are influenced by the AZT treatment. 

To ensure the development of nucleoside analogs that will only interact with 

the altered or the virus-encoded TK’s, it is important that the phosphorylating 

enzyme is characterized with respectto structure, activity and specificity. However, 

even through TKI has been investigated throughout at the genetic level, TKI is not 

very well characterized at the protein level. This is due to a low amount of TKI in 

the cells and a high instability of TKI during the purification. Achieving enough 

materials from mammalian tissue for structural analysis, which demands protein in 

the mg-scale, is therefore an overwhelming task. However, expression of a cloned 

TKI gene in E.co/i, it will be possible to achieve adequate amounts of protein for 

structure analyses by Nuclear Magnetic Resonance or X-ray diffraction. The 

structure-function relationship can be investigated by performing site-directed 

mutagenesis. This will give a knowledge about the structure of the active site in 

TKI and facilitate the development of new nucleoside analogs. 
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Aims 

The complex regulation of TKI gene expression differs from one cell type to 

another. To create selective nucleoside analogs, it is of high value with a detailed 

knowledge about the phosphorylating enzyme regarding expression, substrate 

specificity and molecular structure. 

This Ph.D thesis describes two different approaches for studying the regulation of 

TKI. 

In the first part I investigated the relation between TKI mRNA and TK 

activity in normal quiescent human lymphocytes stimulated to enter the cell cycle. 

As different regulation mechanisms may cause development of malignant cells, I 

also investigated the relationship between TKI mRNA level and TK enzyme activity 

in a quiescent malignant cell type, chronic lymphatic leukemia (CLL). To measure 

the level of TKI mRNA a very sensitive method, Competitive PCR, was established. 

In the second part I studied the structure-function relationship of TKI TKI 

purified from lymphocytes was expressed as a glutathione-S-transferase fusion 

protein in Ecoli. Two TKI mutants with deletions from the C-terminal were 

constructed by the Recombination PCR method. In one mutant, TKI-193, a stop 

codon was introduced at amino acid position 194, deleting 40 amino acids from the 

C-terminal. According to a hypothetical structure for TKI no function-essential site 

is deleted in this mutant. In the other mutant TKI -176, 57 C-terminal residues were 

deleted. According to the hypothetical structure, two residues (CYS”~ and Arg”‘) 

which may contribute to ATP and/or substrate binding were absent in this 

construction. To evaluate any structure-function relationship, the recombinant TKI 

wildtype and TKI mutants were characterized and compared with native 

lymphocyte TKI . 



Background 

Thymidine kinase 

Th ymidine kinase (TK) - a salvage pathway enzyme 

The DNA precursors (dATP, dCTP, dGTP and dTTP) can be synthesised by two 

different pathways, the de nova pathway and/or the salvage pathway. In the de 

nova pathway the deoxyribonucleotides are synthesised from ribonucleoside diphos- 

phate through reduction of the 2’-hydroxyl group. The key enzyme for this reaction 

is ribonucleotide reductase (Thelander and Reichard 1979). In the salvage pathway 

the DNA precursors are synthesised by phosphorylation of deoxyribonucleosides, 

originating from the breakdown of DNA in dying cells or from damaged DNA. Figure 

1 shows a survey of the salvage pathway and the last steps in the de novo path- 

way leading to dTTP. 

dCTP 
dCK 4 

dCyd + dCMP + dCDP + CDP 

TK & inorganic t compounds 

dUrd + dUMP + dUDP + UDP 

TK J 

dThd + dTMP 

J 
dTDP 

4 
dTTP 

Figure 1: Synthesis of dTTP by salvage and de nova pathway. The right side rapraesant the de nova 

synthesis, while the left side is salvage synthesis. 
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In the synthesis of dTTP, production of dTMP is the critical step. dTMP can 

be produced either by methylation of dUMP or by TK phosphorylation of dThd. 

dUMP can be produced by TK phosphorylation of dUrd or by deamination of dCMP. 

Both deoxyuridine and thymidine are phosphorylated by TK, so this gives TK a 

central position in the synthesis of the dNTP’s. 

As denovo synthesis can provide a dividing cell with all the necessary DNA 

precursors, it would be easy to regard the salvage pathway solely as a “cheaper” 

way to provide DNA precursors. However, there are important roles for the salvage 

pathway enzymes. Cohen et al (I 983) have shown that in S-phase thymocytes’, 

the de novo synthesis is responsible for the production of the purine DNA 

precursors whereas the pyrimidine DNA precursors are synthesised primarily by the 

salvage pathway. Likewise, in resting or G, thymocytes, where there is no 

ribonucleotide reductase activity the salvage pathway provides the cell with 

deoxyribonucleotides necessary for DNA repair (Cohen et al 1983). 

dTTP as a regulator of the dNTP pool 

An important role for the enzymes in the salvage pathway is also to maintain a 

balanced dNTP pool. It is well known that an imbalanced dNTP pool can result in 

cell killing, mutation induction, induction of chromosomal aberrations and 

carcinogenesis (Kunz 1988, Meuth 1989). As shown in Figure 1 TK plays an 

important role in the dTTP synthesis. dTTP, on the other hand has a major role in 

regulation of the dNTP pool. Ribonucleotide reductase catalyses the reduction of all 

the NDP to dNDP and the regulation of this reduction is controlled by the balance 

between the end products, the dNTP’s. In the balance between the dNTP’s, dTTP 

’ thymocytes are immature T lymphocytes 
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is essential. An increase in the dTTP pool down-regulate reduction of CDP and up- 

regulate the reduction of GDP, which then up-regulate the reduction of ADP. So, 

an increase in the dTTP pool shifts the specificity of ribonucleotide reductase away 

from pyrimidine ribonucleotides and towards reduction of purine ribonucleotides 

(Thelander and Reichard 1979, Reichard 1987). As TK play an important role in 

dTTP synthesis, a deregulated TK will cause an imbalanced dTTP pool and that 

affect incorporation of the correct nucleotide into DNA. 

TK as a tumour marker 

As mention previously human cells have two TK’s, TKI and TK2. TKI is activated 

at the G 1 /S phase of dividing cells whereafter the level of TKl fluctuates with the 

progression through the cell cycle, being highest at DNA-synthesis (Bell0 1974, 

Munch-Petersen and Tyrsted 1977). TKI is therefore a good indicator of cell 

proliferation and is used as a tumour marker for a number of malignant diseases 

such as breast cancer (O’Neill et al 1992, Robertson et al 1990, Romain et al 1995) 

and non-Hodgkins lymphoma (Schwartz 1992, Hallek 1992). In a study of Romain 

et al (1995) 290 breast cancer patients were included in a 1 O-year follow-up study. 

Measurement of serum TKI activity showed a good correlation between TKI level 

and malignancy, and a high TKI level was strongly associated with shorter overall 

survival. 

Ellims et al (1981) have investigated the occurrence of TKI and TK2 in 

patients with chronic lymphatic leukemia (CLL). The distinction between TKI and 

TK2 activity were done, using the pronounced differences in substrate specificity. 

Both isoenzymes use ATP efficiently as phosphate donor, but TK2 can also use CTP 

efficiently, whereas it is a poor phosphate donor for TKI (Ellims et al 1981, Ellims 

et al 1983, Sakamoto et al 1984, Sakamoto et al 1992). Ellims et al (1981) showed 

that in the indolent forms of CLL the dominating enzyme was TK2, but in the more 

aggressive forms of CLL the dominating enzyme was TKI They suggested that the 

appearance and level of TKI in CLL is coupled to aggressiveness of the disease. 
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lsoforms of TK7 and TK2 in leukemic cells 

Enzymatic characterization of TK in several cancer types, has revealed TKs with 

enzymatic properties different from TKI and TK2 (Munch-Petersen and Tyrsted 

1985, Munch-Petersen and Tyrsted 1986, Munch-Petersen 1990). In these 

experiments the characterization was based on substrate kinetics with thymidine 

and ATP plus inhibition kinetics with dTTP. In three patients with AML (acute 

myelocytic leukemia) (Munch-Petersen and Tyrsted 1988) and in one patient with 

CLL (chronic lymphatic leukemia) (Munch-Petersen and Tyrsted 1986) a TK enzyme- 

form with thymidine substrate kinetics and TTP inhibition kinetics similarly to TKI 

from dividing lymphocytes was observed. However, the enzyme, nominated TKI- 

one (oncogenic form of TKI), had a lower molecular weight and an altered ATP 

kinetic than TKI (Munch-Petersen and Tyrsted 1986). In a patient with AMOL 

(acute monocytic leukemia) yet two other forms of TK appeared. These two 

enzymes, called TK3-one and TK4-one, differed from TKI and TK2 in kinetic 

properties and in molecular weight (Munch-Petersen and Tyrsted 1985). The three 

oncogenic forms of TK have also been observed in CML (chronic myelocytic 

leukemia), where three patients posses the TK3-one form, two patients have the 

TK2-one form and one patient has the TKl-one form (Munch-Petersen 1990). 

Apparently, leukemic cells express different forms of the normal 

counterpart, TKI and TK2. Whether the altered TK enzymes are part of the 

development of a cancer cell or a consequence of it, is not known. 
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The cell cycle 

TKI is a cell cycle regulated enzyme tightly associated with DNA replication. Before 

explaining the several regulation mechanisms responsible for TKI expression and 

regulation during the cell cycle, an overview of the mechanisms controlling the cell 

cycle will be presented. 

The phases of the cell cycle 

The proliferative cell cycle can be divided into four distinct phases; G,, S, G, and 

M. 

The genome is replicated in S-phase and in the following G, phase the cell 

prepares for entry into M-phase, where the chromosomes condense and structural 

proteins important for mitosis are synthesized. After separation of the duplicated 

chromosomes and subsequently cell division the cells transverses into the G, phase. 

Here, the cell synthesizes many factors and enzymes needed for replication, and it 

is by far the phase where the cycling cell spend most of its time. In late G, a major 

control mechanism for cell proliferation is exerted. The mechanism, called the 

restriction-point (R-point) (Pardee 1974) controls the onset of a new cell cycle. Only 

cells that have a certain amount of growth factors can pass the R-point and start 

a new cell cycle. If conditions do not support a new cell cycle, a normal cell will not 

pass the R-point, but will instead enter a G, phase. Cells in G, phase are non- 

dividing but have still the potential to reenter the cell cycle. While the G, cells await 

a stimulation to reenter the cell cycle, proteins and RNA molecules are degraded 

and the rate of protein synthesis is markedly decreased (Furukawa et al 1990, 

Hofbauer and Denhardt 1991). 

To be able to leave G, phase and enter G, phase the cell must respond to 

some “competence factors”, which for lymphocytes may be an antigenic stimulus. 

The competence factors enhance expression of a set of genes, called early-response 



genes, including the proto-oncogenes’ c-myc, c-fos and c-j& (Hofbauer and 

Denhardt 1991). It has been shown that especially c-myc protein is important for 

the commitment to leave G, phase, as cells in which c-myc expression is prevented 

do not leave G, phase (Evan and Littlewood 1993). When the competent cells 

respond to a second group of growth factors, “the progression factors”, e.g. 

lymphocytes respond to interleukin 2, they will progress into early G,-phase. Further 

progression into late G, phase depends on the availability and abundance of a third 

set of growth factors, such as the insulin-like growth factors-l (IGF-1) (Pardee 

1989, Hofbauer and Denhardt 1991). In late G, phase another class of genes, the 

delayed-response genes, are transcribed. These include the genes for among others 

the cyclin-dependent kinases, thecyclins, thymidine kinase, dihydrofolate reductase 

and DNA polymerase u (Hofbauer and Denhardt 1991). 

Transcription of some of these genes, e.g. the cyclins and the cyclin-dependent 

kinase are depending upon the product of the early-response c-myc gene (Furukawa 

et al 1990). At this point in G, the cell prepares for a new cell division, and after 

passage of the R-point the cell is independent of exogenous growth factors. 

2proto-oncogenes are the normal counterparts in the eucaryotic genome 
to the oncogenes carried by some retroviruses. A single mutational event in a 
proto-oncogene is sufficient to activate it so the oncogene product can 
contribute to the abnormal growth of cells. 

3c-myc, c-fos and c-jun encodes proteins that are implicated in 
transcription. The c-myc protein intertact directly with DNA and influence gene 
expression and DNA repair. c-fos and c-jun proteins contributes to the formation 
of the API comlex (gene regulatory protein) that bind to specific sites in 
promoter/enhancer elements and augment transcription (Hofbauer and Denhardt 
1991) 
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Control mechanisms in the cell cycle 

More than 100 genes responsible for cell cycle regulation have been identified 

(Hofbauer and Denhardt 1991). It is out of the scope of this thesis to present a 

detailed elucidation of the mechanism controlling the cell cycle, but I will give an 

overview of the mechanisms taking place in the cycle. 

C yclins and c yclin-dependen t protein kinases 

Progression through the cell cycle is tightly linked to the activation of cyclin- 

dependent protein kinases (Cdk). Activation of a Cdk requires binding to a 

regulatory protein, ~a cyclin. 

A general feature of the cyclin-Cdk complex is, that the concentrations of 

the Cdk stay constant through the cell cycle, whereas the concentrations of most 

of the cyclins fluctuate. This promotes a sequential activation and inactivation of 

the cyclin-Cdk complexes that control the progression through the cell cycle. 

To transverse the cell cycle different cyclins are required at different stages 

(figure 2). 
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Figure 2: Cp9ifl.S through the cell c yclus 

Cyclin D’s 
+ Cdk.2 

Cdk4 
Cdk6 

[ Cdk2 Cyclin E + Cdk2 

In progression through G, phase two cyclins are the key regulators. The D-type 

cyclins (Dl, D2, D3) which associate with either Cdk4 or Cdk6, drive the cell 

through the R-point (Lew et al 1991, Sherr 1994) by phosphorylation of the Rb 

(retinoblastoma) protein. From here, cyclin E in combination with Cdk2 takes over 

and controls the passage through the G,/S transition (Lew et al 1991, Dulic et al 

1992). After entrance into S-phase the cyclin E-Cdk2 complex dissociates and 

cyclin E is degraded (Sherr 1994). Cdk2 can now combine with cyclin A, into a 

complex which is believed to activate replication of DNA (Sherr 1993). During S 

and G, phase an inactive complex of cyclin B and Cdc2 (also called Cdkl) is 

accumulating. A dephosphorylation of Cdc2 in the cyclin B-Cdc2 complex at the 

end of G, activates Cdc2 and signals an entrance into M-phase (Hunter and Pines 

1994). In M-phase there is an important checkpoint to ensure that the mitotic 

apparatus is correctly formed and the chromosomes are properly aligned. The cell 

can only pass this point if cyclin B is degraded, resulting in the release of inactive 

Cdc2. 

There are more cyclins to control progression through the cell cycle than the 

above mentioned. These include cyclin C, F, G and H but their role is not fully 

elucidated (Hunter and Pines 1994). 
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Regulation by tumour suppressors 

The Rb protein is a turnout’ suppressor4 which is an important regulator of cell 

proliferation. Through the cell cycle the Rb protein alternates between an inactive 

phosphorylated form and an active hypophosphorylated form. Rb is 

hypophosphorylated in G, phase, phosphorylated just before S phase and remains 

so until late M phase. Active, hypophosphorylated Rb binds a set of regulatory 

genes that favour cell proliferation. The binding inactivates the regulatory genes by 

preventing these from binding to the appropriate gene sequence. 

Hyperphosphorylated Rb protein is unable to bind regulatory genes, which then bind 

to the target genes and start transcription (Levine 1993). 

One of the regulatory genes is probably the cellular transcription factor E2F. 

The promoters of several genes activated in late G, contain binding sites for E2F. 

These genes includedihydrofolate reductase, thymidine kinase and DNA polymerase 

CI. But also genes which are critical for controlling the entrance into S-phase, such 

as Rb and cyclin A contains a site for E2F. It is therefore assumed that E2F is a 

critical regulator of activation of genes at the GJS-phase boundary (Nevins 1992a, 

Farnham et al 1993). For example, during G,, hypohosphorylated Rb protein 

interacts with E2F and by that inhibits binding of E2F to the DNA (Chellappan et al 

1991, Weintraub et al 1992). However, when the cyclin E-Cdk2 complex (which 

signals entrance into S-phase) has been assembled in late G,, the Rb in the Rb-E2F 

complex is hyperphosphorylated (Cobrinik et al 1992, Hollingsworth et al 1993), 

thereby releasing “free” E2F, which can bind to the promoter and start transcription 

(Nevins 1992a, Nevins 1992b). 

Another control mechanism is exerted by the tumour suppressor ~53. p53 

is a transcription factor but the gene or genes it regulates is not fully elucidated. 

Levine (1993) has shown that when normal cells are exposed to UV irradiation, the 

?umour suppressor genes encode proteins that suppress tumour 
formation. If both allels of a tumour suppresor is lost by mutation, the lack of a 
functional suppressor can initiate a cancer 
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level of p53 protein increases due to a stabilization of the protein. The increased 

level of p53 protein blocks for progression through the cell cycle, allowing the cell 

to pause in G, while DNA repair proceeds. Cells with mutant p53 protein do not 

stop in G,and move into S-phase with damaged DNA (Levine 1993). 

CdK inhibitory proteins 

The assembly of the cyclin-Cdk complex and their phosphorylation of other cell 

cycle regulatory proteins, e.g. Rb allows the cell to progress through the cell cycle. 

Besides this positive regulation, negative regulation occurs at check points. These 

regulation mechanisms are under control of CKI proteins (Cdk inhibitory proteins) 

that binds to the cyclin-Cdk complexes and inhibits their activity. It seems that 

inhibition of a cyclin-Cdk complex is a question of how many “CKls” there are 

bound to the complex. During G, phase cyclin D-Cdk4 and cyclin E-Cdk2 complexes 

normally bind a single molecule of ~21 (Hunter 1993, Sherr 1994) and the complex 

signals progression into S-phase. ~21 is induced as part of the delayed early 

response to mitogen in cells entering the cycle from G, phase. However, the ~21 

gene expression is also under control of the tumour suppressor ~53. Increased level 

of p53 increase the level of ~21, which effect binding of more than one p21 

molecule to the cyclin E-cdk2 or/and cyclin D-cdk4 complexes. This inactivates the 

cyclin-Cd k complex, thereby preventing progression into S-phase (Sherr 1994, Peter 

and Herskowitz 1994). 

Two other negative regulators of G, progression are the tumour 

suppressor’s p27 and ~16. It has been shown that arrest of cells in late G, by 

addition of TGFB (transforming growth factor p) is associated with over expression 

of p27 (Peter and Herskowitz 1994). It is supposed that p27 inhibits cyclin E-Cdk2 

activity in the same way as p21 (Sherr 1994). Recently it has been shown that 

Cdk4 and Cdk6 activity is under control of pl6 (Lukas et al 1995). pl6 is important 

as a negative regulator in late G, as it inhibits phosphorylation of Rb by binding to 

the Cdks, thereby preventing progression into S-phase. 
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Cell cycle and cancer 

The R-point in late G, is an important control mechanism, to ensure that cells are 

properly “equipped” before they start a new cell division. The passage of the R- 

point and probably other minor checkpoints, are deregulated in malignant cells, due 

to deregulation of the cyclin-Cdk complexes (Hunter 1994). Lack of control can be 

due to aberrant expression of positive regulators, such as the cyclins and Rb, or 

lack of negative regulators, such as the CKI (~16, p21 and ~53). Both types of 

changes have been documented in tumour cells (Hunter and Pines 1994). 

Tumour cells do also display defects in a GJM checkpoint, allowing cells 

with damaged or incompletely replicated DNA to initiate mitosis. As mentioned 

previously, entrance into the M-phase is controlled by the cyclin B-Cdc2 complex. 

To enter M-phase the cyclin B-Cdc2 has to be activated, through a 

dephosphorylation of Cdc2. In normal cells DNA damaged by, e.g. radiation 

prevents dephosphorylation and arrests the cells in G,, by a yet unknown 

mechanism. In several tumour cell lines, the cyclin B-Cdc2 complex is 

dephosphorylated regardless of the state of the DNA and therefore enters M-phase 

with damaged DNA (Hunter and Pines 1994). 

TKI as a model system for S-phase specific events 

The combination of being cell cycle regulated and being involved in DNA synthesis 

have provided that TKI is used as a model system for the regulatory events taking 

place at the G,/S boundary of the cell cycle. An investigation of TKl gene 

expression will not only provide insight into regulation mechanisms in normal cells 

but also into cancer cells. 

A very good system for investigation of S-phase specific events is to use 

lymphocytes stimulated to cell division by mitogen. Peripheral blood lymphocytes 

are regarded as differentiated cells representing the end stage of lymphoid 

maturation. The cells are in a non-dividing stage and may have spent several years 

there without replicating DNA or undergoing mitosis. However, the cells have not 
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lost the ability to reenter the cell-cycle upon certain stimuli, e.g. by the mitogen 

PHA (phytohemagglutinin). PHA is an extract from the red kidney bean, Phase&s 

vulgaris, (Nowell 1960). PHA has an agglutinating effect on the red and white blood 

cells, but is also able to trigger biochemical and cellular events that transform the 

non-dividing lymphocytes into a metabolically active cell. Initially after PHA addition, 

an increase in RNA, protein and DNA synthesis is observed (Hausen et al 1969). 

The increase in the rate of DNA synthesis is observed at =20 hours after PHA 

addition and is followed by a concomitant increase in the size of the dNTP pool 

(Munch-Petersen et al 1973, Tyrsted and Munch-Petersen 1977). At the onset of 

DNA synthesis several late-response genes, including DNA polymerase, thymidylate 

kinase, dihydrofolate reductase and thymidine kinase (Hofbauer and Denhardt 1991) 

show dramatically increased activities. Therefore PHA stimulation of lymphocytes 

is a good model system for studying changes and regulation of S-phase specific 

enzymes, e.g. thymidine kinase. 
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Regulation of TKI expression 

The human cytosolic thymidine kinase locus (TKl) is located on chromosome 17 

q23-25 (Solomon et al 1993). The TKI gene is 12.9 kb and consists of seven 

exons and intervening introns. The size of the exons is: 130, 32, 111, 94, 90, 120, 

851 base pair (bp) for exons 1 through 7, respectively (Flemington et al 1987). 

Together they code for a 1430 bp mRNA with an open reading frame of 702 bp, 

specifying a protein of 25.5 kDa (Bradshaw 1983, Bradshaw and Deininger 1984). 

Transcriptional regulation 

Quiescent cells express very low levels of TKI (Bell0 1974, Johnson et al 1982) 

while at the onset of DNA synthesis, there is a severalfold increase in the rate of 

transcription, resulting in an increase in TK activity (Stuart et al 1985, Coppock and 

Pardee 1987, Stewart et al 1987). The very precise onset of transcription at the G,- 

S border suggests that sequences in the TKI promoter have an influence on the 

increase of transcription. That the TKI promoter can confer cell cycle regulation is 

seen from experiments with chimeric constructs of the TKI gene. When the non- 

cell cycle regulated genes, chloroamphenicol transferase (C/IT) (Travali et al 1988) 

and neomycin resistance gene (neo) (Kim et al 1988); respectively, are under 

control of the TKI promoter, both genes are maximally expressed in the S-phase, 

concomitant with the DNA synthesis. 

The expression of eucaryotic genes is governed by a gene control region 

that consist of promoter and regulatory elements. Generally, most promoters for 

genes transcribed by RNA polymerase II contain three motifs for sequence-specific 

DNA binding proteins; a TATA-box, a CCAAT-box(es) and GC-rich elements. The 

TATA-box binds the general transcription factor, TFIID, and through a series of 

reactions RNA polymerase II is bounded. It is assumed that the CCAAT box play a 

strong role in determining the efficiency of the promoter, but the CCAAT box can 

also be a target for regulation. The GC-rich sequences (GGGCGG) bind the 
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transcription factor SPI. The promoter region responsible for transcription of the 

TKI gene is located at region -456 to + 32 bp. It contains a TATA-like sequence, 

two inverted CCAAT sequences and several GC-rich sequences. The two inverted 

CCAAT-boxes in the TKI promoter is found at -40 (the proximal CCAAT) and at -70 

(the distal CCAAT), see figure 3 (Kreidberg and Kelly 1986, Flemington et al 1987, 

Arcot et al 1989). 

- 413 -231 -115 -71 -52 -41 -21 fl +61 

CCGCCC-GGGCGG-GGGCGG-ATTGG- GGGCGG -ATTGG-TTTAAA’ - 

Figure 3: The human TKI promoter. The numbers refer to the first nucleotide in the written sequence 

starting from + 1 which is the transcription start. +61 is the translation start. CCRU is the ceil cycle 

regulating unit, see text. The figure is based on Kreidberg and Kelly 1986. 

Site-directed mutagenesis of the distal CCAAT-box shows that the box is 

important for TKI expression. A TKI minigene, which was under the control of a 

TKI promoter with mutation in the distal CCAAT box, was transfected into TK- 

ts135 cells. The mutation (deletion of the first C in CCAAT) resulted in a loss of 

promoter activity (Lipson et al 1989). Recently, it has been shown that both the 

distal and the proximal CCAAT box contribute to the promoter strength but the 

contribution is not equivalent. Excision of the proximal CCAAT-box did not alter 

expression from the TKl promoter, whereas excision of the distal CCAAT-box 

reduced expression to 55% of that of the parental promoter (Mao et al 1995). 

Mutation of either the proximal or the distal CCAAT-box reduced the promoter 

strength to about 40% of that of the native TKI promoter. Apparently, a mutation 

‘TKts13 is a temperature-sensitive TK deficient mutant, derived from 
hamster fibroblast. As HAT (hypoxantine, aminopterin, thymidine) medium does 
not support the growth of TKts13, the transformants can be selected by their 
phenotype in HAT medium. 
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in a CCAAT-box is more fatal than a deletion, which can be explained by the fact 

that when a CCAAT box is removed, other protein binding sites can partially or 

completely substitute for the missing segment. It is suggested that the distal 

CCAAT box can substitute for the proximal CCAAT-box, but the reverse is not 

possible (Mao et al 1995). 

To delimit the minimal promoter sequence that confers cell cycle regulation, 

Kim and Lee (1991) created a series of TKI promoter subfragments with deletions 

from the 5’end. The TKI -promoter was fused to the neo gene and transfected into 

K12s cells. They identified a 70 bp region spanning - 133 to -64, designed CCRU 

(cell cycle regulatory unit, figure 3 page 17) to be essential for cell cycle regulation. 

