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Narayanaswamy’s 1971 aging theory and material time
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DNRF Center “Glass and Time,” IMFUFA, Department of Sciences, Roskilde University, P.O. Box 260,
DK-4000 Roskilde, Denmark

(Received 24 April 2015; accepted 27 August 2015; published online 17 September 2015)

The Bochkov-Kuzovlev nonlinear fluctuation-dissipation theorem is used to derive Narayanaswamy’s
phenomenological theory of physical aging, in which this highly nonlinear phenomenon is described
by a linear material-time convolution integral. A characteristic property of the Narayanaswamy aging
description is material-time translational invariance, which is here taken as the basic assumption
of the derivation. It is shown that only one possible definition of the material time obeys this
invariance, namely, the square of the distance travelled from a configuration of the system far back
in time. The paper concludes with suggestions for computer simulations that test for consequences
of material-time translational invariance. One of these is the “unique-triangles property” according
to which any three points on the system’s path form a triangle such that two side lengths determine
the third; this is equivalent to the well-known triangular relation for time-autocorrelation functions
of aging spin glasses [L. F. Cugliandolo and J. Kurchan, J. Phys. A: Math. Gen. 27, 5749 (1994)].
The unique-triangles property implies a simple geometric interpretation of out-of-equilibrium time-
autocorrelation functions, which extends to aging a previously proposed framework for such func-
tions in equilibrium [J. C. Dyre, e-print arXiv:cond-mat/9712222 (1997)]. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4930551]

I. INTRODUCTION

Physical aging is the small, gradual change of material
properties observed for some systems, e.g., polymers and
glasses just below the glass-transition temperature.1 In contrast
to the aging of most real-life materials resulting from chemical
reactions, physical aging is exclusively due to adjustments of
molecular positions. During the last 50 years there has been
slow, but steady progress in the description and understand-
ing of aging in experiments as well as model systems. For
example, studies of spin glass aging in the 1990s led to the
concept of an “effective” temperature that quantifies viola-
tions of the fluctuation-dissipation theorem describing linear
response around a state of thermal equilibrium.2,3 There is still
nogoodtheoretical justification,however,ofNarayanaswamy’s
remarkable phenomenological physical-aging theory from
1971,4 which has been used routinely in industry for decades.1

This paper is an attempt to understand the microscopic
origin of Narayanaswamy’s theory in which physical aging,
which is strongly non-linear in the temperature history, is de-
scribed by a linear convolution integral if one replaces the time
integration variable by the so-called material time. The mate-
rial time quantifies how fast processes take place in an aging
system, reflecting the existence of an “inner clock.” In the
words of Narayanaswamy’s seminal paper:4 “The intrinsic
relation between force and flow (or cause and effect) is assumed
to be linear, i.e., it is assumed that the only cause of nonlinearity
in glass transition phenomena is the changing viscosity of the
glass as the structure (or fictive temperature) changes.”

The Narayanaswamy theory, which works best for small
temperature variations,1 raises a number of questions:

a)Electronic address: dyre@ruc.dk

1. How and why can the highly non-linear physical-aging
phenomenon be described by a linear convolution integral?

2. What is the material time? Can it be defined in terms of the
system’s microscopic variables?

3. Are all aging quantities subject to the same material time?
4. Which physical quantity controls the material time?

The first three questions are addressed in this paper, which
derives the Narayanaswamy theory from an exact, non-linear
fluctuation-dissipation theorem, assuming material-time trans-
lational invariance (Sec. III). The microscopic expression for
the material time is derived in Sec. IV. Sections V and VI
discuss consequences and give a few suggestions for numerical
tests of the ideas developed; Sec. VII concludes the paper.

We do not claim originality of any arguments and re-
sults of this paper, which is just an attempt to illuminate the
Narayanaswamy 1971 aging theory by connecting it to the
1981 Bochkov-Kuzovlev non-linear fluctuation-dissipation
theorem and the 1994 spin-glass aging theory of Cugliandolo
and Kurchan.2 Much has happened in physics and chemistry
since 1971, but apparently the theory of aging itself matures
only like a slowly aging system.

II. BACKGROUND

This section summarizes some necessary background.

A. The material-time concept and Narayanaswamy’s
phenomenological aging theory

Physical aging is usually studied in glasses and glass-
forming liquids.For thesesystems the relaxation time isdramat-
ically temperature dependent (sometimes increasing up to a
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factor of ten for a temperature decrease of just one percent).
Even the simplest case, that of a temperature jump from a state
of equilibrium of a highly viscous liquid, is nonlinear unless
the temperature change is very small.1 Another complication is
that aging is virtually always nonexponential in time.1,5

Interest in physical aging has throughout the years been
stimulated by the practical importance of being able to pre-
dict aging quantitatively, and there is a large literature on
physical aging experiments.1,6–13 An excellent and still not
outdated introduction to the phenomenology of aging is given
in Scherer’s book from 1986.1 Experiments have studied phys-
ical aging by probing, e.g., density,6,14 enthalpy,4,7 Young’s
modulus,15 gas permeability,16 high-frequency mechanical
moduli,17,18 dc conductivity,8 frequency-dependent dielectric
constant,19–21 beta relaxation loss-peak frequency,21 X-ray
photon-correlation-spectroscopy probed structure,22 and non-
linear dielectric susceptibility.23 In some cases one monitors
aging following a temperature jump from a state of equi-
librium, but more complicated temperature histories have
also been studied extensively, in particular that of continuous
cooling of a liquid into its glass state.

