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Abstract

As Ahmed Djebbar has pointed out, 11th-century and earlier al-Andalus produced a “solid
research tradition in arithmetic”. So far, no continuation of this tradition has been known,
but analysis of three sections of two Latin works suggest that they borrow material that
can hardly come from elsewhere:
1. The Liber mahameleth, likely to be a more or less free translation made by Gundisalvi
or somebody close to him of an Arabic original presenting “mu āmalāt mathematics vom
höheren Standpunkt aus” contains systematic variations, for instance of proportions ::p

g

P

G
(claimed to deal with prices and goods), where the givens may be sums, differences,
products, sums or differences of square roots, etc., solved sometimes by means of algebra,
sometimes with appeals to Elements II.5–6, often after reduction by means of proportion
techniques.
2. A passage in Chapter 12 of the Liber abbaci first presents the simple version of the
recreational problem about the “unknown heritage” (likely to be of late Ancient or
Byzantine origin): a father leaves to his first son 1 monetary unit and 1/n of what remains,
to the second 2 units and 1/n of what remains, etc.; in the end, all get the same, and nothing
remains. Next it goes on with complicated cases where the arithmetical series is not
proportional to 1 – 2 – 3 ..., and the fraction is not an aliquot part. Fibonacci gives an
algebraic solution to one variant and also general formulae for all variants – but these
do not come from his algebra, and he thus cannot have derived them himself. A complete
survey of occurrences once again points to al-Andalus.
3. Chapter 15 Section 1 of Fibonacci’s Liber abbaci mainly deals with the ancient theory
of means though not telling so. If M is one such mean between A and B, it is shown
systematically how each of these three numbers can be found if the other two are given –
once more by means of algebra, Elements II.5–6, and proportion techniques. The lettering
shows that Fibonacci uses an Arabic or Greek source, but no known Arabic or Greek work
contains anything similar. However, the structural affinity suggests inspiration from the
same environment as produced the Liber mahameleth.

So, this seems to be a non-narrative, a story that was not revealed by the participants,
and was not discovered by historians so far.
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In memory of

Michel Olsen (1934–2013)

and

Gunver Kelstrup (1935–2015)

dear friends

A background

The writings of Ibn Rušd, as everybody only slightly familiar with Latin or

Hebrew medieval philosophy knows, was a major influence in both. His impact

on Arabic thought, on the other had, was modest – more modest, indeed, than

can be explained from his date or from al-Ghazālı̄’s attack on the incoherence

of the philosophers (to which he wrote an answer). Similarly, while al-Mu ta-

man’s eleventh-century Kitāb al-Istikmāl still gave rise to further work by Arabic

mathematicians [Djebbar 1993: 82 and passim], Jābir ibn Aflah’s twelfth-century

work in astronomy and spherics is much better known from Hebrew and Latin

translations than in Arabic [Lorch 1973: 39].

The obvious explanation is that al-Andalus was already cut off from the

corresponding courses of Islamic scholarly life. Not all courses, as we know –

ibn al-Yāsamı̄n’s work, partly done in al-Andalus and partly in the Maghreb,

did survive in Arabic (while leaving no clearly recognizable traces in Latin or

in Romance vernaculars); but this work was integrated with an interest that

thrived in the vicinity of madrasah learning as established in the Maghreb – in

the terminology of A. I. Sabra [1987], it represented “naturalized” knowledge.

It is therefore tempting to ask whether a fate similar to that of ibn Rušd’s

philosophy befell some further branches of al-Andalus learning.

One such branch might be theoretical arithmetic. As observed by Ahmed

Djebbar in [1993: 86],[1] there was

in Spain and before the eleventh century, a solid research tradition in arithmetic,
whose starting point seems to have been the translation made by Thābit ibn
Qurra of Nicomachos’s Introduction to Arithmetic.

1 My translation, as all translations in the following with no identified translator.
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Arabic sources seem to present us with no evidence that this tradition lived on

into the twelfth century. However, as it dawned upon me a couple of years ago,

three different Latin sources which I had worked on without at first seeing any

connection between them may be witnesses not only of survival but of impressive

expansion. Since not all of what I have written on these occasions can be

expressed better (at least not by me, at this moment), what follows will contain

some instances of auto-plagiarism.

The unknown heritage – the simple version

My first instance is a theoretical elaboration of the solution to a stunning

recreational problem – the “unknown heritage” – which I dealt with in [Høyrup

2008].

The standard version of this problem runs as follows: a father leaves to his

first son 1 monetary unit and (n usually being 7 or 10) of what remains; to1

n

the second he next leaves 2 units and of what remains, etc. In the end all sons1

n

get the same amount, and nothing remains. The solution is that there are n–1

sons, each of whom receives n–1 monetary units. Alternatively the fraction is

given first and the arithmetically increasing amount afterwards, in which case

n–1 sons get n monetary units each.

Our first source for both variants of this simple version of the problem is

Chapter 12 of Fibonacci’s Liber abbaci [ed. Boncompagni 1857: 279][2] – “simple”

only in comparison with the “sophisticated” version to which we shall return,

not in comparison with the other recreational problems dealt with in the same

chapter. It is possible to find the only possible solution by algebra or by a double

false position from the equality of the first two shares, but in order to show that

this really is a solution one has to calculate stepwise (which of course is only

possible on the basis of the given n, the control cannot show the general validity

of the solution). It is also possible to find the only possible solution by elementary

means from the equality of the last two shares, but this solution suffers from

the same defect as the previous one; moreover, it appears to have escaped all

2 Since all the copious references to the Liber abbaci in the following refer to this edition,
I shall only indicate them by page number.

- 2 -



medieval and early modern authors presenting the problem, and even all modern

historians who have worked on it.[3]

This “simple” problem is found regularly in Italian abbacus books from the

early fourteenth century onward, mostly the first variant but also sometimes

the second, and the corresponding semi-simple variants where the absolute

contributions are not i (i = 1, 2, ...) but iε (i = n, n+1, ...), which corresponds to

taking ε and not 1 as the monetary unit and skipping the first n–1 heirs. Such

semi-simple variants are also presented by Fibonacci. Most of the abbacus authors

merely state the solutions, but Jacopo da Firenze offers a full numerical check

in his Tractatus algorismi from 1307 [ed. trans. Høyrup 2007: 360f][4] that the

solution is correct (while speaking of orange-picking from a garden instead of

inheritance). The Istratti di ragioni [ed. Arrighi 1964: 140f] – a problem collection

from c. 1440 but claiming to go back to Paolo dell’Abbaco (c. 1340) and at least

likely to copy material from that period – finds the possible solution by means

of a double false position applied to the equality of the first two shares. A

number of other abbacus occurrences are listed in [Høyrup 2008: 628–630, 640f]

(after 2008 I have noticed quite a few more, none of them offering anything new).

Of particular interest is, on one hand, the appearance of the problem in

Maximos Planudes’s late thirteenth-century Calculus according to the Indians, Called

the Great [ed., trans. Allard 1981: 191–194]; and, on the other, its apparent absence

from Arabic sources (even though two contain a derived and simplified version).

3 Since the last son (say, no. N) leaves nothing, the remainder rN of which he takes the
fraction 1/d must be 0 (if not, (1– 1/d )rN would be left over). But since each visitor picks
as many apples as his number before taking 1/d of the remainder, the Nth son gets N
apples, and so therefore do all the others. But the second-last visitor (no. N–1) only picks
N–1 apples before taking the fraction 1/d of the remainder rN–1. Therefore this fraction must
be 1 (he has already picked N–1, but should have N). Further, he leaves N to the last
visitor. In consequence rN–1 is N+1. 1/d of this number being 1 ( N+1/d = 1), N must be d–1.