This region contains the distal inverted CCAAT-box, a GC-island and an area (-84 

to -109) with E2F-like protein binding sites (the consensus sequence is 

5’TTTSSCGC, where S is C or G, Farnham et al 1993). Mutations of the E2F-like 

sequences eliminated the S-phase specific transcription of TKI (Kim and Lee 1992). 

In investigations of the promoter elements responsible for TKI regulation 

Arcot et al (1989) have shown that the distal and the proximal CCAAT-box bind the 

same cellular protein factor, NF-Y. It was shown that the proximal CCAAT-box has 

a higher affinity for NF-Y than the distal CCAAT-box. As the NF-Y protein normally 

binds to non cell cycle regulated promoters, the higher affinity to the proximal 

CCAAT-box may indicate an involvement in constitutive expression of TKI. Results 

from Pang and Chen (1993) support the idea of differential binding to the two 

CCAAT-boxes. They showed that the binding of a CCAAT-binding protein was 

growth specific. In quiescent young fibroblast (IMR-90, human embryonic lung 

fibroblast) no binding of nuclear protein could be detected, but in serum-stimulated 

fibroblast an increased level of binding was detectable. However, in old serum- 

stimulated fibroblast the binding activity was barely detectable. Competition 

experiments with other CCAAT binding proteins showed that the binding of the 

6K1 2 is a hamster lung fibroblast cell line. It is temperature-sensitive. 
When shifted to the non-permissive temperature, 39”C, the cells cynchronize in 
G,. 
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nuclear protein was highly specific for the distal CCAAT-box of the human TKI 

promoter. Pang and Chen (1993) suggested a unique identity for this binding 

protein, based on its physical properties. They named the protein, CBP/tk (CCAAT 

Binding Protein for TK gene). Recently, it has been shown by western blot that 

CBP/tk is identical to the NF-Y protein (Chang and Liu 1994). NF-Y consists of two 

subunits, NF-YA and NF-YB (Hooft van Huijsduijnen et al 1987). Both factors are 

required for DNA binding and both are present in the binding complex. Using the 

same cells as Pang and Chen (1993), Chang and Liu (1994) demonstrated that the 

A-subunit of NF-Y was expressed differently in serum-stimulated and quiescent 

cells. The level was high in serum-stimulated IMR-90 cells but absent in quiescent 

cells, whereas the level of NF-YB was unaltered. It was concluded that the altered 

expression of the A-subunit in quiescent and serum-stimulated IMR-90 cells 

accounts for the induction of TKI-mRNA in these cells (Chang and Liu 1994). 

Post-transcriptional regulation 

The TKI promoter is activated at the G,-S border, resulting in a S-phase specific 

increase in TKI -mRNA. However, the transcriptional regulation cannot fully account 

for the induction or increase in TKI mRNA and enzyme activity. Nuclear run on 

experiment’s reveal a 4-fold increase in transcription rate for serum stimulated cells 

followed by a 20-fold increase in TKl mRNA (Stewart et al 1987, Coppock and 

Pardee 1987). These results show the presence of other regulation mechanism. 

There are indications for post-transcriptional regulation through RNA 

processing. Investigations of BALB/c 3T3’ cells progressing from G, into S-phase 

have shown a dramatic change in the processing of TKI hnRNA (heterogeneous 

nuclear RNA) when cells reach the G,-S boundary. Cells were synchronised in G, 

by serum-starvation. In G, very little mature nuclear TKI mRNA was detectable, 

‘BALB/c 3T3 are mouse cells. 
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while in G, a very high. molecular weight TKI hnRNA appeared. At the G,.S 

boundary the very high molecular TK hnRNA was processed to smaller molecular 

TK hnRNA and an accumulation of the mature 1.4 kb TKI mRNA within the nucleus 

was observed. These results suggest that factor(s) required for processing of TKI 

hnRNA is either synthesized or activated at the G,-S boundary, allowing for the 

accumulation of mature TKI mRNA (Gudas et al 1988). 

Gudas et al (1993) investigated the TKI-mRNA level in Chinese hamster 

embryo fibroblasts CHEF/18 cells synchronized in G,, early G, and mid G,. After 

serum stimulation, the steady state level of TKl mRNA and transcription rate was 

investigated. They showed that the TKI specific transcriptional and post- 

transcriptional mechanism could be uncoupled. It was concluded that a 

transcriptional mechanism was involved in the regulation of TKI mRNA during 

progression from G, into the G,. For the progression from G, to the S-phase, 

primarily post-transcriptional mechanisms were involved. 

Translational regulation 

Studies of serum-stimulated rat cells transfected with different constructs of human 

TKI-cDNA, under control of a variety of heterogeneous promoters (Ito and Conrad 

1990) indicate that TKI protein and enzyme activity is regulated independent of 

TKI mRNA. When TKI cDNA was under the control of, e.g. the SV40 early 

promoter, TKI mRNA level was high through G, phase, whereas the protein and 

enzyme level were low until ten hours after serum-stimulation. The induction of TKl 

mRNA is therefore uncoupled from the induction of TKI activity and TKI protein. 

In experiments with HeLa cells, Sherley and Kelly (1988) have revealed a 

different post-transcriptional regulation mechanism. Cycling HeLacells synchronized 

by centrifugal elutriation and mitotic selection were used to investigate the relation 

between TKI mRNA, TKI activity and TKl protein. They observed that during a cell 

cycle the increase in TKI mRNA was less than 3-fold. Measurement of the TKI 

protein with a specific antiserum raised against the purified HeLa enzyme, revealed 

that the increase in TKI protein between G, and G, was 15-fold with a good 
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correlation to TKI activity level. Pulse labelling experiments showed that cells in S 

and G, incorporate [%methionine into thymidine kinase about 12-fold more 

efficient than cells in G,. It was concluded that the increase in enzyme activity and 

protein were due to increased utilization of TKI mRNA. 

Post-translational regulation 

Evidence for a post-translational regulation mechanism in cycling cells was found 

by Kauffman and Kelly (1991). Human minigenes were expressed in murine cells 

deficient in TK expression. The minigenes were under expression of the TK 

promoter, the heterologous SV40early promoter orthe HSV promoter, respectively, 

and all exhibit cell cycle regulation. By addition of nocodazole (NOCs) to the 

transfected cells, Kauffman and Kelly (1991) have delimited the timing of 

degradation of TKI protein to occur between metaphase and cytokinesis. Here, the 

half-life of TKI was less that 20 minutes, in comparison to 40 hours for the rest of 

the cell cycle. The specific degradation of TKI protein before M/G, phase may be 

controlled by sequences in the C-terminal of the polypeptide. A construct where the 

last 40 amino acids were removed (TKI ~40), was not cell cycle regulated and TKl 

protein and TK activity was stabilized throughout the cell cycle. Results from 

Kauffman et al (1991) support the importance of C-terminal residues in serum- 

dependent regulation of thymidine kinase. Transfection of serum starved mouse 

cells with TKI ~40 under control of an independent promoter resulted in expression 

of TKI protein and activity in quiescent (G,) cells (Kauffman et al 1991). 

In serum-stimulated HL-609 cells it was shown (Chang and Huang 1993) 

*NOC is a microtubule inhibitor, that arrest cells between metaphase and 
anaphase. 

‘HL-60 is a human promyelocytic cell line. HL-60 cells are 
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that the TKI protein was phosphorylated in a growth dependant manner, and the 

fluctuation of TK activity was correlated to the extent of phosphorylation of seryl 

residues (Chang and Huang 1993). Likewise, a growth dependent phosphorylation 

of TKI protein has also been documented in proliferative and M-phase arrested 

HeLa cells (Chang et al 1994). The TKI phosphorylation was 6 to &fold higher in 

cells arrested in M-phase than in proliferative cells and the phosphorylated TKI had 

a 1 O-fold lower affinity for thymidine (K, = 15 ,um) than TKI in proliferative cells 

(K, = 1.5 FM). Chang et al (1994) suggested that the hyperphosphorylation 

observed in M-phase results from a M-phase specific phosphorylation. 

Yet another regulation mechanism operating atthe enzymatic level has been 

found by Munch-Petersen et al (1993). In normal human lymphocytes TKI is 

functionally active as a dimer which in presence of ATP can form a tetramer (the 

so-called ATP effect). The ATP effect is reversible and the two forms of TKI have 

different enzymatic properties. The dimer (-ATP) has a low affinity for thymidine (K, 

= 15 PM), while the tetramer (+ATP) has a high affinity for thymidine (K, = 0.7 

PM). 

The results of Munch-Petersen et al (1993) and Chang and Huang (1994) 

shows there are two forms of TKI. The investigations of Chang and Huang (1994) 

was performed with crude enzyme extracts and it is suggested that a mitotic kinase 

be responsible for the change between the two forms. The experiments of Munch- 

Petersen et al (1993) showed that the two forms of TKI were enzymatically 

different and also had a different native molecular weight. As Munch-Petersen et 

al (1993) used pure enzyme and showed that the transition between the two TKI 

forms occurred at 4OC, it is very unlikely that a protein kinase associated with the 

enzyme is responsible for the transition. Whether the work of Munch-Petersen et 

al (1993) and Chang and Huang (1994) complement each other or the results which 

look similar, are due to different factors is not known. 

undifferentiated but can be induced to differentiation by TPA (12-0- 
tetradecanoyl-phorbol-13-acetate) 
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Structure of human TKI 

In the treatment of virally-induced human disorders and malignant conditions 

nucleoside analogues are widely used. These analogues must be phosphorylated to 

exhibit their toxic effect on the DNA synthetic level. To ensure the development of 

selective analogs it is important that the phosphorylating enzyme is characterized 

with regard to it’s structure, activity and specificity. 

X-ray crystallography or NMR (Nuclear Magnetic Resonance) can elucidate 

the 3D (three-dimensional) structure of a protein. Unfortunately, crystallization of 

proteins is time-consuming and may be difficult to succeed. Even through NMR- 

analyses of larger biomolecules are in rapid development, the size of the 

biomolecules is the biggest limitation. Molecules larger than 25-30 kDa cause 

problems due to the overlap of resonances and their increased line width. Such 

limitations make it difficult to resolve protein structure. 

However, as the sequence of a protein contains some information to define 

the 3D structure, data about protein folding, conserved regions and active sites can 

be obtained from EDB technology. These include the use of database technology 

to store, retrieve and compare known sequences; computer graphics to display 

models and manipulate known 3D structures. Together these techniques in 

combination with site-directed mutagenesis studies can give information of the 

possible 3D structure of proteins. Nevertheless, it is important to specify that the 

3D structure of a protein cannot solely be predicted from its amino acid sequence 

and therefore the computer models can only give a proposed structure. For an exact 

structure it is necessary to await a structure obtained by X-ray crystallography or 

NMR analyses. 
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Alignment of the primary structure of human TKI with other TKs 

The functional essential domains in a protein are most likely found in the highly 

conserved gene regions. By alignment of the primary structure of a protein from 

different species, the highly conserved regions can be identified. 

From size, quaternary structure, substrate specificity and feedback inhibition 

by dTTP all TKs can be grouped into two separate classes (Black and Hruby 

1990a). Class 1 comprises the Herpesviridae family, characterized by a subunit size 

of 49 kDa and functional active as a dimer. Class 1 TK is not feedback inhibited by 

dTTP and can use both dCyd and dThd as substrates. Some class 1 TKs are also 

able to phosphorylate dTMP to dTDP. The dTDP is produced by thymidine 

monophosphate kinase (dTMPK) (Gentry 1992). The best known member of class 

1 is probably Herpes Simplex Virus type 1 (HSV 1). 

Class 2 covers all the non-herpetic TKs, including human, chicken, hamster, 

mouse, E. co/i and the members of the foxviridae family. In this class the TK 

polypeptides have a subunit size of approximately 20-25 kDa, which assemble into 

an active tetramer. Class 2 members have a strict substrate specificity for thymidine 

and are feedback-inhibited by dTTP (Black and Hruby 1990b, 1992b). 

Figure 4 shows the alignment of the primary structure of several class 2 

TKs. The alignment is based on information from Gentry (1992) and Bockamp et al 

(1991). The figure shows seven regions of complete identity, nominated as domain 

1 through 7, identified by Black and Hruby (1990b). 
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domain 1 domain 2 

II 
HUM:MSCINLPTVLPGSPSKTROQIPVIL~GPMFSGKSTEL~M~RRVRR~FQIAQYKCLS' 
HAM:-NY----------------------,-----------,-,-----,-----N--- 
MO":--Y--------S-------------,-----------,-,-----,--------- 
~~~:-~-~~~-~-~----~~p-----~-~,-----------,-,-~~~~,~-~~~~~~- 

VAC : MNG-H-.L-I,----.---.--,I,-----,Y.------V 
/- 

I--- 
H"M:VIKYAKDTRYSSSFCTHDR PACLLRDVAQEALGVAIVI" 
-:--------------S-------D----------.-----A-,-. 
MO~:-----------N--S------.~----M-----.~..L----,-. 
CHI:LV--------T~GVS---.--..-R---A-Q-.Y..---S-,-- 

VAC:T---SN-N--GTGLW---K-NF---E-TK-C--LESITDFSj-- 

domain 3 domain 4 

I 1 I 
HUM:GIDEGQFFPDI~MEFCEAMANAGKT~VIVAALDGTFQRK~PFGAILNLVPLAES1'5 
-:-----------,V----V-------,-.-----------,A--S---------- 
~~~:-~---~~~~~~,"~~--~-~~~~~~,~~------~~~~~,~~~S~~~~~~.~~~ 
CHI:-----------,V----K---T---,-------------,A--S----Y-.--. 
VAC:-----------,V----R---E.-I,-------------/..NN.---I--S-M 

i I I 

domain 5 domain 6 domain 7 

/ I - 1 
H"M:~VVKLTAVCM~ECFREAAYT~KRLG~TEKEVEVIGGADKYl~SVCR~LCY189 
HAM:,...--..--,---------,----,L-------------.,----,v-- 
MO":,---..-.--/---------,----,L--------------,--..,--- 
CHI:/----N----I-.Y..-S----IA-R---lA.R------------~----~A-- 
VAC:I---------IK--K--SFS~---JE-T-I-I----N-M-Q~..--~K-- 

I I - - 

HOM:FKKASGQPAGPDNKENCPVPGKPGEAVAARKLFAPQQILQCSPAN."' 
-:---S-V-------------L-Q---.S-V--------V--HNST.- 

MO”:---S-A-T--S-..,--L-L-Q----LW-----S--V--YNS-- 

CHI:-Q-.RP-QL-SE----V-MGV-QLDMP-S--I--S 
VAC: IDS 

Figure 4: Multiple aligment of primary sequence of vertebrate TKs from: HUM; human, HAM; hamster, 

MOU; mouse, CHI; chicken. Poxviral thymidine kinase from VAC; vaccinia virus. Domain l-7 represent 

sequences having complete identity with human TKI. Identical residues are indicated by ‘-‘. Additional 

gaps are indicated by ‘. : 
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As seen from figure 4 the vertebrate TKs are very closely related to each other. 

Further, a significant sequence homology between human TKI and the vaccinia 

virus (a poxvirus) TK is observed, with 82% amino acid identity (Kauffman and 

Kelly 1991). The vertebrate TKs have additional 15 N-terminal and 42 C-terminal 

(human) residues, respectively (Boyle et al 1987). Whether, the vertebrate TK was 

the ancestor and lost its N and C terminals when it became incorporated into the 

virus genome, or a poxvirus-like enzyme was the ancestor, is an open question 

(Boyle et al 1987); Kauffman and Kelly (1991) have shown that the’last 40 C- 

terminal residues in human TKI are responsible for cell cycle regulation of human 

TKI, but not for TK activity. During evolution the viral TK may have lost the C- 

terminal region of the protein, because cell cycle regulation is not necessary for 

virus multiplication. Another possibility is that the C-terminal of vertebrate TKs has 

evolved to serve as a regulatory function, rather than having an enzymatic role. 

The homology of the vertebrate TKs with E,co/i TK (not shown in the figure) is 

around 50% (Bockamp et al 1990). According to a genealogic tree relating 

prokaryotic, viral and vertebrate TK amino acid sequences (Bockamp et a) 1990, 

Gentry et al 1992), E.co/i does belong to a group separate from the groups of 

vertebrates and pox viruses, respectively. Herpes viral TKs are not included in 

Figure 4 because apart from three highly conserved areas (see next chapter) there 

is no apparent similarity between the sequence of herpesvirus TKs and 

vertebratelpoxviral TKs. As mentioned earlier most (if not all) herpes viral TKs have 

deoxycytidine kinase activity and it is suggested that herpes viral TKs are evolved 

from cellular deoxycytidine kinase (Harrison et al 1991). 

Alignment of the primary structure of several TKs with isofunctional 

en2 ymes 

In an attempt to address a function of the highly conserved regions, alignment with 

an isofunctional enzyme with resolved structure can reveal the function of the 

conserved regions. Proteins with the same function do often have a similar 

conformation. HumanTKl belongs to the family of nucleotide-binding enzymes, and 
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two isofunctional members of this family are adenylate kinase (ADK) and the protein 

elongation factor EF-Tu. ADK is a phosphate-transferring enzyme, catalysing the 

reversible monophosphorylation from adenosine monophosphate to thediphosphate 

(MgATP + AMP + MgADP + ADP). EF-TU binds GTP and this complex binds to an 

amino-acyl tRNA molecule. The crystal structure for both ADK and EF-TU has been 

resolved by X-ray crystallography (for ADK: Pai et al 1977 and for EF-Tu: Berchtold 

et al 1993). For ADK an NMR structure (Fry et al 1985, Yan and Tsai 1991) has 

also been solved. 

Folkers et al (1991) have aligned some class 1 and class 2 thymidine 

kinases with ADK and EF-Tu. They have predicted three conserved regions to be 

essential for substrate binding and transfer of phosphate groups. The regions are 

the nucleotide binding site (A), the thymidine binding site (B) and a site which may 

be important for phosphate binding and transfer (C) (figure 5). 

A: 

The nucleotide binding site: 

HSVl 

EBV 

HUM 

H?4M 

MOU 

VAC 

ADK 

EFT” 

48 TLLRvYIDgPHGMmTT 

40 PACSLFLECAPGVSML 
18 RGQIQVILCPMFSUEL 
18 RGQIQVILgPMFSGKsTEL 
18 RGQIQVILGPMSF-EL 

3 GGHIQLII~PMSF~EL 
7 KSKIIFW~GPGS~QC 

10 PHVGVNIT~WDH~LT 

Mg2+ binding aspartic acid: 

B: 

The thymidine binding site: 

HSVl 156 ALTLI FDRHPIAAL 

EBV 142 DCWIL -LLSAS 
HUM 102 FPDIMEFCEAMANAGKTVIVAALD.GT~PFGAI 
H?.M 102 FPDIVEFCEVM?+NAGKTVIVAALD.GT~FGSI 
MOU 102 FPDIVDFCEMMANEGKTVIVAALD.GT~FGSI 
VAC 87 FPDIVEFCERMANEGKIVIVAALD.GT~PFNNI 
ADK 98 EVKQGEEFERKI..GQPTLLLYVDAGP--------- 
EF-TU 84 AD...WKNMITGAILILWAATD-G---------- 

HSVl 
EBV 

HUM 93 VIGIDEGQF 

HAM 93 VIGIDEGQF 
MOU 93 VIGIBEGQF 
VAC 78 VIGIDEGQF 
ADK 89 GFLIBGYPR 
EFTU 75 YAHVD_CPGH 
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c: 
phosphate binding and transfer: 

HSVl 317 mRPMHVF.I.LDYDQSPA.eAL 
EBV 314 -~SE........FQDDL...~EI 
HUM 164 mGTEKEVEVIGGADKYHS.VCRLCY 
HAM 164 uGLEKEVEVIGGADKYHS.VCRVCY 
MOU 164 wGLEKEVEVIGGADKYHS.VCRVCY 
VAC 149 uGEETEIEIIGGNDMYQS.VCRKCY 
ADK 14.9 ~ETYYKATEPVIAFYEKRG~VN 
EF-TU 

Figure 5: Aligment of various TK sequences with the isofunctional ADK and EF-TU. HSVl: herpes 

simplex virus type 1 TK, ESV; epstein barr virus TK, HUM; human TK, HAM; hamster TK, MOU; mouse 

TK, VAC; vaccinia virus TK, ADK; adenylat kinase from rabbit muscle, EF-TV; elongation factor. 

Homologous sequences are denoted in dark and underlined. ‘: “denotes gaps and “-” denotes that the 

homologous sequence could not be found. The figure is constructed after that of Folkers et al I199 II. 

The proposed secondary structure of TKI 

Computer programs with the probability for an amino acid to promote o-helix, p- 

strand or ,&turn, respectively, are used to predict the secondary structure of a 

protein. Further, comparisons with isofunctional enzymes are performed, as 

isofunctional enzymes may share some characteristic supersecondary structure. An 

example is the Rossman fold, a unit consisting of a ,f3up-unit. The Rossman fold is 

a very common feature in nucleotide-binding proteins (Bradley et al 1987). 

The conserved domains for human TKl and an alignment of the predicted 

secondary structure (Folkers and Trumpp 1987, Folkers et al 1991) led to a very 

high degree of similarity with ADK. This resulted in a hypothetical model for the 

human TKI 3D structure, see figure 6 and table 1. 
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Figure 6: The proposed structure of A: human TKT compared with the X-ray structure of B: ADK from 

rabbit muscle (Fry et al 19851. a-helixes are illustrated by bars and &strands are illustrated by arrows. 

A is reprinted with permission from Folkers, G., Trumpp-Kallmeyer, S., Gutbrod, O., Krickl, 3.. Fetzer, 

J. and Keil, G.M. J. Cornput.-Aided Mol. Design, 5 (199 I] 385404. Copyright 199 1 ESCDM Science 

Publishers B. V.. 



30 

Table 1: The hypothetical location of B-strands and a-helixes in human TKI. The numbers refer to the 

$-strand and a-helix, starting from the N-terminal in figure 6. The table is based on information from 

Folkers et al 119871, Folkers and Trumpp 119871, Folkers et al 119891 and Folk.% et al (19911. 

b-strands in human TKl 

P2 F’=QlAQ” 

P3 Vs41G196 

P4 V’201VALL’25 

P5 V’85CRLC’89 

o-helixes in human TKI 

al K3*STELMRRVRR4’ 

l.72 see text 

a3 see text 

a4 see text 

a5 
I 

P’03DIMEFCEAMANA”5 

a6 

a7 

Comparison of figure 6 and table 1 reveals 3 u-helixes (2, 3 and 4) depicted 

in the figure not accounted for in table 1. These a-helixes are lying between amino 

acid 49-92 and secondary structure prediction state that it is an area with large 

helical character (Folkers et al 1991). Unfortunately, this area has a low primary 

structural homology to ADK, so alignment with ADK could not specify the precise 

location of the u-helixes. As seen from figure 4 (page 25) it is also an area with 

very high variety through the various vertebrate TKs, so it is assumed that this 

region is located at the surface of the protein and does not play an essential role in 

substrate binding and conversion (Folkers et al 1991). 

Folkers et al (1991) predict that human TKI contains five parallel P-strands 
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and  a very  common  structural  feature  for  nucleotide  binding enzymes. It is, as 

already  mentioned,  the  mononucleotide  binding  domain also called the Rossmann 

fold. In figure 6 and table 1 it corresponds to &a1&. 

In  this  theoretical model, the phosphate-binding loop, represented by  the 

sequence GZ6PMFSGK, appears after  the first B-strand.  This loop is followed  by a 

very  high  conserved  hydrophilic sequence, presumably an  a-helix.  The  putative  Mg- 

binding Asps7 is  located  at  the C-terminus of the  third P-strand.  The thymidine 

recognition site with the sequence FlZ8QRK is found  in  a  loop  region  after  the  fourth 

P-strand,  just  above  the  nucleotide-binding site. Approximately 40 amino  acids 

downstream  of  the  supposed  thymidine  recognition site are the  homologous 

sequence K'64RL, the  phosphate  binding site. Geometrical, it is assumed that the 

phosphate  binding site is above the  nucleotide  binding  site. 

The hypothetical  structure  of  human TKI has  been  validated by a 

Ramachandran  plot, a two-dimensional  plot  of  the  phi (p) and psi (U/) angles in  the 

peptide  bonding. Due to  the partly double-bonding  character of  the  peptide  bond 

and sterical  hindrance  between  the amino acid R-groups, the  free  rotation  around 

the phi (-N-C"-) bond and the  psi (-Ca-C') bond  is  restricted.  The Ramachandran plot 

gives  the  permitted  values  of  phi and psi  for  different residues.  A proposed 

structure  is  validated if less than  5-10%  of  the  phi and psi coordinates are located 

in  theoretical  unfavored areas. The theoretical TKI structure  was also investigated 

for  intramolecular  hydrogen  bonds and the appearance of charged amino acids  in 

the  core region. To achieve the  most stable  structure, the polar  groups in the  core 

region will form  hydrogen bonds. In the model, this  was  the case for 90% of  the 

internal polar groups.  Normally,  charged side chains will only appear in the core 

region, if  they  participate  in  the  catalytical process. In  the model, there  were t w o  

charged  amino  acid in the  core region, Lys3' and Asp". It is  suggested that Lys3' 

participate in phosphate  binding  and  Asp97  in  Mg"-binding. It must be stated  that 

this structure  for  human T K I  is purely  hypothetical.  To  examine  if and how  the 

conserved  regions are important  for enzyme structure and function,  site-directed 

mutagenesis  must be  performed.  Up-to-date,  there are no  reports  about site- 

directed  mutagenesis  of  human TKI.  As previous  mentioned  the  homology of 

human  TK1 with ADK  and several other class 2 TKs is  high  (figure 4, page 25 and 
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5, page  27). Therefore, results  from  site-directed  mutagenesis  in ADK and  class 2 

TKs may provide an insight  into  the  function essential  sites in  human TKI. 

In  the  following I will describe the  three  conserved  regions  (figure  5) and the 

site-directed  mutagenesis  experiments  performed  in  related TKs  and ADK. 