To be specific, we shall assume that the property X is moni-
tored when temperature is changed in a controlled fashion, and
that the experiment ends in equilibrium at the temperature T0.
The deviation of X from its equilibrium value at T0 is denoted
by ∆X(t); thus ∆X(t) → 0 as t → ∞. Narayanaswamy’s idea,
which was inspired by rheological models, was to introduce
a so-called material time, ξ.4 This quantity may be thought
of as the time measured on a clock with a clock rate that
itself ages,4,24 reflecting the fact that processes in an aging
system proceed with a speed that changes as the structure ages.
Following a down jump in temperature, for instance, the clock
rate decreases gradually; it eventually becomes constant, but
only when the system is very close to equilibrium. The material
time is intuitively analogous to the proper time of relativity
theory, which is the time measured on a clock moving with the
observer.

If the clock rate is denoted by γ(t), the material time ξ(t)
is defined by

dξ = γ(t) dt . (1)

In thermal equilibrium the clock rate is constant and the mate-
rial time is proportional to the laboratory time, though with a
proportionality constant K that is highly temperature depen-
dent, i.e., ξeq(t) = K(T) t + Const. For an aging system, the
clock rate is generally a complicated function of the system’s
thermal history after it fell out of equilibrium.

Narayanaswamy suggested that for the temperature vari-
ation T(t) = T0 + ∆T(t), if rewritten as a function of ξ the
variation ∆X(t) has an “instantaneous” contribution, C∆T(t)
= C∆T(ξ(t)), and a relaxing contribution given by a linear
material-time convolution integral,1,4 i.e.,

∆X(ξ2) = C∆T(ξ2) −
 ξ2

−∞
MX(ξ2 − ξ1) d∆T

dξ1
(ξ1) dξ1. (2)

As an example, after a temperature jump at t = 0 from equi-
librium at temperature T0 + ∆T to the temperature T0, one
has∆X(t) = ∆T MX(ξ(t)) in which ξ(t) is found by integrating
Eq. (1). The crucial point is that the function MX(ξ) is the

same for all temperature jumps whereas the material time ξ(t)
depends on ∆T (usually strongly).

The Narayanaswamy formalism represented a great step
forward compared to that time’s use of non-linear differential
equations for describing aging. Such equations cannot repro-
duce memory effects like the crossover (Kovacs) effect,1 and
they do not reflect the deep insight that aging can be described
by a linear theory. Recently, the use of differential equations
for describing aging has again been investigated, but now
limited to temperature jumps. Thus, Kolvin and Bouchbinder
have proposed a simple temperature-jump differential equation
that fits data well,25 and Hecksher et al. showed that for aging
following temperature jumps the Narayanaswamy formalism
is equivalent to a differential equation.21 The latter differential
equation involves both the normalized and the unnormalized
relaxation function, and this is necessary to ensure consistency
with Eq. (2). This equation results in a simple expression for
calculating one nonlinear relaxation function from another,
without any fitting to analytical functions as is usually done in
applications of the Narayanaswamy formalism. The resulting
formalism was confirmed in experiments monitoring dielec-
tric relaxation and the high-frequency shear modulus during
aging.21

In the Narayanaswamy theory, the clock rate of the ag-
ing system’s “inner clock” is a global variable. An interest-
ing extension of this formalism is due to Castillo and co-
workers26–28 who assume that aging is controlled by a space-
dependent clock rate. This idea, which makes perfect sense in
view of the existence of dynamical heterogeneities in glass-
forming liquids and glasses,29,30 has been verified numerically
for different model systems.26–28 Nevertheless, below we do
not follow this promising idea, but focus on the simpler case
of a “global average” clock.

B. Material-time translational invariance (MTTI)

Equation (2) has the appearance of standard linear-res-
ponse theory, though with the time t replaced by the mate-
rial time ξ. A characteristic property of linear-response the-
ory is time-translational invariance, which expresses the fact
fundamental to all science that repeating an experiment at a
later time leads to the same result. An implicit assumption
of Narayanaswamy’s formalism is that translational invari-
ance applies for the material time during aging as reflected
in the fact the memory function in Eq. (2) is a function of
the difference ξ2 − ξ1. This will be referred to as material-time
translational invariance (MTTI).

Translated into standard statistical-mechanical language,
MTTI is the property that even during aging, time correlation
functions depend only on the difference of the material times
involved, i.e., that for any two quantities A and B, a function
FAB(ξ) exists such that

⟨A(t1)B(t2)⟩ = FAB

�
ξ(t2) − ξ(t1)�. (3)

The angular brackets denote an ensemble average (for the
aging system). In contrast to the equilibrium situation, the left-
hand side is generally not a function of t2 − t1. It is understood
here and henceforth that A and B both have zero average–if
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that is not the case, the average value should be subtracted at
each time t.