It is hard to believe that Euler [1774: 488–491] should have overlooked this; but if
he has seen it, he does not tell his readers. After all, he is teaching algebra, and may have
seen no reason to divulge that algebra is not needed.
4 Since it is immaterial for the present purpose I shall not repeat my arguments that the
manuscript Vat. Lat. 4826 most likely is a copy of Jacopo’s original treatise, whereas the
two other surviving manuscripts descend from a revised version. Who is interested in
the question may look at [Høyrup 2007: 6–25].
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Planudes presents us with the second occurrence we know about, preceded

only by that in the Liber abbaci. It follows after the exposition of how to calculate

with Hindu-Arabic numerals, coming just before the discussion of the problem

to “find a figure equal in perimeter to another figure and a multiple of it in

area” – that is, for a given n to find two rectangles[5] (a,b) and (c,d) such

that a+b = c+d, n ab = cd (a, b, c and d being tacitly assumed to be integers). It

serves as illustration of this observation or theorem:[6]

When a unit is taken away from any square number, the left-over is measured
by two numbers multiplied by each other, one smaller than the side of the square
by a unit, the other larger than the same side by a unit. As for instance, if from
36 a unit is taken away, 35 is left. This is measured by 5 and 7, since the
quintuple of 7 is 35. If again from 35 I take away the part of the larger number,
that is the seventh, which is then 5 units, and yet 2 units, the left-over, which
is then 28, is measured again by two numbers, one smaller than the said side
by two units, the other larger by a unit, since the quadruple of 7 is 28. If again
from the 28 I take away 3 units and its seventh, which is then 4, the left-over,
which is then 21, is measured by the number which is three units less than the
side and by the one which is larger by a unit, since the triple of 7 is 21. And
always in this way.

This description does not refer explicitly to pebbles or other counters, but it

points rather unambiguously at something like Figure 1 (for simplicity showing

a 5×5 square); this is indeed the kind of diagram I made spontaneously when

first encountering the problem and the stepwise calculation in Jacopo’s Tractatus.

Even straightforward application of algebraic symbols does not easily show that

the procedure goes on in such a way that exactly nothing remains in the end.[7]

The pebble pattern not only allows us to understand the solution, it is also

a likely basis for the discovery that the counter-intuitive problem was possible.

Since pebble arguments were current in Ancient Greek mathematics and in view

5 Χωριον, here translated “figure”, may actually have the more restricted meaning
“rectangular area”.

The statement of the problem and the first of two solutions are found almost verbatim
in the pseudo-Heronic Geometrica, Chapter 24 [ed., trans. Heiberg 1912: 414–417].
6 I try to make a very literal translation from the Greek text.
7 The proof will have to build on a chain of identities n (n–p+1) = p+(n+1) (n–p), p
increasing from 1 to n.
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of the vicinity to material of Ancient or at most of early Byzantine date it is

Figure 1

highly plausible that the problem originated in late Greek Antiquity or in a

Byzantine context.[8]

The quasi-occurrences in Arabic sources[9] show beyond reasonable doubt

that the problem was not transmitted to Fibonacci through Arabic mainstream

recreational mathematics. One of them is in ibn al-Yāsamı̄n’s Talqı̄h al-afkār fı̄’l

amali bi rušūm al-ghubār (“Fecundation of thoughts through use of ghubār

numerals”), written in Marrakesh in c. 1190, that is, before the first version of

the Liber abbaci from 1202. It runs as follows:

An inheritance of an unknown amount. A man has died and has left at his death
to his six children an unknown amount. He has left to one of the children one
dinar and the seventh of what remains, to the second child two dinars and the
seventh of what remains, to the third three dinars and the seventh of what
remains, to the fourth child 4 dinars and the seventh of what remains, to the
fifth child 5 dinars and the seventh of what remains, and to the sixth child what
remains. He has required the shares be identical. What is the sum?

The solution is to multiply the number of children by itself, you find 36,
it is the unknown sum. This is a rule that recurs in all problems of the same type.

The other comes from the al-Ma ūna fı̄ ilm al-hisāb al-hawā ı̄ (“Assistance in the

science of mental calculation”) written by Ibn al-Hā im (1352–1412, Cairo, Mecca

and Jerusalem, and familiar with Ibn al-Yāsamı̄n’s work):

8 I have observed no traces of the problem or of the underlying theorem in such ancient
sources as normally offer veiled references to mathematical practitioners’ knowledge or
problems (those Platonizing or Pythagoreanizing writers who tried to transform the
mathematics they understood into “wisdom”, cf. [Høyrup 2001]). It is therefore unlikely
that the problem was (widely) known before, say, 200 CE.
9 I thank Mahdi Abdeljaouad for tracing them and supplying me with French translations,
which I here translate into English).
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An amount of money has been diminished by one dirham and the seventh [of
what remains]; by two dirhams, and then the seventh of what remains; then three
dirhams and the seventh of what remains; then four dirhams and the seventh
of what remains; then five dirhams and the seventh of what remains. In the end,
six remain.

Take the square of the six that remain, it is the amount which was asked
for.

Ibn al-Yāsamı̄n, we see, does not tell the reader that the last share is determined

according to the same rule as the preceding ones, and Ibn al-Hā im does state

that the shares are equal. Both pieces of information are indeed superfluous. The

number of shares is given in both versions, and both are “Chinese box problems”

that can be solved by backward calculation; none the less, both still use the same

rule as Fibonacci’s and Planudes’ version of the simple problem.

Similar backward calculations could be made for fractions that change and

for absolutely defined contributions that are not in arithmetical progression.

However, the rule is only valid for a constant fraction , where N is the given1

N 1

number of shares, and if the absolutely defined contributions are 1+(i–1). We

are allowed conclude that the Arabic problem descends from the “Christian”

problem, and that it is the outcome of an unfelicitous attempt to assimilate it

to a more familiar structure.

Mathematicians from the Maghreb or al-Andalus[10] had thus come to know

about the problem type already before the Liber abbaci was thought of; but their

reference to a rule that is adapted to the “Christian” version shows that this latter

version with its unknown value of N was not derived from the box-problem

versions known in Arabic. Fibonacci and Planudes show us the original, which

must none the less antedate ibn al-Yāsamı̄n and therefore both of them.

10 Ibn al-Yāsamı̄n’s “all problems of the same type” seems to prove that he was not alone
in his area to know about them. Since he had been active in Morocco as well as al-
Andalus, this area could be either, or both.
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The sophisticated version of the unknown heritage

Fibonacci, however, present us with more, and that is where things become

interesting for our topic. A notation will be handy for our further discussion.

Division of a number (or an abstract amount of dragmae, which in the language

inherited from Arabic algebra amounts to the same as Diophantos’s monades)

in such a way that each of the successive parts receives first α+iε, i = 0, 1, 2, ...,

and afterwards φ times what remains at hand (φ<1, but not necessarily an aliquot

part ) we shall designate (α,ε|φ); a division where instead φ times what is1

n

available is taken first, and afterwards an absolutely defined amount α+iε, we

shall designate (φ|α,ε). In this notation, Fibonacci offers the following problems:

(1,1| )1

7

( |1,1)1

7

(3,3| )1

7

( |3,3)1

7

(1,1| )2

11

(4,4| )2

11

( |1,1)2

11

( |4,4)2

11

(2,3| )6

31

( |2,3)6

31

(3,2| )5

19

( |3,2)5

19

The column to the left contains the two variants of the simple version, together

with the equally simple variant that the monetary unit is 3 bizantii instead of

1. Here, everything is stated in terms of a father distributing his possessions to

his sons.

The remaining columns speak about dividing a number or a number of

dragmae in the ways indicated. Here, all shares are similarly stated to be equal,

with the difference, however, that the last share may be fractional. The problems

in the second column are dealt with according to the rule for the simple version,

with the unexplained trick that is understood as . Then the number of2

11

1

5½

shares turns out to be 4½, meaning that the last (half-)share is only half of the

others.