The  nucleotide  binding  site 

Many  ATP-binding  enzymes  bind ATP as a complex with  Mg2+. The  consensus 

sequence for  the  Mg-ATP  binding site, consist  of two motifs,  nominated  segments 

A and B. Segment  A (figure  5.A),  the ATP-binding motif  consists  of  the  consensus 

sequence GXYYXGKZ, where X is any  amino acid, Y is often a glycine  or a proline 

and for ATP/ADP binding  protein Z is  usually a  threonine (Rose et al 1985).  This 

sequence  is also called the  glycine  loop because of  its  relative  high  contain of 

glycine.  Structurally  this  segment is a  flexible loop, bounded by a  P-sheet  and  an 

a-helix  and is a part  of  the Rossmann fold.  The  importance of  the  glycine  loop  has 

been shown  by Liu and Summers (1 988) by site-directed  mutagenesis. In HSV-1 the 

consensus  sequence  is  GXXGXGKT and changes of any of  the Gly to Val  resulted 

in an inactive enzyme. 

Segment B (figure  5.A)  is  the  Mg2+-binding  motifs,  which in the  most  simple 

form  is represented by  the consensus  sequence Xh  Xh  Xh  Xh D, where  Xh  is  any 

hydrophobic amino  acid (Myles  et al 1991 ). The  aspartic  acid is  the  key  residue in 

this  segment and is  normally  found  at  the  end of a P-strand  (Black  and  Hruby 

1992a). In ADK (from  pig  muscle)  the ATP  binding  consensus  sequence  is  located 

between amino  acid Gly15 and GlyZ2  (figure 5.A and  6.B)  and the  Mg2+  binding 

amino  acid is  predicted to  be  Asps3  (Yan and Tsai 1991). NMR-analyses of  ADK 

from  rabbit  muscle  (Fry  et al 1986)  show,  that  binding  of  Mg-ATP  involves 

structural  changes  in several  regions of  the enzyme, with  the largest  displacement 

(6  A) occurring  at  the  glycine-rich  loop.  During  binding  of  Mg-ATP  the  conformation 

of  the  protein  change  from an "open" to  a more "close"  conformation.  This 

conformational change may  affect:  1) The  accessibility to  the substrate  binding  site. 
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(2) Modification  of  binding-site  affinity.  (3) The  conformational  change  may  bring 

the  catalytic  groups  towards  the  reaction  centre and facilitate  the  transfer  of a 

phosphoryl  group (Fry et al 1986). The crystal  structure  of ADK was  first  resolved 

by Pai et  al  (1 977). They  suggested the ATP  binding-site to  be  located  between a- 

helix  69-84 and 100-107, and then  according  to  figure 6.B, to  be located  on  the 

right side of  the  glycine loop.  The  AMP  binding-site was  suggested to  be located 

between  the  glycine  loop  16-22, u-helix 23-30 and the  C-terminal a-helix (figure 

6.B). This prediction has caused  debate and several reports  suggest  a 

rearrangement  for  the  localisation  of  the two substrates.  Kim et al (1 990) have 

performed  site-directed  mutagenesis of several  highly  conserved arginine’s, which 

were  predicted to  interact  with  phosphoryl groups of  AMP and  MgATP.  They 

mutated Arg44, Arg13’,  Arg13’ and Arg14’ to  Ala and found  that Arg13’ interacted 

with  MgATP  and  with  AMP  but  with a decreased affinity. Arg13’ interacts  only  with 

AMP and  Arg’49  interacts with  AMP and to a lesser extent  with  MgATP.  Arg44 does 

not  interact with either AMP or MgATP  but  may be located  in  the  AMP  binding-site. 

Based on  these  results  they suggested  placing ATP on  the  left side of  the loop, with 

the a and  P-phosphate  groups  of ATP around the  glycine  loop. The  AMP binding  site 

is placed  on  the  right side.  Binding of ATP to  the glycine  loop agrees with results 

from Yan  and  Tsai (1  991 ). ’!jMg’+-NMR analyses on ADK (from chicken)  reveal that 

Asp93, which  correspond  to  Asp97  in  human  TKI,  participates  in  binding  of  the co- 

substrate  Mg-ATP.  Substitution  of  Asp93 + Ala  resulted in a 650-fold decrease in 

V,,,(ATP). Asp93  binds  the Mg2’  which,  in  turn orients the  polyphosphate  chain so 

the  phosphate  groups are accessible for  transfer  (Yan and  Tsai 1991 1. Interaction 

of  the  highly  conserved  glycine  rich  loop  with ATP instead of  AMP is  more  probable 

as ATP  is generally  required for  most kinases, whereas AMP  is  not  (Gentry  1992). 

Black  and Hruby  (1 992a) showed  that  site-directed mutagenesis of  the  Mg- 

binding Asp8’ in vaccinia  virus TK (which correspond to Aspg7 in human TKI)   to  

hydrophobic residues; AspS2 -+ Leu,  Asp8’ * He, Asp8‘ + Val, respectively,  resulted 

in an inactive enzyme. But, mutation  of  AspSZ --z Asn  resulted in a mutant with 

minor TK activity (9.4%). All  the above  mentioned  mutants  retained  their  tetramer- 

form.  When GlyE4, which is part  of  the  highly conserved region around the Mg’+- 

binding site, was  mutated  to a Val, the enzyme activity as well as the  tetramer- 
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conformation  was  lost. This shows  that Asp" in vaccinia  virus  is  involved in Mgz+ 

binding whereas Glys4 has  a structural  role  in  the  oligomerization  of  the enzyme. 

Recently, a crystal  structure  of  a  truncated,  but  fully  active  HSV-1 TK was 

resolved  (Wild  et al 1995). HSV-1 TK was expressed in €.coli as a glutathione 

(GST)-fusion  protein.  Due to unspecific  cleavage  by  thrombin,  the 33 N-terminal 

amino  acid  was  deleted  (Michael  et  al  1995).  From  the  crystal  structure it appears 

that  the phosphate-chain  of ATP transverse the glycine  loop but  the  Mg2+  binding 

amino  acid  is not revealed (Wild  et al 1995). 

For human TKI segment  A  is  predicted to span amino acid  26-34,  while Dg7 

in the  motif VIGIDg7 may  be the  putative  Mg2+-binding residue (these t w o  

sequences  correspond to domains  1 and 3 from figure 4). 

The thymidine  binding  site 

As seen in figure 5, region B includes a sequence, for  human TKI  represented by 

the consensus  sequence F"'QRK and for  HSV-1 TK represented by F"'DRH. This 

sequence is  highly  conserved  between class 1 and 2 TKs, but HSV-1 TK has  an 

Asp'62  corresponding to  Gln114 in vaccinia virus TK. In the  view  of  the  different 

substrate  specificity  for  the  two enzymes, it was suggested that  this  domain  may 

be involved  in  nucleoside  binding (Folkers and Trumpp 1987). Experiments in  favour 

of this  proposal are seen with HSV-1 TK where  mutation  of  Asp'62 + Asn  resulted 

in a  completely  inactive enzyme and mutation  of Ala'@ + Thr  resulted  in  decreased 

affinity  of  HSV-1 TK for  the  nucleoside analog  BvdU (E-5-bromovinyl- 

2'deoxyuridine)  (Darby  et al 1986).  Another example is seen in the  acyclovir  (ACV)- 

resistant  mutant  of a varicella  zoster  virus,  VZV, (a herpesvirus, not  shown in the 

figure).  In  this TK  mutant, in comparison with the  wildtype VZV, is a change of the 

highly  conserved Arg13' in  the F128DRH motif  to Gln. It was  suggested  that  this 

amino  acid  change  was  responsible  for  the  lack  of  ability to phosphorylate  acyclovir 

(Sawyer  et al 1988). The F12'DRH motif  in  wildtype  VZV  corresponds to F"j'DHR 

in HSV-1 TK so this indicated that  the F16'DRH motif  is  important  for  recognition  of 
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acyclovir.  However, HSV-1 TK accepts  acyclovir as substrate  whereas  BHVI-TK 

(a  bovine herpes virus) does not, and both TKs posses similar  amino  acids in the 

FDRH motif. Thus,  additional amino acids may be part  of  the  thymidine  recognition 

site. For HSVI-TK  two other  highly  conserved regions, D215RL and K317RL, have 

been  suggested to  be part  of  the  active site. Michael  et al (1  994) have  constructed 

the  mutants Asp215 + Arg and Lys317 + Gly. Both  mutants  were  enzymatical active, 

with  the same K,,, value as the  wildtype,  but a 4-fold  lower V,,,. These mutations 

are rather dramatical, with a change in  polarity and an increased size. Therefore, 

Michael  et al (1 994) suggested a location  for Asp215 and Lys317 on  the  surface of 

the  protein  instead of the  core region.  ,This contradicts  the  hypothetical  model  for 

HSVI-TK (Folkers et al 1991)  but agrees with the preliminary X-ray  structure of 

HSVI-TK  (Wild  et al 1995). 

A phosphate  binding  site 

Region  C  contains a sequence which  is  very  high  conserved  in  many TKs. For 

human  TKI  the sequence is represented by  the amino acids: K’64RL and it is 

assumed that  this  region  might play a role  in  phosphate  binding  and  transfer of a 

phosphate  group to thymidine (Folkers et al 1991 ). 
Also, in  region C and near the  C-terminal are two highly  conserved  residues 

in nearly all TKs, C Y S ’ * ~  and Argle7,  believed to have an influence  on ATP  and/or 

phosphate  binding (Folkers et al 1991 ). 
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Experimental 

Introduction 

The  regulation  of TKI  gene expression  is  complex  and  differs  from  one  cell type  to 

another. To create  selective  nucleoside analogs, it is  of  high value with a  detailed 

knowledge  about  the  phosphorylation  enzyme regarding  substrate specificity, 

molecular  structure  and  expression. 

In  the  first  part  of  my Ph.D thesis I wanted to investigate  the  relation 

between  expression  of TKI mRNA and TKI  activity in quiescent  human 

lymphocytes  stimulated  to enter the cell cycle  by PHA stimulation.  As  different 

regulation  mechanisms  may  cause  development of malignant cells, I also wanted 

to  investigate the TKI mRNA and TKI  activity relationship in a  quiescent  malignant 

cell type,  chronic  lymphatic leukemia (CLL). 

As  mentioned earlier (page  14),  lymphocytes  stimulated to  growth  by PHA 

are  a very  used  system  for  investigations  of S-phase specific  events  and the  system 

is  well  characterized  with  respect  to TK activity,  DNA  synthesis and cell  division 

(Barlow and Ord  1975,  Munch-Petersen  and  Tyrsted  1977,  Tyrsted  and  Munch- 

Petersen 1977). However,  the  level  of TK1 mRNA in  quiescent and PHA stimulated 

lymphocytes  has  not been  determined. 

The  standard  assays  for  detection and quantification  of RNA include 

Northern  blot  hybridization and RNase protection assays. Nevertheless, beside being 

very  time-consuming,  the  quantity  of RNA required and the  efficiency of RNA 

binding to  the hybridization  membranes  limits  the  method. Especially, when  low 

copy mRNA  as TKI mRNA is used. As the material from  patients with CLL was 

restricted,  a  more  sensitive  method  was  necessary.  The  competitive PCR method 

(Gilliand  et al 1990)  can  provide  a  much  more  sensitive  method  of  detection and 

quantification. The method  includes  purification  of  total RNA and  reverse 

transcription  of RNA to cDNA.  The  quantification is  achieved by  co-amplification  of 
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a  competitive  template that uses the same primers as those  of  the  target  cDNA,  but 

the  competitive  tempates  can be  distinguished  from  the  target  cDNA after 

amplification.  The  relative  amounts  of  target  cDNA  versus  a  competitor  can be 

revealed by ethidium-stained gel. Because the  starting  concentration  of  the 

competitive  template is known,  the  initial  concentration  of  the  target cDNA, which 

is  taken as representative  for  the mRNA can be determined. 

Comparing  the  ratio  of TKI mRNA and TKI  activity  in healthy  lymphocytes 

and in CLL cells,  respectively,  may  reveal  differences in  the  regulation  of TK I .  

I also wanted  to  study  the  structure-function  relationship  of  TKI.  As described, the 

3D  structure of human TKI  (figure 6.A, page 29) is  only  a  hypothetical  structure 

based  on computer  models and alignment  studies. 

Structural  elucidation  of  proteins by NMR-analyses or X-ray  crystallography, 

demand  amounts  in  the range of  mg.  The  purification  of TKI  from human  sources 

is  a  very  time-consuming  task, as the cellular amount  of TKI  is  very  low.  From 1.5 

x 10” PHA stimulated  lymphocytes  (isolated  from 12  I of  donor  blood) -30 p g  

pure TKI  can  be isolated  (Munch-Petersen  et  al  1991). Therefore, having an  easily 

available  source of  pure TKI  is  important.  This  can be  achieved by expressing 

eukaryotic genes in  procaryotes  such as €.coli. 

In 1994, Jensen constructed an  expression system  for  direct  expression  of 

human TKI  in €.coli. The amino acid  coding sequence of  TKI  was cloned  from 

pTK1 1 (Bradshaw and Deininger 1984)  into a pET3a vector and transformed €.coli 

BL21  (DE3)lysS. With  this  system  the  unmodified  TKI  protein  was expressed but 

the  yield  was  only  1  mg  TKI  proteid bacterial  culture,  before  purification. For this 

reason, I have  chosen to  work  with a different  expression  system  (pGEX2T-TKI) 

where  the  human TKI gene is  expressed as a fusion  protein  with  glutathione S- 
transferase (GST). Fusion proteins  have  the advantage that  the  bacterial  part of  the 

fusion  protein  “masks”  the  eucaryotic gene. This  normally  allows  for  expression  of 

larger amounts  (Marston  1986). 

To achieve  information  about  the  structure-function  relationship I have 

constructed two  TKI  mutants.  As  the  long  term  perspective is to  perform NMR- 

analyses on  TKI polypeptide,  this had an influence  on  the  type  of  mutants. The 
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subunit  molecular size of TK1 is 24 kDa (234 amino acids) and in absence of ATP 

it will appear as a  dimer (48 kDa), which  is above the  limit  of  what  can  be analysed 

by NMR. Therefore,  deletion‘s mutants  were  constructed.  In one mutant,  TK?-1 93, 

a stop  codon is introduced a t  amino acid  position  194,  deleting 40 amino acids 

from  the C-terminal. According to  the  hypothetical  structure,  no  function-essential 

site  is  deleted in this  mutant. The  other  mutant, TKI-176, contains  a  stop  codon 

at  amino acid position  177.  According t o  the  hypothetical  structure, the two 

residues C ~ S ” ~  and Arg”’, which may contribute to ATP and/or  substrate  binding 

are removed.  CyslE6 and Arg’” are in a supposed  P-strand  region, covering  amino 

acid  1 85-1 89 (table 1, page 30). Beside deleting  the  last P-strand,  a part  of  the  last 

putative a-helix (number 7) are also deleted. 

The  stop  codon was introduced by site-directed  mutagenesis.  The PCR 

method  is  best  known as a method  for  detection and amplification  of a specific 

DNA sequence, but PCR is also an excellent  method  for  site-directed  mutagenesis 

of a DNA sequence. Modifications can be  introduced,  because  the  primer  sequence 

is  incorporated  into  the  amplification  products.  Substituting one or a few 

nucleotides  in  the  primer sequence will cause  alterations  of  the DNA sequence. The 

PCR-product  can then be used in  cloning  procedures. One strategy  for  subcloning 

of PCR fragments  is  to  take advances of €,coli’s ability to  recircularize  linear 

plasmid  molecules by a recombinational  process.  The  recombination PCR (Jones 

and Howard 1991, Jones and Winistorfer  1992,  Jones  1994) is a method  for 

making  DNA  joints in vivo by  the  recombination  of PCR-generated homologous  DNA 

ends in €.coli. The  basis  for  this event is that  DNA ends containing  short  regions 

of  homology  can  undergo intramolecular recombination in  vivo in €.coli (Conley et 

al  1986a, Conley et al 1986b). Even recombination-deficiency  (recA-)  cells  can 

produce  transformants  from linear DNA, although with an  approximately  40-fold 

lower  frequency  (Conley and Saunders 1984). 

The  mutants and the  recombinant  wildtype  proteins are expressed  and 

purified. Pure enzyme  is used  for  enzymatic  characterizations. To  evaluate the 

effect  of deleting 40 and 57 amino acids,  respectively,  comparisons with  the 

recombinant  wildtype and the  native  lymphocyte  TKI are performed. 
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Methods for  quantification of TKI mRNA  in  healthy  lymphocytes  and 

in lymphocytes from patients with CLL. 

Cells 

Peripheral  blood from  six  control persons was  collected in Heparin vacuum  tubes. 

Peripheral  blood, fromfive patients with untreated  chronic  lymphatic  leukemia (CLL) 

was similarly  collected at Roskilde Hospital. 

Isolation of mononuclear  white blood cells 

The lymphocytes  were isolated by the Isopaque-Ficoll  gradient centrifugation 

(Bayum  1976). Peripheral blood (20 ml) was  transferred to  50 ml centrifuge  tubes 

and centrifuged 10  min  at  900 RPM. The plasma  layer was  discarded  and an equal 

amount  of PBS (phosphate  buffered saline) was added. The plasma/PBS solution 

was placed  on  top  of 2/3 volume  of Isopaque-Ficoll. After  centrifugation  for 30 min 

a t  2500 RPM, the  lymphocyte layer was washed three  times  with repeated 

suspension with PBS/5% FCS (fetal  calf  serum) and centrifuged  for  5  min a t  1600 

RPM. Finally, the cells were resuspended in 8 ml PBS/5% FCS and the  cell  numbers 

were  determined  by  coulter  counting.  After  counting,  the cells were  pelleted  and 

either  stimulated  with PHA or stored a t  -8OOC (in  portions  of  5x106  cells). 

PHA stimulation of lymphocytes  from  healthy  persons 

Lymphocytes  from  control  persons  were suspended in  RPMI-1640  medium 

supplemented with  10% FCS and 20 pg/ml penicillinlstreptomycin. at a 

concentration  of I O 6  cells per ml  in  5% CO, a t  37OC. The cells  were stimulated to 

growth  by 20 pg/ml PHA for 48, 72, 96 and 168 h, respectively.  The  cells  were 

harvested,  counted  and  stored  similarly to unstimulated  lymphocytes. 

Enzyme extract 

The  isolated  cells  from CLL patients and control  persons  were  suspended  in  Loebs 

buffer (20 mM K-phosphate  buffer  (pH 7.4), 15% glycerol,  1 mM K-EDTA, 10 mM 

DTT  (dithiotreitol)),  lysed  by  sonication  (40W, 3 x 1-2 sec) and centrifugated  at 

20,0009 for 30 min. The  supernatant  (the enzyme extract)  was used for TK activity 
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measurement  and  determination  of  total  motein. 

TK activity assays 

The radioactive assay for measuring TK activity  is based on  the  conversion  of  the 

substrate  [3H]dThd  to  [3H]dTMP and  removal  of  the  unphosphorylated  substrate  on 

anion  exchange  filters (DEAE-cellulose 81 paper) by  three  times  washing  in 5 mM 

ammoniumformiate and one  times  in H,O for 5 min. The  nucleotides  were  eluted 

from  the  filters  with 0.2 M KCIlO.1 M HCI and the  radioactivity  determined by 

scintillation  counting.  Activity  is measured as initial  velocities  (Munch-Petersen and 

Tyrsted  1977,  Munch-Petersen  et al 1991)  by applying  samples  of 13 pi on DEAE 

filters 5, 10 and 15 min  after  starting  the  reaction  by  addition  of enzyme extract  to 

the assay mixture. The reaction  temperature  is 37OC. One unit  of enzyme activity 

is  the  amount  of  enzyme  catalysing  the  formation  of  one  nmol  dTMP per min. The 

standard assay mixture  contained:  50  mM Tris-HCI (pH  7.5). 10 mM DTT, 2.5 mM 

ATP, 2.5  mM MgCI,, 3 mM NaF, 0.5 mM CHAPS (3-[(3-Cholamidopropyl)- 

dimethylammonio]-1-propanesulfonate), 3 mglml BSA (bovine  serum albumin) and 

10 pM 3H-thymidine (2 Cilmmol),  in a total  volume  of 50 pl. In assays with CTP  as 

phosphate  donor ATP was  substituted with equimolar CTP. 

Protein  determination 

The  protein  content  was measured by Coomassie brilliant blue as described by 

Bradford (1 976). 

RNA purification 

Total RNA was  purified by  the  method  of  Chromczynski and  Sacchi (1 987). Use of 

guanidinium  thiocyanate,  which  is a strong  inhibitor  of ribonucleases provides a 

preparation  of  non-degraded RNA. The purity  of  the RNA preparation  was  improved 

by applying an extra  phenol  extraction and alcohol  precipitation.  5x106  cells  were 

centrifuged 14,OOOg for 10 min and the  supernatant  discarded. 500 p1 of  solution 

D (4 M guanidinium  thiocyanate, 25  mM  sodium  citrate  (pH 7), 0.5% sarcosyl, 0.1 

M 2-mercaptoethanol)  was added. Sequential 50 pI sodium  acetate (2 M, pH 4), 

500p1  phenol  and loop1 chloroform:isoamylalkohol(49:1) was added. The  samples 
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were  mixed  thoroughly  by  inversion  after  the  addition  of each  reagent.  The final 

suspension  was  cooled  on  ice  for 15  min and centrifuged 20,OOOg for 1 0  min a t  

4OC. The  aqueous phase (RNA) was  transferred to  a  fresh  tube and 500 p1 

isopropanol  was added. The samples were  mixed and placed at -2OOC for  at least 

1 h to precipitate RNA. To sediment RNA the samples were  centrifuged 10,OOOg 

for 20 min a t  4OC. The supernatant  was  discarded and the RNA pellet  was 

dissolved  in 150 pI solution  D and afterwards  precipitated  by 200 p1 isopropanol 

and incubation a t  -2OOC for a t  least 1 h. After  centrifugation a t  10,OOOg for 10  min 

at 4OC, the  pellet  was dissolved in  100 p1 DEPC (diethyl  pyrocarbonate)-treated 

EDTA-buffer  (0.5  mM,  pH 8.0). The purity  was  improved  by  adding 50 pl 

phenol:chloroform:isoamylalkohol (25:24:1)  and  the samples centrifuged 5,OOOg 

for  1  min  at  room  temperature. The liquid phase was transferred to a fresh  tube and 

0.1  volume  of 3 M NaAc and 3 volume  of 96% EtOH was added.  Before 

precipitation  the samples were  placed  at -2OOC for  at least  1 hour and then 

centrifuged  at 10,OOOg for 10 min at 4 O C .  The RNA pellet was  dissolved  in 50 p1 

DEPC-treated EDTA-buffer. The RNA quality  was examined by agarose gel 

electrophoresis  and  the  concentration  estimated  from  optical  density a t  260 nm. 

The purity  was measured by the 260  nm/280  nm ratio. 

Estimation of RNA recovery 

In  two experiments 3H-uridine (5 pCi/ml,  5  Ci/mmol)  was  added to  the  growth 

medium  during  PHA-stimulation  of  the  lymphocytes.  A  total  of  5x1 O6 labelled  cells 

was  harvested  on 3 MM filters and non-incorporated  3H-uridine  was  washed  away. 

From  an equal number of cells, RNA was  isolated and applied to 3 MM filters.  The 

radioactivity  on  the  filters  was determined by scintillation  counting.  The  amount  of 

the  isotope  in RNA was compared with the  amount  of  the  isotope  in  the cells. The 

RNA recovery  estimated  from these  comparisons was between  70-90%. 

Northern  Blot 

The RNA preparations  were  fractionated  under  denaturing  conditions  on a 1 .S% 

agarose gel containing 2.2 M formaldehyde and transferred to  a  Hybond N+ 

membrane.  The  probes were human TKI  cDNA  from  plasmid pTKl1 (Bradshaw  and 
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Deininger 1984) and humanp-actin  cDNA labelled with 3zP-dCTP. Hybridisation  was 

done with a high  stringency  wash. 

Reverse  transcription 

Total RNA was  converted  to  cDNA  using  the enzyme  reverse  transcriptase  (RT), 

random  oligonucleotides  (hexamer) and dNTPs. RNA (0.67  pg) was transcribed to 

cDNA  in a 50 p1 volume  of I x  PCR-buffer ( IO mM Tris-HCI (pH  8.3), 50 mM KCI, 

0.015% gelatine, 0.1 % Tween 20), 7.5 mM MgCI,, I m M  of each of  the dNTP’s, 

40 units RNasin, 7 pM random  hexamers  and 250  units  of  M-MLV  reverse 

transcriptase RNase H  minus.  The  reaction was ended after 2 h a t  37OC. The 

extent of reverse  transcription  was  controlled  by a parallel reaction  where 3H-TTP, 

instead  of TTP was added. Aliquot  of  the  reaction  mixture was applied on 3 MM 

filters.  The  non-incorporated 3H-TTP was  removed  from  the  filter  by  washing  3x1 0 

min in 1 M HCI containing  0.6  mM Na,P,O,,, 10  min  in  0.26 M NaAc/EtOH  and 

finally in EtOH. The  radioactivity  was measured by  scintillation  counting. 

Competitive  PCR 

Quantification  of  TKI mRNA is  performed by the  competitive PCR method as 

described by Gilliand e t  al (1990). 

For quantification  of  TKI mRNA exon 1 and exon 2 with  intron 1 from  the 

TK gene is  used as internal  standard and exon 1  and 2 as the  target  cDNA 

fragment.  The  primer pair used for  amplification  of  both  the  genomic  DNA and the 

cDNA are identical. The sizes of  the  resulting  fragments  were  138  bp with cDNA 

as template and 248  bp with genomic  DNA  as  template.  The  internal standard  of 

248 bp genomic  DNA was prepared by PCR with DNA as template and using  the 

primers  mentioned above. The product  was  quantified  by agarose gel 

electrophoresis with different  amounts  of DNA.  The unknown amount of cDNA was 

estimated  from a set  of PCR reactions  performed in a dilution series with known 

amounts  of  the  genomic DNA. The PCR products  were separated by agarose  gel 

electrophoresis.  The  amount of cDNA  (g)  in  the sample was  estimated as that 

amount  (g)  of  genomic  DNA  giving equal intensity  of  the  two  amplification  products 

(figure 7). The  number  of TKI  cDNA  copies  was  calculated  from  the  amount  of 
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cDNA, by division with  the average molecular weight  of  the  138 bp  cDNA  fragment 

(average  molecular  weight/base = 308). The  number  of  copies TKI  cDNA was 

taken as  representative  for  the  number of TK1 mRNA. 