Of particular interest is MTTI for the displacement vector
that specifies the system’s path in configuration space, the 3N-
dimensional vector R ≡ (r1, . . . ,rN), where ri is the position
of the ith particle. One way to investigate a system’s dynamics
is to evaluate the mean-square displacement from one time t1

to a later time t2, ⟨�R(t2) − R(t1)�2⟩. This quantity, of course,
refers to the total displacement, which implies going beyond
the boundaries of standard computer simulations performed
with periodic boundary conditions.31,32 With this clarification
in mind, MTTI for the mean-square displacement means that
it depends only on the difference in material times involved,
i.e.,

⟨�R(t2) − R(t1)�2⟩ = N G
�
ξ(t2) − ξ(t1)�. (4)

C. The triangular relation

More than 20 years ago, the study of aging in spin glasses
resulted in a deep insight into the nature of aging in such dis-
crete models.2 Interestingly, this work seems to have been
carried out with little interaction with the experimental oxide
glass and polymer aging communities, which had developed
over long time.4,7–9

For spin glass aging there is time-scale separation, just
as for the aging of ordinary glasses. On short time scales
an analog of vibrational thermal equilibrium exists, whereas
aging of a spin glass’ structural degrees of freedom takes place
on much longer time scales. This led to the introduction of the
concept of an effective temperature2,3,33 that is conceptually
similar to Tool’s intuitive fictive temperature concept from
1946,34 but founded in rigorous statistical-mechanical theory.

Moreover, the spin glass works resulted in the under-
standing that “the proper measure of time is the correlation
itself, not the laboratory clock.”33 This was formalized into the
triangular relation which, if C(t, t ′) is a time-autocorrelation
function, i.e., an average for the aging system of the form
C(t, t ′) ≡ ⟨A(t)A(t ′)⟩, is the following equation valid on long
time scales (t1 < t2 < t3):2

C(t1, t3) = f
�
C(t1, t2),C(t2, t3)�. (5)

The idea that time is measured via the autocorrelation func-
tion itself2,33 implies time-reparametrization invariance, see,
e.g., Refs. 28, 35, and 36, as well as the earlier Refs. 37
and 38.

As detailed shortly, the triangular relation is equivalent to
MTTI, but first the following notes are made:

1. Equation (5) applies in thermal equilibrium for any time-
autocorrelation function that is a sum of decaying exponen-
tials. In that case, the value of the time autocorrelation func-
tion C(t1, t2) uniquely determines the time difference t2 − t1,
and C(t2, t3) likewise determines t3 − t2, which means that
knowledge of both C(t1, t2) and C(t2, t3) implies that t3 − t1
= (t3 − t2) + (t2 − t1) and thus C(t1, t3) are known, which is
the triangular relation Eq. (5).

2. For the case of equilibrium, if time-temperature super-
position (TTS) applies, the function f is the same when

temperature is changed (for the normalized autocorrelation
functions). Conversely, if Eq. (5) applies for aging over a
certain range of temperatures, this implies TTS.

3. The triangular relation applies whenever the system in
question obeys so-called dynamic ultrametricity, i.e., when
C(t1, t3) = min (C(t1, t2),C(t2, t3)). This condition is believed
to describe the aging of most or all spin glasses.39

The triangular relation applies for any aging system that
has an “inner clock” and a corresponding material time ξ obey-
ing MTTI. In that case, if the function FCC(ξ) of Eq. (3) goes
monotonically to zero as ξ goes to infinity, C(t1, t2) determines
the difference ξ(t2) − ξ(t1). Likewise, C(t2, t3) determines the
difference ξ(t3) − ξ(t2). Since ξ(t3) − ξ(t1) = (ξ(t3) − ξ(t2))
+ (ξ(t2) − ξ(t1)), this means that C(t1, t2) and C(t2, t3) deter-
mine C(t1, t3), which is the triangular relation. Note the anal-
ogy to the equilibrium argument.

Conversely, if a system ages in such a way that its time-
autocorrelation functions obey the triangular relation, one can
define a material time ξ(t) that satisfies MTTI. This nontrivial
result was derived in Appendix B of Ref. 2. We will not
repeat the derivation involving formal group theory, but briefly
the argument is the following. Assuming again that C(t1, t2)
goes monotonically to zero as |t2 − t1| → ∞, one defines an
algebraic operation ∗ on the part of the positive real axis that
corresponds to some value of the autocorrelation function: For
x, y, z in this part of the real axis, we define x ∗ y ≡ f (x, y),
where f is the function appearing in the triangular relation
Eq. (5). It is straightforward to show from Eq. (5) that ∗ is asso-
ciative, i.e., that x ∗ (y ∗ z) = (x ∗ y) ∗ z. The commutative
law also applies, i.e., x ∗ y = y ∗ x, which is not trivial–this
signals an intriguing element of time reversibility during ag-
ing. From these facts, one can show that functions h̃(t) and φ(h̃)
exist such that C(t1, t2) = φ

�
h̃(t2) − h̃(t1)�.2 This is Eq. (3) with

h̃(t) = ξ(t), i.e., the triangular relation leads to the existence of
a material time and implies MTTI.

III. DERIVING NARAYANASWAMY’S AGING THEORY
FROM MTTI

The fundamental puzzle of the Narayanaswamy formalism
is how to arrive at a theory that describes aging by a linear
material-time convolution integral. To show how this may come
about, we combine MTTI with Bochkov’s and Kuzovlev’s non-
linear fluctuation-dissipation theorem from 1981.40

It is convenient to adopt the language of the energy-bond
formalism according to which any system interacts with its
surroundings via one or more so-called energy bonds.41–45 An
energy bond is characterized by two variables, an effort and
a flow variable, the product of which gives the energy per
unit time transferred into the system from its surroundings.
Effort could be, e.g., voltage drop or force, in which cases
the corresponding flow variables are, respectively, electrical
current and velocity. The formalism is general, and even a heat
flow may be modelled—in that case energy is generalized into
free energy, the effort is the temperature deviation from a refer-
ence temperature T0, and the flow is the entropy current.46,47

The general nature of the energy-bond formalism means that
for any physical quantity q one may define a flow f from
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f ≡ dq/dt and let e be a fictitious field coupling linearly to
q in the Hamiltonian. The thermal average effort and flow are
assumed to be zero.