This trick, however, does not work in the third and the fourth column. For

the problem (2,3| ) Fibonacci finds the only possible solution by means of regula6

31

recta, that is, rhetorical first-degree algebra: he calls the number to be divided

a thing, computes the first two shares and equates them (p. 280). The number

to be divided is then found (if expressed in a formula that follows the calculations
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step by step) to be

T = . (1)
q 2(α ε)–(q–p)qα–(q–p)pα–(α ε)pq

p 2

Fibonacci afterwards makes a step-by-step calculation, showing that all shares

are indeed equal. In the end he claims to extract from the calculation this rule

(ex hac quidem investigatione talem extraxi regulam):[11]

T = , (2a)
[(ε–α) q (q–p)α] (q–p)

p 2

N = , (2b)
(ε–α)q (q–p)α

εp

Δ = , (2c)
ε (q–p)

p

N being the number of shares and Δ the value of each of them.

This is a case of mild fraud. With techniques at Fibonacci’s disposal (1) might

be transformed into

T = (1*)
[q (α ε)–(p q)α] (q–p)

p 2

and possibly into

T = (1**)
[εq–αp] (q–p)

p 2

but never into (2a), however much we with our more convenient tools can prove

their algebraic identity. We may conclude that Fibonacci took over a rule whose

derivation he did not know, and claimed it to be a consequence of his own

solution.

This is confirmed by the solution he offers (this time without calculations

of his own) for the case (3,2| ). Formula (1) would apply smoothly to this case,5

19

11 Fibonacci expresses himself in terms of the numerical values belonging with his
paradigmatic example; but he identifies these so precisely that the translation into symbols
in unambiguous.
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but formula (2a), which Fibonacci claims to have derived, contains a factor ε–α,

which is impossible as long as you have no developed conceptualization of

negative numbers; it does not suffice that you know in practice how to make

simple additive operations with them, as Fibonacci did. Instead he therefore gives

this rule:

T = , (3)
[(q–p)α–(α–ε)q] (q–p)

p 2

which subtracts (α–ε)q instead of adding (ε–α)q.

For the case ( |2,3) Fibonacci gives the solution6

31

T = (4)
[(ε–α) q (q–p)α] q

p 2

and for ( |3,2)5

19

T = , (5)
[(q–p)α–(α–ε)q] q

p 2

also unconnected to his algebraic calculation.

I know of no surviving text from the fourteenth or the early decades of the

fifteenth century where these sophisticated versions of the problem turn up. The

first trace after Fibonacci (but a mere trace) is Cardano’s treatment of a problem

( |100,100) in the Practica arithmetice et mensurandi singularis [1539: fol. FF iir].1

7

Instead of the usual rule, he gives the solution

T = (6a)
[(q–p)q] α

p 2

which follows from Fibonacci’s rules (4) or (5) if we put ε = α and invert two

factors (an inversion which could not be made in the full rules (4) or (5) if α ≠ ε).

His rule for the number of heirs is

N = q–p . (6b)

Since in (6a) Cardano dutifully finds 1 1 (p2) and divides by it, (6b) must be

considered a mistake for

- 9 -



N = . (6b*)
q–p

p

Both this mistake and the inversion of factors in (6a) seem to rule out that

Cardano built directly on the Liber abbaci. In spite of our ignorance it seems likely

that there was some kind of circulation of the sophisticated versions.

This is confirmed by Barthélemy de Romans’ Compendy de la praticque des

nombres, a Franco-Provençal treatise from c. 1467,[12] in which these progressions

composées (as Barthélemy calls them) constitute the high point.[13] Some of the

φ-values known from the Liber abbaci are repeated by Barthélemy, which has led

Spiesser [2003: 156] to find it “very plausible” that Fibonacci was the direct

source. Closer analysis shows that the coincidences are very far from being

statistically significant [Høyrup 2008: 635 n. 31]; moreover, when Barthélemy

repeats a φ-value known from Fibonacci, the appurtenant α and ε are different

in 8 out of 9 cases; finally, Barthélemy’s global approach as well as his rules are

quite different from what we know from Fibonacci, even in that part of the text

where Barthélemy seems to borrow from precursors (namely [Spiesser 2003:

391–402]).

If Fibonacci’s own text shows him to have borrowed (which he does not deny

in general, even though here he pretends to have extracted the rules from his

own calculation), and if both Cardano’s hear-say knowledge and Barthélemy’s

real acquaintance with the sophisticated version of our problem do not depend

on the Liber abbaci – then where does it come from?

Fibonacci himself tells (p. 1) that he had studied abbacus matters, first (when

a boy) in Bejaïa, and afterwards in “Egypt, Syria, Greece [i.e., Byzantium], Sicily

and Provence”. Above I argued that the simple version is likely to have

originated in Byzantium or in later Greek Antiquity. There is also evidence that

Fibonacci himself learned about that version in Byzantium. His heritage problems

12 We only possess a revised redaction from 1476 due to Mathieu Préhoude, which has
been edited with a modern French translation by Maryvonne Spiesser [2003]. The original
treatise was said by Barthélemy [ed. Spiesser 2003: 225] to be written in order to provide
clearer understanding to those who had read an earlier work of his,
13 The pertinent part of the text is found in [Spiesser 2003: 391–423], the translation on
pp. 543–579. There is also a substantial commentary (pp. 139–156). My own supplementary
discussion is in [Høyrup 2008: 632–638].
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speak about bizantii, and every time this coin is mentioned together with a place

in the Liber abbaci (six times in total), it place is Constantinople; the correlation

holds the other way too, Byzantium problems never speak about other coin.

Either Fibonacci’s choice of bizantii is simply due to what was in the problem

he borrowed, or he wanted to intimate that this was known to him as a Byzantine

problem.

However, neither Planudes nor any other Byzantine source knows the

sophisticated version, and Fibonacci has no bizantii (nor any coin except the

almost-abstract dragma) in the three corresponding columns. Ibn al-Yāsamı̄n’s

streamlined version of the simple problem shows on the other hand that this

version cannot have been part of the general tradition of Arabic recreational

mathematics.

That leaves us with only two possible locations for the creation of the

sophisticated version: Provence, or the Iberian world, to which Provence had

connections. In [2008: 632] I explicitly denied the presence of any version of the

problem in the Castilian Libro de arismética que es dicho alguarismo [ed. Caunedo

del Potro & Córdoba de la Llave 2000: 133–213] from 1393, which in several

respects shows more traces of the heritage from al-Andalus than do Catalonian

and Provençal writings. For that reason I tended to point to Provence, although

with strong doubts because of the lack of any evidence that twelfth-century

Provence should have been the home of mathematicians with the required level

of competence. As it turns out, I was mistaken – both (1,1| ) and (1,1| ) are1

10

1

11

found on p. 169; no instances are found in known Provençal writings before the

mid–fifteenth-century Traicté de la praticque d’algorisme (which is somehow

connected to Barthélemy’s Compendy and may even be the earlier treatise which

he tells to elucidate, cf. note 12[14]). All in all an Iberian invention therefore

now seems much more plausible than a Provençal origin.

How could the invention have been made? Were the required tools at hand

for those who know to wield them?

Once it is known that a solution can be found, an algebraic solution like the

one produced by Fibonacci is of course possible. However, it can never provide

14 I thank Stéphane Lamassé for giving me acccess to the transcription of the Traicté in
his unpublished dissertaion.
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the idea that the problems should have a solution. It is no doubt possible to

Figure 2

guess, on the basis of the simple version, that other arithmetical series and other

fractions will work more or less in the same way, and then try. But a direct proof

can also by made by means of a tool that Fibonacci uses elsewhere and must

have learned in some place: the line diagram.

We may look at Figure 2, supposing successive shares to be found by taking

first absolutely defined amounts an, and then a fixed fraction of what remains.

AB represents Sn, that is, the amount that is at disposition when the n-th share

is to be taken, n being arbitrary (but possible). This share is AD, consisting of

AC = an and CD = φCB. The following share is DF, consisting of DE = an+1 and

EF = φEB. Since AD = DF = Δ, CB = CD+DB, and EB = EF+FB, we find that

an+1–an = φ(CB–EB) = φ(CD–EF)+φ(DB–FB) = φ(an+1–an)+φΔ ,

whence

(1–φ) (an+1–an) = φΔ
and further (in order to avoid a formal algebraic division) the proportion

Δ : (an+1–an) :: (1–φ) : φ .