A: 

exon1 i n h n  exon2 

C: 

* 
equal mtensii 

Figure 7: A schematic  example of the  Competitive PCR. A: The  same  primer  pair  is used to amplify 

genomic  DNA  and  cDNA  resulting  in a 248 bp fragment  for genomic DNA and a 138 bp fragment  for 

cDNA. B: titration  with dilutions of TK1  genomic DNA competing with l p1 of cDNA (138 bp]. C: 

Analysis of the  amount  of cDNA.  From the sample with equal intensity  the  amount  of cDNA is 

calculated. The  number of  TKI cDNA  was  taken as reprzsentative  for  the  amount of TK1  mRNA. 

The competitive PCR analyses were  performed in a volume  of 25 /.!I 

containing l x  PCR buffer  (1 0 mM Tris-HCI (pH 8.3). 50  mM KCI, 0.01 5% gelatine, 

0.1 % Tween 20), 0,28 nM  of each  primer (Sense primer: TKI  : 5’CTT GGA GAG 

TAC TCG GGT  TCG  TG 3‘, Anti-sense  primer: TK2: 5’CCT TTT CCT GAG AAC 
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ATC GGC 3') ,  200 MM of  the dNTP's, 1.5 mM MgCI, and 0.5  units  of Thermus 

aquaticus DNA  polymerase.  Heat-denatured  cDNA ( lOO°C, 2 min) and internal 

standard  were  added to  the reaction  mixture, with a layer of mineral oil to avoid 

evaporation.  The  amplification  was  performed in a Perkin-Elmer/Cetus  Thermal 

Cycler according to  the  following  program:  denaturation  for  1  min a t  95OC, 

annealing for  1  min  at  6OoC and  polymerisation  for  1  min  at 72OC, for 35 cycles. 

Methods for  investigations  of TKI structure-function  relationship. 

Plasmid 

The  plasmid, pGEX2T-TKI,  was  constructed  by  the  groups  of Dr. Hofbauer  and Dr. 

Folkers. As it is not published, I will present a short  description  of  the  cloning 

procedure  (figure 8). 

The  amino  acid coding region of TKI  from human  lymphocytes  was PCR- 

amplified.  The t w o  primers  used to amplify TKI are designed with  restriction  sites 

in  the  5'ends  (BamHI and Sphl,  respectively). The  resulting PCR product  was 

subcloned  into  the  expression  vector pGEM. In pGEM, the  BamHI-TKI-Sphl 

fragment  is  surrounded  by a Kphl and Hind 111 restriction site. This  fragment is 

subcloned  into  the  pBluescript II KS +/- vector.  pBluescript II KS +/- is digested 

with  BamHl and EcoRl and the  BamH1-TKI-EcoR1  fragment  is  then  subcloned  into 

the  expression  vector pGEX2T, resulting  in  the pGEX2T-TK1  plasmid (figure 8). In 

pGEX2T, the  fusion  protein  is cleaved with  the  restriction  protease  thrombin. 

Thrombin  recognises  the  sequence LVPRGS (single  letter  code)  and  cleaves  after 

the  arginine (R). To construct  the  thrombin cleavage  site in pGEX2T-TK1 

modifications  of  the  N-terminal in TKI  was necessary. MCS  of  the  N-terminal  of the 

native TKI  was changed t o   B M C S .  Likewise, to  reconstruct  the EcoRl site the C- 

terminal  was  modified. ILQCSPAN of  the  native  TKI  was  changed  to ILQCMQA. 
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p Kpnl 

BarnHl Hindlll 

BamHI-TKl-Sphl 

IPCR-product)  pBluescript 'L > 

Hindlll 

pBlue TK1 pG€X2T Sphl 

script Sphl 

Hindlll pGEX2T EcoRl 

EcoRl 

BamHl 

Figure 8: Cloning of pGEX2T-TK1 by thegroups of Dr.  Hofbauer and Dr. Folkers. 

The  pGEX2T  vector  contains  the ladq gene region coding  for  the lac 

repressor, so expression  of  the GST fusion  protein  is  independent  of  the  €.co/ihost 

lac1 status. The  expression  of GST fusion  proteins is under control  of  the  tac 

promoter and is  efficiently repressed until  induction  with  the  lactose analog 

isopropyl  B-D-thiogalactoside (IPTG). 

E.coli  strains 

KY895: a TK-deficient  strain (F-, tdk-l,  ilv-276) (Hiraga et ai 1967). 

Max  efficiency DH5a competent cells: (F, @80d/acZ~MI 5 A(/acZYA-argF) recAl 

endAI thi-l) (Life  Technologies). 

Recombination  PCR 

In  the  recombination PCR technique two separate PCR-reactions are performed. 

Each reaction  contains  the pGEX2T-TK1 plasmid, carrying  the  TKI  insert  that is to 

be mutated. Prior to each PCR-reaction, pGEX2T-TK1 is linearized by  digestion  with 
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a restriction enzyme.  The  linearization  serves two purposes. First, any circular 

plasmid  products,  which  otherwise will be favoured in the  transformation  procedure 

are eliminated.  Secondly, amplification  of large fragments  from linear templates is 

easier than  from  circular, supercoiled structures.  In  reaction 1 pGEX2T-TK1  is 

linearized by  Aat II and in reaction 2 pGEX2T-TK1 is linearized by Hpa I. The 

restriction  sites are located  outside  the  fragment to be  amplified. 

The PCR-reaction is  performed with a primer containing  the  mismatch bases, 

designated  the  mutagenic primer. The second  primer  is non-mutagenic and is  used 

to delimit  the  amplified  fragment.  A sense and an anti-sense version of both  the 

mutating and non-mutating  primers are constructed. Each PCR-reaction is  then 

performed  with a mutagenic and a non-mutagenic  primer,  resulting  in t w o  PCR- 

fragments  with  homologous ends.  Combining  the two PCR fragments and 

transforming  them  into  high  competent DH5a €.coli cells results  in an in vivo 

recombination.  The  product  is a mutant with the desired mutation  (figure 9). 
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pGEQT-TK1 pGECT-TK1 

1- 1- 
I I . . 

3 4 

Figure 9: Recombination PCR. X shows  the  location of the desired mutation. Primer 1 and 3 are the 

mutagenic primers with the mismatch  baselsl  indicated by: -v-. The  non-mutagenic  Primers  are 

nominated 2 and 4. The two PCR reactions result in two fragments with homologous  ends: where end 

1 and 3 are  homologous to each other  and  end 2 and 4 are  homologous to each  other. pGEX2T-TKI-mut 

contains  the site-specific mutation. 

As the  only change in  the  mutants  is  the  introduction  of  a  stop  codon,  this  cannot 

be  used  for  differentiation  between  the  parent and the  mutant  clone. Therefore, in 

these  experiments the mutagenic  primers  were  designed so they  contained  a  unique 

restriction  site  overlapping  the  stop  codon. This allowed  for  identification  of  the 

transformants and served as a  control  for  the  occurrence  of  the  desired  mutation. 
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Primers used for recombination  PCR 

Mutagenic  primers: 
TKI-193.1, sense: 

189  194 200 

5’T’’’AC TTC  AAG  AAG GCC TGA G= CAG CCT  GCC GGG CCGsD03’ 

TGA 

Stop codon 
GA GCT C 

Sacl site 

TK1-193-2, anti-sense: 

200 194 189 

5 ‘ C G G C C C G G C A G G C T G s C T s A G G C C T T C l ’ T G A A G T A 3  

TK1-176.1. %erne: 

172  177  183 

5’G’’IC GAG GTG AAT GGG I G A   G C I G A C  AAG  TAC CAC TCCS83’ 

TGA 

Stop codon 

GA GCT C 

Sacl site 

TK1-176-2. anti-sense: 

t a3 177  172 

B’GGAGTGGTACiTGTG&GCTCACCCAATCACCTCGAC3’ 

The non-mutagenic  primers: 

Lacl-l: 5’CS”CA CGC  GGG AAA CGG TCT  GAT  AAG 3’ 

Lacl-2: 5’C”’TT ATC AGA CCG TTT CCC  GCG  TGG 3 

Figure 10: Primer sequence for  the mutagenic and non-mutagenic primers. Altered bases are shown in 

dark and underlined.  The numbers above the primer refer to amino  acid position whereas the number 

in the primer refer  to  the position of binding  in TKI. 193 and 176 refer to  the last coding amino acid  in 

thepGEX2T-TKI-193 and pGEX2T-TKl-176  construct, respectively. Lac refers to the location of the 

primers  in the Lac1 gene region. 

Location  of  the  non-mutagenic primers to  the  lad gene region ensures that  the  two 

PCR fragments  have similar size. 

The  PCR-reactions  contained in a total  volume  of  50 pl: 0.24 pg/ml linearized 

plasmid, 0.36 pM of each  primer, 200 PM of each dNTP, 1.5 mM MgCI,, IxPCR 

buffer ( I O  mM Tris-HCI (pH 8.3), 50 mM KCI, 0.015% gelatine, 0.1 % Tween 20), 

and 1.5 units  of Thermus aquaticus DNA  polymerase.  A drop  of  mineral oil was 
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placed  on top  of each reaction  mix  before  amplification.  The  amplification  was 

performed  according to  the  following program:  denaturation for 1  min  at 95OC, 

annealing for  1  min a t  58OC and polymerization  for 3.5 min a t  72OC, for 30 cycles. 

Purification  of  PCR-products  from  low-melting  agarose-gel 

The PCR product  was analysed  and  purified from a 1 % low  melting agarose gel. 

The PCR-fragment was excised  under  UV-light a t  360 nm. 5  volume  of  TE-buffer 

( I O  mM Tris-HCI  pH 8,3, 1 mM EDTA pH 8.0) was added and  the agarose was 

melted a t  65OC in a water  bath.  After  cooling to room-temperature,  1  volume  of 

phenol  was  added and the  mixed  solution  was  centrifuged 14,OOOg for  5  min. The 

liquid phase was transferred to a fresh  tube  and  the  phenol  extraction  was  repeated 

3 times. To precipitate  the  nucleic acids, 1 /I 0 volume  of 3 M NaAc and 3 volume 

96% EtOH was added and the  tubes were kept a t  -2OOC for  at least  1  h before 

centrifugation  of  the  nucleic acids was  performed a t  20,OOOg for  15  min  at 4OC. 

The pellet  was  dissolved  in E-buffer.  The product  was visualized by electrophoresis 

on  a 1 % agarose gel. If 5 p1 of  the  ethidium  bromide stained  PCR-product could be 

clearly seen, the amount of  products  was  sufficient  for  transformation  of €.coli. 

Transformation  procedure 

Approximately 30 ng  (2.5 pl) of  each PCR-product was  mixed and transformed 

directly  into MAX Efficiency  DH5a  competent E.coli ( >  1x1 O9 transformants/,ug of 

pBR322;  Gibco BRL/Life technologies).  In  prechilled 10  ml Ole Dich tubes, the 

following  reactions are preformed: 

1: 50 p1 competent cells + 5 p1 of premixed  PCR-products from  reaction 1 and 2  (ratio 1 : l ) ,  

2: 25 HI competent cells + 2.5 pI of  control DNA (stock pUC 19 solution (0.01 ~ g l m l ) .  

3: 25 pI competent cells + 5.0 p1 of  PCR-products from  reaction 1 and 5.0 p1 TE-buffer. 

4: 25 p1 competent cells + 5 . 0 ~ 1  of  PCR-products from  reaction  2 and 5.0 p1 TE-buffer. 

5 :  25 pI competent cells + 10 p1 TE-buffer. 

After  addition  of  the  DNA,  the  solutions  were  mixed  carefully. The  cells  were 

incubated  on  ice  for 30 min,  whereafter they were  heat-chocked  for 45 sec a t  

42OC. The cells  were  cooled on  ice  for 2 min  whereafter 0.9 ml of room-tempered 

S.0.C (see  appendix  1)  medium  were added. After  incubation  with  shaking  for 1 
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h at 37OC the  cells  were dispensed onto LB plates. 

Reaction 5, containing  only  competent cells was  plated  onto LB plates - ampicillin. 

Reaction 2, containing  the  control  DNA  was  diluted  1 :l00 with S.0.C medium and 

100 p1 was  plated  onto LB plates  containing  100  pg/ml ampicillin.  The other 

reactions  were  used  undiluted and 100-4OOpl was spread onto LB plates  containing 

100 pg/ml ampicillin. 

Calculation of the transformation  efficienc y 

To calculate the  transformation  efficiency,  the number of  colony  forming  units 

(CFU) with  the  positive  control  (pUCl9)  was calculated. 

CFU/pg = CFU on the control plate 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x the dilution factor 

pg pUCl9  used for the  transformation 

According to  the manufactures  (Gibco BRL Life  Technologies) the  transformation 

efficiency  should be  higher  than  1x106 CFU/pg pUCl9. 

Individual  colonies  were  grown  overnight  at 37OC in TB medium  (see  appendix 1) 

containing 100  pg/ml ampicillin.  Plasmid DNA was  isolated  (Alkaline 

minipreparation,  Sambrook  et al 1989)  and  the clone of  interest  was  selected  by 

Sac1 digestion. 

Sequence  analysis 

Thewild-type  (pGEX2T-TK1) and mutant(pGEX2T-TKI-193and pGEX2T-TK1-176) 

plasmids  were  used to  transform  the  TK-deficient E.co/istrain, KY895.  KY895  was 

made competent  according to  the CaCI, method  (Sambrook  et al 1989).  Ampicillin 

resistant  bacteria  were  grown  overnight a t  37OC in LB medium  containing 100 

pg/ml ampicillin. Plasmid DNA  was  isolated with  the PEG (polyethylene  glycol)- 

precipitation  method  (Sambrook  et  al  1989). Alkaline  denaturation  and  preparation 

of samples for  sequencing  were  done  according to "Step-by-step  protocols  for  DNA 

sequencing with sequenase version 2.0 T7 DNA  polymerase" (8th edition, United 

states  biochemical). The  clones  were  sequenced  on  both  strands by  the  dideoxy 
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method with the Sequenase version 2.0 DNA sequencing kit (United  states 

Biochemical),  using  the  following primers. 

Sense  primers: 

pGEX-Seq-l : 5'CTATCCCACAAATTGATAAGT 3' 

pBAF3 : 5'CCAAAGACACTCGCTACAGC 3' 

pTK6 : 5'CCATTTGGGGCCATCCTGAACCTG 3' 

TKI-176-1 :5'GTCGAGGTGATTGGGTGAGCTCACAAGTACCACTCC 3' 

Antisense primers: 

pGEX-Seq-2 : 5'ACGTGACTGGGTCATGGCTGC 3' 

TKI-205-2 : 5'CCTTCCTGGCACTAGTCAGTTCTCTTTGTT 3' 

pBAF2 : 5'GTCAGCTTCACCACGCTCTC 3' 

pBAFl : 5'CGGTCATGTGTGCAGAAGCT 3' 

The  sequence strategy is shown  in  figure 11 
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pTK6 

Figure l l :  Sequence strategy  for  the human  lymphocyte's  TK1  cDNA insert in pGEX2T.  The  numbers 

refer to bases  in TK l cDNA.  The first base in the  start codon  is  numbered 1. The surrounding  part  is 

pGEX2T  cDNA.  The  arrowhead signifies the  location of primer  binding. - shows the area 

sequenced with  that primer. 

Protein  expression 

Ampicillin  resistant  KY895/pGEX2T-TKII  KY895/pGEX2T-TK1-193 and 

KY895/pGEX2T-TK1-176  were  grown  overnight  at 37OC in LB medium (see 

appendix  1)  containing 100pg/ml ampicillin.  The overnight  culture was diluted 1 : 10 

in LB medium  containing 100 pglml ampicillin or  in ABTG medium  supplemented 

with amino  acid  mix (see  appendix 1). The culture  was  grown  to ODsoo = 0.5 at 

25OC. The'production of the  glutathione  S-transferase-thymidine  kinase  1  (GST- 

T K I )  fusion  protein  was  induced by addition  of  the  lactose  analog IPTG at a final 

concentration  of 0.1 mM.  After  15-17  hours  of  growth,  the cells were  harvested 

at 4000 RPM for  15  min a t  4OC. 
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Preparation of bacterial  extracts 

The cells  were resuspended in  1/20  culture  volume  of  lysis  buffer  1  (50 mM 

Tris/HCI, pH 7.5,  5 mM EDTA, 1 mM DIT,  10% glycerol,  1 % Triton X - l  00, 0.1 mM 

PMSF (phenylmethylsulfonyl  flouride), and 150pg/ml lysozyme).  Portions of 3-4 ml 

were  lysed  on ice by sonication (50 W, 3x10 sec).  The  sonicate was  centrifugated 

a t  20000g for 20 min a t  4OC and filtered  through  a  0.45 p m  sterile  filter. 

Induction  of  the  fusion  protein  was  monitored  by measurements of  the TK activity 

and the GST activity  was  monitored with the  substrate  1 -chloro-2,4-dinitrobenzene 

(CDNB). 

Detection of GST-fusion  protein 

The induction  of  the  fusion  protein  was  monitored  by  the GST substrate CDNB. The 

GST-catalyzed reaction  of CDNB with glutathione  produces  a  conjugate that  can  be 

measured by absorbance at 340 nm (GST gene fusion system, Pharmacia Biotech 

1 994). 

50 pol of crude  extract  was added to 1  ml  of CDNB solution ( I m M  CDNB, 1 mM 

reduced Glutathione, 100 mM K-phosphate buffer  pH 6.5) in a quartz  cuvette and 

the absorbance a t  340 nrn was  recorded a t  one-minute  intervals  for 5 min. 

Glutathione  affinity  chromatography 

Glutathione agarose is an affinity  matrix,  where  the  glutathione  is  coupled to  epoxy 

activated agarose through  the  oxirane  group. The glutathione agarose binds  the 

GST-part of  the  fusion  protein.  Glutathione agarose (750mg/1 Om1 bed  volume)  was 

swelled  overnight  at 4 O C  in  buffer 2 (50  mM Tris/HCI, pH 7.5,  5 mM EDTA, I m M  

DTT, 10% glycerol,  1 YO Triton  X-100) and packed  into a 25 mm x 200 mm 

disposable  column. The following  steps  were  performed  at 4OC. The column  was 

washed and  equilibrated with  10-1 5  bed  volume of  buffer 2. Crude extract ( =  500 

mg)  was applied and recirculated  over  the  column.  Unbound  proteins  were  removed 

by  washing with 5-8 bed  volume  of  buffer 2. The column  was  equilibrated with 5 

bed  volume  of  buffer  3 (20 mM Tris/HCI, pH 8.4, 150  mM NaCI, 2.5  mM CaCI,, 
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0.1 % Triton  X-100,  1  mM  DTT). Cleavage of TK1 protein  from  the GST-partner 

was  performed  with  thrombin a t  room  temperature.  Three  vials of  thrombin  (Sigma) 

were  resuspended  in  1 bed  volume  of  buffer 3, loaded onto  the  column and slowly 

recycled  over  the  column  for  1-1.5  h. The  eluate was  continuously  kept  at 4OC. 

The  column  was  further  washed  three  times  with 1 bed volume of buffer 3. To 

elute  remains of  fusion  proteins  the  column  was  washed  with - 4 bed  volume of 

buffer 4 (5 mM glutathione  in  lysis  buffer 2). To stabilize the TK1  enzyme  during 

freezing  and  thawing 10% glycerol  was added to  the samples. 

Sephadex G-25 chromatography 

The  eluate from  the  glutathione agarose column  was desalted by G-25  sephadex 

chromatography. 

The  Sephadex G-25  column (500 ml)  was  equilibrated with 3 bed  volume of  buffer 

5 (20 mM K-phosphate  pH 6.0, 5 mM MgCI,, 10% glycerol, 2 mM DTT). Fractions 

containing  TK1  protein  from  glutathione agarose column  were applied to  G-25 

column and  eluted with the  buffer 5. Protein  content and conductivity  were 

continuously measured. 

CM-sepharose  column 

The  column  (1 0 mm X  20mm)  was  equilibrated  with  buffer 6 (1 0 mM K-phosphate 

buffer  pH 7.0, 5 mM MgCI,, 10% glycerol, 5 mM DTT).  The  desalted fractions  were 

applied and  unbound  material  washed  away. The  TK1 protein  was  eluted with 

buffer 7 (1 00 mM K-phosphate  buffer, pH 8.0, 5 mM MgCI,, 10% glycerol,  5 mM 

DTT, 0.5 mM CHAPS, 0.1 M KCI). 

SDS-polyacrylamide gel ISDS-PAGE) 

The subunit  molecular  weight was determined  by SDS-PAGE with a  4.5%  stacking 

gel  and a 1.2 or 15% separation gel prepared by standard  methods  (Sambrook et 

al 1989). The  samples  were  denatured a t  95OC for 2 min in protein  loading  buffer 

(1  25 mM Tris-HCI, 10  mM DTT, 1 YO SDS, 0.1 YO Bromphenol Blue and 25% 

glycerol)  before  loading  onto  the gel. Proteins  were  visualized by silver  staining  and 

the gel was dried on a slab gel drier for 2 h at 6OOC. 



55 

Determination of native  molecular  weight by gel filtration  chromatography 

The native  molecular  weight  was  estimated  on Sephadex G-200 (5 mm x 20 mm) 

or Superose 12 ( I O  mm x 300 mm  column  connected to a  Gradifrac,  Pharmacia). 

In both cases, the  columns  were  equilibrated  with  buffer 8 (50 mM Tris, pH 7.4, 

5 mM MgCI,, 0.1 M KCI, 5 mM DTT). When  determining  the  molecular  weight  in 

presence of ATP the enzymes  were  preincubated with 2.5 mM ATP and the  column 

was  pre-equilibrated with  buffer 8 containing 2.5 mM ATP. The  molecular weight 

was  estimated  by  comparing  the  retention  times  for  the sample with the  retention 

times  for  five  marker proteins:  beta-amylase (200 kDa),  alcohol  dehydrogenase (1 50 

kDa),  bovine  serum  albumin (66 kDa),  carbonic  anhydrase (29 kDa), cytochrome 

C (12.4 kDa). 

Kinetics 

The  substrate  kinetics  was analysed by Hofstee  plots  (v versus v/s) and Wilkinson 

plots  (slv  versus S). v  is the  initial  velocity and S is  the  substrate  concentration. 

V,,, was calculated  using  nonlinear  regression  analysis to obtain  the  best  fit 

between  the  experimental  data and the expression,  v = As2 + Bs/(s2 + CS +D), 

where A, B, C, D are constants and S is the  concentration  of  the  varied  substrate. 

For S + m, A  is used as  an estimate  of V,,,. 

K, values  and the Hill coefficient  were  determined  by  Hill  plots  of log(v/(V,,, - v) 

= nlogs - nlogS,.,. n is  the Hill coefficient and So,5 is  the  substrate  concentration 

a t  half-maximal  velocity ( =  K,). 
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Results 

Results for quantification of TKI mRNA in healthy lymphocytes  and in 

lymphocytes from patients with CLL. 

TKI  ‘ is a  strictly  cell  cycle  regulated enzyme with a close  correlation  between  the 

TK activity and the  proliferative  state  of  the cell. In  a  variety  of cancer it has been 

shown  that  the expression  of TKI  is deregulated. Generally, the TK activity  is 

higher in patients  with cancer than in control  persons (Ellims et al 1981, Hallek 

1992, O’Neill et al  1992,  Robertson  et al 1990) and in several  cases TKI  activity 

has been  observed in non-dividing  cells  (Ellims  et al 1981,  Munch-Petersen and 

Tyrsted  1986, Russo et al 1987). Likewise, TK enzymes with enzymatic  properties 

different  from T K I  and TK2  in  normal cells, have  been found  (Munch-Petersen and 

Tyrsted  1986,  Munch-Petersen and Tyrsted  1988).  As  different  regulation 

mechanism  may cause the  development of malignancy, the  expression of   TKI 

mRNA in healthy  cells and in CLL cells  was  investigated. CLL cells were  chosen  for 

my investigation because,  despite that  they are characterized as non-dividing  cells 

TKI  activity has  been  observed  (Ellims et al 1981, Ellims et  al  1983,  Munch- 

Petersen  and Tyrsted  1986). 

By comparing  the  level of TKI  mRNA with  the TK activity in normal cells 

and  in CLL  cells it can be  investigated  if  the  regulation  mechanisms(s)  are  different 

in  these cells. 

Determination of TK activity in control persons 

The  expression  of TK activity  in  quiescent and PHA stimulated  lymphocytes  were 

measured  for  six  control  persons.  The  lymphocytes  were  stimulated with PHA for 

48, 72, 9 6  and 168 hours,  respectively.  Crude  extracts  were  prepared from  5x1 O6 
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cells and TK activity and total  protein  was measured. Figure 12 shows  the  amount 

of TK activity expressed in  relation to  the  total  protein  content. 
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Figure 12: PHA induced  variation of TK activity lnmol min- 1 mg- 1 prOteinl for Control  Person 1 - 6. The 

lymphocytes were stimulated  witb PHA for the indicated  periods. TK activity was measured at standard 

conditions as described  in "Methods': 

The TK activity in the  quiescent  lymphocytes  from  the  six  control  donors 

was  between 0.009 to 0.01 6 nmol min" mg-'  protein  with a coefficient of variation 

(CV) of 25%". The TK activity increases as cells are stimulated  with PHA, resulting 

in a  peak  level for  five  of six control  persons  after 96 hours. After PHA stimulation 

"In the  thymidine kinase activity assay the  coefficient of variation (CV) 
of triplicate samples are below  5%. 
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the TK activity in the cells for  the six control  donors  was  between 0.12 and 0.76 

nmol min.’ mg-’  protein,  corresponding to a  9 to  62-fold increase in TK activity. For 

the  phytohemagglutinin  stimulated  lymphocytes  the  CV  was 60%. A  high  individual 

variation  has earlier been reported by Koefoed et al (1  986) and Munch-Petersen  et 

al (1985)  in experiments  where  the  UVR-induced  DNA  synthesis  in 

phytohemagglutinin  lymphocytes  was measured with  incorporation  of  [3Hl- 

thymidine.  The  variations  probably  reflect  individual  variations  in  the response to 

PHA among the  donors  or  the  immune response in some donors  has  been  activated. 