We first consider the case of a single energy bond in which
e(t) is the effort and f (t) the flow. If the effort is externally
controlled, the standard linear fluctuation-dissipation (FD)
theorem is the following expression for the average flow at
time t2 in the time-dependent external field e(t):

⟨ f (t2)⟩ = β0

 t2

−∞
⟨ f (t2) f (t1)⟩0 e(t1) dt1. (6)

Here, β0 ≡ 1/kBT0 where T0 is the system’s temperature and
⟨ f (t2) f (t1)⟩0 is the thermal equilibrium time-autocorrelation
function, which by standard time-translational invariance is a
function of the difference t2 − t1. There is complete symmetry
between e and f in the energy-bond formalism, and if the flow
f is externally controlled the FD theorem is

⟨e(t2)⟩ = β0

 t2

−∞
⟨e(t2)e(t1)⟩0 f (t1) dt1. (7)

In 1981, Bochkov and Kuzovlev derived a general, non-
linear response theory.40 It is assumed that the system was in
equilibrium at the temperature T0 far back in time and ends up
in equilibrium at the same temperature in the distant future. If
non-equilibrium cumulant averages are denoted by ⟨. . . ⟩c, the
following exact relation (Eq. (2.18) in Ref. 40 in the energy-
bond notation) applies:

⟨ f (t)⟩ =
∞
k=1

(−1)(k−1)βk
0

k!

 t

−∞
dt1 . . .

 t

−∞
dtk

× ⟨ f (t) f (t1) . . . f (tk)⟩c e(t1) . . . .e(tk). (8)

To first order in e, all but the first term on the right-hand side
may be ignored and the two-point cumulant average may be
replaced by the equilibrium product average ⟨ f (t2) f (t1)⟩0, thus
reducing Eq. (8) to the standard FD theorem Eq. (6).

The derivation of Eq. (8) is based on Bochkov and Ku-
zovlev’s theorem40 according to which the ratio of probabil-
ities of a given path in time R(t) and the corresponding time-
reversed path R(−t) is the ratio of the Boltzmann probabilities
of the starting and ending points of the path (considered over
some finite, large time interval). During the 1990s, this and
related results became known as the fluctuation theorem (see,
e.g., Refs. 48–51); to the best of my knowledge its first gen-
eral derivation was given in Refs. 40 and 52, covering both
the classical Newtonian, stochastic, and quantum-mechanical
cases.

Equation (8) is not the simple higher-order generalization
of the linear FD theorem in which the right-hand-side averages
are equilibrium averages. In fact, as shown some time ago by
Stratonovich,53 there is no general nonlinear FD theorem deter-
mining the nonlinear response from equilibrium averages.40

The occurrence of non-equilibrium averages on the right-hand
side makes Eq. (8) appear to be fairly useless. We proceed to
show how one can, however, based on MTTI, use Eq. (8) to
arrive at the Narayanaswamy expression that is linear in the
material time.

The starting point is the already mentioned fact that
Narayanaswamy’s theory works best for small temperature

variations.1 For larger jumps it breaks down; it is not known
whether this is because multiple relaxation mechanisms must
be taken into account, or whether there is a fundamental
break down of the material-time idea (see, e.g., Ref. 54 and
references therein). In any case, it is known from experiments
that there is an aging regime described by Eq. (2) in which
the temperature changes involved are fairly small (typically
a few percent), but large enough that aging is strongly non-
linear (e.g., with changes of a factor of ten or more in the
characteristic relaxation time between up and down jumps to
the same temperature1,10,12,21).

Standard aging experiments are controlled by tempera-
ture, in which cases the effort e is the temperature difference
to a reference temperature T0. For the regime of relatively
small temperature variations, it makes good sense to keep
only the lowest-order term on the right-hand side of Eq. (8).
Unfortunately, as in most of physics, it is not possible to predict
from Taylor expansions how good is the approximation of
just keeping the first order term. This means that we cannot
estimate how small the temperature jump must be for this
approximation to be good.

Ignoring the higher-order terms of Eq. (8) leads to

⟨ f (t2)⟩ � β0

 t2

−∞
⟨ f (t2) f (t1)⟩ce(t1)dt1. (9)

We have ignored the fact that the cumulant averages of Eqs. (8)
and (9) are themselves in general highly nonlinear functions of
the effort variable e. The procedure of ignoring this is justified
below a posteriori from MTTI and a change of integration vari-
able to the material time. To consistently ignore higher-order
terms, one must also ignore the difference between the cumu-
lant average ⟨ f (t2) f (t1)⟩c and the product average ⟨ f (t2) f (t1)⟩
(the difference is ⟨ f (t2)⟩⟨ f (t1)⟩ and of second order in e if
⟨ f (t)⟩0 = 0). This leads to

⟨ f (t2)⟩ � β0

 t2

−∞
⟨ f (t2) f (t1)⟩e(t1)dt1. (10)

Equation (10) has the appearance of the standard linear FD
theorem Eq. (6), but since ⟨ f (t2) f (t1)⟩ is evaluated along the
actual system path, this quantity is as mentioned in general a
highly nonlinear function of the effort history e(t) and totally
different from any equilibrium time-autocorrelation function.
The point of MTTI used below is that changing the integra-
tion variable to the material time eliminates this effort history
dependence.