Euclid’s Data, prop. 2 [trans. Taisbak 2003: 254] states that “If a given magnitude

[here Δ] have a given ratio [here (1–φ):φ] to some other magnitude [here an+1–an],

the other is also given in magnitude” (down-to-earth application of the rule of

three is also possible). Therefore an+1–an is constant, and the successive ai constitute

an arithmetical progression; if they do, on the other hand, all shares will be equal

(all steps are linear and therefore reversible).

There is no doubt that this argument could have been made in eleventh-

century al-Andalus – and why not then in the twelfth century too, before the

final catastrophe?
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Liber mahameleth

We shall return to the Liber abbaci, but first we shall look at the Liber

mahameleth, an anonymous Latin work that was discovered by Jacques Sesiano

in 1974 and first described by him in [1988]; in recent years, two critical editions

have appeared, prepared respectively by Anne-Marie Vlasschaert [2010] and

Sesiano [2014]. Both editors agree that the title refers to Arabic al-mu āmalāt,

which seems indeed beyond dispute. Sesiano [2014: xviiif] proposes the

compilation to have been made by John of Seville, primarily because a fifteenth-

century abbacus book refers to the author as ispano, “Spanish”, which Sesiano

takes as a mistake for hispalensis, “Sevillian”, but also because the Liber mahameleth

shares a number of passages with John’s Liber algorismi. He further points to

evidence that the work must have been written in an Arabic environment, that

is, before John supposedly went to Toledo. Sesiano himself raises two objections.

Firstly, the Latin of the Liber mahameleth is much more polished than in other

writings ascribed to John; secondly, the work seems never to have received the

final touch, which agrees badly with a work produced by somebody who still

had many years of activity waiting for him.

On this point, Charles Burnett’s work [2002] on the identity of John becomes

relevant. As it turns out, a group of translations from the Arabic, mostly (perhaps

all) from the 1130s and 1140s, are attributed to a Johannes Hispalensis; another

group is attributed to one Johannes Hispanus/Hispanis, John of Spain, who was

connected to Dominicus Gundisalvi (thus plausibly working in and in any case

linked to Toledo), active around the 1150s, and who may but need not be

identical with John of Seville. This is the John who was responsible for the Liber

algorismi.[15] Burnett points out that the passages which the Liber mahameleth

shares with the Liber algorismi are also shared with Gundisalvi’s De divisione

philosophiae, to which it is indeed even closer (Burnett observes further echoes

in De scientiis, Gundisalvi’s translation of al-Fārābı̄’s On the Classification of the

15 Actually, three manuscripts (wo from the thirteenth, one from the fourteenth century)
ascribe it simply to magister Johannes, while one (fourteenth century) ascribes it to magister
Johannes Yspalensis [Allard 1992: xxxviii–xl, 62]. Burnett’s ascription to John of Spain builds
on the passages shared with Gundisalvi.
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Sciences). Burnett concludes (p. 70) that the “impression that one gets, therefore,

is that the Liber mahameleth is written either by Gundisalvi or by a close associate

of his” – and in the latter case Burnett opts for John (of Spain, possibly but not

necessarily the same as John of Seville).

Vlasschaert [2010: 30] tends to see Gundisalvi as the compiler, though with

some reservation. To this an observation can be added which seems to rule out

John. The Liber mahameleth makes consistently use of the algebraic terms census

and res, which were to become the standard terminology of Latin algebra (since

the systematic introduction to algebra which the Liber mahameleth refers to

regularly has been lost, there is no occasion to introduce the radix as root of the

census). The second part of the Liber algorismi, on the other hand, contains a small

“excerpt of the book called gebla mucabala [ed. Burnett, Zhao & Lampe 2007:

163–165], and here res, not census is used as translation of māl. Given the

otherwise close relations between the Liber mahameleth and the Liber de algorismi,

this seems to exclude common authorship; in particular it excludes Sesiano’s

hypothesis that the Liber mahameleth was written by John while he was still in

Muslim area, since the Liber de algorismi makes use of other translations

circulating in the Toledan area [Burnett 2002: 84].

However, Sesiano’s evidence that the Liber mahameleth (or at least the bulk)

was written in Muslim area is still strong, while the mathematics of the book

clearly betrays the hand of a practising competent mathematician – as we shall

see, at least as familiar with proportion theory as with al-jabr, and therefore

belonging to the class of mathematicians who integrated mathematics and

astronomy; for convenience, we may see him as an “astronomer-mathema-

tician.[16] Neither Gundisalvi nor his translator friends belonged to that cat-

16 In rough approximation, the erudite mathematicians of classical Islam can be divided
into two groups. One, that of “astronomer-mathematicians”, comprises those who were
also engaged in astronomy or astronomical calculation, and who came to see the books
on spherics as “middle books”, namely read after the Elements and before the Almagest;
almost all Islamic mathematicians appearing in the Dictionary of Scientific Biography belong
to this group. In the other we find legal scholars, who also wrote about the kind of
mathematics a judge might encounter (when dealing with commercial disputes, etc.),
and more in general normal madrasah-mathematics. Its mathematics was “naturalized”,
and encompassed traditional practical arithmetic, practical geometry, and al-jabr.

This classification could certainly be refined, but for the present purpose it is sufficient.
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egory – their competence in the field, when not mainly metamathematical or

philosophical, was rather elementary. Moreover, Gundisalvi’s De divisione

philosophiae [ed. Baur 1903: 93] speaks of a “book which in Arabic is called

Mahamalech”,[17] and lists its contents in almost the same words as those in

which the Liber mahameleth [ed. Vlasschaert 2010: 7] presents its contents. In

summary it is therefore almost certain that the Liber mahameleth was compiled,

and at least in the main authored, in Muslim area by an astronomer-mathema-

tician. Some of the modest inconsistencies discussed by Sesiano [2014: lvi–lvii]

might certainly suggest incorporation of a modest measure of material that was

already at hand. Even Gundisalvi is likely to have made adjustments (or further

adjustments) – as can be seen if one compares his free translation of al-Fārābı̄’s

On the Classification of the Sciences, characterized by deletions as well as additions,

with the Arabic text and with the translation prepared by Gerard of Cremona

(all in [Palencia 1953]).[18]

Of particular interest is the way commercial problems (those belonging with

genuine mu āmalāt-mathematics) serve as pretext for advanced experimentation.

We may look at those derived from problems of buying and selling [ed.

Vlasschaert 2010: 193–211] – those whose properly practical version would be

solved by the rule of three or one of its cognates (those where division precedes

multiplication).[19] I omit the detailed calculations for simple variants where,

for instance, addition is replaced by subtraction and the operations used for the

17 All manuscripts used by Ludwig Baur go back to a single “probably already secondary
and error-ridden” archetype [Baur 1903: 154]. It is quite possible that the original had
Liber mahamaleth, and that a copyist read a t as c. Conveniently, however, the spelling
with c allows us to distinguish this Arabic treatise from the Latin compilation.
18 In terms of our conference theme we may thus say that the ascription of the Liber
mahameleth to John or to Gundisalvi, though made by colleagues who are highly respectful
of Arabic science, represents a narrative which tacitly presupposes that only Christians
(perhaps Christians living in Muslim area) could get the idea to submit practical
knowledge to the inquisitive eye of theory. For a contrasting opinion, cf. [Høyrup 1987].
19 A more complete presentation of this problem group is forthcoming in the proceedings
of the “11ième Colloque Maghrébin sur l’histoire des mathématiques arabes, École normale
Supérieure, Kouba – Alger, 26, 27, 28 octobre 2013”. Since at that occasion I used
Vlasschaert’s edition, and since I also reviewed her volume and therefore have a heavily
annotated copy ready for use, my page references will be to her edition.
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solution changed correspondingly (for example, from transformation conjunctim

to disjunctim[20]). Such variation is made systematically throughout the Liber

mahameleth.