Distinction of TK7 and TK2 

Investigations  by  Munch-Petersen and Tyrsted (1 977) have shown  that in dividing 

lymphocytes l - 2 %  of  the TK activity is due  to TK2, whereas in  quiescent 

lymphocytes  the TK activity  exclusively  is  due to  TK2. Both TKI and TK2 use  ATP 

as phosphate  donor. Thus, the standard  enzyme assay performed in this  work 

reflects  the  total TK activity. However, it is possible to  distinct  between  TKI and 

TK2 by  the  different  substrate  specificity  for  the  two enzymes. TK2  can use CTP 

efficiently as a  phosphate donor,  whereas it is  a  poor  substrate  for TKI  (Adler and 

McAusian  1974, Ellims et al 1981 ). Figure 13  shows  the  ratio  of CTP- and ATP- 

mediated  TK  activity  in  the  six  control persons. The CTP phosphate  donor  capacity 

is  most  pronounced with crude  extract  from  quiescent cells, showing that  the 

dominating  enzyme is TK2. The ability to use CTP as phosphate  donor  decrease as 

the  cells are stimulated to  enter the cell cycle.  After 96 hours  of PHA stimulation 

the  dominating enzyme is  TKI. 
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Figure 13: The ratio  between phosphate donorcapacityof CTPandATP.  In each  experiment the enzyme 

activity is  normalized to 100% with ATP as phosphate donor. (AI Quiescent lymphocytes; (B] 

lymphocytes  after 96 hours of PHA stimulation. The  numbers  on the x-axis refer to the  individual donors. 

Reprinted from Leukemia  Res. vol. 18, Kristensen, T., Jensen, H.K and Munch-Petersen, B.: 

Overexpression of human thymidine kinase mRNA without corresponding enzymatic  activity  in  patients 

with chronic  lymphatic leukemia, 86 1-886, copyright 119941, with kind permission from Elsevier  Science 

Ltd,  The  Boulevard,  Langford  Lane,  Kidlington OX5 IGB, UK. 

- 

The  reverse  transcriptase  reaction 

As  described in "Methods"  the  steps in the  competitive PCR (Gilliand et al 1990) 

procedure is purification  of  total RNA from lymphocytes,  reverse  transcription of 

RNA to cDNA  and  quantification  of  TK1-cDNA  exon 1 and 2, simultaneously with 

the  corresponding  genomic DNA serving as a competitive  internal  standard in the 

PCR-reaction. To achieve the best  yield of the reverse transcription  of RNA to cDNA 

(the  RT-reaction),  optimization  with  respect  to [MgCI,], [RNA] and [dNTPl  was 

performed.  The  extent  of  the RT-reaction was  followed  by  applying 'H-TTP instead 

of TTP to  the reaction  mixture  and  measuring  the  amount  of  incorporated 

radioactivity by scintillation  counting. 
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Figure 14: Optimization of the reverse  transcription lRTl reaction. 

(AI MgCI,-titration of 0.67 Mg total RNA  and 7.4 Mg total RNA 

(B) RNA-titration, (Cl dNTP-titration. 
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When  the MgCI,-concentration was optimized, the RT-reaction was  performed  with 

two  different RNA concentrations,  0.67 pg  and 7 . 4 ~ 9 ,  respectively, in a  5Opl RT- 

reaction  (figure  14.A). For both RT-reactions the MgCI, concentration  was  varied 

from 1.5 mM  to  16  mM. As seen from  figure  14.A  the  optimal MgCI, concentration 

for  both  reactions  is in the range  of  9-12  mM. However, the  RT-reaction  with 7.4 

pug RNA had  a lower 3H-TTP incorporation  than  the RT-reaction with  the  lower 

concentration  of RNA. 

Figure 14.B  shows  a  closer  optimization of the RNA concentration with 10.5 

mM MgCI,. On behalf of  this RNA titration it is  not recommended to  use  less than 

0.2 p g  total  RNA/50 pol RT-reaction  since no  incorporation  of 3H-TTP could be 

measured for RT-reactions with RNA below  this limit. The last  titration,  shown  in 

figure 14.C was  with  different dNTP concentrations. The reactions  contained 0.67 

p g  total RNA, 10.5  mM MgCI, and 0.5,  1 .O or 2.0 mM dNTP, respectively. The RT- 

reaction with 1 mM dNTP gave the best  result.  Increasing the dNTP concentration 

to  2 mM gave  a  negative  effect. 

When PCR-reactions were  performed with cDNA  products  from  the RT- 

reactions  in  figure  14,  there  was a clear relation  between  a  non-optimal  RT-reaction 

and the presence of  many  unspecific  amplification  products  in the PCR-reaction 

(results  not  shown). 

Based on  these  experiments  the  reverse  transcription  was  performed with 

0.5-1.0 pg  total RNA, 10.5 mM MgCI, and 1 mM dNTP. 

Quantification of TKI mRNA in  control  persons 

The TKI  mRNA  level  was  quantified  in  quiescent  and  in  PHA-stimulated 

lymphocytes  isolated  from  the  six  control persons.  The TKI  mRNA level  was 

quantified  by  competitive PCR. In the competitive PCR reaction  TKI-cDNA is 

amplified with a primer pair enclosing  exon  1 and 2, resulting  in a 138  bp fragment. 

With genomic  DNA this primer  pair  amplify  a 248 bp  fragment.  Initially,  the PCR- 

reaction  was  performed  with a broad  range of genomic  DNA  dilutions to  titrate  the 

“competition  region”.  Afterwards, a fine-adjustment  of the internal  standard  was 
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performed  (figure  15.A and  15.B). 

Figure 15: TK1 genomic DNA versus TKI cDNA for controlperson 4 stimulated with PHA for 94 hours. 

A: Titration with a  broad range  of dilutions of TK l .genomic DNA (248 bp],  competing with l p1 of TK1- 

cDNA (138 bpl. Lane l is  without genomic DNA.  Lane 2 - 8 contain various amounts of genomic DNA 

( 1 0 ”  g - IO-“ g], decreasing with a  factor 10 for each  lane. Lane 9 is a PCR-reaction without DNA 

(negative  controll. B: Closer titration based on the  competition range (about 10‘’ g1 determined in A. 

Lane 2-9 represent titration  from l o f 4  to 10“g. Lane 1 is  cDNA only and  lane 10 is a  negative  control. 

The amount  (gram) of cDNA in the sample was  estimated as that  amount 

(gram)  of  genomic  DNA  giving  equal  intensity of the  two  amplification  products 

(1 5.B, lane 8). From  this  quantity,  the  number of TKI cDNA  copies  were  calculated 

by  division  with  the average  molecular weight of the  138  bp  cDNA  fragment 

(average  molecular  weight/base = 308). The number of TKI cDNA  copies  was 

regarded as representative  for  the number of  TKI mRNA’s. The PCR reactions  were 

always  performed with a  positive  (TKI  cDNA) and  a  negative  control  (no  DNA). 

Figure 16  shows  the increase in  the  TKI mRNA level  expressed in relation 

to  the  protein  content  for  lymphocytes  stimulated  to  growth  with PHA. 
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Figure 16: PHA induced  variation of TK1 mRNA (copies/mg protein) for control person 1-6, The 

lymphocytes were stimulated with PHA for the indicated periods. TKI mRNA was estimated by 

competitive PCR. The ordinate scale for donor 3, 5 and 6, differs from the ordinate  scale for donor 7, 

2 and 4. 

As seen in  figure  16  the  level  of TKI mRNA in  quiescent  cells  is  very low 

and in  four of the  six  control persons below the limit  that  is  detectable with the 

competitive PCR method.  The limit of  detection  in  the PCR reactions with  cDNA 

f rom  lX105 cells is 6 copies of TK1 mRNA/1000 cells. Below  this  level an 

amplification  product  of 248 bp appears. The 248  bp  product  is  probably  traces of 
DNA or non-spliced RNA in the RNA preparation. 

After PHA stimulation  the level of TK1 mRNA increase about  100-fold, 

reaching  a  peak  level  after 96 hours.  Figure 17.A  (page 65) shows  that  after PHA- 
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stimulation of lymphocytes  the  amount  of  TKI mRNA and TK activity  increases 

concomitantly. 

TKI mRNA  and TK activity in  lymphocytes  from  patients with CLL 

Chronic  lymphatic leukemia (CLL) cells are non-dividing cells, and therefore it is 

plausible that  the  low TK activity in these  cells  almost  exclusively is due to  TK2. 

Ellims et al (1  981)  showed  that in eight  patients  out o f   12 patients,  the  dominating 

enzyme  was  TK2, as evaluated of  the TK activity  from  the CTP/ATP  ratio. However, 

with  four  of  the  12  patients  the  ability  of  the TK activity  to use CTP  as phosphate 

donor was low,  indicating  that  the  dominating TK was  TKI.  As  the  four  patients 

with TKI suffered  from a more  aggressive form  of CLL, it was  suggested that TKI  

was an indicator of a change to  a  more aggressive form. 

Occurrence  of  a TKI isoenzyme in quiescent CLL cells may be  due to  a 

change  in  the  control  of  the  cell-cycle regulated  expression of  the TKI gene. 

Therefore, it was  investigated if any  difference  in  expression of TKI mRNA in 

normal and malignant  cells  could  be  detected. 

In  the  five CLL patients used in these  experiments, the TK activity  was  low 

and at  the same  level as that  in quiescent  lymphocytes.  Investigation of the enzyme 

activity  by  the CTPlATP  ratio showed  that  the TK activity  from  the  five CLL 

patients  behaved like TK2  in  quiescent  lymphocytes. Due to  the  quiescent  stage of 

CLL cells  and  the dominance of the  TK2 isoenzyme, a low level  of TKI  mRNA  was 

expected.  However,  when TKI mRNA in CLL cells was  quantified  the  level  was 

about 30 to  300-fold higher  than  the level in quiescent  lymphocytes. In fact,  the 

level  was  in  the same range as  PHA stimulated  lymphocytes.  Duplicate 

determination  of  TKI mRNA showed a CV of -20%. Figure 17.A and 17.B  show 

the  amount of TKI mRNA and  TK activity  in one control  donor and in  the  five CLL 

patients. 
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Figure 17: A: The  PHA induced  variation of TK1  mRNA &W and TK activity N for control  donor 1. 8; 

The amounts of  TKI mRNA in CLL cell.. . The  number  on the x-axis refer  to  tbe  individual CLL patient. 

Reprinted  from - Leukemia Res. vol. 18,  Kristensen, T., Jensen, H.K and Munch-Petersen, 8.: 

Overexpression of human thymidine kinase mRNA without corresponding  enzymatic activity in patients 

with  chronic  lymphatic leukemia, 861-886, copyright (19941, with  kindpermission  from Elsevier  Science 

Ltd, The Boulevard, Langford Lane, Kidhgton OX5 IGB, UK. 

Resume of  quantification of TKI mRNA in  healthy  lymphocytes  and  in 

lymphocytes from patients  with CLL 

The relation  between  TK1 mRNA and TK enzyme activity has  been investigated in 

control  persons and in  patients with CLL. Human  lymphocytes,  which are truly G,, 

cells, can be stimulated to  growth  by PHA and  these  experiments  have  been  used 

as a model  system  for  expression of TKI  mRNA and  TK activity in normal cells. 

PHA stimulation of lymphocytes  from  control persons results in an about  100-fold 

increase  in TKI mRNA copies'  mg-' protein and is  followed  by a concomitant 

increase  in TK activity. 

In CLL cells  which are  quiescent  cells  the TK activity  level  was  low  and in 
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the same range as quiescent  lymphocytes  from  control persons.  The dominating 

enzyme in the CLL cells was TK2. However,  the  level  of TKI  mRNA copies mg.’ 

protein  was 30 to  300-fold higher  that  the level found  in  quiescent  lymphocytes 

from  control  persons and actually  the  level was in  the same range as in PHA 

stimulated  lymphocytes. 

Results  from  structure-function  relationship  of  human TKI 

Recombination  PCR 

Two deletions  mutants  were  constructed  for  the  investigation  of  the  structure- 

function  relationship  of  human TKI. In  one mutant,  TKI-193,  a  stop  codon  is 

introduced  at  amino  acid  position  194,  deleting 40 amino  acids from  the  C-terminal. 

In  the  other  mutant, T K I - l  76,  a  stop  codon  was  introduced a t  amino  acid position 

177,  deleting  57 amino  acids from  the C-terminal. The mutants  were  constructed 

by  the  recombination PCR method,  where two separate PCR-reactions was 

performed. Each reaction  contained  the pGEX2T-TK1 plasmid  carrying  the  amino 

acid  coding sequence for  human TKI .  By changing  a few nucleotides in the  primer 

sequence  used for  the PCR-amplifications  a new  stop  codon as well as a restriction 

site  was  introduced  into  the  TKI  cDNA. Each PCR-reaction was  performed with a 

mutagenic and  a non-mutagenic primer.  A sense and an antisense version  of  both 

primers  were  constructed. The PCR-reactions results  in  a PCR-fragment with 

homologous ends  and transforming PCR-fragments from each PCR-reaction into 

E.coli will result in an in vivo recombination. 

pGEX2T-TK1  linearized with Hpal and Aatll,  respectively, was used in the 

PCR-reactions. For construction of the TK I - l   93  clone, the  “right  side”  (figure 9, 

page 47)  of pGEX2T-TK1 was  amplified  with  the  Lacl-1/TK1-193-1  primer pair, 

resulting  in  a  fragment  of  2563 bp. Amplification  of  the  “left  side”  of  pGEX2T-TK1 

was  performed with the  Lacl-2/TKl-l93-2 primer pair, resulting in a 3138  bp 

fragment. For construction  of  the TKI  -1  76 mutant, similar reactions are set  up, but 

with  TKI  -1  76 primers  instead  of TK I - l   93  primers. These reactions  result in PCR 
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fragments  of  2612  bp  for  amplification  with  the  Lacl-I/TKl-l76-1 primer  pair and 

of  3089 bp with the  Lacl-2/TKI -1  76-2 primer  pair. Figure 18  shows an agarose gel 

electrophoresis  of  the PCR-reactions. 

Figure 18: PCR-amplification of pGEX2T-TKI. Lane l :  pGEX2T-TKl/Aatll with primers Lac/-2 + TKl-  

193-2. Lane 2: pGEX2T-TKl/Hpal  with primers Lacl-l + TK193-l. Lane 3: pGEX2T-TKl/Aat/l  with 

Lacl-2 + TKI-1  76-2. Lane 4: pGEX2T-TKl/Hpal  with  Lacl-l + TKI - l  76-1. Lane 6: Marker NBstEIl: 

from  bottom; 700, 1264, 1371,  1929, 2323,  3675,4824 bp. 

The PCR-fragments were  cut  out  of  the gel, purified and transformed  into 

MAX Efficiency DH5a  €,coli. Table 2 shows  the number of  transformants. 

No. of colonies No. of clones  Transformation 

efficiency with Sac1 site 

(CFU”/Ng pUC) 

pGEX2T-TKI-193 

17/17 33 pGEX2T-TKI-176 

5/5 10 

pUC-control/l93 
1x108 pUC-control/l76 

4x1 0’ 

Table 2: Number of transformants of pGEX2T-TKI-193 and pGEX2T-TK-l76  after transformation and 

recombination of  the PCR fragments from the PCR reactions in figure  18.  a: CFU, colony forming units. 

pUC-control refers to  the transformation efficiency for  that particular experiment, as controlled by 

transformation with pUC  DNA. 
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As it appears from table 2 both  transformation  experiments with pGEX2T- 

T K I - l 9 3  and pGEX2T-TKI-176  plasmid  resulted  in  transformed colonies, 10 and 

33, respectively.  The  frequency  of the site-specific.  mutagenesis in these 

experiments  is  100%, as the  plasmid  DNA  from all the  tested  clones  could  be 

digested with Sacl.  As  the  only  Sacl site in the pGEX2T  plasmid is  part  of  the 

inserted  stop  codon,  a  digest is  obtained  only if the  site-specific  mutagenesis  has 

been  performed. 

Considering  the  amount of purified PCR products (=30 ng  of  each PCR- 

product)  transformed  into  MAX  Efficiency  DH5oE.colithe number of  transformants 

may seem low.  The  control experiments, with  transformation  of pUC plasmid shows 

that  the  transformation  efficiency  in  each  experiment  is acceptable,  as the 

efficiency is  higher  than  1  x1 O6 CFU/pg pUC. There are several  reasons for  the  low 

number  of  transformants  with  the PCR fragments.  First,  the  transformation 

frequencies with linear plasmid  molecules  are  several  orders of magnitude ( I O 2  - 

1 03) lower  than  those  obtained  with  equivalently closed  circular  molecules  and of 

the  transformed  fragments  only  a small part ( <  1 O3 per 10” added  molecules) will 

survive the nucleases in €.coli (Conley  et  al  1986a).  Therefore it is  important t o  use 

high  competent €.coli strains in the  recombination PCR procedure. I tried  to 

transform PCR products  into  competent  Library  DH5a €.coli and €.coli cells  made 

competent  by  the CaCI, method  (Sambrook  et al 1989),  respectively,  but  without 

success.  This was probably  due to a  lower  transformation  efficiency  of l x 1 0 7  

transformants/pg  of  monomer pUCl9  for  both strains  (Sambrook  et al 1989). 

Secondly, the  low number of  transformants  is due to  the  recA-  genotype  of  the 

DH5o  €.co/ihost. The numbers  of  transformants  in  recA-€.colistrains are about 40- 

fold  lower  than  in  recA‘ €.coli strains  (Conley and Saunders 1984).  Conley and 

Saunders (1 984) and Conley  et al (1  986b)  have  shown that transformation of  blunt- 

ended  pBR322  into  a  recA’  €.colistrain  result  in a mutation  frequency  (not  to  be 

confused with site-specific  mutagenesis  frequency) of 80%. The types  of  mutation 

are mainly  deletions  of bases and Conley et al (1 986b)  propose  that  exonucleolytic 

processing of the  terminus  of linear  plasmid  DNA  generates  fragments  suitable  for 

recombinational  recyclization and  deletion.  Actually,  transformation of €.coli with 

linearized plasmid  DNA  molecules is  used  deliberately as a method  of  obtaining 
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deletions  of  cloned  DNA  sequences in vivo  (Sambrook  et al 1989).  However, Jones 

and Howard  (1991) have shown  that  a  recA-Ecolistrain can  recombine  DNA with 

minimal  stretches  of  homology. The transformation  efficiency  is decreased, but 

likewise is the  mutation  frequency.  In  a series of  recombination PCR experiments 

Jones  and  Howard (1  991 ) found  that  the  highest  mutation  frequency  was  50% and 

in several  experiments  the  mutation  frequency  was 0%. The best  results (0% 

mutation  frequency)  were  obtained  when  the region of  homology  between the 

mutating ends  (corresponding to  end  1 and 3 in figure 9, page 47) and the  non- 

mutating ends  (corresponding to  end 2 and 4 in  figure g), respectively, was 

delimited to  - 30 bases. Increasing the area of homology also increased  the 

mutation  frequency.  It is not  known  how  the recombination  between  very  short 

regions of  homology  in  a  recA-  host proceeds  (Jones  and Howard  1991 ). 

Induction of wild  type  and  mutants GST-TKI fusion  proteins 

An €.coli strain  defective  in TK expression  (KY895, Hiraga et al 1967)  was 

transformed  with  pGEX2T-TKI,  pGEX2T-TKI-193 and pGEX2T-TKI-176, 

respectively. Due to  observations  by Fetzer and  Folkers (1992) and Fetzer et al 

(1  994)  the  fusion  proteins  were expressed a t  25OC They  found  that  expression  of 

Herpes  simplex virus  l-thymidine kinase  (HSV-1  TK) as a GST-fusion protein  in 

E.coliKY895  resulted  in GST-TK,,,,,, inclusion  bodies  at 37OC but  not a t  25OC. The 

GST-TK,,,,,, inclusion bodies, which are aggregates of  insoluble  proteins,  could  be 

solubilized  in  6 M guanidin HCL, but  then  the  ability  to  bind  to  glutathione  was  lost, 

making  the  purification  by  glutathione  affinity  chromatography impossible. Why 

eukaryotic  polypeptides are sequestered into  inclusion bodies in €.coli is  not  fully 

understood. It is  not simply a response by  €,colit0  "foreign" proteins,  since normal 

€.coli proteins synthesized to high  levels  using  recombinant  DNA  techniques  can 

also accumulate in insoluble  forms  (Marston  1986). 

Figure 19 shows  the  time  course  of  expression  of  the  GST-TKI  (wild  type) 

fusion  protein  at 25OC. The  expression is measured by  the  TKI  activity. The 

expression of GST-TKI is  optimal  after  four hours,  whereafter  the  level  slightly 



70 

decreases. 

Time (hours) 

Figure 19: Expression of the GST-TK1 fusion protein measured by the TKI activity. Open  circles  are 

induction of GST-TK1 with IPTG. Filled  circles  are  control: GST-TK1 without IPTG. Units: nmol min-’- 

Table 3 shows  the  induction  of  TKI  activity with IPTG. The  results  shown 

here  are for  induction in LB medium, but expression in minimal ABTG medium, 

supplemented with an FNI 8 amino  acid  mix (see  appendix  1 ) gives  the same result. 

The purpose of using  minimal  medium is to obtain  isotope  labelling  of  the  expressed 

protein with an  amino  acid.  This may be useful  for  the NMR analyses. 

Table 3: The yield of wild type and mutants GST-TK1 fusion proteins,  measured  by TK assay. U: unit 

(nmol min-”. 

~ ~~ ~~~ 

- IPTG 

Ulml bac.cuiture Ulml bac.culture 

f IPTG 

I 

GST-TKI 100-250 1-10 

GST-TK1-193 

0.1-1.0 0.1-1.0 GST-TKI-1 76 

20-40 0.1-1.0 

c 
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As seen from Table 3  no  increase of  TKI  activity  was  found  for GST-TK1- 

176 after  induction  of pGEX2T-TK 1-1 76. It was  investigated if the GST-part of the 

fusion  protein  was expressed, with the GST substrate CDNB (1-chloro-2,4- 

dinitrobenzene). GST mediates a reaction  between CDNB and  glutathione,  and  the 

product  of  the enzyme  reaction is measured at 340 nm. The  increase in the 

absorbance  at 340 nm, as shown in figure 20 shows that the GST-TK1 -1 76 is 

expressed. 

, 6t 

Time  (minutes) 

Figure 20:  CDNB assay for GST-TKI-  176 fusion protein. Open  circles: 50 p1 of total protein from €.coli 

KY895/pGEX2T-TKl-176 sonicate harvest 15 hours after IPTG  induction.  Filled  circles: 5 0 p I  of total 

protein from E.coli KY 895/pGEX2T-TK1-176 sonicate haNeSt before IPTG induction. 

Sequence analysis 

The  sequence of   TKI cDNA in pGEX2T-TKI-193  and  pGEX2T-TKl-176 was 

determined to ensure that  no  mutation,  except  the  site-directed mutagenesis,  had 

occurred  during  the PCR-amplification  and the  recombination process.  The wildtype 

pGEX2T-TK1 that has not been subjected to  PCR-amplification or recombination 

was  used as a "control." The sequence strategy  was  shown  on page  52. 

Apart  from  the  introduced  mutations,  the  pGEX2T-TK1-193 and pGEX2T-TK1-176 



72 

cDNA sequences were  identical to  pGEX2T-TK1 and thus  no  mutations  had 

occurred  during  the PCR-reactions or the  recombination processes. However,  when 

comparing  the  published sequence for  human TKI  (pTK11, based on DNA from 

HeLa cells,  Bradshaw  and  Deininger 1984) and the  lymphocyte  TKI  cDNA 

sequence in pGEX2T-TK1 two base changes  was  observed:  base 31 6,  A, in pTK l1  

is  changed to a G in pGEX2T-TKI.  This  results in an amino  acid  change from  Met’“ 

in pTK11  to Val in lymphocytes. The other  change is base 632,  where A in  pTK11 

is  changed to a G in  pGEX2T-TKI. The amino  acid  change  is from Lys”’ in  pTK11 

to  Arg  in  lymphocytes. 

pTKl1 

A (nucleotide 31 6) Met’“ 

A (nucleotide  632) 

pGEX2T-TKI 

G (nucleotide  31  6) 

G (nucleotide  632) 

- GTG 

Arg’” AGG 

Table 4: Differences  between TK1  cDNA  sequence in  pTK1 l and pGEX2T-TKI. The specific bases  are 

numbered according to the  first base in the  start codon. The codon with the changed  base and  the 

corresponding amino acid are shown  in column 2 and 3. The altered bases in pGEX2T-TK1 are shown 

in dark and underlined. 

As  the  observed changes are identical in  pGEX2T-TKI-176,  pGEX2T-TKI- 

193 and pGEX2T-TKI, it is very  unlikely that  they arise from PCR-amplification or 

recombination. 

Purification of recombinant TKI protein 

Enzymatic  characterization of  the  recombinantly expressed  enzymes is  performed 

on  pure enzymes. Cleavage of  the  TKI  protein  from the GST fusion  partner is 
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therefore necessary.  In  these  experiments it is  performed with thrombin,  after 

immobilization  of  the  fusion  protein to a  glutathione agarose column.  The 

glutathione agarose  chromatography  results  in an approximately 80% pure 

preparation. Remains of  the  fusion  protein  (50 kDa for  GST-TKI and .46 kDa  for 

GST-TKI-193),  the GST-part of  the  fusion  protein  (26  kDa) and a 70 kDa protein 

band  was  present  in  the gel (lane 2 and  5 in figure  21).  GST-TKI-l76  was  purified 

as well  to ensure that  a  subunit molecular size of 18.1 kDa was expressed, but as 

the  mutant is without  TKI  activity  the results  from  the  purification are omitted. 

Fractions  containing TKI protein  from  glutathione agarose columns  were 

applied to a  G-25  column and the desalted protein  were  then applied on a CM- 

sepharose. T K I  has  a positive  netto-charge and will  therefore  bind to  the  negatively 

charged  carboxymethyl-groups  in CM-sepharose. This  procedure  gave a preparation 

of approximately 99% pure (lane 3 and 6 in  figure  21). For recombinant TKI  the 

expected  submolecular size is 24 kDa and for T K I - l  93 the  expected size is 20,l 

kDa. Figure 21 shows  that  the  subunit molecular weights  were as expected. 