We rewrite the flow variable f as a time derivative of a
generalized “charge” q,

f ≡ dq
dt

(11)

and change the integration variable in Eq. (10) from the time
t to the material time ξ = ξ(t). This leads to

dq
dξ2

(ξ2)

� β0

 ξ2

−∞


dq
dξ2

(ξ2) dq
dξ1

(ξ1)


e(ξ1) dξ1. (12)

By MTTI (Eq. (3)), the autocorrelation function ⟨q(ξ2)q(ξ1)⟩
is a function of ξ2 − ξ1, i.e.,

⟨q(ξ1)q(ξ2)⟩ = Fqq(ξ2 − ξ1). (13)
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The crucial point is that all dependence on e(t) on the left-
hand side comes from the material time’s effort dependence,
whereas the function Fqq is independent of e(t).

Equation (13) implies
dq
dξ2

(ξ2) dq
dξ1

(ξ1)

= −F ′′qq(ξ2 − ξ1), (14)

and Eq. (12) thus becomes

d
dξ2

⟨q(ξ2)⟩ � −β0

 ξ2

−∞
F ′′qq(ξ2 − ξ1) e(ξ1) dξ1. (15)

Replacing ξ2 with ξ and integrating with respect to ξ from −∞
to ξ2 leads to (with ∆q(ξ2) ≡ q(ξ2) − qeq(T0))

⟨∆q(ξ2)⟩ � −β0

 ξ2

−∞
dξ

 ξ

−∞
F ′′qq(ξ − ξ1) e(ξ1)dξ1. (16)

Interchanging the order of integration we get since −∞ < ξ1
< ξ < ξ2,

⟨∆q(ξ2)⟩ � −β0

 ξ2

−∞
dξ1 e(ξ1)

 ξ2

ξ1

F ′′qq(ξ − ξ1)dξ. (17)

Utilizing that F ′qq(0) = 0, which follows from the fact that
F(ξ) also describes the equilibrium linear response for which
(d/dt)⟨q(0)q(t)⟩|t=0 = 0 because of time-reversal invariance,
we get

⟨∆q(ξ2)⟩ � −β0

 ξ2

−∞
F ′qq(ξ2 − ξ1) e(ξ1) dξ1

= β0

 ξ2

−∞

(
d

dξ1
Fqq(ξ2 − ξ1)

)
e(ξ1) dξ1. (18)

When integrated partially, since Fqq(ξ) → 0 for ξ → ∞, this
leads to

⟨∆q(ξ2)⟩
� β0

(
Fqq(0)e(ξ2) −

 ξ2

−∞
Fqq(ξ2 − ξ1) de

dξ1
(ξ1) dξ1

)
.

(19)

This is the sum of an “instantaneous” and a “relaxing” contri-
bution. If the identifications q = X and e = ∆T are made,
Eq. (19) is Narayanaswamy expression Eq. (2). This one
cannot do a priori, however, because these variables generally
belong to different energy bonds, but the extension needed to
derive Eq. (2) from Eq. (19) is straightforward, as we now
proceed to show.

Assuming that the effort e is the temperature variation
∆T—the usual aging situation—the corresponding flow vari-
able is the entropy current, which is basically the heat current
into the system.46 Equation (8) generalizes straightaway to any
number of energy bonds.40 The resulting equation involves a
sum over all combinations of energy-bond indices, j1, . . . , jk,
such that for i = 1, . . . , k each flow variable f ji(ti) in the right-
hand-side cumulant of Eq. (8)’s generalization is paired to the
same-index effort variable e ji(ti). If there are n energy bonds,
the leading term in the efforts is the following sum generalizing
Eq. (10):

⟨ f (t2)⟩ � β0

n
j=1

 t2

−∞



f (t2) f j(t1)� e j(t1)dt1. (20)

If one is interested in how the quantity X responds to a temper-
ature variation, only one term in the above sum is of interest.
This is the term coupling the X energy bond to the thermal
energy bond whose generalized charge—the time-integrated
entropy current—will be denoted by qS. In this way, one ar-
rives at an expression of form Eq. (19) with a different function
F(ξ), but the same material time, thus affirmatively answering
question 3 in Sec. I. The function F is given by F(ξ2 − ξ1)
= ⟨qS(ξ1)X(ξ2)⟩. Note that the above used identity F ′(0)
= 0 applies also in the general case because it follows from
equilibrium time reversibility, ⟨qS(t1)X(t2)⟩0 = ⟨X(t1)qS(t2)⟩0.

IV. IDENTIFICATION OF THE MATERIAL TIME

We proceed to show that there is only one possible mate-
rial time ξ(t) obeying the MTTI requirement. Consider the
configuration-space path of an aging system, R(t). In the ther-
modynamic limit, the relative fluctuations of distances go to
zero. Because of this the ensemble-average symbols ⟨. . .⟩ on
the left-hand side of Eq. (4) may be removed, leading to the
following formulation of MTTI for the displacement:

R2
12 = G(ξ(t2) − ξ(t1)), (21)

where we have introduced the notation

R2
12 ≡

�
R(t2) − R(t1)�2

N
. (22)

The division by the number of particles N ensures a dis-
tance measure that is well defined in the thermodynamic limit
(N → ∞).