If p and P stand for prices and q and Q for the appurtenant quantities, we

have :: (this is meant as a proportion, not an equation involving twoq

p

Q

P

fractions[21]). The start of each problem is indicated by pageline.

1937 :: , Q+P = 60. This is solved by means of proportion theory, namely3

13

Q

P

via transformation into :: and subsequent use of the rule of three.3

3 13

Q

Q P

19332 :: , P–Q = 60. Similarly.3

13

Q

P

19413 :: , Q P = 216. Fractions (or the rules that :: :: ) are not3

8

Q

P

P

Q

PQ

QQ

PP

PQ

mentioned, but the solution that is offered builds on awareness that

(3 216)÷8 = 216 = (Q P) = Q23

8

Q

P

and

(8 216)÷3 = 216 = (Q P) = P28

3

P

Q

19427 :: , √Q+√P = 7 . Uses but does not make explicit that :: , which4

9

Q

P

1

2

√4

√9

√Q

√P

is no standard theorem from the theory of proportions[22] but follows

easily from an arithmetical understanding. From here as at 1937.

Alternatively,

= = = ,4

9
1 √Q

√P
1 √Q √P

√P

7 1

2

√P

which also presupposes an underlying arithmetical conceptualization.

20 For ease of reference, also in what follows, I list the full set of operations on a proportion
:: as given in Campanus’ version of the Elements [ed. Busard 2005: 171f]:a

b

c

d
e contrario: :: conversa: ::b

a

d

c

a

a b

c

c d

permutata: :: eversa: ::a

c

b

d

a

a–b

c

c–d

conjuncta: :: aequa: ::a b

b

c d

d

a

b

a c

b d

disjuncta: ::a–b

b

c–d

d
21 Evidently, this and similar expressions are not proportions in the classical sense
(quantities and prices have different dimensions); still, the text not only handles them
as if they were but also states explicitly in the beginning of the chapter on buying and
selling (p. 186) that the proportio of the first quantity to its price is as that of the second
quantity to its price. We must think of proportions between the measuring numbers in the
given units – then the dimension problem is eliminated.
22 The reverse, when formulated as dealing with the composition of ratios, certainly is.
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Yet another alternative makes the claim that

= Q ,( (√P √Q)2

(P–Q) /Q
( √P √Q

(P–Q) /Q
)2 – √P √Q

(P–Q) /Q
)2

– true but not easy to see or even verify, in particular not if not expressed

in modern symbolism. The text does not explain.

19517 :: , √P–√Q = 1 . All three analogous procedures are shown.4

9

Q

P

1

2

1961 :: , √Q √P = 24. It is tacitly presupposed once again that :: . The4

9

Q

P

√4

√9

√Q

√P

problem is therefore analogous to the one at 19413. However, the first

solution that is offered is

= Q , = P ,√P √Q

√4 √9
4 √P √Q

√4 √9
9

which suggests awareness that the initial proportion means that Q = 4s,

P = 9s with some shared factor s. In the problem at 20110 an explicit

geometric argument for an analogous insight is given.

Alternatively, a procedure related to that at 19413 is suggested.

Finally, it is proposed to multiply 24 by itself, which yields PQ. Then

(as explained) the problem is strictly analogous to that at 19413.

A chapter follows “about the same, with [algebraic] things”. When res and census

appear in the text I shall render them by r and C, respectively.

19614 :: .[23] This is transformed into :: , whence 3r = 10+r, which is3

10 r

1

r

3

10 r

3

3r

solved in the usual al-jabr way. Alternatively, the proportion is trans-

formed into :: , that is, :: , whence :: , etc. As we see, cross-3–1

(10 r)–r

1

r

2

10

1

r

1

5

1

r

multiplication is not used to establish the equation; instead the anteced-

ents are made equal, whence the consequents also become equal. This

preference is general.

19626 :: . Through multiplication of the right-hand terms by 4÷1 = 2 ,4

20 2r

1½

2r 3

1

2

1

3

this is transformed into :: , whence 5 r+3 = 20+r, etc.4

20 2r

4

5 1

3
r 8

1

3

Alternatively: :: :: . But 1 ÷2 = , whence :: , etc.4

20 2r

1½

2r 3

2½

17

1

2

1

2

3

5

1½

2r 3

1 1

2

3

5
17

It is pointed out that this ruse only works because we have the same

multiple of r left and right.

19715 :: . Transforming we find :: :: , whence r–1 = 7, etc.8

20 r

2

r–1

2

r–1

6

21

2

7

Alternatively, since 8÷2 = 4, :: , etc.8

20 r

8

4r–4

23 “Three measures are given for 10 coins and a thing, but this thing is the price of one
measure”. Similarly in the following questions.
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19733 :: . Transformed into :: :: , whence r = 5.6

10 r

2

r

2

r

4

10

2

5

1984 :: . By transformation :: , etc.6

10 r

2

r 1

2

r 1

4

9

19814 :: , which is transformed into :: , etc.3

20 r

q

2

2

3
r–2

3

20 r

3

4r–12

19824 :: . By transformation :: , whence :: , etc.6

10–r

2

r

2

r

8

10

8

4r

8

10

An alternative that does not depend on the presence of precisely one

thing left and right transforms the proportion into :: , etc.6

10–r

6

3r

19834 :: . First solved via transformation into :: , which should give4

8–r

2

r 1

6

9

2

r 1

:: but by error becomes :: , whence r = 3. Then, as in the previous2

3

2

r 1

2

3

2

r

example, by the more generally valid alternative, which gives the correct

result r = 2. The discrepancy is not discussed and thus probably not

noticed. Could this be evidence that two different hands are involved?

19911 :: . Solved by the “general” method of the previous two examples.4

20–2r

1½

2r–3

In the end it is pointed out that this can only be understood if one has

studied algebra or Euclid’s book, “which however have been sufficiently

explained”.

In “another chapter about an unknown in buying and selling” then follows:

19927 An unknown number of measures is sold for 93, and addition of this

number to the price of one measure gives 34 – in our symbols (since no

res occurs): x+ = 34. At first the solution is given as , the93

x

34

2
± ( 34

2
)2–93

sign depending on whether the number of measures exceeds or falls short

of the price of one measure. Next a geometric argument based on the

principles of Elements II.5 is given. Euclid is not mentioned, however,

which the author is elsewhere fond of doing; since the argument uses

a subdivided line only, the direct inspiration might be Abū Kāmil’s

similar proof for the fifth al-jabr case (possession plus number equals

things) [ed. Rashed 2013: 260–263] – elsewhere it is clear that the author

knew Abū Kāmil well.

20027 The first of the two corresponding subtractive variants, namely the one

in which the number of measures subtracted from the price of one of

them gives 28. First a numerical prescription is given, next a line-based

geometric proof. If instead (the second subtractive variant) subtraction

- 18 -



of the number of measures from the price of one of them gives 28, one

should proceed correspondingly.

20110 :: , pq = 6, PQ = 24, (p+q)+(P+Q) = 15. Once again the argumentq

p

Q

P

appears to go via the factor of proportionality s, sp = P, sq = Q – as this

time a geometric argument confirms. At first s is found as = 2.PQ

pq

Therefore p+q = (p+q+P+Q) = 15 = 5. Since we already know1

1 2

1

1 2

pq, we can proceed according to the fifth case of al-jabr or Elements II.5,

none of which are mentioned; the double solution is, however.

20234 :: , pq = 10, PQ = 30, (p+q)+(P+Q) = 20. This seemingly innocuousq

p

Q

P

variation of the preceding question leads to an irrational value s = √3,

and therefore to complications and a cross-reference to the chapter about

roots (where indeed the necessary explanations are found). In the end,

this leads to a discussion in terms of the classification of Elements X (not

named here, which suggests that these classes are supposed to be

familiar – elsewhere the book is mentioned).

20424 :: , pq = 6, PQ = 24, (P+Q)–(p+q) = 5. The first part of this subtractiveq

p

Q

P

variant of the problem at 20110 is a prescription analogous to the one

for the additive variants; for the second part, a mere cross-reference is

given.