Figure 21: Silver-stained SDS-PAGE (15% separation gel)  of pure recombinant TK1 and TK1-193. Lane 

l, 4, 7 and 8 are markers: 97, 66, 45, 31, 2 l and 14 kDa.  Lane l and 4 contains 40 ng of each protein, 

lane 7 and 8 contains 60 ng of each protein. Lane 2: 0.3 pg recombinant TK l from  glutathione agarose 

chromatography, Lane 3: 0.3 pg recombinant TK1 after CM-column, Lane 5: 0.3 Kg TKI-193  from 

glutathione agarose chromatography, Lane 6: 0.3 pg TKl-  193 after CM-column. 
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In  table 5 the  yield and purification degree of  recombinant  TKI  protein 

corresponding to  crude  extract  from  1  litre  bacteria  culture  is  shown. The yield is 

based on  the  total  enzyme  activity and protein  in  the  crude  extract.  From  1  litre  of 

bacteria  culture  0.8-1 .O mg pure  recombinant TKI protein  can  be  purified. 

Table 5: Purification of recombinant TK1 

Volume Yield YO Total Units/mg Units/ml Protein 

11 Crude extract II 
50 159 I 78350 I 1567 490 

Glutathione  agarose  chromatography loo I 
I1 I 30 I 9.43 I 151 1 I 4812 I 45330 I 58 11 
11 Seohadex G-25  chromatoaraohv II 
II top# I 71.5 I 3.43 I 261 I 5437 I 18661 I 23 11 
11 CM-sepharose  chromatography II 

The  TK activity has been  measured on enzyme stored with 2.5 mM ATP. Units: nmol min-'. 

Kinetic studies 

Munch-Petersen et a1 (1  993) have  shown  that  pure  lymphocyte  TKI has different 

enzymatic  properties  when  stored  with or without ATP. When  stored  without ATP 

the  lymphocyte enzyme is a dimer with low  affinity  for  thymidine (K, = 15 PM). 

Stored with ATP, the enzyme is a  tetramer with high  affinity  for  thymidine (K, = 

0.5 PM) as'described  on page 22. 

As T K I - l 7 6  is without  activity,  only  the  enzymatic  properties  of 

recombinantTK1 and TKI  -1  93 enzymes were examined.  The top-fraction  from  CM- 

sepharose was  divided  into two aliqouts. 2.5  mM ATP was added to one fraction 

and this  fraction  is  referred  to as the  +ATP form,  while  the  other  fraction  without 
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ATP is  referred as the -ATP  form. 

Reaction  mechanisms 

The effect of ATP on  the  thymidine  substrate  kinetics  of  recombinant TKI  and TKI - 

193 appears from  the Hofstee  plots  in  figure 22 A  and B. The initial  velocities  were 

measured at  various  concentrations of thymidine.  The  effect  of ATP on  the 

thymidine  substrate  kinetics  of  recombinant TKI  and T K I - l 9 3  is similar to  that 

observed with  lymphocyte  TKI (Munch-Petersen et al 1993). 

In  the  Hofstee  plot  for  the  +ATP  forms  of  recombinant  TKI and TK I - l   93  

the  points  have  been  fitted to a  straight line, but a  curved  tendency  may  indicate 

positive  cooperativity.  Positive  cooperativity  is  obtained  when  binding  of one 

substrate  molecule enhance  binding of  the  next  molecule.  All  the  +ATP samples 

of  TKI  (n=3) and TK I - l 93   (n=3)  display the same curved  tendency.  This 

phenomenon  is also observed  for  the  native  lymphocyte TKI  (Munch-Petersen et 

al 1993). For the  -ATP  forms  the  curve has a clear biphasic shape that may  indicate 

negative  cooperativity, e.g. binding of one  substrate  molecule decrease binding  of 

the next  to  the neighbour  subunit.  The degree of apparent cooperativity has  been 

analysed  from Hill plots  of  log v/(V,,,-v) versus log  [dThdl (FM), where  v is the 

initial  velocity. The slope of  the curve, the  Hill  coefficient (n), gives  a measure of 

the  apparent  cooperativity. Values of n below one  indicate  negative  cooperativity 

while n values  above one indicate  positive  cooperativity.  The Hill coefficient  for the 

+ATP  forms  was  1.38 k0 .05  (mean -c s.d, n = 3) for  recombinant TKI  and 1.25 

k0 .15   (n  = 3) for  TKI-193. For the -ATP forms  the  Hill  coefficient was 0.46 

k0.08 (n = 3) for  recombinant TKI  and 0.5 f O . l  (n = 3) for  TKI-193. 
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Figure 22: Hofstee  plots of (AI recombinant  TK1  and (B1 TKI-193. The filled  circle  represent the +ATP 

form of the enzyme and  the unfilled  circles  represent the -ATP form. 

The  -ATP form has  a low  affinity  for  thymidine with a K, value  of 14.08 20.68 

(mean is.d., n = 3) pM for  TKI-ATP and 12.8 20.65 (n = 3) MM for  TK1-193- 

ATP. Incubation  of  the enzymes with ATP gave  a K, value of 0.5 kO.1 (n = 3) pM 

for  recombinant TKI  +ATP and for  TKI- l93+ATP 0.5 kO.15  (n = 3) pM. This 

indicates  that  the  affinity  of  the  +ATP  forms is about  25-fold  higher  for  thymidine 

than  that  of  the  -ATP  forms. 

Determination  of  the  maximal  velocity, V,,,, revealed a difference  between 

recombinant T K I  and  TKI-193. For recombinant TKI  the V,,, value was 9700 

unitslmg  but  for  TK1-193 a  2.5-fold decrease was observed (Vmax = 3800 

uni tshg) .  
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kc,, indicates  the  maximum number of substrate  molecules that can  be converted 

to  product per active  site per unit  time, and is therefore also called the  ”turn-over 

number”  of  the enzyme. 

K,,, is calculated  from V,,, and the  total enzyme concentration (V,,, = k, x [ET]), 

presuming  a  molecular  weight  of 4 x 24,000 for  recombinant TKI  and 4 x 20,000 

for TK1 -1 93. 

K,,, with dThd as substrate  is 16 5-l for  recombinant TKI  but 5 5-l for  TKI  -1  93. 

Stability 

Investigations  of  the  effect  on  the  stability  of  the  deletion  of 40 amino acids  from 

the  C-terminal. 

The  investigations  of  stability  were  performed  on  the  +ATP and -ATP  forms 

of  recombinant TKI  and TKI-193. The  -ATP  forms  was  incubated  in 50 m M   i r i s  

and 10 mM DTT  whereas for  the  +ATP  form ATP to a  final  concentration  of 2.5 

mM  was added. The TK activity  was measured after incubation  of  the  enzymes  for 

0, 4, 8, 12, 1 6  and 20 minutes a t  37OC. For each measurement the TK activity 

was  normalised to  the TK enzyme  level at 0 minutes of  incubation. Figure 23 shows 

the  stability  for  recombinant  TKI and T K I - l  93. 
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Comparison of  the  +ATP  forms  of  recombinant  TK1  and  TK1  -1  93  indicates 

that  the  mutant  is less  stable.  Measurement of  the TK activity  for  TKI + ATP 

(n=4) and T K I - l 9 3  + ATP (n=4)  a t  0 minutes  and 4 minutes revealed that  the 

difference in stability  was  significant  (P<0.005,  t-test). 

The  stabilising  effect  of ATP is clear from  these  experiments,  as for  the - 

ATP forms  only -20% of  the  activity  is preserved after 4 minutes  of  incubation 

whereas  for  the  +ATP  forms  50-70%  activity remains. 
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Molecular weight 

The native molecular weight for  recombinant TKI and T K I - l 9 3  was  estimated  by 

gelfiltration  in absence  and  presence of ATP on a Superose 12 column. In presence 

of ATP the  column  was pre-equilibrated with buffer  containing 2.5 mM ATP. The 

molecular  weight  was  estimated  by  comparing  the  retention  times  for the sample 

with  the  retention  times  for  the  following marker proteins:  beta-amylase 200 kDa, 

alcohol  dehydrogenase 150 kDa, bovine serum  albumin 66 kDa, carbonic anhydrase 

29 kDa, cytochrome C 12.4 kDa. 

Table 6: Native  molecular weight determination.  n = number of experiments 

SDS n  molecular size mean 

2s.d (kDa) 

TKI -ATP 4 55 +3.3 24 

TKI  +ATP 3 116 k4.7 24 

TKI  -1 93-ATP 

4 92 22.5 20 T K I - l 9 3 + A T P  

5 44 k2.8 20 

The effect  of ATP on  the  native molecular weight  of  TKI and TK I - l   93  is 

seen in Table 6. Without ATP the enzymes appeared as a dimer, with sizes of - 55 

kDa and -44 kDa for  recombinant TKI  and T K I - l  93, respectively.  In  the presence 

of  ATP  during  chromatography  the  enzymes  eluted as tetramers, of  116 and 92 

kDa, respectively.  This  indicates  that  ATP  induces  a  tetramerization  of  the 

recombinantely expressed enzymes similarly to  what observed with  the  native 

lymphocyte TK I .  

Determination  of  the  native molecular weight  was  quite  difficult as the 

recovery  of  the enzyme was  very  low. The  experiments  were  repeated  several  times 

with  high  levels of enzyme. Normally 0.003 units  of  lymphocyte  TKI  activity  gives 

a recovery  of  about 70.80% on Superose 12  column. For the recombinantly 

expressed  enzymes  the applied amounts  were  2-3  units and the  recovery  was  1-5 



80 

%. The  reason for  the  low  recovery  may be that  the  recombinantly  expressed 

enzymes are more  hydrophobic  due to amino acid  changes or that  they are more 

unstable and therefore monomerisize. 

Table 7: The kinetic  data 

*The  results for the  native TK1 are from Munch-Petersen et a1 1993. 

Resume  for  investigations of TK l structure-function  relationship 

For the  investigation  of  the  structure-function  relationship  of  human  TKI,  two 

deletion  mutants  were  constructed.  Deletion  of 57 amino acids from  the C-terminal 

(TKI-176) resulted  in  an  inactive  protein.  Deletion of 40 C-terminal  amino  acids 

reduced V,,, 2.5 fold  the  level  of  recombinant TKI,  but  did  not  affect  the K,,, value 

or the  Hill  constant. 



81 

Discussion 

The principal  subject  of  my  work  was to study  various  aspect  of  the  regulation  of 

human TKI  a t  the cellular  and the enzymatic  level. 

In  the  first  part  of  these  investigations I have quantified  the  level  of  TKI 

mRNA in quiescent and PHA stimulated  lymphocytes  from  control  persons and in 

lymphocytes  from  patients  with  chronic  lymphatic leukemia (CLL). Comparing  the 

level of  TKI mRNA and the TK activity  can reveal if these  cells have any differences 

in  the regulation  mechanism(s)  of TKI .  The TKI mRNA was  quantified with the 

competitive PCR method. There are two advantages of  the  competitive PCR 

method:  the  method  is  more  sensitive  than  Northern  blot  techniques and the 

quantisation are independent  of  the  many  variables  that  affect PCR amplification 

(different  templates are amplified with  different  efficiency,  the  primers  have 

different  efficiency,  intrinsic  variability of PCR reactions). With  competitive PCR it 

is  possible t o  detect  a  very  low  amount of TKI mRNA in  quiescent  lymphocytes 

from  control persons.  The detection  limit  was  6 copies  per 1000 cells. Below  this 

level, a 248 bp amplification  product  interferes  with  the  competitive PCR. This  is 

probably a result  of  traces  of  DNA or non-spliced RNA in the RNA preparation. 

However,  the  competitive PCR method has some limitations, it quantifies  the 

amount  of  cDNA  in a given sample and if the  efficiency  of  reverse  transcription  is 

less than  1 OO%, the  method will underestimate  the  actual  amount of mRNA.  As the 

same protocols  have  been used for all donors, I presume that  the  underestimation 

is in  the same range for all donors. 

Lymphocytes  stimulated to  growth  by PHA are used as a model-system  for 

studying S-phase specific  events.  The  system  is  well  characterized with respect to  

TK activity,  DNA  synthesis and cell division  (Loeb e t  al 1970,  Munch-Petersen and 

Tyrsted  1977,  Tyrsted and Munch-Petersen 1977).  In  my  experiments  a  very  low 

level of  TKI mRNA quiescent cells was estimated. After  96 h of PHA stimulation 

the  TKI mRNA level  reached  a  maximum, with a  100-fold  higher  level  than in 
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quiescent  lymphocytes. Based on  the  ability  to use CTP  as phosphate  donor it was 

established that  the  dominating enzyme in quiescent  lymphocytes  was TK2, while 

the  dominating  enzyme in dividing  lymphocytes  was TKI .  It was  demonstrated that  

the  amounts  of  TKI mRNA and TK activity increase concomitantly  during 

incubation  of  the  lymphocytes  with PHA. This  pattern  correlates  well  with  serum- 

starved  cells  stimulated to reenter  the  cell  cycle  by  serum  (Stuart  et al 1985, 

Stewart e t  al 1987).  In these  cells  the increase in  TKI mRNA is accompanied by a 

corresponding  increase in TK activity, and both  transcription and post-transcription 

mechanisms  account  for  the  induction  of  TKI mRNA (Coppock and Pardee 1987, 

Stuart  et al 1985,  Steward  et  al  1987).  PHA-stimulated  lymphocytes  probably 

display  the same cell  cycle  regulated  patterns as serum-stimulated cells. However, 

there are some  differences.  In the experiments  by  Steward e t  al (1  987) a low level 

of  TKI mRNA, as  measured by Northern  blot analysis, was  detected  in  the  serum- 

stimulated cells.  The TKI  mRNA level  was  not  quantified  but  after 12  h of serum 

stimulation  the  level  of  TKI mRNA  reached  a peak level  (Stuart  et al 1985,  Steward 

et al 1987). For the PHA stimulated  lymphocytes,  my  experiments  show  that T K I  

mRNA  does not reach  a peak level  until  96 h after  stimulation  and with  the  Northern 

blot  technique it was  not  possible to  detect any transcription  of TKI mRNA  in 

quiescent  lymphocytes. The explanation  for  this  difference is probably  that 

peripheral  blood  lymphocytes are truly G, cells and may  have  spent  several  years 

in  a  non-dividing stage.  The length  of  the  first G, period  (after  stimulation)  depends 

on  how  long  time  the cells were  in G,. In  experiments  with W138 cells (a 

nontransformed  mortal  human  diploid  fibroblast) two distinct stages of quiescence 

have  been  identified. Cells that  were  in G, for 1-1 0 days  were  minimally  affected, 

in  contrast  to  cells  that  were  in G, for  10-20 days. In the  last case a  decrease in 

overall  protein  and RNA content  was observed.  When the  cells  were  stimulated to  

reenter  the cell  cycle,  expression of several late response genes,  e.g. TKI  was 

considerably  retarded  (Hofbauer  and  Denhardt  1991). The serum-starved  cells are 

stopped  while  they progress through  the  cell  cycle, so when  they are stimulated to  

reenter the cell  cycle  their  "machinery"  for  replication is still  active and therefore 

provide a quicker  entry  into  the cell  cycle. 
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CLL cells are in a  quiescent stage, so I expected to obtain similar results as 

with  the  lymphocytes  from  control persons, e.i. a low  TKI mRNA level and a 

corresponding low TK activity. The TK activity  was  low,  in  the same range as in 

quiescent  lymphocytes, and when  investigated  for  phosphate  donor  specificity, it 

was  established that  the enzyme activity  was  TK2. It was  therefore  unexpected to  

find  a  high  level o f  TKI mRNA, about  100-fold  higher  than  the TKI mRNA level in 

quiescent  lymphocytes.  This  shows  that CLL cells  have an abnormal regulation  of 

the S-phase regulated TKI.   TKI mRNA level  is  high and is  prevented  from 

translation  into an active enzyme. It is  generally  accepted that  the R-point 

mechanism  in  late G, controls  normal cell proliferation and this  mechanism are 

deregulated in several  cancer cells. The  mechanisms to control  the passage through 

the  R-point are among  others:  cyclins, Cdk, Rb and p53.  An  altered  regulation and 

increased  level of cyclins, particularly  cyclin  D  (Musgrove  et al 1994), E and  A (Dou 

et al 1993, Keyomarsi and Pardee 19931, have been shown  in several transformed 

cell  lines and in breast cancer tumours.  As  mentioned  on page 12, TKI carries  an 

E2F (a cellular  transcription  factor)  binding  site in its  promoter.  An  intact E2F 

binding  site is  required  for  transactivation  of TKI expression by polyoma  large  T 

antigen, as well as for  serum  stimulation.  Ogris et al (1 993) have shown  by  mobility 

shift assays that an increase in free E2F coincided  in  time with  the appearance of 

TK1 mRNA. It could be, that the  level  of  free E2F in CLL cells  is  increased and 

thereby  provides an  over-expression  of TKI.  The level of free E2F can  increase if 

the  Cdk2-cyclin E complex  phosphorylates Rb in the E2F-Rb complex  and  thereby 

release "free" E2F. An over-expression of  cyclin E mRNA and  a  deranged 

expression  of  cyclin E protein has  actually  been measured in proliferating  breast 

tumour  cell  lines  (Keyomarsi and Pardee 1993). These mechanisms could  explain 

the  occurrence of a  high  level o f  TKI mRNA in the CLL cells. However,  they do not 

explain  why an  increase in TK activity is not observed, either do  they  explain  why 

the CLL cells remain  quiescent  and  do  not  initiate  cell  division as a respond to  the 

high  TKI mRNA level. It  is possible, that  the  TKI mRNA is  defect,  preventing it 

from being  translated  into an active enzyme. For the  quantification  of TKI  mRNA 

only  exon 1 and 2 out  of  total 7 exons  have been PCR amplified, so a  truncation 

could  not be  excluded.  However, in experiments  by Laursen et al (1994),  TKI 
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mRNA from  normal persons  and CLL patients  were  investigated to  detect  possible 

sequence  differences.  They  used  the SSCP analysis  (Single  Stranded 

Conformational  Polymorphism, Orita et al 19891, which can detect  down  to single 

nucleotide  deletions or substitutions  in PCR fragments of 300-400 bases.  The PCR- 

fragments  were  denatured and  electrophoresed  on a polyacrylamid gel. These 

experiments  were  performed  on  five  normal  donors and four CLL patients  but  did 

not reveal  any  sequence  differences  in  the TKI mRNA. 

Another purpose of  my  work was to  investigate  the  relationship  between 

structure and function  of  TKI.  Two  mutant, T K I - l 9 3  and TKI-176 were 

constructed.  In T K I - l  93 40 C-terminal  amino acids were  deleted  whereas in  TKI- 

176 57 amino  acids from  the  C-terminal were  deleted. According to  the 

hypothetical  structure  for  TKI (Folkers et al 1991)  no  functional-essential  site has 

been  deleted  in TKI-193. In T K I - l 7 6  a site  including  the residues C Y S ’ ~ ~  and 

Arg’”, which  may  contribute  to  binding and transfer of a phosphate  group  from 

ATP to thymidine,  was deleted. The mutants  were  constructed by  the 

recombination PCR method.  With  its  high  site-specific mutagenesis frequency  this 

method  is  a  very  efficient  method  for  site-directed mutagenesis. In  my  experiments, 

where I have  introduced  both a Sacl  restriction  site and a stop  codon in the  primer 

used for PCR-amplification, it was shown  that  the  plasmid  DNA  from  all  the  tested 

clones (17) could be  digested with  Sacl. This  shows tha t  all clones  possess the 

desired  mutation. 

An expression  system  (pGEX2T-TKI)  constructed  by  the  groups  of R. 

Hofbauer,  lnstitut  fur Molekularbiologie, Universitat  fur Wienna, and G. Folkers, 

lnstitut  fur Pharmazie, ETH Zurich, Switzerland, was chosen. In this  construct  TKI 

purified  from  lymphocytes  is expressed as a  glutathione-S-transferase  (GST)-fusion 

protein in €.coli. Purification  of  the  recombinant TKI  mutant  proteins  from 

glutathione.agarose  columns  resulted  in  5-1 0 mg - 80% pure TKI  mutant  protein 

pr. litre  bacterial  culture. The SDS  PAGE shows remains of  the  fusion  protein and 

a 70 kDa  protein. The 70 kDa  protein is  probably an Ecoliprotein  produced  by  the 

gene dnaK.  This gene product is involved  in  degradation  of  “abnormal”  proteins  in 

€.co/i(Yu-Sherman  and  Goldberg  1992). Further purification to  99%  purity  by CM- 
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affinity  column  resulted in 0.8 - 1.0 mg protein per litre  of  bacteria  culture. For 

NMR-analyses 1-2  mg  should be  sufficient, so with this expression  and purification 

system it is  possible to achieve sufficient  TK1  protein  for  structure  elucidation  by 

NMR-analyses. 

By measuring the  glutathione transferase activity and SDS-PAGE it is shown 

that  the  fusion  protein is expressed in  both  mutants,  but T K I - l 7 6  is  devoid  of TK 

activity. Sequence analysis revealed that  no base mutations had  occurred  during  the 

PCR and recombination procedure.  Therefore, it can  be  concluded that deletions  of 

57 amino  acids from  the  C-terminal  completely  destroy  the TK activity.  The  mutants 

were  constructed  by  a  site-directed mutagenesis-based  method.  However, to  state 

that  the  mutants are performed by site-directed  mutagenesis are an incorrect  term, 

in  the sense that site-directed  mutagenesis  refers to change of one (or  a  few) 

residues. My  mutants  have "severe"  alterations as 40 and 57 amino  acids  have 

been  deleted. For T K I - l 7 6  it is not possible to establish, if the  lack  of  activity is 

due t o  removal of  the  putative  phosphate  binding residues (CyslE6 and ArglE7) or 

more  likely that  deletions  of  the  57  amino acids destroy  the  protein  structure.  In 

TKI  -1  76  both a putative P-strand and part  of  a  putative a-helix  is  removed. Another 

mutant  constructed in the  laboratory  recently (Larsen and Ssnnichsen 1995)  is  TK1 - 

184,  where 50 amino acids  from  the  C-terminal  were deleted.  In this  mutant  the 

residues  for  the  putative  phosphate  binding C ~ S " ~  and ArglE7 are deleted as well 

as the last putative P-strand.  This mutant  has no TK activity either, but as TKI  -1 84 

has not  yet been  sequenced  entirely, the  interpretation  that  the  activity  is abolished 

due to  lost  of  50 amino acids must be  regarded with precautions.  As TKI  -1  93 

posses TK activity  these results  indicate that  structural elements between residue 

193 and  176 are important  for TK activity. Kaufmann  and Kelly (1  991)  have  shown, 

that  the last 40 amino acids of HeLa TKI  are not necessary for TK activity, but do 

have  a  regulatory role. In experiments with  TKI minigenes  expressed in TK deficient 

mouse cells they have shown  that  there  is  a  mitosis  specific  degradation  of  TK1 

protein.  When  the cells were  transfected  with a TKI-minigene  with  deletion  of 40 

C-terminal  amino  acids  the  M-phase  specific  degradation of TKI protein was  

abolished  and  TK1  protein and activity  were stabilized throughout  the  cell  cycle. 

Likewise,  investigations  of primary  amino acid alignments  through several 
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vertebrates TKI and €.coli TK shows  that  exon 7, which codes for  the 40 C- 

terminal amino acids, has  a  very  high  degree  of  variation  and  some TK’S, e.g. 

vaccinia  virus TK  do not have the  last 40 amino  acids. 

My  results  establish that  the  last 40 amino acids are not necessary for TK 

activity  but may  posses a structural role. Removal of more  than 40 amino  acids 

from  the C-terminal it not possible without  destroying  the  protein  structure. 

Investigations of  the  kinetics  for  recombinant  TKI and TKI-1 93 showed 

that  the recombinant  enzymes  display the same kinetic  properties as the  native 

lymphocyte TK I .  Thus, without ATP, recombinant TKI  and T K I - l 9 3  appear as 

dimers with apparent  negative  co-operativity and low  affinity  for  thymidine  (Hill 

coefficient = 0.4, K,,, = 12 PM). With ATP, TKI  and T K I - l 9 3  appears as 

tetramers  with  positive  co-operativity and high  affinity  for  thymidine  (Hill  coefficient 

= 1.3, K, = 0.4pM). Although,  these  results agree with  those  obtained with TKI  

purified  from  human  lymphocytes  (Munch-Petersen  et  al  1991,  Munch-Petersen  et 

al 1993)  they  conflict  with results  obtained by Jensen (1 994). Here, an  expression 

system  in  €.colifor  direct  expression  of  unmodified HeLa TK1  was established. The 

recombinant HeLa TKI stored  both  without and with ATP  behaved as the  native 

lymphocyte  TKI stored with ATP with respect to size, specific  activity,  substrate 

specificity and K, value  for  the two substrates, thymidine and ATP. Thus, the 

recombinant HeLa TK1 was a tetramer with high  affinity  for  thymidine also in the 

absence  of ATP. It has been  shown  by Chang e t  al (1 994) that TK1  is  differentially 

phosphorylated  through  the cell cycle (see post-translation  regulation  mechanisms). 

Jensen  (1  994)  suggested  that  a  post-translational  mechanism responsible for  the 

ATP-shift  in  human  cells  was  lacking  in €.coli cells. However as the  ATP-shift  is 

observed  in  my  experiments  where  recombinant  lymphocyte TK1  and T K I - l   9 3  are 

expressed  in E.coli as well, the  post-translational  explanation  does  not seem 

correct. Regrettably, at  the  moment I cannot give  a satisfactory  explanation. 

For the  recombinant  TKI  the V,,, value  was  determined to  9700 units/mg. 

This  value is in correspondence to V,,, values  for T K I  purified  from  lymphocytes, 

being  9600  units/mg  (Munch-Petersen  et al 1991,  Jensen  1994).  However,  the 
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mutant T K I - l   9 3  has a 2.5-fold  lower V,,, value (3800 units/mg)  than  recombinant 

TKI .   An unchanged  affinity  for  the  natural substrate,  thymidine,  combined with a 

lower V,,, value suggest  that  the  last 40 amino  acids have a structural role, or that  

the  ATP  binding is disturbed.  The  last 40 amino  acids  can  be of  importance  for 

stablishing  the  active  site  conformation or for  the  flexibility  of  the  protein  during  the 

induced-fit  movement  of  the  phosphate  transfer. It is possible  that, due to  the  lack 

of the 40 residues, the  two phosphate  binding  residues C ~ S ” ~  and Arg18’ are not 

able to  “get close enough” to  the ATP. This  may  inhibit  the  transfer of a  phosphate 

group  from ATP to thymidine.  Another  possibility is that  the  lower V,,, value is  due 

to a disturbed  binding  of ATP. The stability  experiments  showed that TKI-1 93 is 

less  stable (p<O.OOS, n =4) than  recombinant TKI .  This  may  favour  the  hypothesis 

that  there  is  a  disturbed  binding  of ATP. 