First, uniqueness of the material time is demonstrated.
Equation (21) applies, in particular, in equilibrium where
γ(t) is a constant, implying ξ(t) = Kt + Const. In thermal-
equilibrium, the generic behavior is that R2

12 is sublinear at
short times, e.g., R2

12 ∼ (t2 − t1)x with 0 < x < 1, and linear in
t2 − t1 at long times corresponding to ordinary diffusion.55–57

The transition between the two regimes takes place around
the system’s average (alpha) relaxation time,5,55 but we are
not interested in these details here.56 The important thing is
that the equilibrium mean-square displacement at long times
is always proportional to time. From this and the fact that
ξ = Kt + Const. in equilibrium, one concludes that

G(ξ) ∝ ξ (ξ → ∞). (23)

This means that, if R0 is a reference configuration far back in
time on the aging system’s trajectory, except for a multiplica-
tive and an additive constant the only possible material time
is defined by the squared distance from R0 to R(t) denoted by
R0t,

ξ(t) ≡ R2
0t . (24)

If a dimensionless material time is wanted, one may multiply
ξ(t) with the particle number density to the power 2/3, but for
simplicity we stick here to the above definition.

Having established uniqueness of the material time, we
proceed to show that the definition Eq. (24) is consistent.
For this to be the case, the difference in material time be-
tween two events on the aging system’s path in configuration
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space, ξ(t2) − ξ(t1), must be independent of the choice of
reference configuration. To show this, we compare R2

02 − R2
01

with the analogous quantity using a different reference config-
uration, R(t ′0). Since R(t1) − R(t ′0) = R(t1) − R(t0) + ∆R in
which ∆R ≡ R(t0) − R(t ′0), one has

R2
0′1 = R2

01 + ∆R2/N + 2
�
R(t1) − R(t0)� · ∆R/N. (25)

Likewise,

R2
0′2 = R2

02 + ∆R2/N + 2
�
R(t2) − R(t0)� · ∆R/N. (26)

These equations lead to

R2
0′2 − R2

0′1 = R2
02 − R2

01 + 2
�
R(t2) − R(t1)� · ∆R/N. (27)

When t0 and t ′0 are both far back in time, R(t2) − R(t1) is
uncorrelated with ∆R because in terms of the velocity V ≡ Ṙ
one has [R(t2) − R(t1)] · ∆R =

 t2
t1

ds1
 t′0
t0

ds2V(s1) · V(s2),
which goes to zero for t0 → −∞ and t0′ → −∞ since velocities
far apart in time are uncorrelated (even for an aging system).
Thus, the last term of Eq. (27) vanishes in these limits, ensuring
consistency of the material time definition Eq. (24). Note that
the reference configuration need not, in fact, be one of the sys-
tem’s distant past; any configuration far away may be selected
as reference configuration. Note also that by differentiation of
Eq. (24) one finds the following expression for the clock rate
of Eq. (1): γ(t) = 2

 t

−∞⟨V(t ′) · V(t)⟩dt ′.

V. TWO CONSEQUENCES

This section discusses two consequences of the formalism
developed.

A. The “unique-triangles property”

The configuration-space path of a system in thermal equi-
librium has an interesting geometric property. Consider three
times, t1 < t2 < t3. Following Eq. (22), the corresponding dis-
tances between the configurations on the system’s path, R(t1),
R(t2), and R(t3), are denoted by R12, R13, and R23. If one defines
Req(t) as the distance that the equilibrium system travels over
time t, i.e.,

Req(t) ≡


⟨∆R2(t)⟩
N

, (28)

we have R12 = Req(t2 − t1), R13 = Req(t3 − t1), and R23
= Req(t3 − t2). Since Req(t) is an increasing function of t, this
implies that the triangle formed by the points R(t1), R(t2),
and R(t3) is unique in the following sense: If two of the
triangle’s side lengths are known, the third one is also known.
For instance, if R12 and R23 are known, R13 is determined
since R12 gives t2 − t1 and R23 gives t3 − t2, from which t3 − t1
= (t3 − t2) + (t2 − t1) and thus R13 may be deduced. A system
for which any three points on its trajectory determine a unique
triangle in the above sense will be referred to as obeying the
“unique-triangles property.”

It follows from Eqs. (21) and (24) that the unique-triangles
property also applies for an aging system. This is because
the difference of two material times, ξ(t2) − ξ(t1), determines
the distance between the corresponding configurations R(t1)

and R(t2), R12, and vice versa; likewise ξ(t3) − ξ(t2) deter-
mines R23. Thus, ξ(t3) − ξ(t1) = (ξ(t3) − ξ(t2)) + (ξ(t2) − ξ(t1))
on the one hand determines R13 and on the other hand is
uniquely determined by R12 and R23. Note the close similarity
to the triangular relation Eq. (5).2

B. A geometric interpretation of time-autocorrelation
functions

It is a property of equilibrium dynamics that knowl-
edge of the value of one time-autocorrelation function deter-
mines the time difference in question and thus all other time-
autocorrelation functions. Via MTTI as expressed in Eqs. (3)
and (4), this property generalizes to aging systems; in partic-
ular it means that the value of ⟨A(t1)A(t2)⟩, which is a function
of ξ(t2) − ξ(t1), is in a one-to-one correspondence with the
distance travelled, R12. Thus, one can define a geometric
autocorrelation function as the average of A(t1)A(t2) for all
pairs of times of the aging system with the same distance
R12, corresponding to the same difference in material time. We
denote this geometric autocorrelation function by ⟨A(0)A(R)⟩.
MTTI leads to the identity

⟨A(t1)A(t2)⟩ = ⟨A(0)A(R)⟩�
R=R12

. (29)

Since this applies also when the system stops aging and is very
close to equilibrium, the geometric autocorrelation function
⟨A(0)A(R)⟩ is identical to that characterizing equilibrium (Ap-
pendix).