20435 :: , pq = 6, PQ = 24, (p+q) (P+Q) = 10. Without being identified, theq

p

Q

P

proportionality factor s is found as ; next (since P+Q = s(p+q), whichPQ

pq

also is not explained) p+q is found as . For the rest, a cross-(p q) (P Q)

s

reference is given. For the first step, however, a geometric demonstration

is supplied in the end.

20521 :: , pq = 20, PQ = 10, (p+q) (P+Q) = . This is explained to followq

p

Q

P
5760

the previous question, but evidently gives rise to complicated manipula-

tions of roots, for which reason both ways to solve the problem are

discussed in detail.

2072 = 3q, p–q = 34 (the identification of the two numbers as price andp

appurtenant quantity is irrelevant). The solution follows from a quadratic

completion (√p = t, q = t):1

3

t2– t = 341

3

t2–2 t+( )2 = 341

6

1

6

1

36
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t– = 51

6

5

6

t = 6

At first a purely numerical prescription is given, afterwards follows a

geometric, line-based proof – that is, the author avoids the automatic

procedures of al-jabr, apparently preferring what is based on more

respectable principles.

20724 = 2q, p+q = 18. This additive counterpart of the preceding problemp

is solved analogously

2089 :: , which is transformed into :: . The resulting equation6

4 r

2

3 √(4 r)

6

4 r

6

9 √(4 r)

(4+r) = 9 is not stated explicitly, but the numerical prescription4 r

corresponds to its transformation into = 9 and further into 4+r =4 r

81.

20815 :: . Solved correspondingly.6

4–r

2

3√(4–r)

20821 :: , xy = 21 (x and y stand for the “two different things” of the text).3

x y

1

y 1

9
y

The prescription corresponds to the transformation of the proportion

into :: , whence x+y = 3 y, x = 2 y, 2 y2 = 21, y2 = 9, and3

x y

3

3y 1

3
y

1

3

1

3

1

3

finally y = 3, x = 7. After the prescription comes a line-based argument

corresponding to these symbolic equations.

Alternatively, the problem can be solved “according to algebra”.

Here, the thing (r) takes the place of y, while the dragma (d) takes that

of x. This time, the equation comes from a different but similar transform-

ation of the proportion, namely into :: . From here follows the1
1

3
d 1

3
r

1

r 1

9
r

equation r+ r = d+ r, and therefore d = 2 r. Inserting this in rd = 211

9

1

3

1

3

1

3

we get 2 C = 21, C = 9, r = 3.1

3

20930
:: , xy = 144. Both methods of the previous problem are applied,

5

x y

1
1

3
x 2

now leading to mixed second-degree problems; the line-argument goes

through the complete calculation, whereas the algebraic solution satisfies

itself with the first step and the explanations that “the rest is done as

we have taught in the algebra”.

The text goes on with other classical mu āmalāt topics (profit and interest,

partnership, etc.). Also here we first find the proper commercial problems, and

afterwards systematic explorations of the sophisticated problems to which the
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topics can give rise. Obviously, at least this part of the treatise (including its the

algebra chapter, now lost, to which it refers, and the discussion of roots) is one

piece, not put together from disparate books; and obviously, all of it is far beyond

the mathematical level of Gundisalvi and his circle, including the John who

compiled the Liber de algorismi. Nor is it in proper al-jabr style, with its ample

recourse to proportion techniques and Elements II – we must rather suppose the

author to be an astronomer-mathematician presenting mu āmalāt-mathematics

von höheren Standpunkt aus.

Back to Fibonacci

We shall now return to the Liber abbaci, but to Chapter 15. This chapter falls

into three sections, all relevant to our purpose, but most relevant Section 1.[24]

Chapter 15 as a whole is introduced as treating of “geometrical rules, and

questions of algebra and almuchabala”, while Section 1 is said to deal with

“proportions of three and four quantities, to which many questions pertaining

to geometry are reduced” (p. 387).[25] Actually, the succeeding text speaks

consistently of numbers, not quantities; moreover, the results are not always used

in the ensuing “geometry” section when they would serve. Fibonacci’s initial

announcement is somewhat out of keeping with what follows.

When three numbers are involved, Fibonacci refers to them as

minor/middle/major; as first/middle/major; or as first/second/third. If four,

as first/second/third/fourth. For convenience, I shall use P/Q/R respectively

P/Q/R/S. Mostly, the problems are accompanied by letter-carrying lines drawn

in the margin. First come proportions involving three number, afterwards a few

24 I first worked on this in the context of a general investigation of Fibonacci’s references
to “proportions” [Høyrup 2011].
25 In general, Fibonacci speaks of a “proportion” both where we would do so (and where
many other Medieval authors would write “proportionalitas”) and where we would see
a “ratio”. I shall not try to impose modern distinctions on Fibonacci; even modern usage
is indeed inconsistent, failing for instance to distinguish ratios (relations between integers)
from fractions (rational numbers). In symbolic language, I shall write the ratio between

a and b as , corresponding to the way I write proportions, and the corresponding fractiona

b

as a/b .
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questions involving four numbers. Using conjunction, disjunction, permutation

etc., Fibonacci transforms a given proportion in such a way that the numbers

can be found from the product rules by means of linear operations or, more often,

Elements II.5–6. Fibonacci never refers to Euclid here, as is his habit else-

where,[26] but only uses line diagrams. Since the omission is systematic, we

may already at this point be confident that his use is indirect and the material

thus borrowed.

The section can be divided into 50 propositions, most of which are prob-

lems[27] – in overview (page numbers are given in superscript; Fibonacci’s

headings are indicated as “——heading——”, while divisions “————”

correspond to simple paragraph divisions in the edition):

#1–3 deal with three numbers in continued proportion, P:Q:R (that is, :: )P

Q

Q

R
of which one and the sum of the other two are given. The naming of segments
presupposes the Latin alphabetic order a, b, c, ….

——Incipit pars prima——

#1(387) P+Q = 10, R = 9. Conjunctim :: , whence Elements II.6 can beP Q

Q

Q R

R

applied to Q (Q+9) = 90.

#2 P = 4, Q+R = 15. Analogous.

#3 Q = 6, P+R = 13. The product rule gives P R = 36, which is transformed

so as to permit use of Elements II.6 (direct use of II.5 would seem

obvious).

————

#4–38 still treat of three numbers, but now differences between the numbers are
among the given magnitudes. The alphabetic order changes to a, b, g, d, …,
pointing to use of a Greek or an Arabic source. However, in #4–5, still dealing
with a continued proportion, c is made use of in the calculations:

#4(388) P:Q:R, Q–P = 2, R = 9. Disjunctim :: . Solved by means of ElementsR

Q

R–Q

Q–P

II.5.

#5 P:Q:R, R–P = 5, Q = 6. The product rule gives P R = 36, which allows

use of Elements II.6.5.

26 See [Folkerts 2006, article IX].
27 The numbering is mine. Fibonacci has none.
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#6 An aside which explains that :: entails that the squares of thea

b

c

d

numbers are also in proportion – a proportion which can then be

transformed conjunctim, e converso etc. Further, that the same holds for

the cubes. This is no consequence of what precedes nor a preparation

for what follows immediately (neither a corollary nor a lemma); and

when it is eventually used in #50 there is no backward reference. We

may think of note 22, above.

——Modus alius proportionis inter tres numeros——

#7(389) :: , Q unknown. R–P thus has to be split into two parts having theR–Q

Q–P

R

P

ratio R:P; this is solved as a partnership problem (the link is not made

explicit).

#8 Same proportion, R unknown. Permutatim :: , a first-degreeR

R–Q

P

Q–P

problem.

#9 Same proportion, P unknown, solved similarly.

——Modus alius proportionis inter tres numeros——

#10 :: , Q unknown. Conjunctim :: , a first-degree problem.Q–P

R–Q

R

P

(Q–P ) (R–Q)

R–Q

R P

P

#11(390) Same proportion, R unknown. Product rule, and Elements II.6.