The kinetic analyses showed that recombinant TKI  behave  similarly as 

lymphocyte  TKI,  but  there are some  differences.  Determination  of  the  native 

molecular  weight  for  recombinant TK1  and T K I - l  93,  respectively,  did cause some 

problems, as the  recovery  of enzyme activity  was  very  low ( ~ 5 % ) .  A  possible 

explanation  is that  the recombinantly  expressed enzymes are more hydrophobic 

than  the  native enzyme. The enzyme may  therefore adhere to  the  chromatography 

tubes  before and after  the column.  The  reason for  such a higher  hydrofobicity  is  not 

known,  but  there are amino acid  changes in  recombinant TKI,  which may  confer 

the  higher  hydrofobicity. The  recombinant TKI and T K I - l 9 3  have two additional 

residues in  the N-terminal; Gly and Ser, due to reconstruction  of  the  thrombin 

cleavage  sequence LVPRGS (single  letter  code).  Thrombin  cleaves  after  the  arginine 

(Chang 1985) and therefore all the cleavage products  start  with  the amino  acids Gly 

and Ser at their  amino  terminus.  The  sequencing  experiments  revealed a difference 

between  the sequence in  wildtype pGEX2T-TK1 and the  published sequence of   TKI  

cDNA  purified  from HeLa cells. Examinations  of  the two mutations Met’“ + Val  and 

Lys2” - Arg, shows  that Met’“ + Val is  located  in  the  putative  fifth  =-helix, 

shortly  after  the  putative Mg2’-binding Asp8’. Comparison with several other 

mammalian  TKs  shows  that  they also posses a  Val and not a  Met.  As seen on 

figure 4 (page  25) Met’“ is  located in an area that  is  highly  homologous.  According 

to Dr. Hofbauer  (personal  communication) who has  sequenced  several TKI genes, 



88 

there  is  in  fact  a  difference  between HeLa and lymphocyte  cDNA.  Lymphocytes 

posses  a  valine at  position  106  while HeLa cells posses a methionine.  The  other 

mutation, Lys’” + Arg, is  currently under investigation  by Dr.Hofbauers group  in 

Vienna. However,  if  the Lys Arg  mutation has arisen during  the  cloning 

procedures, it is  according  to Bordo and Argos (1  991) a so-called “safe”  mutation. 

In  this  context  safe means that  the  alteration  provides a very small conformational 

change  of  the  protein.  That  the Lys’” + Arg  alterationlmutation in recombinant TK1 

is  not  of  importance  can also be  concluded from  the  kinetic data.  Recombinant TKI  

has  the same specific  activity and enzyme kinetics as the  native  lymphocyte  TKI. 
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English summary 

Thymidine kinase  (TK)  catalyses the ATP-dependent phosphorylation  of  thymidine 

to  thymidine  monophosphate,  which is  subsequency  phosphorylated to  thymidine 

triphosphate  and  utilized  for  DNA  synthesis. Human cytosolic TK (TKI)  is cell  cycle 

regulated, e.g. the TK1  activity increases  sharply at  the G,-S phase transition and 

remains  elevated  throughout S-phase. The  regulation  of TKI  involves 

transcriptional,  post-transcriptional,  translational and post-translational  regulation 

mechanisms. In a variety  of cancers the  regulation  mechanisms(s) are changed  and 

TK isoforms  with  altered  biochemical  properties  have been  observed. An 

investigation  of  TK1 gene expression will  not  only  provide  insight  into  the  regulation 

mechanism  in  normal  cells but also in cancer  cells. Besides, differences  in 

expression,  substrate specificity and  molecular structure  of TKs in healthy  and 

malignant  cells  can be  used for  construction  of  selective  nucleoside analogs, only 

used by cancer TK isoenzymes. 

In  this Ph.D thesis  the  cell  cycle  regulated TKI  has been  subject  for two  different 

approaches. 

1:  Investigation  of  the  relationship  between TK1 mRNA level and TK activity 

in  lymphocytes  from  healthy  donors and in  lymphocytes  from  patients  with 

chronic  lymphatic leukemia (CLL). 

2: Structure-function  relationship  of  recombinant TKI .  

In the  first  part a sensitive  method  (competitive PCR) for  quantification  of TKI  

mRNA was established. The TKI  mRNA level was quantified  in  quiescent 

lymphocytes  from  control  donors  (n = 6 )  and in  lymphocytes  stimulated to  growth 

by  the  mitogen  phytohemagglutinin. The expression in  normal cells was compared 

with  the level of TK1 mRNA level  in  patients  with  chronic  lymphatic  leukemia 

(n = 5). 
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The results  for  the  six  control  donors  show a very  low  level of TK1 mRNA 

(below 0 . 0 0 6 ~ 1  O6 copies  mg-’  protein) and TK activity  (0.009  to  0.01 6 nmol  min-’ 

mg-’  protein) in quiescent  lymphocytes.  In  dividing  lymphocytes  the TKI  mRNA 

level increases 50   to  5000-fold (3 to 98 x I O 6  copies  mg-’  protein) with a 

concomitant  increase  in TK activity  (0.1 2 to  0.76  nmol min-’ mg-’  protein). In CLL 

cells which are characterized as being  quiescent, the TK activity  was  in  the same 

range  as  in  quiescent  lymphocytes  from  control  donors.  However,  quantification  of 

the  TKI mRNA level  shows that all five CLL patients  had a very  high  level (6 to 22 

x IO6 copies  mg-’  protein)  of TKI mRNA, corresponding to  the level  in  dividing 

lymphocytes.  As  the  high T K I  mRNA level is  not translated  into an active enzyme, 

these  results  indicate a defect  in  the  regulation  of  TKI  in CLL cells. 

For the studies of  the  structure-function  relationship  of TKI  a recombinant TKI  

protein,  which  is  expressed as a glutathione-S-transferase  (GST) fusion  protein was 

used. TKI  protein  is cleaved from  the GST-part with thrombin. Two  TKI mutants, 

T K I - l  93 and T K I - l  76, with deletions from  the C-terminal were  constructed  by  the 

recombinant PCR method.  Deletion of  57 amino  acids from  the  C-terminal (TKI- 

176)  results  in an inactive enzyme.  Deletion of 40 amino acid  from  the  C-terminal 

decreases V,,, 2.5-fold (3800 nmol min‘’ mg-’)  than  the  level  of  the  recombinant 

wildtype  (recombinantTK1)  which has a V,,, value of 9700  nmol min-’ mg-’. Except 

for  the  Vmaxvalue  the  recombinant  TKI and T K I - l   9 3  behave  similarly as the  native 

lymphocyte T K I .  When ATP is absent from  the enzyme, the  enzyme appears as a 

dimer with  low  affinity  for  thymidine and when ATP is  present  the  enzyme appears 

as a tetramer  with  high  affinity  for  thymidine. K, for  thymidine  for  recombinant  TKI 

and T K I - l 9 3  incubated  with ATP is 0.5 *O. l  (mean +s.d., n = 3) pM,  while 

enzyme  incubated  without ATP has a K, of  14.08  20.68 (n = 3) pM for  TKI and 

12.8 k0 .65  (n = 3) ,uM for  TKI-193. The Hill  coefficient  for  enzyme  incubated 

with ATP  is 1.38 k0 .05  (n = 3) for  recombinant TKI and 1.25  20.1 5 (n = 3) for 

TKI-193. For the -ATP forms  the Hill coefficient is 0.46 k0.08 (n = 3) for 

recombinant TKI  and  0.5 kO.l (n = 3) for  TKI-193. 

An  unchanged  affinity  for  the  natural substrate,  thymidine,  combined with 

a lower V,,, value  suggest that  the  last 40 amino  acids  have a structural  role or 
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that  the ATP binding is disturbed. 
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Danish  summary 

Thymidin  kinase  (TK) er et salvage pathway enzym, der  katalyserer  fosforylering af 

thymidin til thymidin  monofosfat,  som  derefter  fosforyleres  videre  til  thymidin 

trifosfat  og  indgir i DNA syntesen.  Human cytoplasmatisk TK (TKI)  er celle cyklus 

reguleret  og  fslger  DNA  syntesen, d.v.s hOj aktivitet i delende og maligne  celler  og 

lav eller ingen  aktivitet i hvilende celler. Celle cyklus  regulering  af TKI  involverer e t  

sammenspil mellem  transkriptionel,  post-transkriptionel,  translationel og  post- 

translationel  reguleringsmekanismer. I nogle  cancer  celler er regulerings 

mekanismerne aendret og der er observeret  forskellige  isoformer af  TK. 

Underssgelse  af TKI gen  ekspression vi1 give  informationer om regulerings 

mekanismer ikke  kun i normale celler men o g s i  i maligne  celler.  Desuden  kan 

eventuelle  forskelle i ekspression, substrat  specificitet  og  struktur  mellem  TK's i 

raske og  maligne celler udnyttes  til  konstruktion af nukleosid  analoger  som  virker 

selektivt p i  maligne  celler. 

Afhandlingen  omfatter: 

1: Bestemmelse af  TKI  mRNA og TK aktivitet i lymfocytter  fra raske  donorer 

og i lymfocytter  fra  patienter med kronisk  lymfatisk  leukemi  (CLL). 

2: Struktur-funktions underssgelser af rekombinant TKI .  

I forste del af  afhandlingen er en f~l lsom metode  (competitive PCR) til kvantitering 

af TKI  mRNA blevet  etableret. TKI mRNA niveauet er kvantiteret i hvilende 

lymfocytter  fra raske  donorer (n = 6) samt i lymfocytter der er stimuleret til v z k s t  

med  phytohemagglutinin. Expressionen i normale  celler er sammenholdt  med 

niveauet  af TKI  mRNA i patienter  med  kronisk  lymfatisk leukaemi (n= 5). 

Resultaterne fra de  6  normale  donorer viser, at der er et  meget  lavt  niveau 

af T K I  mRNA (under 0 . 0 6 ~ 1 0 ~  kopier mg.' protein)  og TK aktivitet (0.009 til  0.01 6 
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nmol  min-’ mg-’ protein) i hvilende  celler. I delende lymfocytter  stiger  miengden af 

TKI  mRNA 50  til  5000 gange (3  til 98 x 1 O6 kopier  mg-’ protein)  og  bliver  efterfulgt 

af  en stigning i TK aktiviteten  (0.12 til 0.76  nmol  min-’  mg-’). I CLL celler, der er 

karakteriseret  ved a t  viere  hvilende celler, er  TK aktiviten af samme sterrrelsesorden 

som i hvilende  lymfocytter  fra raske  donorer. Kvantitering af  TKI mRNA  viser 

overraskende a t  der i alle  5 CLL patienter er et  meget herjt TKI  mRNA (6  til 22 x 1 O6 

kopier  mg-’  protein) niveau, svarende til niveauet i delende Iymfocytter.  TKI mRNA 

niveauet er  herjt men  bliver  ikke  udtrykt  som  aktivt enzym. Dette  indikerer a t  der er 

en defekt i  reguleringen af det S-fase  specifikke TKI  enzym i CLL celler. 

Til  struktur-funktions undersergelserne  af TKI  anvendes et  rekombinant TKI  protein 

der udtrykkes  som  et  glutathion-S-transferase-(GST)  fusions  protein. TKI protein 

klerves fra GST-delen med thrombin. To deletions  mutanter, T K I - l  93 og   TK I - l  76, 

er konstrueret v.h.a.  recombination PCR metoden. Fjernelse af 57 amino  syrer fra 

C-terminalen (TKI- l   76)  resulterer i et  inaktivt enzym.  Deletion  of 40 amino  syrer 

(TKI-1 93) f ra  proteinets C-terminal medferrer a t  V,,, formindskes  2.5-gange (3800 

nmol  min-’  mg”) i forhold til den  rekombinante  vildtype  (rekombinant TKI)  der  har 

en V,,, p2 9700  nmol  min-’  mg-’.  Bortset  fra V,,, vzrdien opferrer rekombinant TKI  

og T K I - l   9 3  sig som den  native  lymfocyt  TKI, d.v.s n2r ATP er fjernet  fra enzymet, 

optraeder det  som en  dimer  med  lav affinitet  for  thymidin  og  nsr ATP er tilstede 

optraeder enzymet  som en tetramer  med herj affinitet  for  thymidin. K, for  thymidin 

for  rekombinant  TKI  og T K I - l 9 3  inkuberet  med ATP er 0.5  20.1 (middel ks.d, 

n = 3) p M ,  mens  enzym  inkuberet  uden ATP har K, p: 14.08 20.68  (n  = 3) pM 

for  TKI  og 12.8 i 0 . 6 5  (n = 3) FM for  TKI-193. Hill  koefficienten  for  enzym 

inkuberet med  ATP er 1.38 i.0.05 (n = 3)  for  rekombinant TKI  og 1.25 k 0 . 1 5  

(n = 3) for T K I - l  93. For -ATP  formerne er Hill koefficienten  0.46 k0.08 (n = 3) 

for  rekombinant T K I  og  0.5 i O . 1   ( n  = 3)  for  TKI-193. 

En uaendret affinitet  for  thymidin  kombineret  med en lavere V,,, indikerer 

a t  de 40 C-terminal  amino  syrer  har  en  strukturel  rolle  og/eller  at  bindingen  af ATP 

er  aendret. 
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Abbreviations 

a.a 

ADK 

ATP 

AZT 

Cdk 

CDNB 

CDP 

CFU 

CHAPS 

CKI 

CLL 

CML 

C-point 

Comp-PCR 

dATP 

dCDP 

dCK 

dCMP 

dCTP 

dCyd 

dGDP 

dGTP 

dNDP 

dNTP 

dThd 

dTMP 

dTTP 

dUDP 

Amino acids 

Adenylate kinase 

Adenosine  triphosphate 

Azidothymidine, 3’-Azido-2’,3‘-dideoxythymidine 

Cyclin-dependent  protein  kinase 

1 -chloro-2,4-dinitrobenzene 

Cytidine  diphosphate 

Colony  forming  units 

3-[(3-cholamidopropyl)dimethylammoniol-l-propanesulfonate 

Cdk inhibitory  proteins 

Chronic lymphatic leukemia 

Chronic  myelocytic leukemia 

Competence  point, located in G, phase 

Competitive  reverse transcriptase-PCR 

Deoxyadenosine  triphosphate 

Deoxycytidine  diphosphate 

Deoxycytidine kinase 

Deoxycytidine  monophosphate 

Deoxycytidine  triphosphate 

Deoxycytidine 

Deoxyguanosine  diphosphate 

Deoxyguanosine  triphosphate 

Deoxyribonucleoside  diphosphates 

Deoxyribonucleoside  triphosphates 

Thymidine 

Thymidine  monophosphate 

Thymidine  triphosphate 

Deoxyuridine  diphosphate 
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dUMP 

EFTU 

E2F 

FCS 

G, 

G ST 

GST-TKI 

HeLa 

HIV 

HL-60 

HSV 

IPTG 

K, 
KY895 

n 

N F-Y 

NMR 

PCR 

pGEX2T 

Deoxyuridine  monophosphate 

Elongation  factor 

Cellular transcription  factor 

Fetal calf  serum 

G,-phase. The  period  in  the cell cycle  where  the  cells prepares for 

DNA  synthesis 

Glutathione-S-transferase 

Glutathione-S-transferase-thymidine  kinase  fusion  protein 

Human  cervix cancer  derived  cell line 

Human  immumodeficiency  virus 

Human  promyelocytic  cell line 

Herpes simplex virus 

Isopropyl  P-D-thiogalactoside 

Michaelis  constant 

A TK- €.coli strain 

Hill constant 

DNA  binding nuclear factor Y 

Nuclear  magnetic  resonance 

Polymerase  chain  reaction 

Expression vector  for GST fusion  proteins 

pGEX2T-TK1 TKI cloned  into pGEX2T 

pGEX2T-TKI-193  Mutant clone.  Amino  acid 193  is  the last  amino  acid in   TKI  

pGEX2T-TKI-176  Mutant clone.  Amino  acid 176 is the  last amino  acid in  TKI 

PHA Phytohemagglutinin 

PMSF Phenylmethylsulfonyl  flouride 

Rb Retinoblastoma protein 

R-point  Restriction-point, a control mechanism located  in G, 

RT Reverse transcriptase 

S-phase Period in the cell cycle  where DNA is  duplicated 

TK Thymidine kinase 

TKI  The cytosolic  thymdine kinase, it is  cell cycle  regulated 

TK2 The mitochondrial  thymidine kinase, it is  constitutively expressed 
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TKI -1 93 Mutant  protein 

TKI - l 76  Mutant protein 

v,,, The maximal velocity 
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Appendix 1 

ABTG medium: 

A I  0 salt: 100 g (NH,),SO,, 300 g Na,HP04  2H,O, 150 g KH,PO,, 150 NaCI, H,O 

ad 5 litre.  pH = 7.1, autoclave. 

B salt:  1 ml 1 M MgCI,, 1 ml 0.1 M CaCI, and 0.3 ml  0.01 M FeCI, per  litre 

medium. 

T(thiamin): 0.5 ml 4 rng/ml thiamin per litre medium. 

G(glucose) 10 rnl 20% glucose per litre medium. 

LB medium: 

1 0  g bacto-tryptone, 5  g bacto-yeast  extract, 10 g NaCI, 950  ml H,O, pH 7.0, 

adjust  with 5 M NaOH. H,O add 1000 ml. Autoclave  the  solution. 

S.0.C medium: 

2 g bacto-tryptone, 0.5 g bacto-yeast  extract, 1 ml 1 M NaCI, 0.25 r n l  1 M KCI, H,O 

to   100  r n l .  Autoclave and after  cooling  add  1  m12 M Mg2+  stock (1 M MgCI,-6 H,O, 

1 M MgS04-7 H,O) and 1 ml 2  M glucose.  Sterile filter  the  solution. 

TB medium: 

1 2  g bacto-tryptone, 24 g  bacto-yeast  extract, 4 ml glycerol, H,O add 900 ml. 

Autoclave and add 100 ml  0.17 M KH,P04, 0.72 M K,HPO,) 

FN18 amino  acid  mix  (met, -led: 

L-alanine 0.71 0 g, L-arginine 0.700 g, L-histidine 0.310 g, L-lysine/HCI 0.580 g, L- 

proline  0.460 g, L-threonine 0.480 g, glycine  0.600 g, L-aspargine 0.530 g, L- 

glutamine 0.270 g, L-isoleucine0.520g,  L-phenylalanine0.240 g, L-tyrosine  0.360 

g, L-valine 0.700 g, L-aspartate 0.530 g, L-glutamate 0.880 g, L-cysteine 0.1 20 g, 

L-serine 10.00 g, L-tryptophan 0.200 g. Dissolve in 200 ml H,O, sterile  filter.  Dilute 

1 :40 when use). 
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Abstract-The  level of cytosolic  thymidine kinase (TK1)  mRNA in lymphocytesfrom  six  healthy 

was determined with competitive  polymerase chain reaction (competitive PCR). Using th is  
people  and in lymphocytesfrom  five  patients with untreated  chronic lymphatic leukemia (CLL) 

procedure we have  shown  that in patients with CLL, there is an  overexpression of  TK1 mRNA 
without  corresponding  enzymatic activity. The TKI mRNA level is approximately 100-fold 
higher in lymphocytes  from CLL patients  than in lymphocytes  from healthy persons. A high 
level  of TKI mRNA without  corresponding  enzyme activity may indicate a  defect in the 
processing of the  enzyme.  This may disturb the cells' normal feedback  system  and  thereby 
influence the  development of malignant conditions. 

Key words; Thvmidine kinase, mRNA;chronic lymphatic leukemia, competitive PCR, quanti. 
fication, CLL. 

Introduction 

Thymidine  kinase (ATF': thymidine  5'phospho- 
transferase  E.C. 2.7.1.21) is a  pyrimidine  nucleoside 
salvage  pathway  enzyme  with two isoenzymes:  TK1 
and TK2, also  called  cytosolic and  mitochondrial  TK, 
respectively. Both  enzymes  catalyse  the  phosphoryl- 
ation of thymidine  to  TMP which  is  subsequently 
converted to TTP and utilized  in DNA synthesis. 
TKI is the  dominating  form in  dividing  lymphocytes 
and  TK2 is the  only  form  present in  non-dividing 
lymphocytes,  but  in low amounts [l]. The  two iso- 
enzymes  have  characteristic differences  in  their 
enzyme  kinetic  pattern  and  subunit  molecular 
weights  [2,3].  TK1 is cell-cycle regulated  and  the 
enzyme level  is low or  undetectable in quiescent (G,) 
cells, but increases  dramatically  when  the  cells  enter 
S-phase [4-71. It is generally accepted  that  there is 

proliferative  state of the cell [l, 6 ,  %IO]. 
a close correlation  between TKI activity and the 

thymidine  kinase; TKI, thymidine kinase characteristic for 
Abbreviariom: CLL, chronic  lymphatic  leukemia; TK, 

dividing cells; TKZ, thymidine  kinase  characteristic for 
non-dividing  cells; PCR, polymerase  chain  reaction; PHA, 
phytohemagglutinin; FCS, fetal calf serum; ATP, adeno- 
sine triphosphate; CTP, cytidine  triphosphate. 

Jensen, at the above address. 
Correspondence IO: Tina  Kristensen  or  Helle Kock 

paper. 
* The two first  authors made equal contribution  to this 

leukemia  (CLL) are  non-dividing  and  it  is, therefore, 
Lymphocytes from  patients with chxonic lymphatic 

plausible that  the low TK  activity in  these cells  almost 
exclusively is due  to TK2. However,  Munch-Petersen 
and Tyrsted  found  that  the  dominating TK activity 
isolated from  lymphocytes  from  a CLL  patient dis- 
played  an  enzyme kinetic pattern similar to  that 
observed with TKI [Ill. 

be  due  to  a  change in the control of the cell-cycle 
The  occurrence of TKI in quiescent CLL cells  may 

regulated  expression of the  TK1  gene.  The cell-cycle 
regulation of TK1 is  a very complex  system  involving 
transcriptional,  post-transcriptional [4,12,13],  trans- 
lational and post-translational regulation  mech- 
anisms  [14,15]. To  investigate the  expression of TK1 
mRNA in CLL cells at  the  transcriptional level we 
have  measured  the level of TK1  mRNA by the very 
sensitive  competitive  polymerase  chain  reaction 
(competitive  PCR),  and  compared  this  with  the  TK 
enzyme  activity.  Surprisingly, we have  found  that 
the level of TKI  mRNA in lymphocytes  from  CLL 
patients was about 100-fold higher  than  in  lympho- 
cytes from  healthy persons. 

Materials  and  Methods 
Materials 

mmol), Megaprime  DNA labeling systems (RPN 1604) and 
3H-thymidine (2 Ci/mmol), [d2P]dCTP (3000 Cij 
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Hybond N+ membrane  were  from  Amersham  Denmark 
ApS.  Isopaque-Ficoll  was  from  Nycomed.  RPMI-1640, 
fetal calf  serum  (FCS),  phytohemagglutinin  (PHA)  and 
bovineserum albumin  (BSA)  were  from  Gibco.  All  nucleo- 
sides  were from Boehringer  and  Mannbeim,  RNasin, ran- 

H minus  were  from  Promega.  Thermus  aquaficus  DNA 
dom  hexamer  and  M-MLV  reverse  transcriptase  RNase 

The primers  used  were  synthesized at the Department of 
polymerase  (AmpliTaq)  was from Perkin  Elmer/Cetus. 

Microbiology  at the Technical  University of Denmark. 
SpinBind  DNA  extraction  Unit  was from FMC  Bio- 
products Europe. DEAE and  3MM filters  were  from  What- 
man. All other reagents  were of the highest  quality  gen- 
erally  available. 

Cells 
Peripheral  blood  from six healthy  persons was  collected 

in heparin  vacuum  tubes.  Peripheral  blood,  similarly  col- 
lected  from five patients with untreated CLL  was  kindly 
provided by  Sven Erik Nielsen  (M.D.),  Roskilde  Hospital. 
The lymphocytes  were  isolated by Isopaque-Ficoll  gradient 
centrifugation  [l61 and washed  in  RPMI-1640 containing 

in a  Coulter counter'and cell  pellets  were  stored  at -8O'C. 
10% beat-inactivated  FCS.  The  cell  number was  estimated 

Phytohemagglutinin  (PHA)  stimulation of lymphocytes 
from healrhy  persons 

The lymphocytes  were  stimulated  by PHA in  RPMI-1640 
medium  supplemented  with  10%  FCS, 20 p g h l  PHA and 
20  pg/ml penicillin/streptomycin, at  a  concentration of 
lo6 cells  per m1 in 5% COz  at  37°C. For flow  cytometry 
analysis  aliquots of llYcells  were  centrifuged at 5Og for 
10  min  and  fixed  in  250 p1 buffer (6.1 mM glucose, 140  mM 
NaCI, 5mM KCI, 2.7mM Na2HP04,  1.1mM M 2 P 0 4 ,  
0.5 mM EDTA) and 750 pl EtOH. The DNA  was  stained 
with 20 pg/ml EtBr and 10 pg/ml mithramycin  and  moni- 
tored by  flow cytometry. In quiescent  lymphocytes  the S- 

with PHA the  S-fraction was  in the range of 30%. These 
fraction  was  about 8%. In lymphocytes  cultured for 48 h 

data were  in  agreement  with  previous  observations [17]. 

Extraction of lymphocytes for TK acfiuiry  measuremenr 
The  cells  were  suspended in Loebs  buffer (20 mM K- 

pbosphate buffer (pH 7.4), 15% glycerol, 1 mM K-EDTA, 

3 x 1-2s)  and  centrifuged  at 20,OoOg for 30min. The 
10mM dithiotreitol (DTT)), lysed  by sonication (40 W, 

measurement  and total protein  measurement. 
supernatant ( e w e  extract)  was  used  for TK activity 

TK actiuiry assay 

the  DEAE-cellulose 81 paper  square  method  as  previously 
TK activities  were  determined as initial  velocities  using 

described [2,3]. The standard  assay  mixture  contained: 
50mM Tris-HCI (pH7.5), lOmM D n ,  2.5  mM ATP, 
2.5 mM  MgCI2, 3 mM  NaF,  0.5  mM CHAPS  (3-[(3-Chol- 

3 mg/ml  bovine  serum  albumin  (BSA)  and  10  pM )H- 
amidopropyl)-dimethylammonio]-l-propanesulphonate), 

thymidine (2 Ci/hyol). In assays  with CTP as  phosphate 
donor ATP was substituted with  equimolar  CTP.  Samples 
of 13 pl were  applied  on DEAE filters  5, 10 and 15 min 
after starting  the  reaction by addition of enzyme  extract to 
the assay  mixture to a  total  volume of 50 pl. The  reaction 
temperature was  37°C. The filters  were  washed,  eluted  and 
the radioactivity  determined by scintillation  counting  as 
described  [3]. 

enzyme  catalysing  the formation of 1 nmol  dTh#P  per  min. 
One  unit of enzyme activity  is defined as  the amount of 

Prorein  determination 

liant  blue as  dexribed 1181. 