Equation (29) generalizes a proposal for a geometric
interpretation of equilibrium time-autocorrelation functions
put forward some time ago.58 It was never published in a
regular journal and is therefore briefly summarized in the
Appendix. The idea is that the reason any time-autocorrelation
function is small for large time separations is that the two
relevant configurations are far from each other (we assume that
A only depends on the system’s spatial coordinates, not the
momenta). In glass-forming liquids, all auto-correlation func-
tions slow down in the same way as temperature is decreased.59

This fact is easily understood from the geometric interpreta-
tion of time-autocorrelation functions (Appendix), according
to which the slowing down of Req(t) upon cooling controls
all time-autocorrelation functions in the same way, compare
Eq. (29).

VI. POSSIBLE NUMERICAL TESTS
OF THE PROPOSED FRAMEWORK

The MTTI assumption can be checked by computer simu-
lations. To do this, it is first necessary to identify a system that
obeys the Narayanaswamy formalism. This may be challeng-
ing because computers are not yet able to simulate realistic ag-
ing situations, so temperature jumps larger than a few percent
may be needed in simulations.60

Once a suitable model system has been identified, the
following tests can be performed:

1. Predicting nonlinear aging from linear aging. The ultimate
test of Eq. (2) is to investigate whether information from
very small temperature-jump simulations, i.e., aging in the
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linear regime, is enough to predict aging following larger
temperature jumps when the material time is defined by
Eq. (24).

2. The unique-triangles property for an aging system. This can
be investigated in the same way the triangular relation is
checked:33 First, the system’s path in configuration space
R(t) is traced out and stored. Different triplets of configu-
rations R(t1), R(t2), and R(t3), are then picked out and the
corresponding distances R12, R13, and R23 evaluated. The
system obeys the unique-triangles property if for a given
value of R12 there is a one-to-one correspondence between
R13 and R23. In practice, this may be checked by plotting
R13 versus R23 for a narrow range of R12 values.

3. The geometric ansatz for the time-autocorrelation func-
tions. To check Eq. (29) for an aging system, one may pro-
ceed as follows. First, evaluate the equilibrium geometric
autocorrelation function ⟨A(0)A(R)⟩0. This may be done
by tracing out and storing the system’s path in configura-
tion space R(t). For many pairs of configurations on this
path, R1 and R2, the distance R12 and product A(R1)A(R2)
are evaluated; ⟨A(0)A(R)⟩0 is then the average of these
products with R = R12. After this, the same procedure is
performed for an aging system to see whether the same
geometric autocorrelation function applies. An equivalent
test is to investigate whether ∆A12 ≡ A(R2) − A(R1) is the
same function of the distance R12 in equilibrium and during
aging, which can be done by plotting ∆A12 versus R12 and
comparing the two plots.

If simulations have also identified a model for which the
Narayanaswamy theory does not apply, it would be interest-
ing to see whether this system violates the unique-triangles
property. This may illuminate whether that property is a good
“thermometer” for which systems obey the Narayanaswamy
theory and which do not.

VII. CONCLUDING REMARKS

The purpose of this paper was to address the challenge
of justifying from basic principles the phenomenological, but
indisputably successful 44 year old Narayanaswamy descrip-
tion of aging. The above reasoning should not be regarded as
an attempt to formulate a compelling theory for physical aging,
but merely as suggesting one possible way to go about this
subject.

Taking MTTI as the starting point, we have seen that

• MTTI is equivalent to the triangular relation discovered
by Cugliandolo and Kurchan in 1994 from theoretical
studies of spin glass aging.2

• MTTI in conjunction with the 1981 Bochkov-Kuzovlev
exact nonlinear fluctuation-dissipation theorem leads to
the Narayanaswamy aging theory for small temperature
variations.

• There is only one possible material time obeying MTTI,
namely, that defined by the distance squared to a config-
uration of the system’s distant past.

• MTTI implies a geometric picture of time-autocorre-
lation functions for an aging system, according to

which the time-autocorrelation is regarded as a spatial
autocorrelation evaluated at the distance travelled in
configuration space.

An open question is the origin of the intriguing extension
of Onsager reciprocity to aging systems’ time autocorrelation
functions, i.e., the finding that in certain spin glass models
⟨A(t1)B(t2)⟩ = ⟨B(t1)A(t2)⟩ as discussed by Cugliandolo and
Kurchan61 and by Franz and Virasoro.39 This applies trivially
in equilibrium because of time-reversal invariance. Whenever
Onsager reciprocity applies for an aging system, it indicates an
element of reversibility during aging.39,61,62 Given the similar
aging behavior of spin glasses and real glasses, it seems likely
that Onsager reciprocity may also apply for the latter, meaning
that aging for relatively small temperature variations has an
element of reversibility. This is consistent with the fact that the
algebraic operation ∗ discussed in Sec. II C is commutative.