#12 Same proportion, P unknown. Analogously.

——Modus alius proportionis in tribus numeris——

#13 :: , Q unknown. Since (R–Q)+(Q–P) = R–P, this is a simpleR

P

(R–Q) (Q–P )

R–Q

first-degree problem.

#14 Same proportion, R unknown. :: . From the product rule followsR–P

P

Q–P

R–Q

that the product of R–P and R–Q is known. So is their difference, which

allows application of Elements II.6.

#15(391) Same proportion, P unknown. Product rule and Elements II.5.

——Modus alius proportionis——

#16 :: , Q unknown. :: , a linear problem.R

P

(R–Q) (Q–P )

Q–P

R

P

R–P

Q–P

#17 Same proportion, R unknown.[28] :: , whence permutatimR–P

P

(R–P)–(Q–P )

Q–P

:: , a linear problem.R–P

R–Q

P

Q–P

#18 Same proportion, P unknown. Eversim (but Fibonacci writes “you

permutate”) :: . The product rule gives R–P, whence P.R

R–P

R–P

R–Q

28 By error, the text has minor numerus .a.d., but the calculation proceeds from the premise
major numerus .a.b., corresponding to R.
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——Incipit differentia tercia in proportione trium numerorum——

#19 No question but the observation that if :: , then P, Q and R areR

Q

R–Q

Q–P

in continued proportion – namely because Q must be the same part of

R as P of Q. This quasi-arithmetical approach (and the geometric line

argument used to support it) is similar to what we encountered in the

Liber mahameleth, p. 20110 (above, p. 19).

#20(392) :: , Q unknown. :: , whence :: . The product rule andR

Q

Q–P

R–Q

Q

R

R–Q

Q–P

Q R

R

R–P

Q–P

an addition allows the use of Elements II.6.

#21 Same proportion, R unknown. The product rule and Elements II.6 give

R.

#22 Same proportion, P unknown. The product rule gives Q–P.

——Modus proportionis in tribus numeris——

#23 :: , Q unknown. Permutatim and conjunctim :: . FromR

Q

(R–Q ) (Q–P )

R–Q

R (R–P )

R–P

R

R–Q

the product rule follows R–Q.

#24 Same proportion, R unknown. The argument is corrupt, claiming that

the proportion can be transformed into :: . The product rule andQ

R

R

Q–P

Elements II.5 would have led directly to a correct solution.

#25(393) Same proportion, P unknown. R–P follows from the product rule.

——Modus alius proportionibus in tribus numeris——

#26 :: , Q unknown. Disjunctim :: . Since P is a number (i.e.,R

Q

R–P

Q–P

R–Q

Q

R–Q

Q–P

not 0, “zephirum, hoc est nihil”), R must equal Q. Alternatively, the

proportion is transformed permutatim into :: , and R is positedR

R–P

Q

Q–P

to be 8, P to be 2, from which is derived that Q must equal R. Finally

it is observed that even with this transformation the numerical position

for P is superfluous.

——Modus alius proportionis in tribus numeris——

#27 :: , Q unknown.[29] Instead of transforming ex aequa :: ,Q

P

R–Q

Q–P

Q

P

Q (R–Q )

P (Q–P )

i.e., :: , Fibonacci prefers to combine transformations permutatimQ

P

R

Q

( :: ) and conjunctim ( :: , that is, producing the same outcome).R–Q

Q

Q–P

P

Q

P

R

Q

From the product rule, Q is found as √(PR).

#28 Same proportion, R unknown. Fibonacci uses the transformed proportion

29 The text says ignotus primus numerus .a.g., but ag is actually the second, that is, Q.
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from #27 to find R as Q2/P.

#29 Same proportion. It is pointed out that if Q is known (the example being

Q = 12), then either of the others can be chosen freely, the third number

following (via :: ) from division.Q

P

R

Q

——Modus alius proportionis in tribus numeris——

#30(394) :: , Q unknown. The product rule allows application of ElementsQ

P

R–P

Q–P

II.6.

#31 Same proportion, R unknown, R–P = Q [Q–P]/P .

#32 Same proportion, P unknown. Eversim : . The product rule allowsQ

Q–P

R–P

R–Q

application of Elements II.6.

#33 It is then asserted that if one of the numbers is known in this proportion,

the others can be found. What is actually shown (and obviously meant)

is that if one is known, another one can be chosen ad libitum, and a third

determined so as to fit.

——Modus alius proportionis in tribus numeris——

#34 :: , Q unknown. Conjunctim :: , which (via a trick necessi-Q

P

Q–P

R–Q

Q P

P

R–P

R–Q

tated by the line representation) allows application of Elements II.5.

#35 Same proportion, R unknown. R–Q = .P (Q–P)

Q

#36(395) Same proportion, P unknown. The product rule allows application of

Elements II.5.

#37 :: . Since eversim :: , i.e., :: , this is only possibleQ

P

R–P

R–Q

Q

Q–P

R–P

(R–P )–(R–Q )

Q

Q–P

R–P

Q–P

if Q = R–P – or, as Fibonacci prefers, P = R–Q. From this, any one of the

numbers can be found if the other two are known.

——Modus ultimus proportionis in tribus numeris——

#38 Same proportion, P+Q+R given. For three numbers p, q and r fulfilling

the condition, multiply each of them by P+Q+R/p+q+r (a scaling trick that

is already used in Chapter 12, Section 2).

#39–50 consider four numbers in proportion, :: . The underlying alphabeticP

Q

R

S
order is still a, b, g, d, ….

——Incipit de proportione quattuor numerorum——

#39 From :: follows :: and :: . From the product rule PS = QR,P

Q

R

S

Q

P

S

R

R

P

S

Q

any one of the numbers can be found from the others.

#40 P+Q, R and S known. :: , whence Q.P Q

Q

R S

S
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#41 R+S, P and Q are known. Similarly

#42 P+R, Q and S known. :: , whence R.Q S

S

P R

R

#43 Q+S, P and R are known. Similarly

————-

#44(396) Q+R, P and S known. The product rule allows application of Elements

II.5.

#45 Similarly if P+S, Q and R are known. Illustrated by an example involving

rotuli (a weight unit) and bizantii and their sum.

————

#46 P–Q, R and S known. :: , whence Q.P–Q

Q

R–S

R

#47 R–S, P and Q known. Similarly :: , whence R.P–Q

P–Q

R–S

R

#48 P–R, Q and S known. :: , :: , whence R.P

R

Q

S

P–R

R

Q–S

S

#49 P–S, Q and R known. The product rule allows application of Elements

II.6.

————

#50(397) P2+Q2, R and S known. Jumps directly (in a numerical example) to the

proportion :: . Once more, this echoes what we have encoun-P 2 Q 2

Q 2

R 2 S 2

S 2

tered in the Liber mahameleth.

The Latin alphabetic order of #1–3 suggests that this group comes from

Fibonacci’s own pen, at least in its final redaction. The purely Greek or Arabic

order of #7–50 suggest a less edited borrowing. The mixed usage of #4–5 (there

is no lettered diagram for #6) is most likely to reflect that even these were

borrowed, but the calculations reconstructed or made anew by Fibonacci.

The alphabetic order alone only tells us that the source was not Latin;

however, the various points of contact of #6–50 with the Liber mahameleth suggest

the Iberian area and hence al-Andalus.

We shall return to the global project inherent in #7–38 – there is indeed a

striking theoretical project – but first look at a few interesting passages from

Sections 2 and 3. Section 2 is told to deal with “questions pertaining to geometry”

(p. 397), which once again is only partially true.

Those of the questions from Section 2 that concern us here are not geo-

metrical. Instead they deal with commercial travels with composite gain. The

first of them (p. 399) is in itself too simple to tell us much – but it is a background
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to those that follow: Somebody goes to one place of trade with 100 £ and earns,

and afterwards earns proportionally in another place, and then has a total of

200 £. A continued proportion (represented by lettered line segments) shows

the possession after the first travel to be √(100 200) ≈ £ 141, s. 8, d. 5 1/8 .