RNA  isolation 

method  described by Chomuynski  and  Sacchi  (191. To 
Total  RNA  was  isolated  using  the  guanidine  thiocyanate 

improve  purification  an  extra  phenol  extraction  and  alcohol 
precipitation was applied.  RNA  concentration  was  esti- 
mated  from the optical  density at 260 nm,  and  the  RNA 
quality was  examined  by  agarose  gel electrophoresis. 

Estimation of RNA  recovery 

5  Ci/mmol)  durin  PHA-stimulation  in two experiments. 
'H-uridine  was  added to the growth  medium  (5  pCi/ml, 

A  total of 5 X 10 f labeled cells  were  harvested  on  3  MM 
filters  and  non-incorporated  )H-uridine  was  washed  away. 
From  an  equal  number of cells,  RNA  was  isolated  and 
applied to  3MM filters.  The  radioactivity on the  filters 
was  determined by scintillation  counting. The amount of 
isotope in  RNA  was  compared  with the  amount of isotope 
in the  cells.  The  RNA  recovery  estimated from these 
comparisons  was  in the  range  of 70-90%. 

Reverse transcriprion 

of PCR buffer  (10mM Tris-HC1 (pH&3), 50mM KC1, 
RNA  (2.5 @) was transcribed to cDNA  in  a  50 pl volume 

0.015% gelatine,  0.1%  Tween  20),  7.5 mM  MgCI2, 1 mM 

amers  and  25Ounits of M-MLV reverse  transcriptase 
of each of the dNTPs, 40 U RNasin,  7 p M  random  hex- 

37°C.  The  extent of reverse  transcription  was  controlled 
RNase  H minus. The  reaction was terminated after  2  h at 

added.  Aliquots of the  reaction  mixture  were  applied  on 
by a  parallel  reaction  where  )H-"TP,  instead of TTP was 

3 MM filters.  The  non-incorporated )H-lTP was  removed 
from  the  filter by  washing 3 x 10 min  in 1 M  HCI containing 
0.6mM Na5P3010,  lOmin  in  0.26M NaAc/EtOH and 
finally  in EtOH. The  radioactivity was  measured by scin- 
tillation  counting  (results  not  shown). 

Compefifiue  PCR 
The  principle in the  competitive  PCR  method,  as 

reported by Gilliand er al. [ZO], is a co-amplification of 
target  cDNA  concurrently  with the corresponding  genomic 
DNA.  Thus, the two templates  compete for the same 

fication.  The  genomic DNA serves as internal standard.  In 
substrates and primers  ensuring  equal  efficiency  of  ampli- 

our experiments we chose  exons 1 and  2  with  intron 1 from 
the TK gene  as  internal  standard  and exons 1 and  2  as 
the  target  cDNA  fragment. The fragments  were  amplified 
using a  pair of primers  identical to those reported by  Lipson 
and  Baserga [ZI]. The  sizes  of  the  resultingfragments  were 
138  bp  with  cDNA as template  and  248 bp with  genomic 
DNA as template.  The  internal  standard of  248 bp genomic 
DNA  was  prepared  by  PCR  with DNA  as a  template 
and  using the primers  mentioned  above. The product  was 
quantified by agarose  gel  electrophoresis  together  with 
different known  amounts of DNA. The unknown  amount 
of cDNA  was  estimated  from  a set of PCR  reactions 
performed  in  a  dilution  series  with  known  amounts of the 

The  protein  content was measured by Coomassie  bril- 
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A 

B 

1 2 3 4 5  

Fig. 1. Northern  blot  analysis of TK1 mRNA. Total RNA 
was isolated from lymphocytes  from donor 5 with  24 pg 
loaded in each  lane. The lymphocytes  were  stimulated to 
grow with PHA. Non-stimulated  (lane 1); 48 h (lane 2); 
72 h (lane 3); 96 h (lane 4); 168 h (lane 5 ) .  (A) Hybrid- 
ization  with a TK probe  detecting a single  mRNA  species 
of 1.5 kilobases. (B) After stripping the filter  in (A) for 
TK probe, the filter was rehybridized to a probe  for  the 
constitutively expressedpactin, detecting a mRNA  species 

of 2.1  kb. 

genomic DNA. The  PCR  products  were  separated by 
agarose  gel  electrophoresis.  The  amount  of  cDNA  (in 
grams) in the sample  was  estimated as that amount (m 
grams) of genomic  DNA  giving  equal  intensity  of the two 

was  calculated from the amount of cDNA, by division 
amplification  products. The number of T K 1  cDNA  copies 

with the  molecular weight of the 138 bp cDNA  fragment 
(average  molecular  weight/base = 308). The  number of 
copies of TK1 cDNA was taken as  being  representative for 
the number of copies of TK1 mRNA. 

vol.  of  PCR buffer, 7 pmol  of  each primer, 200 PM of each 
The competitive  PCR  analyses  were  performed  in a 25 PI 

dNTP, 1.5mM MgCI, and 0.5 unit  of Thermus nquaticus 
DNA polymerase. Heat-denatured cDNA (lOO"C, 2 min) 
and internal standard  were  added to the reaction  mixture 
with a layer of mineral oil to avoid evaporation.  The 
amplification was performed in a Perkin-Elmer/Cehls 
Thermal  Cycler  according to the following  program:  de- 
naturation for 1 min at 95T ,  annealing for 1 min at 6O'C 
and  polymerization for 1 min at 72T,  for 35  cycles. 

Northern blot 
Total RNA was prepared as  described  above. RNA 

preparations were denatured and  electrophoresed  through 
a 1.8% agarose gel containing 2.2M formaldehyde and 
transferred to a Hybond N+ membrane  according to pub- 

cDNA  from  plasmid pTKll[23] and  human pactin cDNA 
lished  procedures [22]. The probes  used  were human TK1 

labeled  with  32P-dCTF'  using  Megaprime  DNA  labeling 
systems. The TK1  probe was  720  bp and  the  actin  probe 
was 400 bp.  Non-incorporated  nucleotides were  removed 
with a SpinBind  DNA  extraction  unit. In a 20mI  hybrid- 
ization  reaction a 100 ng (3.4 pCi/pg)  probe  was used. 
Hybridization was performed according to the  guidelines 

ing: 0.1 X SSPE-buffer (3.6M NaCI, 0.2M sodium  phos- 
from Amersham  Denmark  ApS  with  high  stringency  wash- 

phate, 0.02M EDTA pH7.7) and 0.1% SDS at 68°C. 

Induction with PHA (hours) 

Fig.  2.  Cell-cycle-specific variation of TK1  mRNA  (copies/ 
mg protein) Vd and TK activity (nnitsimg protein) B are 
illustrated for donor 1. The  lymphocytes  were  stimulated 
with  PHA for the indicated time periods. TK1  mRNA 
was estimated by competitive  PCR  and  TK  activity was 
measured  at  standard  conditions as described in 'Methods'. 

Results 

Determination of TKI mRNA by Norrhern  blotting 

PHA stimulated  lymphocytes was analysed for two 
Expression of TK1  mRNA during the cell cycle of 

donors by Northern blot  analysis. As seen in Fig. 
1(A) it is clear that  TK1  mRNA i$ not  expressed 
in quiescent  lymphocytes, whereas a 1.5 kb  band, 
corresponding  to TKI  mRNA, is  seen  in  lymphocytes 
cultured with PHA.  The level of TK1  mRNA 
increases  reaching a maximum  after 96 h of culture 
with PHA,  whereafter  the level  decreases.  Hybrid- 
ization with a probe for the constitutive  expressed p 
actin shows that  equal  amounts of RNA  were applied 
to each lane. 

TKI mRNA and TK activity in lymphocytes from 
healthy donors 

TK1  mRNA  in quiescent  lymphocytes.  Figure 2 
With  competitive PCR it is possible to measure 

shows the level of TK1  mRNA (copies/mg  protein) 
and  the  TK activity (units/mg protein) in lympho- 
cytes from  donor 1. It is clearly demonstrated  that 
the  amounts of TK1  mRNA  and TK activity increase 
concomitantly  during  incubation of the lymphocytes 
with PHA, reaching a peak  level  at 96 h.  The  same 
cell-cycle regulated  pattern was observed  in lym- 
phocytes from  the five other  donors.  Table 1 shows 
the actual  amounts of TK1  mRNA  and  TK activity 
in the six donors. In quiescent  lymphocytes, the level 
of TKI  mRNA is very low and in four  out of six 
donors below the limit of detection which in our 
reactionscorrespond to 0.006 copies of TK1  mRNA/ 
cell. After  PHA stimulation, the level of TK1  mRNA 
transcripts  increases to a maximum  level,  between 
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Table 1. The amount of TK1 mRNA  (copies/mg protein) and TK activity (units/mg protein) in 
non-stimulated  lymphocytes  and  lymphocytes incubated with PHA  for  96 h 

(copies X W / m g  protein) 
TK1  mRNA 

TK activity (units/mg protein) 

Donor 
No. 

Non-stimulated 
lymphocytes 

PHA-stimulated 
lymphocytes 

Non-stimulated 
lymphocytes 

PHA-stimulated 
lymphocytes 

1 N.D  3.2  0.009  0.195 
2 
3 0.215 

N.D 
20.0 
4.9 0.013 

0.013 
0.120 
0.292 

4 0.061  5.4 0.00s 
5  0.009 
6 

N.D  85.7 
0.503 
0.285 

N.D 98.8 0.016  0.760 

N.D =Not detectable. 

Table 2. The amount of TK1  mRNA  (copies/mg  protein) 
and TK activity (units/mg protein) in lymphocytes from 

five patients with CLL 

TK1  mRNA TK activity 
(units/mg 

patient No. protein) protein) 
CLL  (copies X 1oS/mg 

1 10.3 
2  7.4 

0.008 
0.006 

3 
4 

22.7 
15.2 

0.013 
0.005 

5 6.1 0.006 

t"' 

Fig. 3. The amounts of TK1  mRNA  (copies/mg  protein) 

isolated  from  CLL  cells.  The  numbers on the x-axis refer 
E2 and TK activity  (units/mg  protein) in lymphocytes 

to the five CLL patients. 

50 and 5000-fold higher  than in  quiescent cells. The 

vidual variation  between  the different donors. 
broad  range in TK1  mRNA level  may reflect indi- 

TKI mRNA and TK activity in CLL cells 
Our results  show that  the  TK activity  in CLL 

cells is  low and in the  same  range  as in  quiescent 
lymphocytes,  between 0.005-0.013 units/mg  protein 

(Table 2). Surprisingly,  despite the low TK activity, 
lymphocytes  from  CLL  patients  express  very high 
levels of TK1 mRNA (Fig. 3). .The level of TK1 
mRNA/mg  protein was  between 30 and 300-fold 
higher  than  the level in quiescent  cells  from  healthy 
donors. 

Characterizatiorr of the TK isoenzyme in C L L  cells 
Owing to  the high TK1 mRNA level  it  was impor- 

tant  to establish to which degree  the  TK activity  was 
due  to  TK1  or TK2. The low amounts of TK activity 
in  the  crude extracts,  however,  did-not  allow  any 
further separation of TK1  and  TK2.  Therefore, we 
have distinguished  between TK1  and  TK2  using  the 
pronounced differences in substrate specificity. 

Both  isoenzymes  utilize  adenosine  triphosphate 

also use cytidine triphosphate  (CTP) efficiently, 
(ATP) efficiently as  phosphate  donor,  but  TK2  can 

whereas it is a  poor  phosphate  donor  for  TK1 [24]. 

similar to  TK2 in quiescent cells or  to  TK1 in  dividing 
To clarify whether  the  isoenzyme in CLL cells  is 

cells, we have compared the phosphate  donor 
efficiency of ATP  and  CTP  in  quiescent  lymphocytes, 
PHA stimulated  lymphocytes  and CLL cells. TK 

TK activity with ATP  as  donor. 
activity with CTP  as  donor is given  as a percent of 

As  seen in Fig. 4, CTP  was  a poor  phosphate  donor 
for  the TK enzyme  in PHA  stimulated  lymphocytes, 
but  an efficient phosphate  donor  for  the TK enzyme 
in  quiescent  lymphocytes  and CLL cells. These 
results  indicate that  the  TK in CLL cells is the  same 
as in  quiescent  lymphocytes,  namely TK2. 

Discussion 

lutionized the  area of molecular  biology.  With  its 
The  development of the  PCR  reaction  has  revo- 

high  sensitivity,  competitive PCR  makes it possible 
to  measure gene expression of even a  low  copy  gene, 
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Fig. 4. The ratio between phosphate  donor capacity of 
CTP and ATP. In each experiment the enzyme activity is 
normalized to 100% with ATP as phosphate  donor. (A) 
Non-stimulated  lymphocytes; (B) lymphocytes 96 h after 
PHA stimulation; (C) CLL cells.  The  numbers on the x- 

axis refer to the individual  donors  and  patients. 

such  as  thymidine  kinase. We wanted to  quantitate 
TK1  gene  expression in  lymphocytes  from  untreated 
CLL  patients,  but were restricted by the  limited 

method  for  determination of gene expression is 
availability of material. The most  frequently  used 

Northern  blot  analysis,  but  the  results  were very 
weak when  carried out on PHA stimulated lym- 
phocytes. To  be  able  to  detect  TK1  mRNA in the 
very limited CLL samples,  a  more  sensitive  method 
was  required.  Using  competitive  PCR  it was possible 
to quantify  the  level of TK1  mRNA,  even in  quies- 
cent  lymphocytes.  We  have  estimated  a  very  low,  but 
detectable  level, in two donors.  The  amount of TK1 
mRNA in  quiescent  lymphocytes  is  very  close to the 
detection  limit, which is  about 0.006 copies of TK1 
mRNA/cell.  Below  this  level,  a 248 bp  amplification 
product  interferes  with  the  competitive  PCR.  This  is 
probably  as  a  result of traces of DNA  or non-spliced 
RNA  in  our  RNA  preparation.  As  there is  a  minor 
loss  during  the  RNA  purification  and  the  cDNA 
synthesis  (see  Methods), the actual  level of TK1 
mRNA is slightly underestimated.  However, we pre- 
sume  that  the  underestimation is in the  same  range 
in all samples,  since we have  used  the  same  protocols 
for all  donors. 

As  a  model system we  have  used  human lym- 
phocytes  which are truly Go cells.  Culturing  the 
quiescent  lymphocytes in the  presence of PHA stimu- 
lates  the cells to  enter  the  cell  cycle, allowing  events 
in the GI and  S-phases to  be  investigated.  A  clear 
advantage of using  lymphocytes  as  representatives 
for  normal cells instead of immortal cell lines is the 
ability of cell lines  to  grow  continuously.  This is due 

to  the  occurrence of at  least  one  feature  required  to 
turn  normal cells into  cancer  cells. 

lated on multiple  levels  and  the  regulation  mech- 
The expression of TK has  been  shown  to be  regu- 

anisms  differ,  depending on the  cell  system. For 

in TK activity  is  largely  accounted for by an increase 
example, in cycling HeLa  cells,  the  S-phase  increase 

in the  rate of TK protein  translation [7]. In serum- 
starved cells stimulated to  re-enter  the  cell cycle, the 
increase  in TK activity is accompanied by a  cor- 
responding  increase  in TKI mRNA. In this  system 
both  transcription  and  post-transcriptional  mech- 
anisms  account for the  induction of TKI  mRNA 

known that TK activity  increases  dramatically  when 
[4,25,26]. In PHA stimulated  lymphocytes  it  is well 

the  cells  enter  the  cell cycle [ l ,  27,281. However,  for 
this cell system, we have  not  been  able to find  any 
reports  regarding  the  fluctuations  in  TK1 mRNA 
level  as  a  characteristic of regulatory  mechanisms. 

Our results  show  that  both TK1 mRNA and TK 
activity  in PHA stimulated  lymphocytes  display  the 
same  cell-cycle  regulated pattern  as  stimulated 
serum-starved cells. An  increase  in  TK1  mRNA in 
lymphocytes  at  the  entry to S-phase  is  followed by 
an increase  in TK enzymatic  activity. The TK1 
mRNA level  increases  about  100-fold  when  the cells 
are  stimulated.  When cells leave  S-phase,  the  TK1 
mRNA level  and TK  enzyme  activitydecrease. 

tems is that  lymphocytes  are  truly Go cells, they do 
An  important  difference  between  the  two cell sys- 

not  enter  S-phase  before 48 h  after  addition of PHA. 
This is in  contrast  to  stimulated  serum-starved  cells 
which  reach  S-phase  after 12  h [25]. 

In CLL cells we  found,  surprisingly,  that  TK1 
mRNA  expressed  per  mg  protein is 30-300 fold 
higher than in  quiescent  lymphocytes. The TK 
activity  level  is  very low and  in  the  same  range  as 
in  quiescent  lymphocytes.  Exploiting  the  different 
substrate  specificities of TK1  and TK2 using  CTP 
instead of ATP  as  phosphate  donor, it  was  shown 
that  the  TK  activity in the  CLL  cells is due to TK2. 
This  phenomenon of a high TK1 mRNA level  with 
no TK1  enzyme  activity  has  to  our  knowledge  not 
been  described  elsewhere. 

Our  experiments  indicate  that  CLL  cells  have  an 

TK1  mRNA  level is high and  is  prevented  from 
abnormal  regulation of the  S-phase-regulated  TK1. 

translation  into  active  enzyme.  Owing to its  associ- 
ation with the  proliferative  state of cells,  TK  activity 
is  regarded  as  a  useful  tumor  marker  with  prognostic 
value for  a  number of malignant  diseases  such as 
human  breast  cancer [29-311, non-Hodgkins  lym- 
phoma [32] and  acute  lymphatic  leukemia [33]. In 
CLL  cells  the TK activity is very  low  and  can,  there- 
fore,  not  be  used  as  a  tumor  marker. On the  other 
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hand,  the  level of TK1 mRNA is very high and may, 
therefore, serve as an alternative  tumor  marker  in 
these cells to predict the diagnosis at an earlier stage. 
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INTRODUCTION 

Thymidine  kinase is an enzyme  in the pyrimidine  salvage  pathway that, with ATP as 
co-substrate.  catalyzes the phosphorylation of deoxythymidine to deoxythymidine 
monophosphate (dTMP)  which is subsequently  converted to d r r P  and utilized for  DNA 
synthesis. 

In mammalian  cells there are two thymidine  kinases (TK), the constitutively 
expressed TK2, and  the S-phase  specific TK1 which  is  only present in  dividing  cells'. 

Lymphocytes  from patients with  chronic  lymphatic leukemia (CLL) are non-dividing 
and it  is therefore plausible that the low TK activity in these cells  almost  exclusively  is 
due to TK2. However, a thymidine  kinase  with  similar  enzyme  kinetic pattern as that 
observed  with TK1 from  lymphocytes  stimulated to growth by the mitogene 
phytohemagglutinin  has been reported'.  Since TK1 expression is tightly  regulated 
thoughout the cell cycle  with transcriptional. translational as well as post-translational 
regulatory  mechanism3, the occurrence of TK1 in  non-dividing CLL cells may be due  to 
a change  in the control of the cell cycle regulated  expression of the TK1 gene. 

To investigate the transcriptional  expression of TK1 mRNA in CLL cells, we have 
measured the level of TK1 mRNA  with the competitive  polymerase chain reaction 
(competitive PCR), and compared  this  mRNA  level  with the TK enzyme  activity. Surpri- 
singly, we have  found that the ratio of TK1 mRNA/TK  activity  in  lymphocytes from CLL 
patients  was about 60-400 fold  higher than in  lymphocytes from healthy  persons. 

Purine and Pyrimidine  Mernbolirm in Man VIII. Edited by 
A. Sahota and M. Taylor. Plenum &ss, New York. 1995 23 



METHODS 

Lymphocytes  from peripheral blood  from 6 healthy  persons  and  from 5 patients with 
untreated  CLL were  isolated by the Ficoll-Isopaque  technique. 
Lymphocytes from healthy persons were stimulated to growth by PHA in RPM1 1640 
medium supplemented with 10% fetal calf serum, 20 pg/ml PHA and 20 pg/ml 
peniciUin/streptomycin at a concentration of lo6 cells  pr ml in 5% CO, at 37°C. The 
lymphocytes were divided  in portions of 5 x 10' cells, and in  each portion, TK activity  was 
determined by the DE-81 paper method as described4 and total protein was determined 
by the Bradford assag.  Total  RNA was isolated with the guanidine  thiocyanate  method6, 
transcribed  to cDNA  and quantitated by the competitive PCR method'. TK1 cDNA, 
taken  as  representative for TK1 mRNA,  was  co-amplified  with a dilution series of 
competitor DNA.  Exon 1 and 2 with intron from the TK1 gene served as competitor 
DNA and exon 1 and 2 of the TK1 gene as the cDNA fragment to  be quantitated.  The 
fragments were amplified using a pair of primers identical to those reported by Lipson 
and Basergas. The sizes of the resulting fragments was 138 bp with cDNA as template 
and 248 bp with competitor DNA as template. The relative amounts of cDNA  versus 
competitor DNA were  measured by scanning of ethidium-bromide  stained  gels.  Because 
the starting concentration of the competitor  DNA was known, the amount of cDNA (in 
grams) in the sample could  be estimated as that amount of competitor  DNA  where equal 
intensities of the two amplification  products  were obtained. The number of TK1 cDNA 
copies  was calculated from the amount of cDNA, by dividing the amount of cDNA with 
the molecular weight of 1 copy  of the 138 bp  cDNA fragment. 

The amplification was performed in a Perkin-Elmer/Cetus Thermal Cycler  according 
to  the following  program: denaturation for 1 min at 95T, annealing  for 1 min at 60°C 
and polymerization  for 1 min at  72T, for 35 cycles. 

RESULTS  AND DISCUSSION 

Table 1 shows the ratio of TK1 mRNA  copies and TK activity  in  non-dividing 
lymphocytes  from 6 healthy persons and  in  lymphocytes  from 5 patients with  CLL. As 
seen, the  ratio TK1 mRNA  copies/TK  activity  in  CLL cells is 60 to 400 fold  higher than 
in  non-dividing  lymphocytes. The TK activity in CLL  cells  is  of a magnitude as expected 
for  non-dividing  cells,  while the expression of TK1 mRNA is  very high and in the range 
of the TK1 mRNA  level  in PHA stimulated  healthy donor lymphocytes.  In these 
experiments the TK1 mRNA  level  is 3-98 x lo6 copies/mg protein (results  are not 
shown). 

The  detection limit  in  the  assay  is around 6 x 104 copies of TK1 mRNA/mg protein 
or 0.006 copies/cell. Below  this  level, a 248 bp  amplification product, interferes with the 
competitive PCR. This is probably a result of traces of DNA  or  non-spliced RNA in the 
RNA  preparation.  The results indicate that there,  as expected, is no TK1 mRNA in  non- 
dividing  lymphocytes  from  healthy  persons. 

Due  to  the high TK1 mRNA  level  in  non-dividing CLL cells it was of importance 
to clarify whether the dominating TK in  CLL  cells  was TK1 or W ,  using the 
characteristic differences in phosphate donor specificity  towards  ATP and CTP. Both 
enzymes can utilize  ATP,  but  only TK2 is capable of utilizing C T P 9 .  The relative TK 
activity  with CTP as phosphate donor was  expressed as % of  activity  with ATP as 
phosphate donor. PHA-stimulated  lymphocytes  showed a 8590% decrease in relative 
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activity,  while  non-dividing  lymphocytes  from  healthy  persons  and  lymphocytes from CLL 
patients showed a 7-30% decrease. The conclusion  is that  the enzyme  in CLL cells  is the 
same as in  non-dividing  lymphocytes  from  healthy  persons,  namely TK2. 

Table 1. Ratio of TK1 mRNA  copies and TK activity. 

TK1 mRNA copies TK activity TK1 mRNA  copies 
x 1o6/mg  protein Units/mg  protein x 106/TK activity 

Non-dividing 
lymphocytes 

1 < 0.06 0.009 < 6.7 
2 < 0.06 0.013 < 4.6 
3 0.21 0.013  16.2 
4 0.06 0.008 7.5 
5 < 0.06 0.009 < 6.7 
6 < 0.06 0.016 < 3.8 

Lymphocytes from 
CLL patients 

1 10.3 0.008 1287 
2 7.4 0.006 1233 
3 22.7 0.013 1746 
4 -  15.2 0.005 3040 
5 6.1 0.006  1016 

The  ratio between TK1 mRNA and TK activity as estimated in non-dividing lymphocytes from 6 donors and 
in lymphocytes from 5 patients with CLL. The numbers refer to the individual donors and patients. 
1 unit is the amount of enzyme that phosphorylate 1 nmol substrate  per minute. 

The occurence of a  high  level  of TK1 mRNA  without  concomittant  expression of 
T K 1  enzyme  activity  may  indicate that CLL  cells  have an abnormal regulation of the cell- 
cyclus regulated TK1. The regulations  mechanism are not fully  understood, but several 
investigations  have  shown that the  changes  in TK1 mRNA during  cell  cycle can not  fully 
account for the rise  in TK activity.  Translational and post-translational  modifications  may 
contribute to the regulation of TK1. Chang and Huang"  have demonstrated that seryl 
residues of the TK1 polypeptide are phosphorylated in cycling  HL-60  cells. An increasing 
phosphorylation of the polypeptide  was  followed  by an increase in  enzyme  activity,  during 
the  cell  cycle. Another post-translational  mechanism has been reported by Kauffman and 
Kelly". They  have  shown that amino acid  residues near  the C-terminal end are 
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responsible for degradation of thymidine  kinase protein in the G, and M phase, and that 
mutations in this part of the gene allow  expression in G, cells. 
It is  possible that a post-translational mechanism  serve as a secondary  back-up  system for 
the regulation of TK. This may  explain why we can measure a high TK1 mRNA level  but 
no T K I  activity. 
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