In Sec. I, we listed four questions relating to the
Narayanaswamy formalism. The above developments addres-
sed the first three of these. Thus we have shown: (1) how,
by use of the Bochkov-Kuzovlev exact nonlinear fluctuation-
dissipation theorem and MTTI, the highly nonlinear aging
phenomenon may be reduced to a linear material-time convo-
lution integral; (2) the material time was identified as the
distance to a reference configuration far away; (3) whether all
quantities age following the same material time is answered
with a yes since the material-time definition of Eq. (24) is
unique.

The remaining question from Sec. I is: what controls the
material time? The traditional answer to this is the fictive
temperature Tf ,4,34 which by definition quantifies the struc-
ture in such a way that in Tf = T in equilibrium. The fictive-
temperature concept is hand waving, however, and it would be
nice to have a microscopic understanding of what controls the
material time’s clock rate γ(t) of Eq. (1).1,17,63 This amounts
to solving one of the deepest problems in glass science: what
controls the equilibrium relaxation time’s temperature depen-
dence.5 Aging studies may contribute to solving this problem
by providing information beyond that obtainable from linear-
response experiments. For instance, an aging experiment could
in principle determine whether following a temperature jump
there is an instantaneous change of the activation energy of the
clock rate γ(t) as predicted, e.g., by the shoving model,5,17,64

or whether there is no such instantaneous change, which is
the expectation, e.g., from the Adam-Gibbs configurational-
entropy model.65 Another example of aging studies with conse-
quences for the general understanding of viscous liquid dy-
namics is the suggestion that the potential energy controls the
material time and thus, in particular, glass-forming liquids’
equilibrium average relaxation time.66 This interesting idea
connects to and includes the material time of rheology,67,68

which was Narayanaswamy’s source of inspiration.4
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APPENDIX: GEOMETRIC THEORY OF EQUILIBRIUM
TIME-AUTOCORRELATION FUNCTIONS

As in the main paper, the system’s path in configuration
space as a function of time is denoted by R(t) and we define
the distance R12 between two configurations R(t1) and R(t2)
by Eq. (22). As mentioned, fluctuations become insignificant
in the N → ∞ limit, and consequently the distance between
the system’s configurations at two times is a unique number.
This simplification applies in equilibrium, as well as for an
aging system. In thermal equilibrium, the displacement of the
system during time t is denoted by Req(t) (Eq. (28)). Note that
this quantity is experimentally accessible via the incoherent
intermediate scattering function.

Some time ago, I proposed a geometric view of thermal-
equilibrium time-autocorrelation functions.58 The background
was the fact that time-temperature superposition (TTS) often
applies for linear-response functions of glass-forming liquids
and also the fact that, while the average relaxation time τ(T)
is always strongly temperature dependent, τ(T) of different
linear-response functions usually varies with temperature in
exactly the same way.59 A simple way to understand these facts
is that there is a temperature-independent geometric autocor-
relation function,

⟨A(0)A(R)⟩, (A1)

by which is meant the quantity defined by averaging over all
pairs of points along the system’s path in time separated by the
distance R = Req(t), corresponding to the time interval t = t2
− t1 between two configurations, R(t1) and R(t2). This distance
is unique for given t. Req(t) is an increasing function of t
and thus in a one-to-one correspondence with t. In terms of
the geometric autocorrelation function, an equilibrium time-
autocorrelation function is given58 by

⟨A(0)A(t)⟩0 = ⟨A(0)A(R)⟩����R=Req(t)
. (A2)

As it stands, Eq. (A2) is a tautology because the geometric
average ⟨A(0)A(R)⟩ is defined to make Eq. (A2) apply at the
thermodynamic state point in question.

One of the consequences of Ref. 58 is that TTS finds a nat-
ural explanation if what happens when temperature is changed
is simply the following: the geometric autocorrelation function
⟨A(0)A(R)⟩ is unchanged, and Req(t) is also unchanged except
for an overall scaling of time reflecting the slowing down
upon cooling. This geometric “explanation” of TTS admittedly
presupposes TTS for the mean-square displacement, but there
is considerable evidence for this from theoretical and numer-
ical studies of hopping in highly disordered landscapes.55–57

In Ref. 58 we proposed an ansatz for calculating the
geometric autocorrelation function ⟨A(0)A(R)⟩ via a “double-
canonical” statistical-mechanical average, and the theory was
validated by simulations of a one-dimensional double-potential
model.

A simple example of Eq. (A2) is the case of a Gaussian
geometric autocorrelation function, ⟨A(0)A(R)⟩ ∝ exp(−R2/
2R2

0), and linear diffusion, R2
eq(t) = 6Dt, where D is the diffu-

sion constant. This leads to an exponentially decaying time-
autocorrelation function, the so-called Debye relaxation which
is the simplest linear-response situation. A more realistic case

also assumes a Gaussian geometric autocorrelation function,
but combines this with the fact that the short-time mean-square
displacement is usually subdiffusive.55 This leads to a high-
frequency (short-time) non-Debye behavior. In experiments,
the relaxation is often Debye-like on the low-frequency side
of the loss peak69—at least for non-polymeric systems—which
implies that a Gaussian decay of the geometric autocorrelation
function must apply at long distances.

The assumption that the equilibrium geometric autocor-
relation function ⟨A(0)A(R)⟩ is temperature independent is a
quantitative expression of the physical idea that at different
temperatures the system paths are very similar, except for the
fact that the rate of motion has changed.27 Whenever this ap-
plies, it is natural to expect that the same geometric autocorre-
lation function describes a system aging at these temperatures.
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