The next case (p. 399) is more tricky. The initial capital is still 100 £, but after

the first travel a partner invests 100 £ in the enterprise, and after the second travel

the total amounts to 299 £. This is expressed in the proportion (represented by

lines) :: . From the product rule and Elements II.6 (still unidentified)100

Q

Q 100

299

follows the solution Q = 130 £. Interchange of left and right would reduce this

to case #49 from Section 1, but Fibonacci does not make the connection. In any

case, the use of proportion theory and of the unidentified Euclidean theorem

instead of standard algebra[30] indicates a close link both to Section 1 and to

the Liber mahameleth – a link which is not produced intentionally by Fibonacci,

since he does not seem to notice it.

There are two more problems about repeated travels with gain; they also

involve manipulation of proportions, but tell us nothing remarkable.

Section 3 is dedicated to “the solution of certain questions according to the

method of algebra and almuchabala, that is, proportion and restoration” (p. 406).

This is an enigma. From Gerard’s translation of al-Khwārizmı̄’s Algebra Fibonacci

knew that one of the techniques of the discipline was “restoration”.[31] For the

other, Gerard’s text gave him no certain cues, and he himself only uses

oppositio/opponere (the normal counterparts of muqabalah/qabila) thrice, and

furthermore in the (probably original) sense of confronting the two sides of an

equation. Fibonacci therefore had two slots for one operation – and guessed

wrongly.[32] But from where did he get the idea that “proportion” was an

essential ingredient? Proportions only play a minor role in what follows, so a

30 Admittedly, algebra has not been introduced at this point; but nothing asks for these
problems to be dealt with in a geometry section.
31 Fibonacci copied from this work and must hence have known it well, see [Miura 1981].
32 His Arabic, learned presumably during a relatively short period in his boyhood (“some
days”, he claims in the introduction to the Liber abbaci, p. 1) and afterwards perhaps only
improved in the course of commercial interactions, must have been less perfect than often
assumed.
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description of his own approach does not seem to be behind the idea. As far

as I know, no other obvious explanation is on offer – but if Fibonacci knew

something like the blend of algebra and proportion theory in the Liber mahameleth,

he would at least have a reason for his bad guess.

Among the appearances of proportions within the section, at least one seems

to belong to the types we know from Section 1 and from the Liber mahameleth

(more are possible but not sufficiently characteristic). On p. 423, Fibonacci asks

for a number which, when 1/3 of it and 6 more are removed and the remainder

multiplied by itself, yields twice the original number – in symbols,

(x– 1/3 x–6)2 = 2x .

We are told that this could be found by algebra, but that is not done. Instead,

Fibonacci makes use of a line diagram and transforms the data into a proportion

which in symbols becomes

.

2

3
x

x– 1

3
x–6

x– 1

3
x–6

3

Disjunctim, this allows him to apply Elements II.6 (unidentified once again). The

underlying alphabetic order is a, b, g, d, which is unusual in this section.

So, Sections 2 and 3 contain scattered traces of that same influence which

dominates Section 1, and which has remarkable similarity to what we know from

the Liber Mahameleth. But as promised we shall have another look at Section 1,

whose #7–38 turn out to present us with an unparalleled theoretical investigation.

Pappos’s Collection III, “Concerning plane and solid geometrical problems”

[ed., trans. Hultsch 1876: I, 30–177], largely deals with means. Propositions xii–xxiii

(pp. 70–105), in particular, deal with a set of 10 means between two magnitudes –

the three original ones (arithmetical, geometrical, harmonic), which are “very

useful for dealing with ancient writings”; with three more that were added by

early authors, and finally with four joined to them by “the more recent” (pp.

84–85). The last part of Nicomachos’ Introduction to Arithmetic (II.xii–xxviii [ed.

Hoche 1866: 122–144], trans. [d’Ooge 1926: 266–284]) deals with almost the same,

though now between numbers. The two are discussed in parallel by Thomas

Heath [1921: 8684–89], who observes that one of Nicomachos’s means is omitted

by Pappos, and vice versa.
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As it turns out, #7–38 is very closely related to this ancient classification and

theory of means: for two numbers P and R, and the mean Q, it is shown how

knowledge of any two of them allows us to find the third. This table illustrates

it:

Pappos Nicomachos Liber abbaci

:: (arithmet.)
R–Q

Q–P

R

R
P1 N1

:: or ::
R–Q

Q–P

R

Q
R–Q

Q–P

Q

P
P2 N2 #27–29

::R–Q

Q–P

R

P
P3 N3 #7–9

::R–Q

Q–P

P

R
P4 N4 (but inverted) #10–12 (inverted)

::R–Q

Q–P

P

Q
P5 N5 (but inverted) #34–36 (inverted)

::R–Q

Q–P

Q

R
P6 N6 (but inverted) #20–22 (inverted)

::R–P

Q–P

R

P
absent N7 #16–18

::R–P

R–Q

R

P
P9 N8 #13–15

::R–P

Q–P

Q

P
P10 N9 #30–32

::R–P

R–Q

Q

P
P7 N10 #37–38

::R–P

R–Q

R

Q
P8 absent #23–25

I have followed Nicomachos’s order, as being the most relevant. As we see,

indeed, Fibonacci agrees with Nicomachos and Boethius and not with Pappos

in the cases 4–6, having :: instead of :: , etc. We may thus assumeR

P

Q–P

R–Q

R–Q

Q–P

P

R

that the ultimate inspiration is Nicomachos, not Pappus. This is not astonishing,

Nicomachos was well known in the Arabic as well as in the Latin world (in the

latter in Boethius’s translation[33]). My initial quotation from Djebbar also

33 Boethius presentation of this topic (De institutione arithmetica, ed. [Friedlein 1867:
140–169]) agrees exactly with Nicomachos in all relevant respects.
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pointed to a tradition starting from Thābit ibn Qurra’s translation of Nicomachos.

There are obvious differences, however. Firstly, the Liber abbaci contains no

counterpart of the arithmetical mean, whose expression as a proportion is indeed

next to ridiculous – the only sensible definition is R–Q = Q–P – and whoever

subjected Nicomachos’ material to systematic theoretical exploration has seen

that. On the other hand, the case omitted by Nicomachos but discussed by

Pappos is included. This is not evidence of contamination, a competent

mathematician going through all the cases would observe that it had its place.

Similarly he would observe that Fibonacci’s #26 ought to be there, at least once

we have given up the idea that Q is a genuine mean and therefore P<Q<R –

and as we see, Fibonacci does not speak of means (his reference to the “middle”

number is only occasional, and serves for identification only), for which reason

we may assume that his source did not either. Finally, the treatment of means

is extended by a similar investigation of four numbers in proportion, which

because of the alphabetic ordering is likely also to represent a borrowing,

plausibly from the same source.

All in all: the vicinity of the methods of Fibonacci’s #7–50 to those of the

Liber mahameleth, together with the total lack of parallels, makes it reasonably

certain that even Fibonacci’s source came, if not from the same hand then at least

from the same environment as the theoretical exploration of the possibilities

offered by mu āmalāt mathematics.

On the other hand, the absence of anything in known Ibero-Latin texts similar

to Fibonacci’s Chapter 15 Section 1 makes it implausible that any of the two came

from the ambience of translators into Latin and the users of their translations –

even more implausible, we may say, than the idea is in itself that the Liber

mahamalech should have been produced by Gundisalvi or an associate of his.

Nothing is certain in this world. Even the theory that Shakespeare’s works were

not written by Shakespeare but by somebody else also called Shakespeare has

its proponents, as we know. But with that proviso I think we may conclude that

twelfth-century al-Andalus was the home to astronomer-mathematicians who

systematically developed theory or something close to that from the questions
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of simpler, non-theoretical mathematics – be it the puzzling unknown heritage,

be it commercial arithmetic, be it Nicomachos’s list of means.
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